1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
|
//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
#define LLVM_CLANG_AST_ASTCONTEXT_H
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/CanonicalType.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Allocator.h"
#include <vector>
namespace llvm {
struct fltSemantics;
}
namespace clang {
class FileManager;
class ASTRecordLayout;
class BlockExpr;
class CharUnits;
class Diagnostic;
class Expr;
class ExternalASTSource;
class IdentifierTable;
class SelectorTable;
class SourceManager;
class TargetInfo;
// Decls
class DeclContext;
class CXXMethodDecl;
class CXXRecordDecl;
class Decl;
class FieldDecl;
class ObjCIvarDecl;
class ObjCIvarRefExpr;
class ObjCPropertyDecl;
class RecordDecl;
class StoredDeclsMap;
class TagDecl;
class TemplateTypeParmDecl;
class TranslationUnitDecl;
class TypeDecl;
class TypedefDecl;
class UsingDecl;
class UsingShadowDecl;
class UnresolvedSetIterator;
namespace Builtin { class Context; }
/// \brief A vector of C++ member functions that is optimized for
/// storing a single method.
class CXXMethodVector {
/// \brief Storage for the vector.
///
/// When the low bit is zero, this is a const CXXMethodDecl *. When the
/// low bit is one, this is a std::vector<const CXXMethodDecl *> *.
mutable uintptr_t Storage;
typedef std::vector<const CXXMethodDecl *> vector_type;
public:
CXXMethodVector() : Storage(0) { }
typedef const CXXMethodDecl **iterator;
iterator begin() const;
iterator end() const;
void push_back(const CXXMethodDecl *Method);
void Destroy();
};
/// ASTContext - This class holds long-lived AST nodes (such as types and
/// decls) that can be referred to throughout the semantic analysis of a file.
class ASTContext {
std::vector<Type*> Types;
llvm::FoldingSet<ExtQuals> ExtQualNodes;
llvm::FoldingSet<ComplexType> ComplexTypes;
llvm::FoldingSet<PointerType> PointerTypes;
llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
std::vector<VariableArrayType*> VariableArrayTypes;
llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
llvm::FoldingSet<VectorType> VectorTypes;
llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
llvm::FoldingSet<DependentNameType> DependentNameTypes;
llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
/// \brief The set of nested name specifiers.
///
/// This set is managed by the NestedNameSpecifier class.
llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
NestedNameSpecifier *GlobalNestedNameSpecifier;
friend class NestedNameSpecifier;
/// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
/// This is lazily created. This is intentionally not serialized.
llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
/// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
/// \brief Mapping from ObjCContainers to their ObjCImplementations.
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
/// BuiltinVaListType - built-in va list type.
/// This is initially null and set by Sema::LazilyCreateBuiltin when
/// a builtin that takes a valist is encountered.
QualType BuiltinVaListType;
/// ObjCIdType - a pseudo built-in typedef type (set by Sema).
QualType ObjCIdTypedefType;
/// ObjCSelType - another pseudo built-in typedef type (set by Sema).
QualType ObjCSelTypedefType;
/// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
QualType ObjCProtoType;
const RecordType *ProtoStructType;
/// ObjCClassType - another pseudo built-in typedef type (set by Sema).
QualType ObjCClassTypedefType;
QualType ObjCConstantStringType;
RecordDecl *CFConstantStringTypeDecl;
RecordDecl *ObjCFastEnumerationStateTypeDecl;
/// \brief The type for the C FILE type.
TypeDecl *FILEDecl;
/// \brief The type for the C jmp_buf type.
TypeDecl *jmp_bufDecl;
/// \brief The type for the C sigjmp_buf type.
TypeDecl *sigjmp_bufDecl;
/// \brief Type for the Block descriptor for Blocks CodeGen.
RecordDecl *BlockDescriptorType;
/// \brief Type for the Block descriptor for Blocks CodeGen.
RecordDecl *BlockDescriptorExtendedType;
/// \brief Keeps track of all declaration attributes.
///
/// Since so few decls have attrs, we keep them in a hash map instead of
/// wasting space in the Decl class.
llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
/// \brief Keeps track of the static data member templates from which
/// static data members of class template specializations were instantiated.
///
/// This data structure stores the mapping from instantiations of static
/// data members to the static data member representations within the
/// class template from which they were instantiated along with the kind
/// of instantiation or specialization (a TemplateSpecializationKind - 1).
