summaryrefslogtreecommitdiffstats
path: root/include/clang/Parse/Ownership.h
blob: 59517930de9572b6151e3bc6a81e72b55f7de90f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
//===--- Ownership.h - Parser Ownership Helpers -----------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file contains classes for managing ownership of Stmt and Expr nodes.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_PARSE_OWNERSHIP_H
#define LLVM_CLANG_PARSE_OWNERSHIP_H

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/PointerIntPair.h"

//===----------------------------------------------------------------------===//
// OpaquePtr
//===----------------------------------------------------------------------===//

namespace clang {
  class ActionBase;
  
  /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
  /// Parser doesn't know about but that Sema or another client does.  The UID
  /// template argument is used to make sure that "Decl" pointers are not
  /// compatible with "Type" pointers for example.
  template<int UID>
  class OpaquePtr {
    void *Ptr;
  public:
    OpaquePtr() : Ptr(0) {}
    
    template <typename T>
    T* getAs() const {
      return llvm::PointerLikeTypeTraits<T*>::getFromVoidPointer(Ptr);
    }
    
    template <typename T>
    T getAsVal() const {
      return llvm::PointerLikeTypeTraits<T>::getFromVoidPointer(Ptr);
    }
    
    void *get() const { return Ptr; }
    
    template<typename T>
    static OpaquePtr make(T P) {
      OpaquePtr R; R.set(P); return R;
    }
    
    template<typename T>
    void set(T P) {
      Ptr = llvm::PointerLikeTypeTraits<T>::getAsVoidPointer(P);
    }
    
    operator bool() const { return Ptr != 0; }
  };
}

namespace llvm {
  template <int UID>
  class PointerLikeTypeTraits<clang::OpaquePtr<UID> > {
  public:
    static inline void *getAsVoidPointer(clang::OpaquePtr<UID> P) {
      // FIXME: Doesn't work? return P.getAs< void >();
      return P.get();
    }
    static inline clang::OpaquePtr<UID> getFromVoidPointer(void *P) {
      return clang::OpaquePtr<UID>::make(P);
    }
    enum { NumLowBitsAvailable = 3 };
  };
}



