1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
/*
* Top users/processes display for Unix
* Version 3
*
* This program may be freely redistributed,
* but this entire comment MUST remain intact.
*
* Copyright (c) 1984, 1989, William LeFebvre, Rice University
* Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University
*/
/*
* This file contains various handy utilities used by top.
*/
#include "top.h"
#include "os.h"
int atoiwi(str)
char *str;
{
register int len;
len = strlen(str);
if (len != 0)
{
if (strncmp(str, "infinity", len) == 0 ||
strncmp(str, "all", len) == 0 ||
strncmp(str, "maximum", len) == 0)
{
return(Infinity);
}
else if (str[0] == '-')
{
return(Invalid);
}
else
{
return(atoi(str));
}
}
return(0);
}
/*
* itoa - convert integer (decimal) to ascii string for positive numbers
* only (we don't bother with negative numbers since we know we
* don't use them).
*/
/*
* How do we know that 16 will suffice?
* Because the biggest number that we will
* ever convert will be 2^32-1, which is 10
* digits.
*/
char *itoa(val)
register int val;
{
register char *ptr;
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
ptr = buffer + sizeof(buffer);
*--ptr = '\0';
if (val == 0)
{
*--ptr = '0';
}
else while (val != 0)
{
*--ptr = (val % 10) + '0';
val /= 10;
}
return(ptr);
}
/*
* itoa7(val) - like itoa, except the number is right justified in a 7
* character field. This code is a duplication of itoa instead of
* a front end to a more general routine for efficiency.
*/
char *itoa7(val)
register int val;
{
register char *ptr;
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
ptr = buffer + sizeof(buffer);
*--ptr = '\0';
if (val == 0)
{
*--ptr = '0';
}
else while (val != 0)
{
*--ptr = (val % 10) + '0';
val /= 10;
}
while (ptr > buffer + sizeof(buffer) - 7)
{
*--ptr = ' ';
}
return(ptr);
}
/*
* digits(val) - return number of decimal digits in val. Only works for
* positive numbers. If val <= 0 then digits(val) == 0.
*/
int digits(val)
int val;
{
register int cnt = 0;
while (val > 0)
{
cnt++;
val /= 10;
}
return(cnt);
}
/*
* strecpy(to, from) - copy string "from" into "to" and return a pointer
* to the END of the string "to".
*/
char *strecpy(to, from)
register char *to;
register char *from;
{
while ((*to++ = *from++) != '\0');
return(--to);
}
/*
* string_index(string, array) - find string in array and return index
*/
int string_index(string, array)
char *string;
char **array;
{
register int i = 0;
while (*array != NULL)
{
if (strcmp(string, *array) == 0)
{
return(i);
}
array++;
i++;
}
return(-1);
}
/*
* argparse(line, cntp) - parse arguments in string "line", separating them
* out into an argv-like array, and setting *cntp to the number of
* arguments encountered. This is a simple parser that doesn't understand
* squat about quotes.
*/
char **argparse(line, cntp)
char *line;
int *cntp;
{
register char *from;
register char *to;
register int cnt;
register int ch;
int length;
int lastch;
register char **argv;
char **argarray;
char *args;
/* unfortunately, the only real way to do this is to go thru the
input string twice. */
/* step thru the string counting the white space sections */
from = line;
lastch = cnt = length = 0;
while ((ch = *from++) != '\0')
{
length++;
if (ch == ' ' && lastch != ' ')
{
cnt++;
}
lastch = ch;
}
/* add three to the count: one for the initial "dummy" argument,
one for the last argument and one for NULL */
cnt += 3;
/* allocate a char * array to hold the pointers */
argarray = (char **)malloc(cnt * sizeof(char *));
/* allocate another array to hold the strings themselves */
args = (char *)malloc(length+2);
/* initialization for main loop */
from = line;
to = args;
argv = argarray;
lastch = '\0';
/* create a dummy argument to keep getopt happy */
*argv++ = to;
*to++ = '\0';
cnt = 2;
/* now build argv while copying characters */
*argv++ = to;
while ((ch = *from++) != '\0')
{
if (ch != ' ')
{
if (lastch == ' ')
{
*to++ = '\0';
*argv++ = to;
cnt++;
}
*to++ = ch;
}
lastch = ch;
}
*to++ = '\0';
/* set cntp and return the allocated array */
*cntp = cnt;
return(argarray);
}
/*
* percentages(cnt, out, new, old, diffs) - calculate percentage change
* between array "old" and "new", putting the percentages i "out".
* "cnt" is size of each array and "diffs" is used for scratch space.
* The array "old" is updated on each call.
* The routine assumes modulo arithmetic. This function is especially
* useful on BSD mchines for calculating cpu state percentages.