///
/// Given the following example:
///
/// \code
/// template<typename T>
/// struct X {
/// static T value;
/// };
///
/// template<typename T>
/// T X<T>::value = T(17);
///
/// int *x = &X<int>::value;
/// \endcode
///
/// This mapping will contain an entry that maps from the VarDecl for
/// X<int>::value to the corresponding VarDecl for X<T>::value (within the
/// class template X) and will be marked TSK_ImplicitInstantiation.
llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
InstantiatedFromStaticDataMember;
/// \brief Keeps track of the declaration from which a UsingDecl was
/// created during instantiation. The source declaration is always
/// a UsingDecl, an UnresolvedUsingValueDecl, or an
/// UnresolvedUsingTypenameDecl.
///
/// For example:
/// \code
/// template<typename T>
/// struct A {
/// void f();
/// };
///
/// template<typename T>
/// struct B : A<T> {
/// using A<T>::f;
/// };
///
/// template struct B<int>;
/// \endcode
///
/// This mapping will contain an entry that maps from the UsingDecl in
/// B<int> to the UnresolvedUsingDecl in B<T>.
llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
InstantiatedFromUsingShadowDecl;
llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
/// \brief Mapping that stores the methods overridden by a given C++
/// member function.
///
/// Since most C++ member functions aren't virtual and therefore
/// don't override anything, we store the overridden functions in
/// this map on the side rather than within the CXXMethodDecl structure.
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
TranslationUnitDecl *TUDecl;
/// SourceMgr - The associated SourceManager object.
SourceManager &SourceMgr;
/// LangOpts - The language options used to create the AST associated with
/// this ASTContext object.
LangOptions LangOpts;
/// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
bool FreeMemory;
llvm::MallocAllocator MallocAlloc;
llvm::BumpPtrAllocator BumpAlloc;
/// \brief Allocator for partial diagnostics.
PartialDiagnostic::StorageAllocator DiagAllocator;
public:
const TargetInfo &Target;
IdentifierTable &Idents;
SelectorTable &Selectors;
Builtin::Context &BuiltinInfo;
DeclarationNameTable DeclarationNames;
llvm::OwningPtr<ExternalASTSource> ExternalSource;
clang::PrintingPolicy PrintingPolicy;
// Typedefs which may be provided defining the structure of Objective-C
// pseudo-builtins
QualType ObjCIdRedefinitionType;
QualType ObjCClassRedefinitionType;
QualType ObjCSelRedefinitionType;
SourceManager& getSourceManager() { return SourceMgr; }
const SourceManager& getSourceManager() const { return SourceMgr; }
void *Allocate(unsigned Size, unsigned Align = 8) {
return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
BumpAlloc.Allocate(Size, Align);
}
void Deallocate(void *Ptr) {
if (FreeMemory)
MallocAlloc.Deallocate(Ptr);
}
PartialDiagnostic::StorageAllocator &getDiagAllocator() {
return DiagAllocator;
}
const LangOptions& getLangOptions() const { return LangOpts; }
FullSourceLoc getFullLoc(SourceLocation Loc) const {
return FullSourceLoc(Loc,SourceMgr);
}
/// \brief Retrieve the attributes for the given declaration.
Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
/// \brief Erase the attributes corresponding to the given declaration.
void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
/// \brief If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
const VarDecl *Var);
/// \brief Note that the static data member \p Inst is an instantiation of
/// the static data member template \p Tmpl of a class template.
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
TemplateSpecializationKind TSK);
/// \brief If the given using decl is an instantiation of a
/// (possibly unresolved) using decl from a template instantiation,
/// return it.
NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
/// \brief Remember that the using decl \p Inst is an instantiation
/// of the using decl \p Pattern of a class template.
void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
UsingShadowDecl *Pattern);
UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
// Access to the set of methods overridden by the given C++ method.
typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl *Method) const;
overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl *Method) const;
/// \brief Note that the given C++ \p Method overrides the given \p
/// Overridden method.
void addOverriddenMethod(const CXXMethodDecl *Method,
const CXXMethodDecl *Overridden);
TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
// Builtin Types.
CanQualType VoidTy;
CanQualType BoolTy;
CanQualType CharTy;
CanQualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
CanQualType FloatTy, DoubleTy, LongDoubleTy;
CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
CanQualType VoidPtrTy, NullPtrTy;
CanQualType OverloadTy;
CanQualType DependentTy;
CanQualType UndeducedAutoTy;
CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
IdentifierTable &idents, SelectorTable &sels,
Builtin::Context &builtins,
bool FreeMemory = true, unsigned size_reserve=0);
~ASTContext();
/// \brief Attach an external AST source to the AST context.
