summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/ntpd/refclock_wwv.c
blob: b1d05c7ca33f01e84eb3b118ee15c2459e44bb23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
/*
 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
 */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if defined(REFCLOCK) && defined(CLOCK_WWV)

#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_calendar.h"
#include "ntp_stdlib.h"
#include "audio.h"

#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif /* HAVE_SYS_IOCTL_H */

#define ICOM 	1		/* undefine to suppress ICOM code */

#ifdef ICOM
#include "icom.h"
#endif /* ICOM */

/*
 * Audio WWV/H demodulator/decoder
 *
 * This driver synchronizes the computer time using data encoded in
 * radio transmissions from NIST time/frequency stations WWV in Boulder,
 * CO, and WWVH in Kauai, HI. Transmikssions are made continuously on
 * 2.5, 5, 10, 15 and 20 MHz in AM mode. An ordinary shortwave receiver
 * can be tuned manually to one of these frequencies or, in the case of
 * ICOM receivers, the receiver can be tuned automatically using this
 * program as propagation conditions change throughout the day and
 * night.
 *
 * The driver receives, demodulates and decodes the radio signals when
 * connected to the audio codec of a Sun workstation running SunOS or
 * Solaris, and with a little help, other workstations with similar
 * codecs or sound cards. In this implementation, only one audio driver
 * and codec can be supported on a single machine.
 *
 * The demodulation and decoding algorithms used in this driver are
 * based on those developed for the TAPR DSP93 development board and the
 * TI 320C25 digital signal processor described in: Mills, D.L. A
 * precision radio clock for WWV transmissions. Electrical Engineering
 * Report 97-8-1, University of Delaware, August 1997, 25 pp. Available
 * from www.eecis.udel.edu/~mills/reports.htm. The algorithms described
 * in this report have been modified somewhat to improve performance
 * under weak signal conditions and to provide an automatic station
 * identification feature.
 *
 * The ICOM code is normally compiled in the driver. It isn't used,
 * unless the mode keyword on the server configuration command specifies
 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
 * debug level is greater than one.
 */
/*
 * Interface definitions
 */
#define	DEVICE_AUDIO	"/dev/audio" /* audio device name */
#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
#define	REFID		"NONE"	/* reference ID */
#define	DESCRIPTION	"WWV/H Audio Demodulator/Decoder" /* WRU */
#define SECOND		8000	/* second epoch (sample rate) (Hz) */
#define MINUTE		(SECOND * 60) /* minute epoch */
#define OFFSET		128	/* companded sample offset */
#define SIZE		256	/* decompanding table size */
#define	MAXSIG		6000.	/* maximum signal level reference */
#define MAXSNR		30.	/* max SNR reference */
#define DGAIN		20.	/* data channel gain reference */
#define SGAIN		10.	/* sync channel gain reference */
#define MAXFREQ		(125e-6 * SECOND) /* freq tolerance (.0125%) */
#define PI		3.1415926535 /* the real thing */
#define DATSIZ		(170 * MS) /* data matched filter size */
#define SYNSIZ		(800 * MS) /* minute sync matched filter size */
#define UTCYEAR		72	/* the first UTC year */
#define MAXERR		30	/* max data bit errors in minute */
#define NCHAN		5	/* number of channels */

/*
 * Macroni
 */
#define MOD(x, y)	((x) < 0 ? -(-(x) % (y)) : (x) % (y))

/*
 * General purpose status bits (status)
 *
 * Notes: SELV and/or SELH are set when the minute sync pulse from
 * either or both WWV and/or WWVH stations has been heard. MSYNC is set
 * when the minute sync pulse has been acquired and never reset. SSYNC
 * is set when the second sync pulse has been acquired and cleared by
 * watchdog or signal loss. DSYNC is set when the minutes unit digit has
 * reached the threshold and INSYNC is set when if all nine digits have
 * reached the threshold and never cleared.
 *
 * DGATE is set if a data bit is invalid, BGATE is set if a BCD digit
 * bit is invalid. SFLAG is set when during seconds 59, 0 and 1 while
 * probing for alternate frequencies. LEPSEC is set when the SECWAR of
 * the timecode is set on the last second of 30 June or 31 December. At
 * the end of this minute both the receiver and transmitter insert
 * second 60 in the minute and the minute sync slips a second.
 */
#define MSYNC		0x0001	/* minute epoch sync */
#define SSYNC		0x0002	/* second epoch sync */
#define DSYNC		0x0004	/* minute units sync */
#define INSYNC		0x0008	/* clock synchronized */
#define DGATE		0x0010	/* data bit error */
#define BGATE		0x0020	/* BCD digit bit error */
#define SFLAG		0x1000	/* probe flag */
#define LEPSEC		0x2000	/* leap second in progress */

/*
 * Station scoreboard bits (select)
 *
 * These are used to establish the signal quality for each of the five
 * frequencies and two stations.
 */
#define JITRNG		0x0001	/* jitter above threshold */
#define SYNCNG		0x0002	/* sync below threshold or SNR */
#define DATANG		0x0004	/* data below threshold or SNR */
#define SELV		0x0100	/* WWV station select */
#define SELH		0x0200	/* WWVH station select */

/*
 * Alarm status bits (alarm)
 *
 * These bits indicate various alarm conditions, which are decoded to
 * form the quality character included in the timecode. There are four
 * four-bit nibble fields in the word, each corresponding to a specific
 * alarm condition. At the end of each second, the word is shifted left
 * one position and the least significant bit of each nibble cleared.
 * This bit can be set during the next minute if the associated alarm
 * condition is raised. This provides a way to remember alarm conditions
 * up to four minutes.
 *
 * If not tracking both minute sync and second sync, the SYNERR alarm is
 * raised. The data error counter is incremented for each invalid data
 * bit. If too many data bit errors are encountered in one minute, the
 * MODERR alarm is raised. The DECERR alarm is raised if a maximum
 * likelihood digit fails to compare with the current clock digit. If
 * the probability of any miscellaneous bit or any digit falls below the
 * threshold, the SYMERR alarm is raised.
 */
#define DECERR		0	/* BCD digit compare error */
#define SYMERR		4	/* low bit or digit probability */
#define MODERR		8	/* too many data bit errors */
#define SYNERR		12	/* not synchronized to station */

/*
 * Watchdog timeouts (watch)
 *
 * If these timeouts expire, the status bits are mashed to zero and the
 * driver starts from scratch. Suitably more refined procedures may be
 * developed in future. All these are in minutes.
 */
#define ACQSN		5	/* acquisition timeout */
#define HSPEC		15	/* second sync timeout */
#define DIGIT		30	/* minute unit digit timeout */
#define PANIC		(4 * 1440) /* panic timeout */

/*
 * Thresholds. These establish the minimum signal level, minimum SNR and
 * maximum jitter thresholds which establish the error and false alarm
 * rates of the receiver. The values defined here may be on the
 * adventurous side in the interest of the highest sensitivity.
 */
#define ATHR		2000	/* acquisition amplitude threshold */
#define ASNR		6.0	/* acquisition SNR threshold (dB) */
#define AWND		50	/* acquisition window threshold (ms) */
#define AMIN		3	/* acquisition min compare count */
#define AMAX		6	/* max compare count */
#define QTHR		2000	/* QSY amplitude threshold */
#define QSNR		20.0	/* QSY SNR threshold (dB) */
#define STHR		500	/* second sync amplitude threshold */
#define SCMP		10 	/* second sync compare threshold */
#define DTHR		1000	/* bit amplitude threshold */
#define DSNR		10.0	/* bit SNR threshold (dB) */
#define BTHR		1000	/* digit probability threshold */
#define BSNR		3.0	/* digit likelihood threshold (dB) */
#define BCMP		5	/* digit compare threshold (dB) */