// -------------------------- About Move Emulation -------------------------- //
// The smart pointer classes in this file attempt to emulate move semantics
// as they appear in C++0x with rvalue references. Since C++03 doesn't have
// rvalue references, some tricks are needed to get similar results.
// Move semantics in C++0x have the following properties:
// 1) "Moving" means transferring the value of an object to another object,
//    similar to copying, but without caring what happens to the old object.
//    In particular, this means that the new object can steal the old object's
//    resources instead of creating a copy.
// 2) Since moving can modify the source object, it must either be explicitly
//    requested by the user, or the modifications must be unnoticeable.
// 3) As such, C++0x moving is only allowed in three contexts:
//    * By explicitly using std::move() to request it.
//    * From a temporary object, since that object cannot be accessed
//      afterwards anyway, thus making the state unobservable.
//    * On function return, since the object is not observable afterwards.
//
// To sum up: moving from a named object should only be possible with an
// explicit std::move(), or on function return. Moving from a temporary should
// be implicitly done. Moving from a const object is forbidden.
//
// The emulation is not perfect, and has the following shortcomings:
// * move() is not in namespace std.
// * move() is required on function return.
// * There are difficulties with implicit conversions.
// * Microsoft's compiler must be given the /Za switch to successfully compile.
//
// -------------------------- Implementation -------------------------------- //
// The move emulation relies on the peculiar reference binding semantics of
// C++03: as a rule, a non-const reference may not bind to a temporary object,
// except for the implicit object parameter in a member function call, which
// can refer to a temporary even when not being const.
// The moveable object has five important functions to facilitate moving:
// * A private, unimplemented constructor taking a non-const reference to its
//   own class. This constructor serves a two-fold purpose.
//   - It prevents the creation of a copy constructor that takes a const
//     reference. Temporaries would be able to bind to the argument of such a
//     constructor, and that would be bad.
//   - Named objects will bind to the non-const reference, but since it's
//     private, this will fail to compile. This prevents implicit moving from
//     named objects.
//   There's also a copy assignment operator for the same purpose.
// * An implicit, non-const conversion operator to a special mover type. This
//   type represents the rvalue reference of C++0x. Being a non-const member,
//   its implicit this parameter can bind to temporaries.
// * A constructor that takes an object of this mover type. This constructor
//   performs the actual move operation. There is an equivalent assignment
//   operator.
// There is also a free move() function that takes a non-const reference to
// an object and returns a temporary. Internally, this function uses explicit
// constructor calls to move the value from the referenced object to the return
// value.
//
// There are now three possible scenarios of use.
// * Copying from a const object. Constructor overload resolution will find the
//   non-const copy constructor, and the move constructor. The first is not
//   viable because the const object cannot be bound to the non-const reference.
//   The second fails because the conversion to the mover object is non-const.
//   Moving from a const object fails as intended.
// * Copying from a named object. Constructor overload resolution will select
//   the non-const copy constructor, but fail as intended, because this
//   constructor is private.
// * Copying from a temporary. Constructor overload resolution cannot select
//   the non-const copy constructor, because the temporary cannot be bound to
//   the non-const reference. It thus selects the move constructor. The
//   temporary can be bound to the implicit this parameter of the conversion
//   operator, because of the special binding rule. Construction succeeds.
//   Note that the Microsoft compiler, as an extension, allows binding
//   temporaries against non-const references. The compiler thus selects the
//   non-const copy constructor and fails, because the constructor is private.
//   Passing /Za (disable extensions) disables this behaviour.
// The free move() function is used to move from a named object.
//
// Note that when passing an object of a different type (the classes below
// have OwningResult and OwningPtr, which should be mixable), you get a problem.
// Argument passing and function return use copy initialization rules. The
// effect of this is that, when the source object is not already of the target
// type, the compiler will first seek a way to convert the source object to the
// target type, and only then attempt to copy the resulting object. This means
// that when passing an OwningResult where an OwningPtr is expected, the
// compiler will first seek a conversion from OwningResult to OwningPtr, then
// copy the OwningPtr. The resulting conversion sequence is:
// OwningResult object -> ResultMover -> OwningResult argument to
// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
// This conversion sequence is too complex to be allowed. Thus the special
// move_* functions, which help the compiler out with some explicit
// conversions.

// Flip this switch to measure performance impact of the smart pointers.
//#define DISABLE_SMART_POINTERS

namespace llvm {
  template<>
  class PointerLikeTypeTraits<clang::ActionBase*> {
    typedef clang::ActionBase* PT;
  public:
    static inline void *getAsVoidPointer(PT P) { return P; }
    static inline PT getFromVoidPointer(void *P) {
      return static_cast<PT>(P);
    }
    enum { NumLowBitsAvailable = 2 };
  };
}

namespace clang {
  // Basic
  class DiagnosticBuilder;

  // Determines whether the low bit of the result pointer for the
  // given UID is always zero. If so, ActionResult will use that bit
  // for it's "invalid" flag.
  template<unsigned UID>
  struct IsResultPtrLowBitFree {
    static const bool value = false;
  };

  /// ActionBase - A small part split from Action because of the horrible
  /// definition order dependencies between Action and the smart pointers.
  class ActionBase {
  public:
    /// Out-of-line virtual destructor to provide home for this class.
    virtual ~ActionBase();

    // Types - Though these don't actually enforce strong typing, they document
    // what types are required to be identical for the actions.
    typedef OpaquePtr<0> DeclPtrTy;
    typedef OpaquePtr<1> DeclGroupPtrTy;
    typedef OpaquePtr<2> TemplateTy;
    typedef void AttrTy;
    typedef void BaseTy;
    typedef void MemInitTy;
    typedef void ExprTy;
    typedef void StmtTy;
    typedef void TemplateParamsTy;
    typedef void CXXScopeTy;
    typedef void TypeTy;  // FIXME: Change TypeTy to use OpaquePtr<N>.

