summaryrefslogtreecommitdiffstats
path: root/contrib/sendmail/doc/usenix/usenix.me
blob: 4f88a94f8f240d4e148f11c9a98faedb9dbe7ae4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
.nr si 3n
.he 'Mail Systems and Addressing in 4.2bsd''%'
.fo 'Version 8.2'USENIX \- Jan 83'Last Mod 11/27/1993'
.if n .ls 2
.+c
.(l C
.sz 14
Mail Systems and Addressing
in 4.2bsd
.sz
.sp
Eric Allman*
.sp 0.5
.i
Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704.
.sp 0.5
.r
eric@Berkeley.ARPA
ucbvax!eric
.)l
.sp
.(l F
.ce
ABSTRACT
.sp \n(psu
Routing mail through a heterogeneous internet presents many new
problems.
Among the worst of these is that of address mapping.
Historically, this has been handled on an ad hoc basis.
However,
this approach has become unmanageable as internets grow.
.sp \n(psu
Sendmail acts a unified
.q "post office"
to which all mail can be
submitted.
Address interpretation is controlled by a production
system,
which can parse both old and new format addresses.
The
new format is
.q "domain-based,"
a flexible technique that can
handle many common situations.
Sendmail is not intended to perform
user interface functions.
.sp \n(psu
Sendmail will replace delivermail in the Berkeley 4.2 distribution.
Several major hosts are now or will soon be running sendmail.
This change will affect any users that route mail through a sendmail
gateway.
The changes that will be user visible are emphasized.
.)l
.sp 2
.(f
*A considerable part of this work
was done while under the employ
of the INGRES Project
at the University of California at Berkeley.
.)f
.pp
The mail system to appear in 4.2bsd
will contain a number of changes.
Most of these changes are based on the replacement of
.i delivermail
with a new module called
.i sendmail.
.i Sendmail
implements a general internetwork mail routing facility,
featuring aliasing and forwarding,
automatic routing to network gateways,
and flexible configuration.
Of key interest to the mail system user
will be the changes in the network addressing structure.
.pp
In a simple network,
each node has an address,
and resources can be identified
with a host-resource pair;
in particular,
the mail system can refer to users
using a host-username pair.
Host names and numbers have to be administered by a central authority,
but usernames can be assigned locally to each host.
.pp
In an internet,
multiple networks with different characteristics
and managements
must communicate.
In particular,
the syntax and semantics of resource identification change.
Certain special cases can be handled trivially
by
.i "ad hoc"
techniques,
such as
providing network names that appear local to hosts
on other networks,
as with the Ethernet at Xerox PARC.
However, the general case is extremely complex.
For example,
some networks require that the route the message takes
be explicitly specified by the sender,
simplifying the database update problem
since only adjacent hosts must be entered
into the system tables,
while others use logical addressing,
where the sender specifies the location of the recipient
but not how to get there.
Some networks use a left-associative syntax
and others use a right-associative syntax,
causing ambiguity in mixed addresses.
.pp
Internet standards seek to eliminate these problems.
Initially, these proposed expanding the address pairs
to address triples,
consisting of
{network, host, username}
triples.
Network numbers must be universally agreed upon,
and hosts can be assigned locally
on each network.
The user-level presentation was changed
to address domains,
comprised of a local resource identification
and a hierarchical domain specification
with a common static root.
The domain technique
separates the issue of physical versus logical addressing.
For example,
an address of the form
.q "eric@a.cc.berkeley.arpa"
describes the logical
organization of the address space
(user
.q eric
on host
.q a
in the Computer Center
at Berkeley)
but not the physical networks used
(for example, this could go over different networks
depending on whether
.q a
were on an ethernet
or a store-and-forward network).
.pp
.i Sendmail
is intended to help bridge the gap
between the totally
.i "ad hoc"
world
of networks that know nothing of each other
and the clean, tightly-coupled world
of unique network numbers.
It can accept old arbitrary address syntaxes,
resolving ambiguities using heuristics
specified by the system administrator,
as well as domain-based addressing.
It helps guide the conversion of message formats
between disparate networks.
In short,
.i sendmail
is designed to assist a graceful transition
to consistent internetwork addressing schemes.