/*
 * Tone frequency definitions.
 */
#define MS		8	/* samples per millisecond */
#define IN100		1	/* 100 Hz 4.5-deg sin table */
#define IN1000		10	/* 1000 Hz 4.5-deg sin table */
#define IN1200		12	/* 1200 Hz 4.5-deg sin table */

/*
 * Acquisition and tracking time constants. Usually powers of 2.
 */
#define MINAVG		8	/* min time constant (s) */
#define MAXAVG		7	/* max time constant (log2 s) */
#define TCONST		16	/* minute time constant (s) */
#define SYNCTC		(1024 / (1 << MAXAVG)) /* FLL constant (s) */

/*
 * Miscellaneous status bits (misc)
 *
 * These bits correspond to designated bits in the WWV/H timecode. The
 * bit probabilities are exponentially averaged over several minutes and
 * processed by a integrator and threshold.
 */
#define DUT1		0x01	/* 56 DUT .1 */
#define DUT2		0x02	/* 57 DUT .2 */
#define DUT4		0x04	/* 58 DUT .4 */
#define DUTS		0x08	/* 50 DUT sign */
#define DST1		0x10	/* 55 DST1 DST in progress */
#define DST2		0x20	/* 2 DST2 DST change warning */
#define SECWAR		0x40	/* 3 leap second warning */

/*
 * The total system delay with the DSP93 program is at 22.5 ms,
 * including the propagation delay from Ft. Collins, CO, to Newark, DE
 * (8.9 ms), the communications receiver delay and the delay of the
 * DSP93 program itself. The DSP93 program delay is due mainly to the
 * 400-Hz FIR bandpass filter (5 ms) and second sync matched filter (5
 * ms), leaving about 3.6 ms for the receiver delay and strays.
 *
 * The total system delay with this program is estimated at 27.1 ms by
 * comparison with another PPS-synchronized NTP server over a 10-Mb/s
 * Ethernet. The propagation and receiver delays are the same as with
 * the DSP93 program. The program delay is due only to the 600-Hz
 * IIR bandpass filter (1.1 ms), since other delays have been removed.
 * Assuming 4.7 ms for the receiver, program and strays, this leaves
 * 13.5 ms for the audio codec and operating system latencies for a
 * total of 18.2 ms. as the systematic delay. The additional propagation
 * delay specific to each receiver location can be programmed in the
 * fudge time1 and time2 values for WWV and WWVH, respectively.
 */
#define PDELAY	(.0036 + .0011 + .0135)	/* net system delay (s) */

/*
 * Table of sine values at 4.5-degree increments. This is used by the
 * synchronous matched filter demodulators. The integral of sine-squared
 * over one complete cycle is PI, so the table is normallized by 1 / PI.
 */
double sintab[] = {
 0.000000e+00,  2.497431e-02,  4.979464e-02,  7.430797e-02, /* 0-3 */
 9.836316e-02,  1.218119e-01,  1.445097e-01,  1.663165e-01, /* 4-7 */
 1.870979e-01,  2.067257e-01,  2.250791e-01,  2.420447e-01, /* 8-11 */
 2.575181e-01,  2.714038e-01,  2.836162e-01,  2.940800e-01, /* 12-15 */
 3.027307e-01,  3.095150e-01,  3.143910e-01,  3.173286e-01, /* 16-19 */
 3.183099e-01,  3.173286e-01,  3.143910e-01,  3.095150e-01, /* 20-23 */
 3.027307e-01,  2.940800e-01,  2.836162e-01,  2.714038e-01, /* 24-27 */
 2.575181e-01,  2.420447e-01,  2.250791e-01,  2.067257e-01, /* 28-31 */
 1.870979e-01,  1.663165e-01,  1.445097e-01,  1.218119e-01, /* 32-35 */
 9.836316e-02,  7.430797e-02,  4.979464e-02,  2.497431e-02, /* 36-39 */
-0.000000e+00, -2.497431e-02, -4.979464e-02, -7.430797e-02, /* 40-43 */
-9.836316e-02, -1.218119e-01, -1.445097e-01, -1.663165e-01, /* 44-47 */
-1.870979e-01, -2.067257e-01, -2.250791e-01, -2.420447e-01, /* 48-51 */
-2.575181e-01, -2.714038e-01, -2.836162e-01, -2.940800e-01, /* 52-55 */
-3.027307e-01, -3.095150e-01, -3.143910e-01, -3.173286e-01, /* 56-59 */
-3.183099e-01, -3.173286e-01, -3.143910e-01, -3.095150e-01, /* 60-63 */
-3.027307e-01, -2.940800e-01, -2.836162e-01, -2.714038e-01, /* 64-67 */
-2.575181e-01, -2.420447e-01, -2.250791e-01, -2.067257e-01, /* 68-71 */
-1.870979e-01, -1.663165e-01, -1.445097e-01, -1.218119e-01, /* 72-75 */
-9.836316e-02, -7.430797e-02, -4.979464e-02, -2.497431e-02, /* 76-79 */
 0.000000e+00};						    /* 80 */

/*
 * Decoder operations at the end of each second are driven by a state
 * machine. The transition matrix consists of a dispatch table indexed
 * by second number. Each entry in the table contains a case switch
 * number and argument.
 */
struct progx {
	int sw;			/* case switch number */
	int arg;		/* argument */
};

/*
 * Case switch numbers
 */
#define IDLE		0	/* no operation */
#define COEF		1	/* BCD bit conditioned on DSYNC */
#define COEF1		2	/* BCD bit */
#define COEF2		3	/* BCD bit ignored */
#define DECIM9		4	/* BCD digit 0-9 */
#define DECIM6		5	/* BCD digit 0-6 */
#define DECIM3		6	/* BCD digit 0-3 */
#define DECIM2		7	/* BCD digit 0-2 */
#define MSCBIT		8	/* miscellaneous bit */
#define MSC20		9	/* miscellaneous bit */		
#define MSC21		10	/* QSY probe channel */		
#define MIN1		11	/* minute */		
#define MIN2		12	/* leap second */
#define SYNC2		13	/* QSY data channel */		
#define SYNC3		14	/* QSY data channel */		

/*
 * Offsets in decoding matrix
 */
#define MN		0	/* minute digits (2) */
#define HR		2	/* hour digits (2) */
#define DA		4	/* day digits (3) */
#define YR		7	/* year digits (2) */