    /// ActionResult - This structure is used while parsing/acting on
    /// expressions, stmts, etc.  It encapsulates both the object returned by
    /// the action, plus a sense of whether or not it is valid.
    /// When CompressInvalid is true, the "invalid" flag will be
    /// stored in the low bit of the Val pointer. 
    template<unsigned UID,
             typename PtrTy = void*,
             bool CompressInvalid = IsResultPtrLowBitFree<UID>::value>
    class ActionResult {
      PtrTy Val;
      bool Invalid;

    public:
      ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {}
      template<typename ActualExprTy>
      ActionResult(ActualExprTy val) : Val(val), Invalid(false) {}
      ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}

      PtrTy get() const { return Val; }
      void set(PtrTy V) { Val = V; }
      bool isInvalid() const { return Invalid; }

      const ActionResult &operator=(PtrTy RHS) {
        Val = RHS;
        Invalid = false;
        return *this;
      }
    };

    // This ActionResult partial specialization places the "invalid"
    // flag into the low bit of the pointer.
    template<unsigned UID, typename PtrTy>
    class ActionResult<UID, PtrTy, true> {
      // A pointer whose low bit is 1 if this result is invalid, 0
      // otherwise.
      uintptr_t PtrWithInvalid;
      typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
    public:
      ActionResult(bool Invalid = false) 
        : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }

      template<typename ActualExprTy>
      ActionResult(ActualExprTy *val) {
        PtrTy V(val);
        void *VP = PtrTraits::getAsVoidPointer(V);
        PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
        assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
      }
      
      ActionResult(PtrTy V) {
        void *VP = PtrTraits::getAsVoidPointer(V);
        PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
        assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
      }
      
      ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }

      PtrTy get() const {
        void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01); 
        return PtrTraits::getFromVoidPointer(VP);
      }

      void set(PtrTy V) {
        void *VP = PtrTraits::getAsVoidPointer(V);
        PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
        assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
      }

      bool isInvalid() const { return PtrWithInvalid & 0x01; }

      const ActionResult &operator=(PtrTy RHS) {
        void *VP = PtrTraits::getAsVoidPointer(RHS);
        PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
        assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
        return *this;
      }
    };

    /// Deletion callbacks - Since the parser doesn't know the concrete types of
    /// the AST nodes being generated, it must do callbacks to delete objects
    /// when recovering from errors. These are in ActionBase because the smart
    /// pointers need access to them.
    virtual void DeleteExpr(ExprTy *E) {}
    virtual void DeleteStmt(StmtTy *S) {}
    virtual void DeleteTemplateParams(TemplateParamsTy *P) {}
  };

  /// ASTDestroyer - The type of an AST node destruction function pointer.
  typedef void (ActionBase::*ASTDestroyer)(void *);

  /// For the transition phase: translate from an ASTDestroyer to its
  /// ActionResult UID.
  template <ASTDestroyer Destroyer> struct DestroyerToUID;
  template <> struct DestroyerToUID<&ActionBase::DeleteExpr> {
    static const unsigned UID = 0;
  };
  template <> struct DestroyerToUID<&ActionBase::DeleteStmt> {
    static const unsigned UID = 1;
  };
  /// ASTOwningResult - A moveable smart pointer for AST nodes that also
  /// has an extra flag to indicate an additional success status.
  template <ASTDestroyer Destroyer> class ASTOwningResult;

  /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
  /// the individual pointers, not the array holding them.
  template <ASTDestroyer Destroyer> class ASTMultiPtr;

#if !defined(DISABLE_SMART_POINTERS)
  namespace moving {
    /// Move emulation helper for ASTOwningResult. NEVER EVER use this class
    /// directly if you don't know what you're doing.
    template <ASTDestroyer Destroyer>
    class ASTResultMover
    {
      ASTOwningResult<Destroyer> &Moved;

    public:
      ASTResultMover(ASTOwningResult<Destroyer> &moved) : Moved(moved) {}