///
/// The external AST source provides the ability to load parts of
/// the abstract syntax tree as needed from some external storage,
/// e.g., a precompiled header.
void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
/// \brief Retrieve a pointer to the external AST source associated
/// with this AST context, if any.
ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
void PrintStats() const;
const std::vector<Type*>& getTypes() const { return Types; }
//===--------------------------------------------------------------------===//
// Type Constructors
//===--------------------------------------------------------------------===//
private:
/// getExtQualType - Return a type with extended qualifiers.
QualType getExtQualType(const Type *Base, Qualifiers Quals);
QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
public:
/// getAddSpaceQualType - Return the uniqued reference to the type for an
/// address space qualified type with the specified type and address space.
/// The resulting type has a union of the qualifiers from T and the address
/// space. If T already has an address space specifier, it is silently
/// replaced.
QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
/// getObjCGCQualType - Returns the uniqued reference to the type for an
/// objc gc qualified type. The retulting type has a union of the qualifiers
/// from T and the gc attribute.
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
/// getRestrictType - Returns the uniqued reference to the type for a
/// 'restrict' qualified type. The resulting type has a union of the
/// qualifiers from T and 'restrict'.
QualType getRestrictType(QualType T) {
return T.withFastQualifiers(Qualifiers::Restrict);
}
/// getVolatileType - Returns the uniqued reference to the type for a
/// 'volatile' qualified type. The resulting type has a union of the
/// qualifiers from T and 'volatile'.
QualType getVolatileType(QualType T);
/// getConstType - Returns the uniqued reference to the type for a
/// 'const' qualified type. The resulting type has a union of the
/// qualifiers from T and 'const'.
///
/// It can be reasonably expected that this will always be
/// equivalent to calling T.withConst().
QualType getConstType(QualType T) { return T.withConst(); }
/// getNoReturnType - Add or remove the noreturn attribute to the given type
/// which must be a FunctionType or a pointer to an allowable type or a
/// BlockPointer.
QualType getNoReturnType(QualType T, bool AddNoReturn = true);
/// getCallConvType - Adds the specified calling convention attribute to
/// the given type, which must be a FunctionType or a pointer to an
/// allowable type.
QualType getCallConvType(QualType T, CallingConv CallConv);
/// getRegParmType - Sets the specified regparm attribute to
/// the given type, which must be a FunctionType or a pointer to an
/// allowable type.
QualType getRegParmType(QualType T, unsigned RegParm);
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType getComplexType(QualType T);
CanQualType getComplexType(CanQualType T) {
return CanQualType::CreateUnsafe(getComplexType((QualType) T));
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType getPointerType(QualType T);
CanQualType getPointerType(CanQualType T) {
return CanQualType::CreateUnsafe(getPointerType((QualType) T));
}
/// getBlockPointerType - Return the uniqued reference to the type for a block
/// of the specified type.
QualType getBlockPointerType(QualType T);
/// This gets the struct used to keep track of the descriptor for pointer to
/// blocks.
QualType getBlockDescriptorType();
// Set the type for a Block descriptor type.
void setBlockDescriptorType(QualType T);
/// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
QualType getRawBlockdescriptorType() {
if (BlockDescriptorType)
return getTagDeclType(BlockDescriptorType);
return QualType();
}
/// This gets the struct used to keep track of the extended descriptor for
/// pointer to blocks.
QualType getBlockDescriptorExtendedType();
// Set the type for a Block descriptor extended type.
void setBlockDescriptorExtendedType(QualType T);
/// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
/// built.
QualType getRawBlockdescriptorExtendedType() {
if (BlockDescriptorExtendedType)
return getTagDeclType(BlockDescriptorExtendedType);
return QualType();
}
/// This gets the struct used to keep track of pointer to blocks, complete
/// with captured variables.
QualType getBlockParmType(bool BlockHasCopyDispose,
llvm::SmallVector<const Expr *, 8> &BDRDs);
/// This builds the struct used for __block variables.
QualType BuildByRefType(const char *DeclName, QualType Ty);
/// Returns true iff we need copy/dispose helpers for the given type.
bool BlockRequiresCopying(QualType Ty);
/// getLValueReferenceType - Return the uniqued reference to the type for an
/// lvalue reference to the specified type.
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
/// getRValueReferenceType - Return the uniqued reference to the type for an
/// rvalue reference to the specified type.
QualType getRValueReferenceType(QualType T);
/// getMemberPointerType - Return the uniqued reference to the type for a
/// member pointer to the specified type in the specified class. The class
/// is a Type because it could be a dependent name.