struct progx progx[] = {
	{SYNC2,	0},		/* 0 latch sync max */
	{SYNC3,	0},		/* 1 QSY data channel */
	{MSCBIT, DST2},		/* 2 dst2 */
	{MSCBIT, SECWAR},	/* 3 lw */
	{COEF,	0},		/* 4 1 year units */
	{COEF,	1},		/* 5 2 */
	{COEF,	2},		/* 6 4 */
	{COEF,	3},		/* 7 8 */
	{DECIM9, YR},		/* 8 */
	{IDLE,	0},		/* 9 p1 */
	{COEF1, 0},		/* 10 1 minute units */
	{COEF1,	1},		/* 11 2 */
	{COEF1,	2},		/* 12 4 */
	{COEF1,	3},		/* 13 8 */
	{DECIM9, MN},		/* 14 */
	{COEF,	0},		/* 15 10 minute tens */
	{COEF,	1},		/* 16 20 */
	{COEF,	2},		/* 17 40 */
	{COEF2,	3},		/* 18 80 (not used) */
	{DECIM6, MN + 1},	/* 19 p2 */
	{COEF,	0},		/* 20 1 hour units */
	{COEF,	1},		/* 21 2 */
	{COEF,	2},		/* 22 4 */
	{COEF,	3},		/* 23 8 */
	{DECIM9, HR},		/* 24 */
	{COEF,	0},		/* 25 10 hour tens */
	{COEF,	1},		/* 26 20 */
	{COEF2,	2},		/* 27 40 (not used) */
	{COEF2,	3},		/* 28 80 (not used) */
	{DECIM2, HR + 1},	/* 29 p3 */
	{COEF,	0},		/* 30 1 day units */
	{COEF,	1},		/* 31 2 */
	{COEF,	2},		/* 32 4 */
	{COEF,	3},		/* 33 8 */
	{DECIM9, DA},		/* 34 */
	{COEF,	0},		/* 35 10 day tens */
	{COEF,	1},		/* 36 20 */
	{COEF,	2},		/* 37 40 */
	{COEF,	3},		/* 38 80 */
	{DECIM9, DA + 1},	/* 39 p4 */
	{COEF,	0},		/* 40 100 day hundreds */
	{COEF,	1},		/* 41 200 */
	{COEF2,	2},		/* 42 400 (not used) */
	{COEF2,	3},		/* 43 800 (not used) */
	{DECIM3, DA + 2},	/* 44 */
	{IDLE,	0},		/* 45 */
	{IDLE,	0},		/* 46 */
	{IDLE,	0},		/* 47 */
	{IDLE,	0},		/* 48 */
	{IDLE,	0},		/* 49 p5 */
	{MSCBIT, DUTS},		/* 50 dut+- */
	{COEF,	0},		/* 51 10 year tens */
	{COEF,	1},		/* 52 20 */
	{COEF,	2},		/* 53 40 */
	{COEF,	3},		/* 54 80 */
	{MSC20, DST1},		/* 55 dst1 */
	{MSCBIT, DUT1},		/* 56 0.1 dut */
	{MSCBIT, DUT2},		/* 57 0.2 */
	{MSC21, DUT4},		/* 58 0.4 QSY probe channel */
	{MIN1,	0},		/* 59 p6 latch sync min */
	{MIN2,	0}		/* 60 leap second */
};

/*
 * BCD coefficients for maximum likelihood digit decode
 */
#define P15	1.		/* max positive number */
#define N15	-1.		/* max negative number */

/*
 * Digits 0-9
 */
#define P9	(P15 / 4)	/* mark (+1) */
#define N9	(N15 / 4)	/* space (-1) */

double bcd9[][4] = {
	{N9, N9, N9, N9}, 	/* 0 */
	{P9, N9, N9, N9}, 	/* 1 */
	{N9, P9, N9, N9}, 	/* 2 */
	{P9, P9, N9, N9}, 	/* 3 */
	{N9, N9, P9, N9}, 	/* 4 */
	{P9, N9, P9, N9}, 	/* 5 */
	{N9, P9, P9, N9}, 	/* 6 */
	{P9, P9, P9, N9}, 	/* 7 */
	{N9, N9, N9, P9}, 	/* 8 */
	{P9, N9, N9, P9}, 	/* 9 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * Digits 0-6 (minute tens)
 */
#define P6	(P15 / 3)	/* mark (+1) */
#define N6	(N15 / 3)	/* space (-1) */

double bcd6[][4] = {
	{N6, N6, N6, 0}, 	/* 0 */
	{P6, N6, N6, 0}, 	/* 1 */
	{N6, P6, N6, 0}, 	/* 2 */
	{P6, P6, N6, 0}, 	/* 3 */
	{N6, N6, P6, 0}, 	/* 4 */
	{P6, N6, P6, 0}, 	/* 5 */
	{N6, P6, P6, 0}, 	/* 6 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * Digits 0-3 (day hundreds)
 */
#define P3	(P15 / 2)	/* mark (+1) */
#define N3	(N15 / 2)	/* space (-1) */

double bcd3[][4] = {
	{N3, N3, 0, 0}, 	/* 0 */
	{P3, N3, 0, 0}, 	/* 1 */
	{N3, P3, 0, 0}, 	/* 2 */
	{P3, P3, 0, 0}, 	/* 3 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * Digits 0-2 (hour tens)
 */
#define P2	(P15 / 2)	/* mark (+1) */
#define N2	(N15 / 2)	/* space (-1) */

double bcd2[][4] = {
	{N2, N2, 0, 0}, 	/* 0 */
	{P2, N2, 0, 0}, 	/* 1 */
	{N2, P2, 0, 0}, 	/* 2 */
	{0, 0, 0, 0}		/* backstop */
};

/*
 * DST decode (DST2 DST1) for prettyprint
 */
char dstcod[] = {
	'S',			/* 00 standard time */
	'I',			/* 01 daylight warning */
	'O',			/* 10 standard warning */
	'D'			/* 11 daylight time */
};

/*
 * The decoding matrix consists of nine row vectors, one for each digit
 * of the timecode. The digits are stored from least to most significant
 * order. The maximum likelihood timecode is formed from the digits
 * corresponding to the maximum likelihood values reading in the
 * opposite order: yy ddd hh:mm.
 */
struct decvec {
	int radix;		/* radix (3, 4, 6, 10) */
	int digit;		/* current clock digit */
	int mldigit;		/* maximum likelihood digit */
	int phase;		/* maximum likelihood digit phase */
	int count;		/* match count */
	double digprb;		/* max digit probability */
	double digsnr;		/* likelihood function (dB) */
	double like[10];	/* likelihood integrator 0-9 */
};

/*
 * The station structure is used to acquire the minute pulse from WWV
 * and/or WWVH. These stations are distinguished by the frequency used
 * for the second and minute sync pulses, 1000 Hz for WWV and 1200 Hz
 * for WWVH. Other than frequency, the format is the same.
 */
struct sync {
	double	amp;		/* sync amplitude (I, Q square) */
	double	synamp;		/* sync envelope at 800 ms */
	double	synmax;		/* sync envelope at 0 s */
	double	synmin;		/* avg sync envelope at 59 s, 1 s */
	double	synsnr;		/* sync signal SNR */
	double	noise;		/* max amplitude off pulse */
	double	sigmax;		/* max amplitude on pulse */
	double	lastmax;	/* last max amplitude on pulse */
	long	pos;		/* position at maximum amplitude */
	long	lastpos;	/* last position at maximum amplitude */
	long	jitter;		/* shake, wiggle and waggle */
	long	mepoch;		/* minute synch epoch */
	int	count;		/* compare counter */
	char	refid[5];	/* reference identifier */
	char	ident[4];	/* station identifier */
	int	select;		/* select bits */
};

/*
 * The channel structure is used to mitigate between channels. At this
 * point we have already decided which station to use.
 */
struct chan {
	int	gain;		/* audio gain */
	int	errcnt;		/* data bit error counter */
	double	noiamp;		/* I-channel average noise amplitude */
	struct sync wwv;	/* wwv station */
	struct sync wwvh;	/* wwvh station */
};

/*
 * WWV unit control structure
 */
struct wwvunit {
	l_fp	timestamp;	/* audio sample timestamp */
	l_fp	tick;		/* audio sample increment */
	double	comp[SIZE];	/* decompanding table */
	double	phase, freq;	/* logical clock phase and frequency */
	double	monitor;	/* audio monitor point */
	int	fd_icom;	/* ICOM file descriptor */
	int	errflg;		/* error flags */
	int	bufcnt;		/* samples in buffer */
	int	bufptr;		/* buffer index pointer */
	int	port;		/* codec port */
	int	gain;		/* codec gain */
	int	clipcnt;	/* sample clipped count */
	int	seccnt;		/* second countdown */
	int	minset;		/* minutes since last clock set */
	int	watch;		/* watchcat */
	int	swatch;		/* second sync watchcat */