.sp
.pp
Section 1 defines some of the terms
frequently left fuzzy
when working in mail systems.
Section 2 discusses the design goals for
.i sendmail .
In section 3,
the new address formats
and basic features of
.i sendmail
are described.
Section 4 discusses some of the special problems
of the UUCP network.
The differences between
.i sendmail
and
.i delivermail
are presented in section 5.
.sp
.(l F
.b DISCLAIMER:
A number of examples
in this paper
use names of actual people
and organizations.
This is not intended
to imply a commitment
or even an intellectual agreement
on the part of these people or organizations.
In particular,
Bell Telephone Laboratories (BTL),
Digital Equipment Corporation (DEC),
Lawrence Berkeley Laboratories (LBL),
Britton-Lee Incorporated (BLI),
and the University of California at Berkeley
are not committed to any of these proposals at this time.
Much of this paper
represents no more than
the personal opinions of the author.
.)l
.sh 1 "DEFINITIONS"
.pp
There are four basic concepts
that must be clearly distinguished
when dealing with mail systems:
the user (or the user's agent),
the user's identification,
the user's address,
and the route.
These are distinguished primarily by their position independence.
.sh 2 "User and Identification"
.pp
The user is the being
(a person or program)
that is creating or receiving a message.
An
.i agent
is an entity operating on behalf of the user \*-
such as a secretary who handles my mail.
or a program that automatically returns a
message such as
.q "I am at the UNICOM conference."
.pp
The identification is the tag
that goes along with the particular user.
This tag is completely independent of location.
For example,
my identification is the string
.q "Eric Allman,"
and this identification does not change
whether I am located at U.C. Berkeley,
at Britton-Lee,
or at a scientific institute in Austria.
.pp
Since the identification is frequently ambiguous
(e.g., there are two
.q "Robert Henry" s
at Berkeley)
it is common to add other disambiguating information
that is not strictly part of the identification
(e.g.,
Robert
.q "Code Generator"
Henry
versus
Robert
.q "System Administrator"
Henry).
.sh 2 "Address"
.pp
The address specifies a location.
As I move around,
my address changes.
For example,
my address might change from
.q eric@Berkeley.ARPA
to
.q eric@bli.UUCP
or
.q allman@IIASA.Austria
depending on my current affiliation.
.pp
However,
an address is independent of the location of anyone else.
That is,
my address remains the same to everyone who might be sending me mail.
For example,
a person at MIT and a person at USC
could both send to
.q eric@Berkeley.ARPA
and have it arrive to the same mailbox.
.pp
Ideally a
.q "white pages"
service would be provided to map user identifications
into addresses
(for example, see
[Solomon81]).
Currently this is handled by passing around
scraps of paper
or by calling people on the telephone
to find out their address.
.sh 2 "Route"
.pp
While an address specifies
.i where
to find a mailbox,
a route specifies
.i how
to find the mailbox.
Specifically,
it specifies a path
from sender to receiver.
As such, the route is potentially different
for every pair of people in the electronic universe.
.pp
Normally the route is hidden from the user
by the software.
However,
some networks put the burden of determining the route
onto the sender.
Although this simplifies the software,
it also greatly impairs the usability
for most users.
The UUCP network is an example of such a network.
.sh 1 "DESIGN GOALS"
.pp
Design goals for
.i sendmail \**
.(f
\**This section makes no distinction between
.i delivermail
and
.i sendmail.
.)f
include:
.np
Compatibility with the existing mail programs,
including Bell version 6 mail,
Bell version 7 mail,
Berkeley
.i Mail
[Shoens79],
BerkNet mail
[Schmidt79],
and hopefully UUCP mail
[Nowitz78].
ARPANET mail
[Crocker82]
was also required.
.np
Reliability, in the sense of guaranteeing
that every message is correctly delivered
or at least brought to the attention of a human
for correct disposal;
no message should ever be completely lost.
This goal was considered essential
because of the emphasis on mail in our environment.
It has turned out to be one of the hardest goals to satisfy,
especially in the face of the many anomalous message formats
produced by various ARPANET sites.
For example,
certain sites generate improperly formated addresses,
occasionally
causing error-message loops.
Some hosts use blanks in names,
causing problems with
mail programs that assume that an address
is one word.
