1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
/* atof_ieee.c - turn a Flonum into an IEEE floating point number
Copyright (C) 1987, 1992 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#ifndef lint
static char rcsid[] = "$Id$";
#endif
#include "as.h"
extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */
#ifndef NULL
#define NULL (0)
#endif
extern char EXP_CHARS[];
/* Precision in LittleNums. */
#define MAX_PRECISION (6)
#define F_PRECISION (2)
#define D_PRECISION (4)
#define X_PRECISION (6)
#define P_PRECISION (6)
/* Length in LittleNums of guard bits. */
#define GUARD (2)
static unsigned long mask[] = {
0x00000000,
0x00000001,
0x00000003,
0x00000007,
0x0000000f,
0x0000001f,
0x0000003f,
0x0000007f,
0x000000ff,
0x000001ff,
0x000003ff,
0x000007ff,
0x00000fff,
0x00001fff,
0x00003fff,
0x00007fff,
0x0000ffff,
0x0001ffff,
0x0003ffff,
0x0007ffff,
0x000fffff,
0x001fffff,
0x003fffff,
0x007fffff,
0x00ffffff,
0x01ffffff,
0x03ffffff,
0x07ffffff,
0x0fffffff,
0x1fffffff,
0x3fffffff,
0x7fffffff,
0xffffffff,
};
static int bits_left_in_littlenum;
static int littlenums_left;
static LITTLENUM_TYPE *littlenum_pointer;
static int
next_bits (number_of_bits)
int number_of_bits;
{
int return_value;
if (!littlenums_left)
return(0);
if (number_of_bits >= bits_left_in_littlenum) {
return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
number_of_bits -= bits_left_in_littlenum;
return_value <<= number_of_bits;
if (--littlenums_left) {
bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
--littlenum_pointer;
return_value |= (*littlenum_pointer >> bits_left_in_littlenum) & mask[number_of_bits];
}
} else {
bits_left_in_littlenum -= number_of_bits;
return_value = mask[number_of_bits] & (*littlenum_pointer >> bits_left_in_littlenum);
}
return(return_value);
}
/* Num had better be less than LITTLENUM_NUMBER_OF_BITS */
static void
unget_bits(num)
int num;
{
if (!littlenums_left) {
++littlenum_pointer;
++littlenums_left;
bits_left_in_littlenum = num;
} else if (bits_left_in_littlenum + num > LITTLENUM_NUMBER_OF_BITS) {
bits_left_in_littlenum = num - (LITTLENUM_NUMBER_OF_BITS - bits_left_in_littlenum);
++littlenum_pointer;
++littlenums_left;
} else
bits_left_in_littlenum += num;
}
static void
make_invalid_floating_point_number(words)
LITTLENUM_TYPE *words;
{
as_bad("cannot create floating-point number");
/* Zero the leftmost bit */
words[0] = (LITTLENUM_TYPE) ((unsigned) -1) >> 1;
words[1] = (LITTLENUM_TYPE) -1;
words[2] = (LITTLENUM_TYPE) -1;
words[3] = (LITTLENUM_TYPE) -1;
words[4] = (LITTLENUM_TYPE) -1;
words[5] = (LITTLENUM_TYPE) -1;
}
/***********************************************************************\
* Warning: this returns 16-bit LITTLENUMs. It is up to the caller *
* to figure out any alignment problems and to conspire for the *
* bytes/word to be emitted in the right order. Bigendians beware! *
* *
\***********************************************************************/
/* Note that atof-ieee always has X and P precisions enabled. it is up
to md_atof to filter them out if the target machine does not support
them. */
char * /* Return pointer past text consumed. */
atof_ieee(str, what_kind, words)
char *str; /* Text to convert to binary. */
char what_kind; /* 'd', 'f', 'g', 'h' */
LITTLENUM_TYPE *words; /* Build the binary here. */
{
static LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
/* Extra bits for zeroed low-order bits. */
/* The 1st MAX_PRECISION are zeroed, */
/* the last contain flonum bits. */
char *return_value;
int precision; /* Number of 16-bit words in the format. */
long exponent_bits;
FLONUM_TYPE save_gen_flonum;
/* We have to save the generic_floating_point_number because it
contains storage allocation about the array of LITTLENUMs
where the value is actually stored. We will allocate our
own array of littlenums below, but have to restore the global
one on exit. */
save_gen_flonum = generic_floating_point_number;
return_value = str;
generic_floating_point_number.low = bits + MAX_PRECISION;
generic_floating_point_number.high = NULL;
generic_floating_point_number.leader = NULL;
generic_floating_point_number.exponent = NULL;
generic_floating_point_number.sign = '\0';
/* Use more LittleNums than seems */
/* necessary: the highest flonum may have */
/* 15 leading 0 bits, so could be useless. */