	/*
	 * Variables used to establish basic system timing
	 */
	int	avgint;		/* log2 master time constant (s) */
	int	epoch;		/* second epoch ramp */
	int	repoch;		/* receiver sync epoch */
	int	yepoch;		/* transmitter sync epoch */
	double	epomax;		/* second sync amplitude */
	double	irig;		/* data I channel amplitude */
	double	qrig;		/* data Q channel amplitude */
	int	datapt;		/* 100 Hz ramp */
	double	datpha;		/* 100 Hz VFO control */
	int	rphase;		/* receiver sample counter */
	int	rsec;		/* receiver seconds counter */
	long	mphase;		/* minute sample counter */
	long	nepoch;		/* minute epoch index */

	/*
	 * Variables used to mitigate which channel to use
	 */
	struct chan mitig[NCHAN]; /* channel data */
	struct sync *sptr;	/* station pointer */
	int	dchan;		/* data channel */
	int	schan;		/* probe channel */
	int	achan;		/* active channel */

	/*
	 * Variables used by the clock state machine
	 */
	struct decvec decvec[9]; /* decoding matrix */
	int	cdelay;		/* WWV propagation delay (samples) */
	int	hdelay;		/* WVVH propagation delay (samples) */
	int	pdelay;		/* propagation delay (samples) */
	int	tphase;		/* transmitter sample counter */
	int	tsec;		/* transmitter seconds counter */
	int	digcnt;		/* count of digits synchronized */

	/*
	 * Variables used to estimate signal levels and bit/digit
	 * probabilities
	 */
	double	sigamp;		/* I-channel peak signal amplitude */
	double	noiamp;		/* I-channel average noise amplitude */
	double	datsnr;		/* data SNR (dB) */

	/*
	 * Variables used to establish status and alarm conditions
	 */
	int	status;		/* status bits */
	int	alarm;		/* alarm flashers */
	int	misc;		/* miscellaneous timecode bits */
	int	errcnt;		/* data bit error counter */
};

/*
 * Function prototypes
 */
static	int	wwv_start	P((int, struct peer *));
static	void	wwv_shutdown	P((int, struct peer *));
static	void	wwv_receive	P((struct recvbuf *));
static	void	wwv_poll	P((int, struct peer *));

/*
 * More function prototypes
 */
static	void	wwv_epoch	P((struct peer *));
static	void	wwv_rf		P((struct peer *, double));
static	void	wwv_endpoc	P((struct peer *, double, int));
static	void	wwv_rsec	P((struct peer *, double));
static	void	wwv_qrz		P((struct peer *, struct sync *,
				    double));
static	void	wwv_corr4	P((struct peer *, struct decvec *,
				    double [], double [][4]));
static	void	wwv_gain	P((struct peer *));
static	void	wwv_tsec	P((struct wwvunit *));
static	double	wwv_data	P((struct wwvunit *, double));
static	int	timecode	P((struct wwvunit *, char *));
static	double	wwv_snr		P((double, double));
static	int	carry		P((struct decvec *));
static	void	wwv_newchan	P((struct peer *));
static	int	wwv_qsy		P((struct peer *, int));
static double qsy[NCHAN] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */

/*
 * Transfer vector
 */
struct	refclock refclock_wwv = {
	wwv_start,		/* start up driver */
	wwv_shutdown,		/* shut down driver */
	wwv_poll,		/* transmit poll message */
	noentry,		/* not used (old wwv_control) */
	noentry,		/* initialize driver (not used) */
	noentry,		/* not used (old wwv_buginfo) */
	NOFLAGS			/* not used */
};


/*
 * wwv_start - open the devices and initialize data for processing
 */
static int
wwv_start(
	int	unit,		/* instance number (not used) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	struct chan *cp;
#ifdef ICOM
	int	temp;
#endif /* ICOM */

	/*
	 * Local variables
	 */
	int	fd;		/* file descriptor */
	int	i;		/* index */
	double	step;		/* codec adjustment */

	/*
	 * Open audio device
	 */
	fd = audio_init(DEVICE_AUDIO);
	if (fd < 0)
		return (0);
#ifdef DEBUG
	if (debug)
		audio_show();
#endif

	/*
	 * Allocate and initialize unit structure
	 */
	if (!(up = (struct wwvunit *)
	      emalloc(sizeof(struct wwvunit)))) {
		(void) close(fd);
		return (0);
	}
	memset((char *)up, 0, sizeof(struct wwvunit));
	pp = peer->procptr;
	pp->unitptr = (caddr_t)up;
	pp->io.clock_recv = wwv_receive;
	pp->io.srcclock = (caddr_t)peer;
	pp->io.datalen = 0;
	pp->io.fd = fd;
	if (!io_addclock(&pp->io)) {
		(void)close(fd);
		free(up);
		return (0);
	}

	/*
	 * Initialize miscellaneous variables
	 */
	peer->precision = PRECISION;
	pp->clockdesc = DESCRIPTION;
	memcpy((char *)&pp->refid, REFID, 4);
	DTOLFP(1. / SECOND, &up->tick);

	/*
	 * The companded samples are encoded sign-magnitude. The table
	 * contains all the 256 values in the interest of speed.
	 */
	up->comp[0] = up->comp[OFFSET] = 0.;
	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
	step = 2.;
	for (i = 3; i < OFFSET; i++) {
		up->comp[i] = up->comp[i - 1] + step;
		up->comp[OFFSET + i] = -up->comp[i];
                if (i % 16 == 0)
		    step *= 2.;
	}

	/*
	 * Initialize the decoding matrix with the radix for each digit
	 * position.
	 */
	up->decvec[MN].radix = 10;	/* minutes */
	up->decvec[MN + 1].radix = 6;
	up->decvec[HR].radix = 10;	/* hours */
	up->decvec[HR + 1].radix = 3;
	up->decvec[DA].radix = 10;	/* days */
	up->decvec[DA + 1].radix = 10;
	up->decvec[DA + 2].radix = 4;
	up->decvec[YR].radix = 10;	/* years */
	up->decvec[YR + 1].radix = 10;

	/*
	 * Initialize the station processes for audio gain, select bit,
	 * station/frequency identifier and reference identifier.
	 */
	up->gain = 127;
	for (i = 0; i < NCHAN; i++) {
		cp = &up->mitig[i];
		cp->gain = up->gain;
		cp->wwv.select = SELV;
		strcpy(cp->wwv.refid, "WWV ");
		sprintf(cp->wwv.ident,"C%.0f", floor(qsy[i]));
		cp->wwvh.select = SELH;
		strcpy(cp->wwvh.refid, "WWVH");
		sprintf(cp->wwvh.ident, "H%.0f", floor(qsy[i]));
	}

	/*
	 * Initialize autotune if available. Start out at 15 MHz. Note
	 * that the ICOM select code must be less than 128, so the high
	 * order bit can be used to select the line speed.
	 */
#ifdef ICOM
	temp = 0;
#ifdef DEBUG
	if (debug > 1)
		temp = P_TRACE;
#endif
	if (peer->ttlmax != 0) {
		if (peer->ttlmax & 0x80)
			up->fd_icom = icom_init("/dev/icom", B1200,
			    temp);
		else
			up->fd_icom = icom_init("/dev/icom", B9600,
			    temp);
	}
	if (up->fd_icom > 0) {
		up->schan = 3;
		if ((temp = wwv_qsy(peer, up->schan)) < 0) {
			NLOG(NLOG_SYNCEVENT | NLOG_SYSEVENT)
			    msyslog(LOG_ERR,
			    "ICOM bus error; autotune disabled");
			up->errflg = CEVNT_FAULT;
			close(up->fd_icom);
			up->fd_icom = 0;
		}
	}
#endif /* ICOM */
	return (1);
}