      ASTOwningResult<Destroyer> * operator ->() { return &Moved; }
    };

    /// Move emulation helper for ASTMultiPtr. NEVER EVER use this class
    /// directly if you don't know what you're doing.
    template <ASTDestroyer Destroyer>
    class ASTMultiMover
    {
      ASTMultiPtr<Destroyer> &Moved;

    public:
      ASTMultiMover(ASTMultiPtr<Destroyer> &moved) : Moved(moved) {}

      ASTMultiPtr<Destroyer> * operator ->() { return &Moved; }

      /// Reset the moved object's internal structures.
      void release();
    };
  }
#else

  /// Kept only as a type-safe wrapper for a void pointer, when smart pointers
  /// are disabled. When they are enabled, ASTOwningResult takes over.
  template <ASTDestroyer Destroyer>
  class ASTOwningPtr
  {
    void *Node;

  public:
    explicit ASTOwningPtr(ActionBase &) : Node(0) {}
    ASTOwningPtr(ActionBase &, void *node) : Node(node) {}
    // Normal copying operators are defined implicitly.
    ASTOwningPtr(const ASTOwningResult<Destroyer> &o);

    ASTOwningPtr & operator =(void *raw) {
      Node = raw;
      return *this;
    }

    /// Access to the raw pointer.
    void * get() const { return Node; }

    /// Release the raw pointer.
    void * take() {
      return Node;
    }

    /// Take outside ownership of the raw pointer and cast it down.
    template<typename T>
    T *takeAs() {
      return static_cast<T*>(Node);
    }

    /// Alias for interface familiarity with unique_ptr.
    void * release() {
      return take();
    }
  };
#endif

  // Important: There are two different implementations of
  // ASTOwningResult below, depending on whether
  // DISABLE_SMART_POINTERS is defined. If you make changes that
  // affect the interface, be sure to compile and test both ways!

#if !defined(DISABLE_SMART_POINTERS)
  template <ASTDestroyer Destroyer>
  class ASTOwningResult
  {
    llvm::PointerIntPair<ActionBase*, 1, bool> ActionInv;
    void *Ptr;

    friend class moving::ASTResultMover<Destroyer>;

    ASTOwningResult(ASTOwningResult&); // DO NOT IMPLEMENT
    ASTOwningResult& operator =(ASTOwningResult&); // DO NOT IMPLEMENT

    void destroy() {
      if (Ptr) {
        assert(ActionInv.getPointer() &&
               "Smart pointer has node but no action.");
        (ActionInv.getPointer()->*Destroyer)(Ptr);
        Ptr = 0;
      }
    }

  public:
    typedef ActionBase::ActionResult<DestroyerToUID<Destroyer>::UID> DumbResult;

    explicit ASTOwningResult(ActionBase &actions, bool invalid = false)
      : ActionInv(&actions, invalid), Ptr(0) {}
    ASTOwningResult(ActionBase &actions, void *node)
      : ActionInv(&actions, false), Ptr(node) {}
    ASTOwningResult(ActionBase &actions, const DumbResult &res)
      : ActionInv(&actions, res.isInvalid()), Ptr(res.get()) {}
    /// Move from another owning result
    ASTOwningResult(moving::ASTResultMover<Destroyer> mover)
      : ActionInv(mover->ActionInv),
        Ptr(mover->Ptr) {
      mover->Ptr = 0;
    }

    ~ASTOwningResult() {
      destroy();
    }

    /// Move assignment from another owning result
    ASTOwningResult &operator=(moving::ASTResultMover<Destroyer> mover) {
      destroy();
      ActionInv = mover->ActionInv;
      Ptr = mover->Ptr;
      mover->Ptr = 0;
      return *this;
    }