memset(bits, '\0', sizeof(LITTLENUM_TYPE) * MAX_PRECISION);
switch (what_kind) {
case 'f':
case 'F':
case 's':
case 'S':
precision = F_PRECISION;
exponent_bits = 8;
break;
case 'd':
case 'D':
case 'r':
case 'R':
precision = D_PRECISION;
exponent_bits = 11;
break;
case 'x':
case 'X':
case 'e':
case 'E':
precision = X_PRECISION;
exponent_bits = 15;
break;
case 'p':
case 'P':
precision = P_PRECISION;
exponent_bits = -1;
break;
default:
make_invalid_floating_point_number(words);
return(NULL);
}
generic_floating_point_number.high = generic_floating_point_number.low + precision - 1 + GUARD;
if (atof_generic(&return_value, ".", EXP_CHARS, &generic_floating_point_number)) {
/* as_bad("Error converting floating point number (Exponent overflow?)"); */
make_invalid_floating_point_number(words);
return(NULL);
}
gen_to_words(words, precision, exponent_bits);
/* Restore the generic_floating_point_number's storage alloc
(and everything else). */
generic_floating_point_number = save_gen_flonum;
return(return_value);
}
/* Turn generic_floating_point_number into a real float/double/extended */
int gen_to_words(words, precision, exponent_bits)
LITTLENUM_TYPE *words;
int precision;
long exponent_bits;
{
int return_value = 0;
long exponent_1;
long exponent_2;
long exponent_3;
long exponent_4;
int exponent_skippage;
LITTLENUM_TYPE word1;
LITTLENUM_TYPE *lp;
if (generic_floating_point_number.low > generic_floating_point_number.leader) {
/* 0.0e0 seen. */
if (generic_floating_point_number.sign == '+')
words[0] = 0x0000;
else
words[0] = 0x8000;
memset(&words[1], '\0', sizeof(LITTLENUM_TYPE) * (precision - 1));
return(return_value);
}
/* NaN: Do the right thing */
if (generic_floating_point_number.sign == 0) {
if (precision == F_PRECISION) {
words[0] = 0x7fff;
words[1] = 0xffff;
} else {
words[0] = 0x7fff;
words[1] = 0xffff;
words[2] = 0xffff;
words[3] = 0xffff;
}
return return_value;
} else if (generic_floating_point_number.sign == 'P') {
/* +INF: Do the right thing */
if (precision == F_PRECISION) {
words[0] = 0x7f80;
words[1] = 0;
} else {
words[0] = 0x7ff0;
words[1] = 0;
words[2] = 0;
words[3] = 0;
}
return(return_value);
} else if (generic_floating_point_number.sign == 'N') {
/* Negative INF */
if (precision == F_PRECISION) {
words[0] = 0xff80;
words[1] = 0x0;
} else {
words[0] = 0xfff0;
words[1] = 0x0;
words[2] = 0x0;
words[3] = 0x0;
}
return(return_value);
}
/*
* The floating point formats we support have:
* Bit 15 is sign bit.
* Bits 14:n are excess-whatever exponent.
* Bits n-1:0 (if any) are most significant bits of fraction.
* Bits 15:0 of the next word(s) are the next most significant bits.
*
* So we need: number of bits of exponent, number of bits of
* mantissa.
*/
bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
littlenum_pointer = generic_floating_point_number.leader;
littlenums_left = 1 + generic_floating_point_number.leader - generic_floating_point_number.low;
/* Seek (and forget) 1st significant bit */
for (exponent_skippage = 0; !next_bits(1); ++exponent_skippage) ;;
exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader
+ 1 - generic_floating_point_number.low;
/* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
/* Radix 2. */
exponent_3 = exponent_2 - exponent_skippage;
/* Forget leading zeros, forget 1st bit. */
exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
/* Offset exponent. */
lp = words;
/* Word 1. Sign, exponent and perhaps high bits. */
word1 = (generic_floating_point_number.sign == '+') ? 0 : (1 << (LITTLENUM_NUMBER_OF_BITS - 1));
/* Assume 2's complement integers. */
if (exponent_4 < 1 && exponent_4 >= -62) {
int prec_bits;
int num_bits;
unget_bits(1);
num_bits = -exponent_4;
prec_bits = LITTLENUM_NUMBER_OF_BITS * precision - (exponent_bits + 1 + num_bits);
if (precision == X_PRECISION && exponent_bits == 15)
prec_bits -= LITTLENUM_NUMBER_OF_BITS + 1;
if (num_bits >= LITTLENUM_NUMBER_OF_BITS - exponent_bits) {
/* Bigger than one littlenum */
num_bits -= (LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits;
*lp++ = word1;
if (num_bits + exponent_bits + 1 >= precision * LITTLENUM_NUMBER_OF_BITS) {
/* Exponent overflow */
make_invalid_floating_point_number(words);
return(return_value);
}
if (precision == X_PRECISION && exponent_bits == 15) {
*lp++ = 0;
*lp++ = 0;
num_bits -= LITTLENUM_NUMBER_OF_BITS - 1;
}