/*
 * wwv_shutdown - shut down the clock
 */
static void
wwv_shutdown(
	int	unit,		/* instance number (not used) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;
	io_closeclock(&pp->io);
	if (up->fd_icom > 0)
		close(up->fd_icom);
	free(up);
}


/*
 * wwv_receive - receive data from the audio device
 *
 * This routine reads input samples and adjusts the logical clock to
 * track the A/D sample clock by dropping or duplicating codec samples.
 * It also controls the A/D signal level with an AGC loop to mimimize
 * quantization noise and avoid overload.
 */
static void
wwv_receive(
	struct recvbuf *rbufp	/* receive buffer structure pointer */
	)
{
	struct peer *peer;
	struct refclockproc *pp;
	struct wwvunit *up;

	/*
	 * Local variables
	 */
	double	sample;		/* codec sample */
	u_char	*dpt;		/* buffer pointer */
	l_fp	ltemp;
	int	isneg;
	double	dtemp;
	int	i, j;

	peer = (struct peer *)rbufp->recv_srcclock;
	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;

	/*
	 * Main loop - read until there ain't no more. Note codec
	 * samples are bit-inverted.
	 */
	up->timestamp = rbufp->recv_time;
	up->bufcnt = rbufp->recv_length;
	DTOLFP((double)up->bufcnt / SECOND, &ltemp);
	L_SUB(&up->timestamp, &ltemp);
	dpt = rbufp->recv_buffer;
	for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
		sample = up->comp[~*dpt & 0xff];

		/*
		 * Clip noise spikes greater than MAXSIG. If no clips,
		 * increase the gain a tad; if the clips are too high, 
		 * decrease a tad.
		 */
		if (sample > MAXSIG) {
			sample = MAXSIG;
			up->clipcnt++;
		} else if (sample < -MAXSIG) {
			sample = -MAXSIG;
			up->clipcnt++;
		}

		/*
		 * Variable frequency oscillator. A phase change of one
		 * unit produces a change of 360 degrees; a frequency
		 * change of one unit produces a change of 1 Hz.
		 */
		up->phase += up->freq / SECOND;
		if (up->phase >= .5) {
			up->phase -= 1.;
		} else if (up->phase < - .5) {
			up->phase += 1.;
			wwv_rf(peer, sample);
			wwv_rf(peer, sample);
		} else {
			wwv_rf(peer, sample);
		}
		L_ADD(&up->timestamp, &up->tick);

		/*
		 * Once each second adjust the codec port and gain.
		 * While at it, initialize the propagation delay for
		 * both WWV and WWVH. Don't forget to correct for the
		 * receiver phase delay, mostly due to the 600-Hz
		 * IIR bandpass filter used for the sync signals.
		 */
		up->cdelay = (int)(SECOND * (pp->fudgetime1 + PDELAY));
		up->hdelay = (int)(SECOND * (pp->fudgetime2 + PDELAY));
		up->seccnt = (up->seccnt + 1) % SECOND;
		if (up->seccnt == 0) {
			if (pp->sloppyclockflag & CLK_FLAG2)
			    up->port = 2;
			else
			    up->port = 1;
		}

		/*
		 * During development, it is handy to have an audio
		 * monitor that can be switched to various signals. This
		 * code converts the linear signal left in up->monitor
		 * to codec format.
		 */
		isneg = 0;
		dtemp = up->monitor;
		if (sample < 0) {
			isneg = 1;
			dtemp -= dtemp;
		}
		i = 0;
		j = OFFSET >> 1;
		while (j != 0) {
			if (dtemp > up->comp[i])
				i += j;
			else if (dtemp < up->comp[i])
				i -= j;
			else
				break;
			j >>= 1;
		}
		if (isneg)
			*dpt = ~(i + OFFSET);
		else
			*dpt = ~i;
		dpt++;
	}

	/*
	 * Squawk to the monitor speaker if enabled.
	 */
	if (pp->sloppyclockflag & CLK_FLAG3)
	    if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
		      (u_int)up->bufcnt) < 0)
		perror("wwv:");
}


/*
 * wwv_poll - called by the transmit procedure
 *
 * This routine keeps track of status. If nothing is heard for two
 * successive poll intervals, a timeout event is declared and any
 * orphaned timecode updates are sent to foster care. Once the clock is
 * set, it always appears reachable, unless reset by watchdog timeout.
 */
static void
wwv_poll(
	int	unit,		/* instance number (not used) */
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;
	if (pp->coderecv == pp->codeproc)
		up->errflg = CEVNT_TIMEOUT;
	else
		pp->polls++;
	if (up->status & INSYNC)
		peer->reach |= 1;
	if (up->errflg)
		refclock_report(peer, up->errflg);
	up->errflg = 0;
}


/*
 * wwv_rf - process signals and demodulate to baseband
 *
 * This routine grooms and filters decompanded raw audio samples. The
 * output signals include the 100-Hz baseband data signal in quadrature
 * form, plus the epoch index of the second sync signal and the second
 * index of the minute sync signal.
 *
 * There are three 1-s ramps used by this program, all spanning the
 * range 0-7999 logical samples for exactly one second, as determined by
 * the logical clock. The first drives the second epoch and runs
 * continuously. The second determines the receiver phase and the third
 * the transmitter phase within the second. The receiver second begins
 * upon arrival of the 5-ms second sync pulse which begins the second;
 * while the transmitter second begins before it by the specified
 * propagation delay.
 *
 * There are three 1-m ramps spanning the range 0-59 seconds. The first
 * drives the minute epoch in samples and runs continuously. The second
 * determines the receiver second and the third the transmitter second.
 * The receiver second begins upon arrival of the 800-ms sync pulse sent
 * during the first second of the minute; while the transmitter second
 * begins before it by the specified propagation delay.
 *
 * The output signals include the epoch maximum and phase and second
 * maximum and index. The epoch phase provides the master reference for
 * all signal and timing functions, while the second index identifies
 * the first second of the minute. The epoch and second maxima are used
 * to calculate SNR for gating functions.
 *
 * Demodulation operations are based on three synthesized quadrature
 * sinusoids: 100 Hz for the data subcarrier, 1000 Hz for the WWV sync
 * signals and 1200 Hz for the WWVH sync signal. These drive synchronous
 * matched filters for the data subcarrier (170 ms at 100 Hz), WWV
 * minute sync signal (800 ms at 1000 Hz) and WWVH minute sync signal
 * (800 ms at 1200 Hz). Two additional matched filters are switched in
 * as required for the WWV seconds sync signal (5 ms at 1000 Hz) and
 * WWVH seconds sync signal (5 ms at 1200 Hz).
 */
static void
wwv_rf(
	struct peer *peer,	/* peerstructure pointer */
	double isig		/* input signal */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	static double lpf[5];	/* 150-Hz lpf delay line */
	double data;		/* lpf output */
	static double bpf[9];	/* 1000/1200-Hz bpf delay line */
	double syncx;		/* bpf output */
	static double mf[41];	/* 1000/1200-Hz mf delay line */
	double mfsync;		/* mf output */

	static int iptr;	/* data channel pointer */
	static double ibuf[DATSIZ]; /* data I channel delay line */
	static double qbuf[DATSIZ]; /* data Q channel delay line */