QualType getMemberPointerType(QualType T, const Type *Cls);
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals,
SourceRange Brackets);
/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type. FIXME: We will need these to be uniqued, or at least
/// comparable, at some point.
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals,
SourceRange Brackets);
/// getIncompleteArrayType - Returns a unique reference to the type for a
/// incomplete array of the specified element type.
QualType getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals);
/// getConstantArrayType - Return the unique reference to the type for a
/// constant array of the specified element type.
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals);
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType getVectorType(QualType VectorType, unsigned NumElts,
bool AltiVec, bool IsPixel);
/// getExtVectorType - Return the unique reference to an extended vector type
/// of the specified element type and size. VectorType must be a built-in
/// type.
QualType getExtVectorType(QualType VectorType, unsigned NumElts);
/// getDependentSizedExtVectorType - Returns a non-unique reference to
/// the type for a dependently-sized vector of the specified element
/// type. FIXME: We will need these to be uniqued, or at least
/// comparable, at some point.
QualType getDependentSizedExtVectorType(QualType VectorType,
Expr *SizeExpr,
SourceLocation AttrLoc);
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
///
QualType getFunctionNoProtoType(QualType ResultTy,
const FunctionType::ExtInfo &Info);
QualType getFunctionNoProtoType(QualType ResultTy) {
return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
unsigned NumArgs, bool isVariadic,
unsigned TypeQuals, bool hasExceptionSpec,
bool hasAnyExceptionSpec,
unsigned NumExs, const QualType *ExArray,
const FunctionType::ExtInfo &Info);
/// getTypeDeclType - Return the unique reference to the type for
/// the specified type declaration.
QualType getTypeDeclType(const TypeDecl *Decl,
const TypeDecl *PrevDecl = 0) {
assert(Decl && "Passed null for Decl param");
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (PrevDecl) {
assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
Decl->TypeForDecl = PrevDecl->TypeForDecl;
return QualType(PrevDecl->TypeForDecl, 0);
}
return getTypeDeclTypeSlow(Decl);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType getTypedefType(const TypedefDecl *Decl);
QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
QualType Replacement);
QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
bool ParameterPack,
IdentifierInfo *Name = 0);
QualType getTemplateSpecializationType(TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
QualType Canon = QualType());
QualType getTemplateSpecializationType(TemplateName T,
const TemplateArgumentListInfo &Args,
QualType Canon = QualType());
TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
const TemplateArgumentListInfo &Args,
QualType Canon = QualType());
QualType getQualifiedNameType(NestedNameSpecifier *NNS,
QualType NamedType);
QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
QualType Canon = QualType());
QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const TemplateSpecializationType *TemplateId,
QualType Canon = QualType());
QualType getElaboratedType(QualType UnderlyingType,
ElaboratedType::TagKind Tag);
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
ObjCProtocolDecl **Protocols = 0,
unsigned NumProtocols = 0);
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
/// given interface decl and the conforming protocol list.
QualType getObjCObjectPointerType(QualType OIT,
ObjCProtocolDecl **ProtocolList = 0,
unsigned NumProtocols = 0,
unsigned Quals = 0);
/// getTypeOfType - GCC extension.
QualType getTypeOfExprType(Expr *e);
QualType getTypeOfType(QualType t);
/// getDecltypeType - C++0x decltype.
QualType getDecltypeType(Expr *e);
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType getTagDeclType(const TagDecl *Decl);
/// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
/// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
CanQualType getSizeType() const;
/// getWCharType - In C++, this returns the unique wchar_t type. In C99, this
/// returns a type compatible with the type defined in <stddef.h> as defined
/// by the target.
QualType getWCharType() const { return WCharTy; }
/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType getSignedWCharType() const;
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType getUnsignedWCharType() const;
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType getPointerDiffType() const;
// getCFConstantStringType - Return the C structure type used to represent
// constant CFStrings.
QualType getCFConstantStringType();
/// Get the structure type used to representation CFStrings, or NULL
/// if it hasn't yet been built.
QualType getRawCFConstantStringType() {
if (CFConstantStringTypeDecl)
return getTagDeclType(CFConstantStringTypeDecl);
return QualType();
}
void setCFConstantStringType(QualType T);
// This setter/getter represents the ObjC type for an NSConstantString.
void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
QualType getObjCConstantStringInterface() const {
return ObjCConstantStringType;
}
//// This gets the struct used to keep track of fast enumerations.
QualType getObjCFastEnumerationStateType();
/// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
/// been built.