The semantics of some fields
are interpreted slightly differently
by different sites.
In summary,
the obscure features of the ARPANET mail protocol
really
.i are
used and
are difficult to support,
but must be supported.
.np
Existing software to do actual delivery
should be used whenever possible.
This goal derives as much from political and practical considerations
as technical.
.np
Easy expansion to
fairly complex environments,
including multiple
connections to a single network type
(such as with multiple UUCP or Ethernets).
This goal requires consideration of the contents of an address
as well as its syntax
in order to determine which gateway to use.
.np
Configuration information should not be compiled into the code.
A single compiled program should be able to run as is at any site
(barring such basic changes as the CPU type or the operating system).
We have found this seemingly unimportant goal
to be critical in real life.
Besides the simple problems that occur when any program gets recompiled
in a different environment,
many sites like to
.q fiddle
with anything that they will be recompiling anyway.
.np
.i Sendmail
must be able to let various groups maintain their own mailing lists,
and let individuals specify their own forwarding,
without modifying the system alias file.
.np
Each user should be able to specify which mailer to execute
to process mail being delivered for him.
This feature allows users who are using specialized mailers
that use a different format to build their environment
without changing the system,
and facilitates specialized functions
(such as returning an
.q "I am on vacation"
message).
.np
Network traffic should be minimized
by batching addresses to a single host where possible,
without assistance from the user.
.pp
These goals motivated the architecture illustrated in figure 1.
.(z
.hl
.ie t \
.	sp 18
.el \{\
.(c
+---------+   +---------+   +---------+
| sender1 |   | sender2 |   | sender3 |
+---------+   +---------+   +---------+
     |  	   |             |
     +----------+  +  +----------+
		|  |  |
		v  v  v
            +-------------+
            |   sendmail  |
            +-------------+
		|  |  |
     +----------+  +  +----------+
     |  	   |             |
     v             v             v
+---------+   +---------+   +---------+
| mailer1 |   | mailer2 |   | mailer3 |
+---------+   +---------+   +---------+
.)c
.\}

.ce
Figure 1 \*- Sendmail System Structure.
.hl
.)z
The user interacts with a mail generating and sending program.
When the mail is created,
the generator calls
.i sendmail ,
which routes the message to the correct mailer(s).
Since some of the senders may be network servers
and some of the mailers may be network clients,
.i sendmail
may be used as an internet mail gateway.
.sh 1 "USAGE"
.sh 2 "Address Formats"
.pp
Arguments may be flags or addresses.
Flags set various processing options.
Following flag arguments,
address arguments may be given.
Addresses follow the syntax in RFC822
[Crocker82]
for ARPANET
address formats.
In brief, the format is:
.np
Anything in parentheses is thrown away
(as a comment).
.np
Anything in angle brackets (\c
.q "<\|>" )
is preferred
over anything else.
This rule implements the ARPANET standard that addresses of the form
.(b
user name <machine-address>
.)b
will send to the electronic
.q machine-address
rather than the human
.q "user name."
.np
Double quotes
(\ "\ )
quote phrases;
backslashes quote characters.
Backslashes are more powerful
in that they will cause otherwise equivalent phrases
to compare differently \*- for example,
.i user
and
.i
"user"
.r
are equivalent,
but
.i \euser
is different from either of them.
This might be used
to avoid normal aliasing
or duplicate suppression algorithms.
.pp
Parentheses, angle brackets, and double quotes
must be properly balanced and nested.
The rewriting rules control remaining parsing\**.
.(f
\**Disclaimer: Some special processing is done
after rewriting local names; see below.
.)f
.pp
Although old style addresses are still accepted
in most cases,
the preferred address format
is based on ARPANET-style domain-based addresses
[Su82a].
These addresses are based on a hierarchical, logical decomposition
of the address space.
The addresses are hierarchical in a sense
similar to the U.S. postal addresses:
the messages may first be routed to the correct state,
with no initial consideration of the city
or other addressing details.
The addresses are logical
in that each step in the hierarchy
corresponds to a set of
.q "naming authorities"
rather than a physical network.
.pp
For example,
the address:
.(l
eric@HostA.BigSite.ARPA
.)l
would first look up the domain
BigSite
in the namespace administrated by
ARPA.