	static int jptr;	/* sync channel pointer */
	static double cibuf[SYNSIZ]; /* wwv I channel delay line */
	static double cqbuf[SYNSIZ]; /* wwv Q channel delay line */
	static double ciamp;	/* wwv I channel amplitude */
	static double cqamp;	/* wwv Q channel amplitude */
	static int csinptr;	/* wwv channel phase */
	static double hibuf[SYNSIZ]; /* wwvh I channel delay line */
	static double hqbuf[SYNSIZ]; /* wwvh Q channel delay line */
	static double hiamp;	/* wwvh I channel amplitude */
	static double hqamp;	/* wwvh Q channel amplitude */
	static int hsinptr;	/* wwvh channels phase */

	static double epobuf[SECOND]; /* epoch sync comb filter */
	static double epomax;	/* epoch sync amplitude buffer */
	static int epopos;	/* epoch sync position buffer */

	static int iniflg;	/* initialization flag */
	struct sync *sp;
	double dtemp;
	long ltemp;
	int i;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;
	if (!iniflg) {
		iniflg = 1;
		memset((char *)lpf, 0, sizeof(lpf));
		memset((char *)bpf, 0, sizeof(bpf));
		memset((char *)mf, 0, sizeof(mf));
		memset((char *)ibuf, 0, sizeof(ibuf));
		memset((char *)qbuf, 0, sizeof(qbuf));
		memset((char *)cibuf, 0, sizeof(cibuf));
		memset((char *)cqbuf, 0, sizeof(cqbuf));
		memset((char *)hibuf, 0, sizeof(hibuf));
		memset((char *)hqbuf, 0, sizeof(hqbuf));
		memset((char *)epobuf, 0, sizeof(epobuf));
	}
	up->monitor = isig;		/* change for debug */

	/*
	 * Baseband data demodulation. The 100-Hz subcarrier is
	 * extracted using a 150-Hz IIR lowpass filter. This attenuates
	 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
	 * 600-Hz tones and most of the noise and voice modulation
	 * components.
	 *
	 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
	 * passband ripple, -50 dB stopband ripple.
	 */
	data = (lpf[4] = lpf[3]) * 8.360961e-01;
	data += (lpf[3] = lpf[2]) * -3.481740e+00;
	data += (lpf[2] = lpf[1]) * 5.452988e+00;
	data += (lpf[1] = lpf[0]) * -3.807229e+00;
	lpf[0] = isig - data;
	data = lpf[0] * 3.281435e-03
	    + lpf[1] * -1.149947e-02
	    + lpf[2] * 1.654858e-02
	    + lpf[3] * -1.149947e-02
	    + lpf[4] * 3.281435e-03;

	/*
	 * The I and Q quadrature data signals are produced by
	 * multiplying the filtered signal by 100-Hz sine and cosine
	 * signals, respectively. The data signals are demodulated by
	 * 170-ms synchronous matched filters to produce the amplitude
	 * and phase signals used by the decoder. Note the correction
	 * due to the propagation delay is necessary for seamless
	 * handover between WWV and WWVH.
	 */
	i = up->datapt - up->pdelay % 80;
	if (i < 0)
		i += 80;
	up->datapt = (up->datapt + IN100) % 80;
	dtemp = sintab[i] * data / DATSIZ * DGAIN;
	up->irig -= ibuf[iptr];
	ibuf[iptr] = dtemp;
	up->irig += dtemp;
	i = (i + 20) % 80;
	dtemp = sintab[i] * data / DATSIZ * DGAIN;
	up->qrig -= qbuf[iptr];
	qbuf[iptr] = dtemp;
	up->qrig += dtemp;
	iptr = (iptr + 1) % DATSIZ;

	/*
	 * Baseband sync demodulation. The 1000/1200 sync signals are
	 * extracted using a 600-Hz IIR bandpass filter. This removes
	 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
	 * tones and most of the noise and voice modulation components.
	 *
	 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
	 * passband ripple, -50 dB stopband ripple.
	 */
	syncx = (bpf[8] = bpf[7]) * 4.897278e-01;
	syncx += (bpf[7] = bpf[6]) * -2.765914e+00;
	syncx += (bpf[6] = bpf[5]) * 8.110921e+00;
	syncx += (bpf[5] = bpf[4]) * -1.517732e+01;
	syncx += (bpf[4] = bpf[3]) * 1.975197e+01;
	syncx += (bpf[3] = bpf[2]) * -1.814365e+01;
	syncx += (bpf[2] = bpf[1]) * 1.159783e+01;
	syncx += (bpf[1] = bpf[0]) * -4.735040e+00;
	bpf[0] = isig - syncx;
	syncx = bpf[0] * 8.203628e-03
	    + bpf[1] * -2.375732e-02
	    + bpf[2] * 3.353214e-02
	    + bpf[3] * -4.080258e-02
	    + bpf[4] * 4.605479e-02
	    + bpf[5] * -4.080258e-02
	    + bpf[6] * 3.353214e-02
	    + bpf[7] * -2.375732e-02
	    + bpf[8] * 8.203628e-03;

	/*
	 * The I and Q quadrature minute sync signals are produced by
	 * multiplying the filtered signal by 1000-Hz (WWV) and 1200-Hz
	 * (WWVH) sine and cosine signals, respectively. The resulting
	 * signals are demodulated by 800-ms synchronous matched filters
	 * to synchronize the second and minute and to detect which one
	 * (or both) the WWV or WWVH signal is present.
	 */
	up->mphase = (up->mphase + 1) % MINUTE;

	i = csinptr;
	csinptr = (csinptr + IN1000) % 80;
	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
	ciamp = ciamp - cibuf[jptr] + dtemp;
	cibuf[jptr] = dtemp;
	i = (i + 20) % 80;
	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
	cqamp = cqamp - cqbuf[jptr] + dtemp;
	cqbuf[jptr] = dtemp;
	dtemp = ciamp * ciamp + cqamp * cqamp;
	wwv_qrz(peer, &up->mitig[up->schan].wwv, dtemp);

	i = hsinptr;
	hsinptr = (hsinptr + IN1200) % 80;
	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
	hiamp = hiamp - hibuf[jptr] + dtemp;
	hibuf[jptr] = dtemp;
	i = (i + 20) % 80;
	dtemp = sintab[i] * syncx / SYNSIZ * SGAIN;
	hqamp = hqamp - hqbuf[jptr] + dtemp;
	hqbuf[jptr] = dtemp;
	dtemp = hiamp * hiamp + hqamp * hqamp;
	wwv_qrz(peer, &up->mitig[up->schan].wwvh, dtemp);

	jptr = (jptr + 1) % SYNSIZ;

	if (up->mphase == 0) {

		/*
		 * This section is called once per minute at the minute
		 * epoch independently of the transmitter or receiver
		 * minute. If the leap bit is set, set the minute epoch
		 * back one second so the station processes don't miss a
		 * beat. Then, increment the watchdog counter and test
		 * for two sets of conditions depending on whether
		 * minute sync has been acquired or not.
		 */
		up->watch++;
		if (up->rsec == 60) {
			up->mphase -= SECOND;
			if (up->mphase < 0)
				up->mphase += MINUTE;
		} else if (!(up->status & MSYNC)) {