    /// Assignment from a raw pointer. Takes ownership - beware!
    ASTOwningResult &operator=(void *raw) {
      destroy();
      Ptr = raw;
      ActionInv.setInt(false);
      return *this;
    }

    /// Assignment from an ActionResult. Takes ownership - beware!
    ASTOwningResult &operator=(const DumbResult &res) {
      destroy();
      Ptr = res.get();
      ActionInv.setInt(res.isInvalid());
      return *this;
    }

    /// Access to the raw pointer.
    void *get() const { return Ptr; }

    bool isInvalid() const { return ActionInv.getInt(); }

    /// Does this point to a usable AST node? To be usable, the node must be
    /// valid and non-null.
    bool isUsable() const { return !isInvalid() && get(); }

    /// Take outside ownership of the raw pointer.
    void *take() {
      if (isInvalid())
        return 0;
      void *tmp = Ptr;
      Ptr = 0;
      return tmp;
    }

    /// Take outside ownership of the raw pointer and cast it down.
    template<typename T>
    T *takeAs() {
      return static_cast<T*>(take());
    }

    /// Alias for interface familiarity with unique_ptr.
    void *release() { return take(); }

    /// Pass ownership to a classical ActionResult.
    DumbResult result() {
      if (isInvalid())
        return true;
      return take();
    }

    /// Move hook
    operator moving::ASTResultMover<Destroyer>() {
      return moving::ASTResultMover<Destroyer>(*this);
    }
  };
#else
  template <ASTDestroyer Destroyer>
  class ASTOwningResult
  {
  public:
    typedef ActionBase::ActionResult<DestroyerToUID<Destroyer>::UID> DumbResult;

  private:
    DumbResult Result;

  public:
    explicit ASTOwningResult(ActionBase &actions, bool invalid = false)
      : Result(invalid) { }
    ASTOwningResult(ActionBase &actions, void *node) : Result(node) { }
    ASTOwningResult(ActionBase &actions, const DumbResult &res) : Result(res) { }
    // Normal copying semantics are defined implicitly.
    ASTOwningResult(const ASTOwningPtr<Destroyer> &o) : Result(o.get()) { }

    /// Assignment from a raw pointer. Takes ownership - beware!
    ASTOwningResult & operator =(void *raw)
    {
      Result = raw;
      return *this;
    }

    /// Assignment from an ActionResult. Takes ownership - beware!
    ASTOwningResult & operator =(const DumbResult &res) {
      Result = res;
      return *this;
    }

    /// Access to the raw pointer.
    void * get() const { return Result.get(); }

    bool isInvalid() const { return Result.isInvalid(); }

    /// Does this point to a usable AST node? To be usable, the node must be
    /// valid and non-null.
    bool isUsable() const { return !Result.isInvalid() && get(); }

    /// Take outside ownership of the raw pointer.
    void * take() {
      return Result.get();
    }

    /// Take outside ownership of the raw pointer and cast it down.
    template<typename T>
    T *takeAs() {
      return static_cast<T*>(take());
    }

    /// Alias for interface familiarity with unique_ptr.
    void * release() { return take(); }

    /// Pass ownership to a classical ActionResult.
    DumbResult result() { return Result; }
  };
#endif

  template <ASTDestroyer Destroyer>
  class ASTMultiPtr
  {
#if !defined(DISABLE_SMART_POINTERS)
    ActionBase &Actions;
#endif
    void **Nodes;
    unsigned Count;

#if !defined(DISABLE_SMART_POINTERS)
    friend class moving::ASTMultiMover<Destroyer>;

    ASTMultiPtr(ASTMultiPtr&); // DO NOT IMPLEMENT
    // Reference member prevents copy assignment.