A query could then be sent to
BigSite
for interpretation of
HostA.
Eventually the mail would arrive at
HostA,
which would then do final delivery
to user
.q eric.
.sh 2 "Mail to Files and Programs"
.pp
Files and programs are legitimate message recipients.
Files provide archival storage of messages,
useful for project administration and history.
Programs are useful as recipients in a variety of situations,
for example,
to maintain a public repository of systems messages
(such as the Berkeley
.i msgs
program).
.pp
Any address passing through the initial parsing algorithm
as a local address
(i.e, not appearing to be a valid address for another mailer)
is scanned for two special cases.
If prefixed by a vertical bar (\c
.q \^|\^ )
the rest of the address is processed as a shell command.
If the user name begins with a slash mark (\c
.q /\^ )
the name is used as a file name,
instead of a login name.
.sh 2 "Aliasing, Forwarding, Inclusion"
.pp
.i Sendmail
reroutes mail three ways.
Aliasing applies system wide.
Forwarding allows each user to reroute incoming mail
destined for that account.
Inclusion directs
.i sendmail
to read a file for a list of addresses,
and is normally used
in conjunction with aliasing.
.sh 3 "Aliasing"
.pp
Aliasing maps local addresses to address lists using a system-wide file.
This file is hashed to speed access.
Only addresses that parse as local
are allowed as aliases;
this guarantees a unique key
(since there are no nicknames for the local host).
.sh 3 "Forwarding"
.pp
After aliasing,
if an recipient address specifies a local user
.i sendmail
searches for a
.q .forward
file in the recipient's home directory.
If it exists,
the message is
.i not
sent to that user,
but rather to the list of addresses in that file.
Often
this list will contain only one address,
and the feature will be used for network mail forwarding.
.pp
Forwarding also permits a user to specify a private incoming mailer.
For example,
forwarding to:
.(b
"\^|\|/usr/local/newmail myname"
.)b
will use a different incoming mailer.
.sh 3 "Inclusion"
.pp
Inclusion is specified in RFC 733 [Crocker77] syntax:
.(b
:Include: pathname
.)b
An address of this form reads the file specified by
.i pathname
and sends to all users listed in that file.
.pp
The intent is
.i not
to support direct use of this feature,
but rather to use this as a subset of aliasing.
For example,
an alias of the form:
.(b
project: :include:/usr/project/userlist
.)b
is a method of letting a project maintain a mailing list
without interaction with the system administration,
even if the alias file is protected.
.pp
It is not necessary to rebuild the index on the alias database
when a :include: list is changed.
.sh 2 "Message Collection"
.pp
Once all recipient addresses are parsed and verified,
the message is collected.
The message comes in two parts:
a message header and a message body,
separated by a blank line.
The body is an uninterpreted
sequence of text lines.
.pp
The header is formated as a series of lines
of the form
.(b
	field-name: field-value
.)b
Field-value can be split across lines by starting the following
lines with a space or a tab.
Some header fields have special internal meaning,
and have appropriate special processing.
Other headers are simply passed through.
Some header fields may be added automatically,
such as time stamps.
.sh 1 "THE UUCP PROBLEM"
.pp
Of particular interest
is the UUCP network.
The explicit routing
used in the UUCP environment
causes a number of serious problems.
First,
giving out an address
is impossible
without knowing the address of your potential correspondent.
This is typically handled
by specifying the address
relative to some
.q "well-known"
host
(e.g.,
ucbvax or decvax).
Second,
it is often difficult to compute
the set of addresses
to reply to
without some knowledge
of the topology of the network.
Although it may be easy for a human being
to do this
under many circumstances,
a program does not have equally sophisticated heuristics
built in.
Third,
certain addresses will become painfully and unnecessarily long,
as when a message is routed through many hosts in the USENET.
And finally,
certain
.q "mixed domain"
addresses
are impossible to parse unambiguously \*-
e.g.,
.(l
decvax!ucbvax!lbl-h!user@LBL-CSAM
.)l
might have many possible resolutions,
depending on whether the message was first routed
to decvax
or to LBL-CSAM.
.pp
To solve this problem,
the UUCP syntax
would have to be changed to use addresses
rather than routes.