QualType getRawObjCFastEnumerationStateType() {
if (ObjCFastEnumerationStateTypeDecl)
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
return QualType();
}
void setObjCFastEnumerationStateType(QualType T);
/// \brief Set the type for the C FILE type.
void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
/// \brief Retrieve the C FILE type.
QualType getFILEType() {
if (FILEDecl)
return getTypeDeclType(FILEDecl);
return QualType();
}
/// \brief Set the type for the C jmp_buf type.
void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
this->jmp_bufDecl = jmp_bufDecl;
}
/// \brief Retrieve the C jmp_buf type.
QualType getjmp_bufType() {
if (jmp_bufDecl)
return getTypeDeclType(jmp_bufDecl);
return QualType();
}
/// \brief Set the type for the C sigjmp_buf type.
void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
this->sigjmp_bufDecl = sigjmp_bufDecl;
}
/// \brief Retrieve the C sigjmp_buf type.
QualType getsigjmp_bufType() {
if (sigjmp_bufDecl)
return getTypeDeclType(sigjmp_bufDecl);
return QualType();
}
/// getObjCEncodingForType - Emit the ObjC type encoding for the
/// given type into \arg S. If \arg NameFields is specified then
/// record field names are also encoded.
void getObjCEncodingForType(QualType t, std::string &S,
const FieldDecl *Field=0);
void getLegacyIntegralTypeEncoding(QualType &t) const;
// Put the string version of type qualifiers into S.
void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string &S) const;
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
/// getObjCEncodingForBlockDecl - Return the encoded type for this block
/// declaration.
void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
/// getObjCEncodingForPropertyDecl - Return the encoded type for
/// this method declaration. If non-NULL, Container must be either
/// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
/// only be NULL when getting encodings for protocol properties.
void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container,
std::string &S);
bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto);
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose in characters.
CharUnits getObjCEncodingTypeSize(QualType t);
/// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
/// Sema. id is always a (typedef for a) pointer type, a pointer to a struct.
QualType getObjCIdType() const { return ObjCIdTypedefType; }
void setObjCIdType(QualType T);
void setObjCSelType(QualType T);
QualType getObjCSelType() const { return ObjCSelTypedefType; }
void setObjCProtoType(QualType QT);
QualType getObjCProtoType() const { return ObjCProtoType; }
/// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
/// Sema. 'Class' is always a (typedef for a) pointer type, a pointer to a
/// struct.
QualType getObjCClassType() const { return ObjCClassTypedefType; }
void setObjCClassType(QualType T);
void setBuiltinVaListType(QualType T);
QualType getBuiltinVaListType() const { return BuiltinVaListType; }
/// getCVRQualifiedType - Returns a type with additional const,
/// volatile, or restrict qualifiers.
QualType getCVRQualifiedType(QualType T, unsigned CVR) {
return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
}
/// getQualifiedType - Returns a type with additional qualifiers.
QualType getQualifiedType(QualType T, Qualifiers Qs) {
if (!Qs.hasNonFastQualifiers())
return T.withFastQualifiers(Qs.getFastQualifiers());
QualifierCollector Qc(Qs);
const Type *Ptr = Qc.strip(T);
return getExtQualType(Ptr, Qc);
}
/// getQualifiedType - Returns a type with additional qualifiers.
QualType getQualifiedType(const Type *T, Qualifiers Qs) {
if (!Qs.hasNonFastQualifiers())
return QualType(T, Qs.getFastQualifiers());
return getExtQualType(T, Qs);
}
DeclarationName getNameForTemplate(TemplateName Name);
TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
UnresolvedSetIterator End);
TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
bool TemplateKeyword,
TemplateDecl *Template);
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
const IdentifierInfo *Name);
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
OverloadedOperatorKind Operator);
enum GetBuiltinTypeError {
GE_None, //< No error
GE_Missing_stdio, //< Missing a type from <stdio.h>
GE_Missing_setjmp //< Missing a type from <setjmp.h>
};
/// GetBuiltinType - Return the type for the specified builtin.
QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
private:
CanQualType getFromTargetType(unsigned Type) const;
//===--------------------------------------------------------------------===//
// Type Predicates.
//===--------------------------------------------------------------------===//
public:
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
/// garbage collection attribute.
///
Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
/// isObjCNSObjectType - Return true if this is an NSObject object with
/// its NSObject attribute set.
bool isObjCNSObjectType(QualType Ty) const;
//===--------------------------------------------------------------------===//
// Type Sizing and Analysis
//===--------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
/// getTypeInfo - Get the size and alignment of the specified complete type in
/// bits.
std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
return getTypeInfo(T.getTypePtr());
}
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
uint64_t getTypeSize(QualType T) {
return getTypeInfo(T).first;
}
uint64_t getTypeSize(const Type *T) {
return getTypeInfo(T).first;
}
/// getCharWidth - Return the size of the character type, in bits
uint64_t getCharWidth() {
return getTypeSize(CharTy);
}
/// getTypeSizeInChars - Return the size of the specified type, in characters.