    void destroy() {
      assert((Count == 0 || Nodes) && "No nodes when count is not zero.");
      for (unsigned i = 0; i < Count; ++i) {
        if (Nodes[i])
          (Actions.*Destroyer)(Nodes[i]);
      }
    }
#endif

  public:
#if !defined(DISABLE_SMART_POINTERS)
    explicit ASTMultiPtr(ActionBase &actions)
      : Actions(actions), Nodes(0), Count(0) {}
    ASTMultiPtr(ActionBase &actions, void **nodes, unsigned count)
      : Actions(actions), Nodes(nodes), Count(count) {}
    /// Move constructor
    ASTMultiPtr(moving::ASTMultiMover<Destroyer> mover)
      : Actions(mover->Actions), Nodes(mover->Nodes), Count(mover->Count) {
      mover.release();
    }
#else
    // Normal copying implicitly defined
    explicit ASTMultiPtr(ActionBase &) : Nodes(0), Count(0) {}
    ASTMultiPtr(ActionBase &, void **nodes, unsigned count)
      : Nodes(nodes), Count(count) {}
    // Fake mover in Parse/AstGuard.h needs this:
    ASTMultiPtr(void **nodes, unsigned count) : Nodes(nodes), Count(count) {}
#endif

#if !defined(DISABLE_SMART_POINTERS)
    /// Move assignment
    ASTMultiPtr & operator =(moving::ASTMultiMover<Destroyer> mover) {
      destroy();
      Nodes = mover->Nodes;
      Count = mover->Count;
      mover.release();
      return *this;
    }
#endif

    /// Access to the raw pointers.
    void ** get() const { return Nodes; }

    /// Access to the count.
    unsigned size() const { return Count; }

    void ** release() {
#if !defined(DISABLE_SMART_POINTERS)
      void **tmp = Nodes;
      Nodes = 0;
      Count = 0;
      return tmp;
#else
      return Nodes;
#endif
    }

#if !defined(DISABLE_SMART_POINTERS)
    /// Move hook
    operator moving::ASTMultiMover<Destroyer>() {
      return moving::ASTMultiMover<Destroyer>(*this);
    }
#endif
  };
  
  class ASTTemplateArgsPtr {
#if !defined(DISABLE_SMART_POINTERS)
    ActionBase &Actions;
#endif
    void **Args;
    bool *ArgIsType;
    mutable unsigned Count;
    
#if !defined(DISABLE_SMART_POINTERS)
    void destroy() {
      if (!Count)
        return;

      for (unsigned i = 0; i != Count; ++i)
        if (Args[i] && !ArgIsType[i])
          Actions.DeleteExpr((ActionBase::ExprTy *)Args[i]);

      Count = 0;
    }
#endif

  public:
    ASTTemplateArgsPtr(ActionBase &actions, void **args, bool *argIsType,
                       unsigned count) : 
#if !defined(DISABLE_SMART_POINTERS)
      Actions(actions), 
#endif
      Args(args), ArgIsType(argIsType), Count(count) { }

    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
    ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) : 
#if !defined(DISABLE_SMART_POINTERS)
      Actions(Other.Actions), 
#endif
      Args(Other.Args), ArgIsType(Other.ArgIsType), Count(Other.Count) {
#if !defined(DISABLE_SMART_POINTERS)
      Other.Count = 0;
#endif
    }

    // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
    ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other)  {
#if !defined(DISABLE_SMART_POINTERS)
      Actions = Other.Actions;
#endif
      Args = Other.Args;
      ArgIsType = Other.ArgIsType;
      Count = Other.Count;
#if !defined(DISABLE_SMART_POINTERS)
      Other.Count = 0;
#endif
      return *this;
    }

#if !defined(DISABLE_SMART_POINTERS)
    ~ASTTemplateArgsPtr() { destroy(); }
#endif

    void **getArgs() const { return Args; }
    bool *getArgIsType() const {return ArgIsType; }
    unsigned size() const { return Count; }

    void reset(void **args, bool *argIsType, unsigned count) {
#if !defined(DISABLE_SMART_POINTERS)
      destroy();
#endif
      Args = args;
      ArgIsType = argIsType;
      Count = count;
    }

    void *operator[](unsigned Arg) const { return Args[Arg]; }

    void **release() const { 
#if !defined(DISABLE_SMART_POINTERS)
      Count = 0;
#endif
      return Args;
    }
  };