For example,
the address
.q decvax!ucbvax!eric
might be expressed as
.q eric@ucbvax.UUCP
(with the hop through decvax implied).
This address would itself be a domain-based address;
for example,
an address might be of the form:
.(l
mark@d.cbosg.btl.UUCP
.)l
Hosts outside of Bell Telephone Laboratories
would then only need to know
how to get to a designated BTL relay,
and the BTL topology
would only be maintained inside Bell.
.pp
There are three major problems
associated with turning UUCP addresses
into something reasonable:
defining the namespace,
creating and propagating the necessary software,
and building and maintaining the database.
.sh 2 "Defining the Namespace"
.pp
Putting all UUCP hosts into a flat namespace
(e.g.,
.q \&...@host.UUCP )
is not practical for a number of reasons.
First,
with over 1600 sites already,
and (with the increasing availability of inexpensive microcomputers
and autodialers)
several thousand more coming within a few years,
the database update problem
is simply intractable
if the namespace is flat.
Second,
there are almost certainly name conflicts today.
Third,
as the number of sites grow
the names become ever less mnemonic.
.pp
It seems inevitable
that there be some sort of naming authority
for the set of top level names
in the UUCP domain,
as unpleasant a possibility
as that may seem.
It will simply not be possible
to have one host resolving all names.
It may however be possible
to handle this
in a fashion similar to that of assigning names of newsgroups
in USENET.
However,
it will be essential to encourage everyone
to become subdomains of an existing domain
whenever possible \*-
even though this will certainly bruise some egos.
For example,
if a new host named
.q blid
were to be added to the UUCP network,
it would probably actually be addressed as
.q d.bli.UUCP
(i.e.,
as host
.q d
in the pseudo-domain
.q bli
rather than as host
.q blid
in the UUCP domain).
.sh 2 "Creating and Propagating the Software"
.pp
The software required to implement a consistent namespace
is relatively trivial.
Two modules are needed,
one to handle incoming mail
and one to handle outgoing mail.
.pp
The incoming module
must be prepared to handle either old or new style addresses.
New-style addresses
can be passed through unchanged.
Old style addresses
must be turned into new style addresses
where possible.
.pp
The outgoing module
is slightly trickier.
It must do a database lookup on the recipient addresses
(passed on the command line)
to determine what hosts to send the message to.
If those hosts do not accept new-style addresses,
it must transform all addresses in the header of the message
into old style using the database lookup.
.pp
Both of these modules
are straightforward
except for the issue of modifying the header.
It seems prudent to choose one format
for the message headers.
For a number of reasons,
Berkeley has elected to use the ARPANET protocols
for message formats.
However,
this protocol is somewhat difficult to parse.
.pp
Propagation is somewhat more difficult.
There are a large number of hosts
connected to UUCP
that will want to run completely standard systems
(for very good reasons).
The strategy is not to convert the entire network \*-
only enough of it it alleviate the problem.
.sh 2 "Building and Maintaining the Database"
.pp
This is by far the most difficult problem.
A prototype for this database
already exists,
but it is maintained by hand
and does not pretend to be complete.
.pp
This problem will be reduced considerably
if people choose to group their hosts
into subdomains.
This would require a global update
only when a new top level domain
joined the network.
A message to a host in a subdomain
could simply be routed to a known domain gateway
for further processing.
For example,
the address
.q eric@a.bli.UUCP
might be routed to the
.q bli
gateway
for redistribution;
new hosts could be added
within BLI
without notifying the rest of the world.
Of course,
other hosts
.i could
be notified as an efficiency measure.
.pp
There may be more than one domain gateway.
A domain such as BTL,
for instance,
might have a dozen gateways to the outside world;
a non-BTL site
could choose the closest gateway.
The only restriction
would be that all gateways
maintain a consistent view of the domain
they represent.
.sh 2 "Logical Structure"
.pp
Logically,
domains are organized into a tree.
There need not be a host actually associated
with each level in the tree \*-
for example,
there will be no host associated with the name
.q UUCP.
Similarly,
an organization might group names together for administrative reasons;
for example,
the name
.(l
CAD.research.BigCorp.UUCP
.)l
might not actually have a host representing
.q research.