/// This method does not work on incomplete types.
CharUnits getTypeSizeInChars(QualType T);
CharUnits getTypeSizeInChars(const Type *T);
/// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
/// This method does not work on incomplete types.
unsigned getTypeAlign(QualType T) {
return getTypeInfo(T).second;
}
unsigned getTypeAlign(const Type *T) {
return getTypeInfo(T).second;
}
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
/// characters. This method does not work on incomplete types.
CharUnits getTypeAlignInChars(QualType T);
CharUnits getTypeAlignInChars(const Type *T);
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits. This can be different than the ABI
/// alignment in cases where it is beneficial for performance to overalign
/// a data type.
unsigned getPreferredTypeAlign(const Type *T);
/// getDeclAlign - Return a conservative estimate of the alignment of
/// the specified decl. Note that bitfields do not have a valid alignment, so
/// this method will assert on them.
/// If @p RefAsPointee, references are treated like their underlying type
/// (for alignof), else they're treated like pointers (for CodeGen).
CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
/// getASTObjCInterfaceLayout - Get or compute information about the
/// layout of the specified Objective-C interface.
const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
/// getASTObjCImplementationLayout - Get or compute information about
/// the layout of the specified Objective-C implementation. This may
/// differ from the interface if synthesized ivars are present.
const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
/// getKeyFunction - Get the key function for the given record decl.
/// The key function is, according to the Itanium C++ ABI section 5.2.3:
///
/// ...the first non-pure virtual function that is not inline at the point
/// of class definition.
const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
void CollectObjCIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<FieldDecl*> &Fields);
void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
void CollectInheritedProtocols(const Decl *CDecl,
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
//===--------------------------------------------------------------------===//
// Type Operators
//===--------------------------------------------------------------------===//
/// getCanonicalType - Return the canonical (structural) type corresponding to
/// the specified potentially non-canonical type. The non-canonical version
/// of a type may have many "decorated" versions of types. Decorators can
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
/// to be free of any of these, allowing two canonical types to be compared
/// for exact equality with a simple pointer comparison.
CanQualType getCanonicalType(QualType T);
const Type *getCanonicalType(const Type *T) {
return T->getCanonicalTypeInternal().getTypePtr();
}
/// getCanonicalParamType - Return the canonical parameter type
/// corresponding to the specific potentially non-canonical one.
/// Qualifiers are stripped off, functions are turned into function
/// pointers, and arrays decay one level into pointers.
CanQualType getCanonicalParamType(QualType T);
/// \brief Determine whether the given types are equivalent.
bool hasSameType(QualType T1, QualType T2) {
return getCanonicalType(T1) == getCanonicalType(T2);
}
/// \brief Returns this type as a completely-unqualified array type,
/// capturing the qualifiers in Quals. This will remove the minimal amount of
/// sugaring from the types, similar to the behavior of
/// QualType::getUnqualifiedType().
///
/// \param T is the qualified type, which may be an ArrayType
///
/// \param Quals will receive the full set of qualifiers that were
/// applied to the array.
///
/// \returns if this is an array type, the completely unqualified array type
/// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
/// \brief Determine whether the given types are equivalent after
/// cvr-qualifiers have been removed.
bool hasSameUnqualifiedType(QualType T1, QualType T2) {
CanQualType CT1 = getCanonicalType(T1);
CanQualType CT2 = getCanonicalType(T2);
Qualifiers Quals;
QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
return UnqualT1 == UnqualT2;
}
/// \brief Retrieves the "canonical" declaration of
/// \brief Retrieves the "canonical" nested name specifier for a
/// given nested name specifier.
///
/// The canonical nested name specifier is a nested name specifier
/// that uniquely identifies a type or namespace within the type
/// system. For example, given:
///
/// \code
/// namespace N {
/// struct S {
/// template<typename T> struct X { typename T* type; };
/// };
/// }
///
/// template<typename T> struct Y {
/// typename N::S::X<T>::type member;
/// };
/// \endcode
///
/// Here, the nested-name-specifier for N::S::X<T>:: will be
/// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
/// by declarations in the type system and the canonical type for
/// the template type parameter 'T' is template-param-0-0.
NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
/// \brief Retrieves the canonical representation of the given
/// calling convention.