  /// \brief A small vector that owns a set of AST nodes.
  template <ASTDestroyer Destroyer, unsigned N = 8>
  class ASTOwningVector : public llvm::SmallVector<void *, N> {
#if !defined(DISABLE_SMART_POINTERS)
    ActionBase &Actions;
    bool Owned;
#endif

    ASTOwningVector(ASTOwningVector &); // do not implement
    ASTOwningVector &operator=(ASTOwningVector &); // do not implement

  public:
    explicit ASTOwningVector(ActionBase &Actions) 
#if !defined(DISABLE_SMART_POINTERS)
      : Actions(Actions), Owned(true)
#endif
    { }

#if !defined(DISABLE_SMART_POINTERS)
    ~ASTOwningVector() {
      if (!Owned)
        return;

      for (unsigned I = 0, Last = this->size(); I != Last; ++I)
        (Actions.*Destroyer)((*this)[I]);
    }
#endif

    void **take() {
#if !defined(DISABLE_SMART_POINTERS)
      Owned = false;
#endif
      return &this->front();
    }

    template<typename T> T **takeAs() { return (T**)take(); }

#if !defined(DISABLE_SMART_POINTERS)
    ActionBase &getActions() const { return Actions; }
#endif
  };

  /// A SmallVector of statements, with stack size 32 (as that is the only one
  /// used.)
  typedef ASTOwningVector<&ActionBase::DeleteStmt, 32> StmtVector;
  /// A SmallVector of expressions, with stack size 12 (the maximum used.)
  typedef ASTOwningVector<&ActionBase::DeleteExpr, 12> ExprVector;

  template <ASTDestroyer Destroyer, unsigned N> inline
  ASTMultiPtr<Destroyer> move_arg(ASTOwningVector<Destroyer, N> &vec) {
#if !defined(DISABLE_SMART_POINTERS)
    return ASTMultiPtr<Destroyer>(vec.getActions(), vec.take(), vec.size());
#else
    return ASTMultiPtr<Destroyer>(vec.take(), vec.size());
#endif
  }

#if !defined(DISABLE_SMART_POINTERS)

  // Out-of-line implementations due to definition dependencies

  template <ASTDestroyer Destroyer> inline
  void moving::ASTMultiMover<Destroyer>::release() {
    Moved.Nodes = 0;
    Moved.Count = 0;
  }

  // Move overloads.

  template <ASTDestroyer Destroyer> inline
  ASTOwningResult<Destroyer> move(ASTOwningResult<Destroyer> &ptr) {
    return ASTOwningResult<Destroyer>(moving::ASTResultMover<Destroyer>(ptr));
  }

  template <ASTDestroyer Destroyer> inline
  ASTMultiPtr<Destroyer> move(ASTMultiPtr<Destroyer> &ptr) {
    return ASTMultiPtr<Destroyer>(moving::ASTMultiMover<Destroyer>(ptr));
  }

#else

  template <ASTDestroyer Destroyer> inline
  ASTOwningPtr<Destroyer>::ASTOwningPtr(const ASTOwningResult<Destroyer> &o)
    : Node(o.get())
  {}

  // These versions are hopefully no-ops.
  template <ASTDestroyer Destroyer> inline
  ASTOwningResult<Destroyer>& move(ASTOwningResult<Destroyer> &ptr) {
    return ptr;
  }

  template <ASTDestroyer Destroyer> inline
  ASTOwningPtr<Destroyer>& move(ASTOwningPtr<Destroyer> &ptr) {
    return ptr;
  }

  template <ASTDestroyer Destroyer> inline
  ASTMultiPtr<Destroyer>& move(ASTMultiPtr<Destroyer> &ptr) {
    return ptr;
  }
#endif
}

#endif
OpenPOWER on IntegriCloud