while (num_bits >= LITTLENUM_NUMBER_OF_BITS) {
num_bits -= LITTLENUM_NUMBER_OF_BITS;
*lp++ = 0;
}
if (num_bits)
*lp++ = next_bits(LITTLENUM_NUMBER_OF_BITS - (num_bits));
} else {
if (precision == X_PRECISION && exponent_bits == 15) {
*lp++ = word1;
*lp++ = 0;
if (num_bits == LITTLENUM_NUMBER_OF_BITS) {
*lp++ = 0;
*lp++ = next_bits(LITTLENUM_NUMBER_OF_BITS - 1);
} else if (num_bits == LITTLENUM_NUMBER_OF_BITS - 1)
*lp++ = 0;
else
*lp++ = next_bits(LITTLENUM_NUMBER_OF_BITS - 1 - num_bits);
num_bits = 0;
} else {
word1 |= next_bits((LITTLENUM_NUMBER_OF_BITS - 1) - (exponent_bits + num_bits));
*lp++ = word1;
}
}
while (lp < words + precision)
*lp++ = next_bits(LITTLENUM_NUMBER_OF_BITS);
/* Round the mantissa up, but don't change the number */
if (next_bits(1)) {
--lp;
if (prec_bits > LITTLENUM_NUMBER_OF_BITS) {
int n = 0;
int tmp_bits;
n = 0;
tmp_bits = prec_bits;
while (tmp_bits > LITTLENUM_NUMBER_OF_BITS) {
if (lp[n] != (LITTLENUM_TYPE) - 1)
break;
--n;
tmp_bits -= LITTLENUM_NUMBER_OF_BITS;
}
if (tmp_bits > LITTLENUM_NUMBER_OF_BITS || (lp[n] & mask[tmp_bits]) != mask[tmp_bits]) {
unsigned long carry;
for (carry = 1; carry && (lp >= words); lp --) {
carry = *lp + carry;
*lp = carry;
carry >>= LITTLENUM_NUMBER_OF_BITS;
}
}
} else if ((*lp & mask[prec_bits]) != mask[prec_bits])
lp++;
}
return return_value;
} else if (exponent_4 & ~ mask[exponent_bits]) {
/*
* Exponent overflow. Lose immediately.
*/
/*
* We leave return_value alone: admit we read the
* number, but return a floating exception
* because we can't encode the number.
*/
make_invalid_floating_point_number (words);
return return_value;
} else {
word1 |= (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits))
| next_bits ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits);
}
*lp++ = word1;
/* X_PRECISION is special: it has 16 bits of zero in the middle,
followed by a 1 bit. */
if (exponent_bits == 15 && precision == X_PRECISION) {
*lp++ = 0;
*lp++ = 1 << (LITTLENUM_NUMBER_OF_BITS) | next_bits(LITTLENUM_NUMBER_OF_BITS - 1);
}
/* The rest of the words are just mantissa bits. */
while (lp < words + precision)
*lp++ = next_bits(LITTLENUM_NUMBER_OF_BITS);
if (next_bits(1)) {
unsigned long carry;
/*
* Since the NEXT bit is a 1, round UP the mantissa.
* The cunning design of these hidden-1 floats permits
* us to let the mantissa overflow into the exponent, and
* it 'does the right thing'. However, we lose if the
* highest-order bit of the lowest-order word flips.
* Is that clear?
*/
/* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
Please allow at least 1 more bit in carry than is in a LITTLENUM.
We need that extra bit to hold a carry during a LITTLENUM carry
propagation. Another extra bit (kept 0) will assure us that we
don't get a sticky sign bit after shifting right, and that
permits us to propagate the carry without any masking of bits.
#endif */
for (carry = 1, lp--; carry && (lp >= words); lp--) {
carry = *lp + carry;
*lp = carry;
carry >>= LITTLENUM_NUMBER_OF_BITS;
}
if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1))) {
/* We leave return_value alone: admit we read the
* number, but return a floating exception
* because we can't encode the number.
*/
*words &= ~(1 << (LITTLENUM_NUMBER_OF_BITS - 1));
/* make_invalid_floating_point_number (words); */
/* return return_value; */
}
}
return (return_value);
}
/* This routine is a real kludge. Someone really should do it better, but
I'm too lazy, and I don't understand this stuff all too well anyway
(JF)
*/
void
int_to_gen(x)
long x;
{
char buf[20];
char *bufp;
sprintf(buf,"%ld",x);
bufp = &buf[0];
if (atof_generic(&bufp, ".", EXP_CHARS, &generic_floating_point_number))
as_bad("Error converting number to floating point (Exponent overflow?)");
}
#ifdef TEST
char *
print_gen(gen)
FLONUM_TYPE *gen;
{
FLONUM_TYPE f;
LITTLENUM_TYPE arr[10];
double dv;
float fv;
static char sbuf[40];
if (gen) {
f = generic_floating_point_number;
generic_floating_point_number = *gen;
}
gen_to_words(&arr[0], 4, 11);
memcpy(&dv, &arr[0], sizeof(double));
sprintf(sbuf, "%x %x %x %x %.14G ", arr[0], arr[1], arr[2], arr[3], dv);
gen_to_words(&arr[0], 2, 8);
memcpy(&fv, &arr[0], sizeof(float));
sprintf(sbuf + strlen(sbuf), "%x %x %.12g\n", arr[0], arr[1], fv);
if (gen) {
generic_floating_point_number = f;
}
return(sbuf);
}
#endif
/* end of atof-ieee.c */
|