	 		/*
			 * If minute sync has not been acquired, the
			 * program listens for minute sync pulses from
			 * both WWV and WWVH. The station with the
			 * greater compare count is selected, with ties
			 * broken by WWV, but only if the count is at
			 * least three. Once a station has been
			 * acquired, it is initialized and begins
			 * tracking the signal.
			 */
			if (up->mitig[up->achan].wwv.count >=
			    up->mitig[up->achan].wwvh.count)
				sp = &up->mitig[up->achan].wwv;
			else
				sp = &up->mitig[up->achan].wwvh;
			if (sp->count >= AMIN) {
				up->watch = up->swatch = 0;
				up->status |= MSYNC;
				ltemp = sp->mepoch - SYNSIZ;
				if (ltemp < 0)
					ltemp += MINUTE;
				up->rsec = (MINUTE - ltemp) / SECOND;
				if (!(up->status & SSYNC)) {
					up->repoch = ltemp % SECOND;
					up->yepoch = up->repoch -
					    up->pdelay;
					if (up->yepoch < 0)
						up->yepoch += SECOND;
				}
				wwv_newchan(peer);
			} else if (sp->count == 0 || up->watch >= ACQSN)
			    {
				up->watch = sp->count = 0;
				up->schan = (up->schan + 1) % NCHAN;
				wwv_qsy(peer, up->schan);
			}
		} else {

			/*
			 * If minute sync has been acquired, the program
			 * watches for timeout. The timeout is reset
			 * when the clock is set or verified. If a
			 * timeout occurs and the minute units digit has
			 * not synchronized, reset the program and start
			 * over.
			 */
			if (up->watch > DIGIT && !(up->status & DSYNC))
				up->watch = up->status = 0;

			/*
			 * If the second sync times out, dim the sync
			 * lamp and raise an alarm.
			 */
			up->swatch++;
			if (up->swatch > HSPEC)
				up->status &= ~SSYNC;
			if (!(up->status & SSYNC))
				up->alarm |= 1 << SYNERR;
		}
	}

	/*
	 * The second sync pulse is extracted using 5-ms FIR matched
	 * filters at 1000 Hz for WWV or 1200 Hz for WWVH. This pulse is
	 * used for the most precise synchronization, since if provides
	 * a resolution of one sample (125 us).
	 */
	if (up->status & SELV) {
		up->pdelay = up->cdelay;

		/*
		 * WWV FIR matched filter, five cycles of 1000-Hz
		 * sinewave.
		 */
		mf[40] = mf[39];
		mfsync = (mf[39] = mf[38]) * 4.224514e-02;
		mfsync += (mf[38] = mf[37]) * 5.974365e-02;
		mfsync += (mf[37] = mf[36]) * 4.224514e-02;
		mf[36] = mf[35];
		mfsync += (mf[35] = mf[34]) * -4.224514e-02;
		mfsync += (mf[34] = mf[33]) * -5.974365e-02;
		mfsync += (mf[33] = mf[32]) * -4.224514e-02;
		mf[32] = mf[31];
		mfsync += (mf[31] = mf[30]) * 4.224514e-02;
		mfsync += (mf[30] = mf[29]) * 5.974365e-02;
		mfsync += (mf[29] = mf[28]) * 4.224514e-02;
		mf[28] = mf[27];
		mfsync += (mf[27] = mf[26]) * -4.224514e-02;
		mfsync += (mf[26] = mf[25]) * -5.974365e-02;
		mfsync += (mf[25] = mf[24]) * -4.224514e-02;
		mf[24] = mf[23];
		mfsync += (mf[23] = mf[22]) * 4.224514e-02;
		mfsync += (mf[22] = mf[21]) * 5.974365e-02;
		mfsync += (mf[21] = mf[20]) * 4.224514e-02;
		mf[20] = mf[19];
		mfsync += (mf[19] = mf[18]) * -4.224514e-02;
		mfsync += (mf[18] = mf[17]) * -5.974365e-02;
		mfsync += (mf[17] = mf[16]) * -4.224514e-02;
		mf[16] = mf[15];
		mfsync += (mf[15] = mf[14]) * 4.224514e-02;
		mfsync += (mf[14] = mf[13]) * 5.974365e-02;
		mfsync += (mf[13] = mf[12]) * 4.224514e-02;
		mf[12] = mf[11];
		mfsync += (mf[11] = mf[10]) * -4.224514e-02;
		mfsync += (mf[10] = mf[9]) * -5.974365e-02;
		mfsync += (mf[9] = mf[8]) * -4.224514e-02;
		mf[8] = mf[7];
		mfsync += (mf[7] = mf[6]) * 4.224514e-02;
		mfsync += (mf[6] = mf[5]) * 5.974365e-02;
		mfsync += (mf[5] = mf[4]) * 4.224514e-02;
		mf[4] = mf[3];
		mfsync += (mf[3] = mf[2]) * -4.224514e-02;
		mfsync += (mf[2] = mf[1]) * -5.974365e-02;
		mfsync += (mf[1] = mf[0]) * -4.224514e-02;
		mf[0] = syncx;
	} else if (up->status & SELH) {
		up->pdelay = up->hdelay;

		/*
		 * WWVH FIR matched filter, six cycles of 1200-Hz
		 * sinewave.
		 */
		mf[40] = mf[39];
		mfsync = (mf[39] = mf[38]) * 4.833363e-02;
		mfsync += (mf[38] = mf[37]) * 5.681959e-02;
		mfsync += (mf[37] = mf[36]) * 1.846180e-02;
		mfsync += (mf[36] = mf[35]) * -3.511644e-02;
		mfsync += (mf[35] = mf[34]) * -5.974365e-02;
		mfsync += (mf[34] = mf[33]) * -3.511644e-02;
		mfsync += (mf[33] = mf[32]) * 1.846180e-02;
		mfsync += (mf[32] = mf[31]) * 5.681959e-02;
		mfsync += (mf[31] = mf[30]) * 4.833363e-02;
		mf[30] = mf[29];
		mfsync += (mf[29] = mf[28]) * -4.833363e-02;
		mfsync += (mf[28] = mf[27]) * -5.681959e-02;
		mfsync += (mf[27] = mf[26]) * -1.846180e-02;
		mfsync += (mf[26] = mf[25]) * 3.511644e-02;
		mfsync += (mf[25] = mf[24]) * 5.974365e-02;
		mfsync += (mf[24] = mf[23]) * 3.511644e-02;
		mfsync += (mf[23] = mf[22]) * -1.846180e-02;
		mfsync += (mf[22] = mf[21]) * -5.681959e-02;
		mfsync += (mf[21] = mf[20]) * -4.833363e-02;
		mf[20] = mf[19];
		mfsync += (mf[19] = mf[18]) * 4.833363e-02;
		mfsync += (mf[18] = mf[17]) * 5.681959e-02;
		mfsync += (mf[17] = mf[16]) * 1.846180e-02;
		mfsync += (mf[16] = mf[15]) * -3.511644e-02;
		mfsync += (mf[15] = mf[14]) * -5.974365e-02;
		mfsync += (mf[14] = mf[13]) * -3.511644e-02;
		mfsync += (mf[13] = mf[12]) * 1.846180e-02;
		mfsync += (mf[12] = mf[11]) * 5.681959e-02;
		mfsync += (mf[11] = mf[10]) * 4.833363e-02;
		mf[10] = mf[9];
		mfsync += (mf[9] = mf[8]) * -4.833363e-02;
		mfsync += (mf[8] = mf[7]) * -5.681959e-02;
		mfsync += (mf[7] = mf[6]) * -1.846180e-02;
		mfsync += (mf[6] = mf[5]) * 3.511644e-02;
		mfsync += (mf[5] = mf[4]) * 5.974365e-02;
		mfsync += (mf[4] = mf[3]) * 3.511644e-02;
		mfsync += (mf[3] = mf[2]) * -1.846180e-02;
		mfsync += (mf[2] = mf[1]) * -5.681959e-02;
		mfsync += (mf[1] = mf[0]) * -4.833363e-02;
		mf[0] = syncx;
	} else {
		mfsync = 0;
	}