CallingConv getCanonicalCallConv(CallingConv CC) {
if (CC == CC_C)
return CC_Default;
return CC;
}
/// \brief Determines whether two calling conventions name the same
/// calling convention.
bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
}
/// \brief Retrieves the "canonical" template name that refers to a
/// given template.
///
/// The canonical template name is the simplest expression that can
/// be used to refer to a given template. For most templates, this
/// expression is just the template declaration itself. For example,
/// the template std::vector can be referred to via a variety of
/// names---std::vector, ::std::vector, vector (if vector is in
/// scope), etc.---but all of these names map down to the same
/// TemplateDecl, which is used to form the canonical template name.
///
/// Dependent template names are more interesting. Here, the
/// template name could be something like T::template apply or
/// std::allocator<T>::template rebind, where the nested name
/// specifier itself is dependent. In this case, the canonical
/// template name uses the shortest form of the dependent
/// nested-name-specifier, which itself contains all canonical
/// types, values, and templates.
TemplateName getCanonicalTemplateName(TemplateName Name);
/// \brief Determine whether the given template names refer to the same
/// template.
bool hasSameTemplateName(TemplateName X, TemplateName Y);
/// \brief Retrieve the "canonical" template argument.
///
/// The canonical template argument is the simplest template argument
/// (which may be a type, value, expression, or declaration) that
/// expresses the value of the argument.
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
/// Type Query functions. If the type is an instance of the specified class,
/// return the Type pointer for the underlying maximally pretty type. This
/// is a member of ASTContext because this may need to do some amount of
/// canonicalization, e.g. to move type qualifiers into the element type.
const ArrayType *getAsArrayType(QualType T);
const ConstantArrayType *getAsConstantArrayType(QualType T) {
return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
}
const VariableArrayType *getAsVariableArrayType(QualType T) {
return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
}
const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
}
const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
}
/// getBaseElementType - Returns the innermost element type of an array type.
/// For example, will return "int" for int[m][n]
QualType getBaseElementType(const ArrayType *VAT);
/// getBaseElementType - Returns the innermost element type of a type
/// (which needn't actually be an array type).
QualType getBaseElementType(QualType QT);
/// getConstantArrayElementCount - Returns number of constant array elements.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer. This operation is non-trivial when
/// handling typedefs etc. The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType getArrayDecayedType(QualType T);
/// getPromotedIntegerType - Returns the type that Promotable will
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
/// integer type.
QualType getPromotedIntegerType(QualType PromotableType);
/// \brief Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
QualType isPromotableBitField(Expr *E);
/// getIntegerTypeOrder - Returns the highest ranked integer type:
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int getIntegerTypeOrder(QualType LHS, QualType RHS);
/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int getFloatingTypeOrder(QualType LHS, QualType RHS);
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
QualType typeDomain) const;
private:
// Helper for integer ordering
unsigned getIntegerRank(Type* T);
public:
//===--------------------------------------------------------------------===//
// Type Compatibility Predicates
//===--------------------------------------------------------------------===//
/// Compatibility predicates used to check assignment expressions.
bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
bool typesAreBlockPointerCompatible(QualType, QualType);
bool isObjCIdType(QualType T) const {
return T == ObjCIdTypedefType;
}
bool isObjCClassType(QualType T) const {
return T == ObjCClassTypedefType;
}
bool isObjCSelType(QualType T) const {
return T == ObjCSelTypedefType;
}
bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
bool ForCompare);
// Check the safety of assignment from LHS to RHS
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
const ObjCInterfaceType *RHS);
bool canAssignObjCInterfacesInBlockPointer(
const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT);
// Functions for calculating composite types
QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
/// UsualArithmeticConversionsType - handles the various conversions
/// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
/// and returns the result type of that conversion.
QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
//===--------------------------------------------------------------------===//
// Integer Predicates
//===--------------------------------------------------------------------===//
// The width of an integer, as defined in C99 6.2.6.2. This is the number
// of bits in an integer type excluding any padding bits.
unsigned getIntWidth(QualType T);
// Per C99 6.2.5p6, for every signed integer type, there is a corresponding
// unsigned integer type. This method takes a signed type, and returns the
// corresponding unsigned integer type.
QualType getCorrespondingUnsignedType(QualType T);
//===--------------------------------------------------------------------===//
// Type Iterators.