*/
long percentages(cnt, out, new, old, diffs)
int cnt;
int *out;
register long *new;
register long *old;
long *diffs;
{
register int i;
register long change;
register long total_change;
register long *dp;
long half_total;
/* initialization */
total_change = 0;
dp = diffs;
/* calculate changes for each state and the overall change */
for (i = 0; i < cnt; i++)
{
if ((change = *new - *old) < 0)
{
/* this only happens when the counter wraps */
change = (int)
((unsigned long)*new-(unsigned long)*old);
}
total_change += (*dp++ = change);
*old++ = *new++;
}
/* avoid divide by zero potential */
if (total_change == 0)
{
total_change = 1;
}
/* calculate percentages based on overall change, rounding up */
half_total = total_change / 2l;
/* Do not divide by 0. Causes Floating point exception */
if(total_change) {
for (i = 0; i < cnt; i++)
{
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
}
}
/* return the total in case the caller wants to use it */
return(total_change);
}
/*
* errmsg(errnum) - return an error message string appropriate to the
* error number "errnum". This is a substitute for the System V
* function "strerror" with one important difference: the string
* returned by this function does NOT end in a newline!
* N.B.: there appears to be no reliable way to determine if
* "strerror" exists at compile time, so I make do by providing
* something of similar functionality.
*/
/* externs referenced by errmsg */
char *errmsg(errnum)
int errnum;
{
if (errnum > 0 && errnum < sys_nerr)
{
return((char *)sys_errlist[errnum]);
}
return("No error");
}
/* format_time(seconds) - format number of seconds into a suitable
* display that will fit within 6 characters. Note that this
* routine builds its string in a static area. If it needs
* to be called more than once without overwriting previous data,
* then we will need to adopt a technique similar to the
* one used for format_k.
*/
/* Explanation:
We want to keep the output within 6 characters. For low values we use
the format mm:ss. For values that exceed 999:59, we switch to a format
that displays hours and fractions: hhh.tH. For values that exceed
999.9, we use hhhh.t and drop the "H" designator. For values that
exceed 9999.9, we use "???".
*/
char *format_time(seconds)
long seconds;
{
register int value;
register int digit;
register char *ptr;
static char result[10];
/* sanity protection */
if (seconds < 0 || seconds > (99999l * 360l))
{
strcpy(result, " ???");
}
else if (seconds >= (1000l * 60l))
{
/* alternate (slow) method displaying hours and tenths */
sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
/* It is possible that the sprintf took more than 6 characters.
If so, then the "H" appears as result[6]. If not, then there
is a \0 in result[6]. Either way, it is safe to step on.
*/
result[6] = '\0';
}
else
{
/* standard method produces MMM:SS */
/* we avoid printf as must as possible to make this quick */
sprintf(result, "%3d:%02d", seconds / 60l, seconds % 60l);
}
return(result);
}
/*
* format_k(amt) - format a kilobyte memory value, returning a string
* suitable for display. Returns a pointer to a static
* area that changes each call. "amt" is converted to a
* string with a trailing "K". If "amt" is 10000 or greater,
* then it is formatted as megabytes (rounded) with a
* trailing "M".
*/
/*
* Compromise time. We need to return a string, but we don't want the
* caller to have to worry about freeing a dynamically allocated string.
* Unfortunately, we can't just return a pointer to a static area as one
* of the common uses of this function is in a large call to sprintf where
* it might get invoked several times. Our compromise is to maintain an
* array of strings and cycle thru them with each invocation. We make the
* array large enough to handle the above mentioned case. The constant
* NUM_STRINGS defines the number of strings in this array: we can tolerate
* up to NUM_STRINGS calls before we start overwriting old information.
* Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
* to convert the modulo operation into something quicker. What a hack!
*/
#define NUM_STRINGS 8
char *format_k(amt)
int amt;
{
static char retarray[NUM_STRINGS][16];
static int index = 0;
register char *p;
register char *ret;
register char tag = 'K';
p = ret = retarray[index];
index = (index + 1) % NUM_STRINGS;
if (amt >= 10000)
{
amt = (amt + 512) / 1024;
tag = 'M';
if (amt >= 10000)
{
amt = (amt + 512) / 1024;
tag = 'G';
}
}
p = strecpy(p, itoa(amt));
*p++ = tag;
*p = '\0';
return(ret);
}
char *format_k2(amt)
int amt;
{
static char retarray[NUM_STRINGS][16];
static int index = 0;
register char *p;
register char *ret;
register char tag = 'K';
p = ret = retarray[index];
index = (index + 1) % NUM_STRINGS;
if (amt >= 100000)
{
amt = (amt + 512) / 1024;
tag = 'M';
if (amt >= 100000)
{
amt = (amt + 512) / 1024;
tag = 'G';
}
}
p = strecpy(p, itoa(amt));
*p++ = tag;
*p = '\0';
return(ret);
}
|