.pp
However,
it may frequently be convenient to have a host
or hosts
that
.q represent
a domain.
For example,
if a single host exists that
represents
Berkeley,
then mail from outside Berkeley
can forward mail to that host
for further resolution
without knowing Berkeley's
(rather volatile)
topology.
This is not unlike the operation
of the telephone network.
.pp
This may also be useful
inside certain large domains.
For example,
at Berkeley it may be presumed
that most hosts know about other hosts
inside the Berkeley domain.
But if they process an address
that is unknown,
they can pass it
.q upstairs
for further examination.
Thus as new hosts are added
only one host
(the domain master)
.i must
be updated immediately;
other hosts can be updated as convenient.
.pp
Ideally this name resolution process
would be performed by a name server
(e.g., [Su82b])
to avoid unnecessary copying
of the message.
However,
in a batch network
such as UUCP
this could result in unnecessary delays.
.sh 1 "COMPARISON WITH DELIVERMAIL"
.pp
.i Sendmail
is an outgrowth of
.i delivermail .
The primary differences are:
.np
Configuration information is not compiled in.
This change simplifies many of the problems
of moving to other machines.
It also allows easy debugging of new mailers.
.np
Address parsing is more flexible.
For example,
.i delivermail
only supported one gateway to any network,
whereas
.i sendmail
can be sensitive to host names
and reroute to different gateways.
.np
Forwarding and
:include:
features eliminate the requirement that the system alias file
be writable by any user
(or that an update program be written,
or that the system administration make all changes).
.np
.i Sendmail
supports message batching across networks
when a message is being sent to multiple recipients.
.np
A mail queue is provided in
.i sendmail.
Mail that cannot be delivered immediately
but can potentially be delivered later
is stored in this queue for a later retry.
The queue also provides a buffer against system crashes;
after the message has been collected
it may be reliably redelivered
even if the system crashes during the initial delivery.
.np
.i Sendmail
uses the networking support provided by 4.2BSD
to provide a direct interface networks such as the ARPANET
and/or Ethernet
using SMTP (the Simple Mail Transfer Protocol)
over a TCP/IP connection.
.+c
.ce
REFERENCES
.nr ii 1.5i
.ip [Crocker77]
Crocker, D. H.,
Vittal, J. J.,
Pogran, K. T.,
and
Henderson, D. A. Jr.,
.ul
Standard for the Format of ARPA Network Text Messages.
RFC 733,
NIC 41952.
In [Feinler78].
November 1977.
.ip [Crocker82]
Crocker, D. H.,
.ul
Standard for the Format of Arpa Internet Text Messages.
RFC 822.
Network Information Center,
SRI International,
Menlo Park, California.
August 1982.
.ip [Feinler78]
Feinler, E.,
and
Postel, J.
(eds.),
.ul
ARPANET Protocol Handbook.
NIC 7104,
Network Information Center,
SRI International,
Menlo Park, California.
1978.
.ip [Nowitz78]
Nowitz, D. A.,
and
Lesk, M. E.,
.ul
A Dial-Up Network of UNIX Systems.
Bell Laboratories.
In
UNIX Programmer's Manual, Seventh Edition,
Volume 2.
August, 1978.
.ip [Schmidt79]
Schmidt, E.,
.ul
An Introduction to the Berkeley Network.
University of California, Berkeley California.
1979.
.ip [Shoens79]
Shoens, K.,
.ul
Mail Reference Manual.
University of California, Berkeley.
In UNIX Programmer's Manual,
Seventh Edition,
Volume 2C.
December 1979.
.ip [Solomon81]
Solomon, M.,
Landweber, L.,
and
Neuhengen, D.,
.ul
The Design of the CSNET Name Server.
CS-DN-2.
University of Wisconsin,
Madison.
October 1981.
.ip [Su82a]
Su, Zaw-Sing,
and
Postel, Jon,
.ul
The Domain Naming Convention for Internet User Applications.
RFC819.
Network Information Center,
SRI International,
Menlo Park, California.
August 1982.
.ip [Su82b]
Su, Zaw-Sing,
.ul
A Distributed System for Internet Name Service.
RFC830.
Network Information Center,
SRI International,
Menlo Park, California.
October 1982.
OpenPOWER on IntegriCloud