//===--------------------------------------------------------------------===//
typedef std::vector<Type*>::iterator type_iterator;
typedef std::vector<Type*>::const_iterator const_type_iterator;
type_iterator types_begin() { return Types.begin(); }
type_iterator types_end() { return Types.end(); }
const_type_iterator types_begin() const { return Types.begin(); }
const_type_iterator types_end() const { return Types.end(); }
//===--------------------------------------------------------------------===//
// Integer Values
//===--------------------------------------------------------------------===//
/// MakeIntValue - Make an APSInt of the appropriate width and
/// signedness for the given \arg Value and integer \arg Type.
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
Res = Value;
return Res;
}
/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
/// \brief Set the implementation of ObjCInterfaceDecl.
void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
ObjCImplementationDecl *ImplD);
/// \brief Set the implementation of ObjCCategoryDecl.
void setObjCImplementation(ObjCCategoryDecl *CatD,
ObjCCategoryImplDecl *ImplD);
/// \brief Allocate an uninitialized TypeSourceInfo.
///
/// The caller should initialize the memory held by TypeSourceInfo using
/// the TypeLoc wrappers.
///
/// \param T the type that will be the basis for type source info. This type
/// should refer to how the declarator was written in source code, not to
/// what type semantic analysis resolved the declarator to.
///
/// \param Size the size of the type info to create, or 0 if the size
/// should be calculated based on the type.
TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
/// \brief Allocate a TypeSourceInfo where all locations have been
/// initialized to a given location, which defaults to the empty
/// location.
TypeSourceInfo *
getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
private:
ASTContext(const ASTContext&); // DO NOT IMPLEMENT
void operator=(const ASTContext&); // DO NOT IMPLEMENT
void InitBuiltinTypes();
void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
// Return the ObjC type encoding for a given type.
void getObjCEncodingForTypeImpl(QualType t, std::string &S,
bool ExpandPointedToStructures,
bool ExpandStructures,
const FieldDecl *Field,
bool OutermostType = false,
bool EncodingProperty = false);
const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
const ObjCImplementationDecl *Impl);
private:
// FIXME: This currently contains the set of StoredDeclMaps used
// by DeclContext objects. This probably should not be in ASTContext,
// but we include it here so that ASTContext can quickly deallocate them.
llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
friend class DeclContext;
void ReleaseDeclContextMaps();
};
/// @brief Utility function for constructing a nullary selector.
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(0, &II);
}
/// @brief Utility function for constructing an unary selector.
static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(1, &II);
}
} // end namespace clang
// operator new and delete aren't allowed inside namespaces.
// The throw specifications are mandated by the standard.
/// @brief Placement new for using the ASTContext's allocator.
///
/// This placement form of operator new uses the ASTContext's allocator for
/// obtaining memory. It is a non-throwing new, which means that it returns
/// null on error. (If that is what the allocator does. The current does, so if
/// this ever changes, this operator will have to be changed, too.)
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
/// // Specific alignment
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
/// @endcode
/// Please note that you cannot use delete on the pointer; it must be
/// deallocated using an explicit destructor call followed by
/// @c Context.Deallocate(Ptr).
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new(size_t Bytes, clang::ASTContext &C,
size_t Alignment) throw () {
return C.Allocate(Bytes, Alignment);
}
/// @brief Placement delete companion to the new above.
///
/// This operator is just a companion to the new above. There is no way of
/// invoking it directly; see the new operator for more details. This operator
/// is called implicitly by the compiler if a placement new expression using
/// the ASTContext throws in the object constructor.
inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
throw () {
C.Deallocate(Ptr);
}
/// This placement form of operator new[] uses the ASTContext's allocator for
/// obtaining memory. It is a non-throwing new[], which means that it returns
/// null on error.
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
/// @code
/// // Default alignment (8)
/// char *data = new (Context) char[10];
/// // Specific alignment
/// char *data = new (Context, 4) char[10];
/// @endcode
/// Please note that you cannot use delete on the pointer; it must be
/// deallocated using an explicit destructor call followed by
/// @c Context.Deallocate(Ptr).
///
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
/// @param C The ASTContext that provides the allocator.
/// @param Alignment The alignment of the allocated memory (if the underlying
/// allocator supports it).
/// @return The allocated memory. Could be NULL.
inline void *operator new[](size_t Bytes, clang::ASTContext& C,
size_t Alignment = 8) throw () {
return C.Allocate(Bytes, Alignment);
}
/// @brief Placement delete[] companion to the new[] above.
///
/// This operator is just a companion to the new[] above. There is no way of
/// invoking it directly; see the new[] operator for more details. This operator
/// is called implicitly by the compiler if a placement new[] expression using
/// the ASTContext throws in the object constructor.
inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
throw () {
C.Deallocate(Ptr);
}
#endif
|