	/*
	 * Extract the seconds sync pulse using a 1-s comb filter at
	 * baseband. Correct for the FIR matched filter delay, which is
	 * 5 ms for both the WWV and WWVH filters. Blank the signal when
	 * probing.
	 */
	up->epoch = (up->epoch + 1) % SECOND;
	if (up->epoch == 0) {
		wwv_endpoc(peer, epomax, epopos);
		up->epomax = epomax;
		epomax = 0;
		if (!(up->status & MSYNC))
			wwv_gain(peer);
	}
	dtemp = (epobuf[up->epoch] += (mfsync - epobuf[up->epoch]) /
	    (MINAVG << up->avgint));
	if (dtemp > epomax) {
		epomax = dtemp;
		epopos = up->epoch - up->pdelay - 5 * MS;
		if (epopos < 0)
			epopos += SECOND;
	}
	if (up->status & MSYNC)
		wwv_epoch(peer);
}


/*
 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
 *
 * This routine implements a virtual station process used to acquire
 * minute sync and to mitigate among the ten frequency and station
 * combinations. During minute sync acquisition, the process probes each
 * frequency in turn for the minute pulse from either station, which
 * involves searching through the entire epoch minute of samples. After
 * minute sync acquisition, the process searches only during the probe
 * window, which occupies seconds 59, 0 and 1, to construct a metric
 * used to determine which frequency and station provides the best
 * signal.
 *
 * The pulse discriminator requires that (a) the peak on-pulse sample
 * amplitude must be above 2000, (b) the SNR relative to the peak
 * off-pulse sample amplitude must be reduced 6 dB or more below the
 * peak and (c) the maximum difference between the current and previous
 * epoch indices must be less than 50 ms. A compare counter keeps track
 * of the number of successive intervals which satisfy these criteria.
 *
 * Students of radar receiver technology will discover this algorithm
 * amounts to a range gate discriminator. In practice, the performance
 * of this gadget is amazing. Once setting teeth in a station, it hangs
 * on until the minute beep can barely be heard and long after the
 * second tick and comb filter have given up. 
 */
static void
wwv_qrz(
	struct peer *peer,	/* peerstructure pointer */
	struct sync *sp,	/* sync channel structure */
	double syncx		/* bandpass filtered sync signal */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	char tbuf[80];		/* monitor buffer */
	double snr;		/* on-pulse/off-pulse ratio (dB) */
	long epoch;
	int isgood;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;

	/*
	 * Find the sample with peak energy, which defines the minute
	 * epoch. If minute sync has been acquired, search only the
	 * probe window; otherwise, search the entire minute. If a
	 * maximum has been found with good amplitude, search only the
	 * second before and after that position for the next maximum
	 * and the rest of the window for the noise.
	 */
	if (!(up->status & MSYNC) || up->status & SFLAG) {
		sp->amp = syncx;
		if (up->status & MSYNC)
			epoch = up->nepoch;
		else if (sp->count > 1)
			epoch = sp->mepoch;
		else
			epoch = sp->lastpos;
		if (syncx > sp->sigmax) {
			sp->sigmax = syncx;
			sp->pos = up->mphase;
		}
		if (abs(MOD(up->mphase - epoch, MINUTE)) > SYNSIZ &&
		    syncx > sp->noise) {
			sp->noise = syncx;
		}
	}
	if (up->mphase == 0) {

		/*
		 * At the end of the minute, determine the epoch of the
		 * sync pulse, as well as the SNR and difference between
		 * the current and previous epoch (jitter).
		 */
		sp->jitter = MOD(sp->pos - sp->lastpos, MINUTE);
		sp->select &= ~JITRNG;
		if (abs(sp->jitter) > AWND * MS)
			sp->select |= JITRNG;
		sp->sigmax = SQRT(sp->sigmax);
		sp->noise = SQRT(sp->noise);
		if (up->status & MSYNC) {

			/*
			 * If in minute sync, just count the runs up and
			 * down.
			 */
			if (sp->select & (DATANG | SYNCNG | JITRNG)) {
				if (sp->count > 0)
					sp->count--;
			} else {
				if (sp->count < AMAX)
					sp->count++;
			}
		} else {

			/*
			 * If not yet in minute sync, we have to do a
			 * little dance to find a valid minute sync
			 * pulse, emphasis valid.
			 */
			snr = wwv_snr(sp->sigmax, sp->noise);
			isgood = sp->sigmax > ATHR && snr > ASNR &&
			    !(sp->select & JITRNG);
			switch (sp->count) {

			/*
			 * In state 0 the station was not heard during
			 * the previous probe. Look for the biggest blip
			 * greater than the amplitude threshold in the
			 * minute and assume that the minute sync pulse.
			 * If found, bump to state 1.
			 */
			case 0:
				if (sp->sigmax >= ATHR)
					sp->count++;
				break;

			/*
			 * In state 1 a candidate blip has been found
			 * and the next minute has been searched for
			 * another blip. If none are found greater than
			 * the threshold, or if the biggest blip outside
			 * the candidate pulse is less than 6 dB below
			 * the biggest blip, drop back to state 0 and
			 * hunt some more. Otherwise, a legitimate
			 * minute pulse may have been found, so bump to
			 * state 2.
			 */
			case 1:
			if (sp->sigmax < ATHR) {
					sp->count--;
					break;
				} else if (!isgood) {
					break;
				}
				/* fall through */

			/*
			 * In states 2 and above, continue to groom
			 * samples as before and drop back to the
			 * previous state if the groom fails. If it
			 * succeeds, bump to the next state until
			 * reaching the clamp, if ever.
			 */
			default:
				if (!isgood) {
					sp->count--;
					break;
				}
				sp->mepoch = sp->pos;
				if (sp->count < AMAX)
					sp->count++;
					break;
			}
			sprintf(tbuf,
			    "wwv8 %d %3d %-3s %d %5.0f %5.1f %7ld %7ld %7ld",
			    up->port, up->gain, sp->ident, sp->count,
			    sp->sigmax, snr, sp->pos, sp->jitter,
			    MOD(sp->pos - up->nepoch - SYNSIZ, MINUTE));
			if (pp->sloppyclockflag & CLK_FLAG4)
				record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
			if (debug)
				printf("%s\n", tbuf);
#endif
		}
		sp->lastmax = sp->sigmax;
		sp->lastpos = sp->pos;
		sp->sigmax = sp->noise = 0;
	}
}


/*
 * wwv_endpoc - process receiver epoch
 *
 * This routine is called at the end of the receiver epoch. It
 * determines the epoch position within the second and disciplines the
 * sample clock using a frequency-lock loop (FLL).
 *
 * Seconds sync is determined in the RF input routine as the maximum
 * over all 8000 samples in the second comb filter. To assure accurate
 * and reliable time and frequency discipline, this routine performs a
 * great deal of heavy-handed data filtering and grooming.
 */
static void
wwv_endpoc(
	struct peer *peer,	/* peer structure pointer */
	double epomax,		/* epoch max */
	int epopos		/* epoch max position */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	static int epoch_mf[3]; /* epoch median filter */
 	static int tepoch;	/* median filter epoch */
	static int tspan;	/* median filter span */
 	static int xepoch;	/* last second epoch */
 	static int zepoch;	/* last averaging interval epoch */
	static int syncnt;	/* second epoch run length counter */
	static int jitcnt;	/* jitter holdoff counter */
	static int avgcnt;	/* averaging interval counter */
	static int avginc;	/* averaging ratchet */

	static int iniflg;	/* initialization flag */
	char tbuf[80];		/* monitor buffer */
	double dtemp;
	int tmp2, tmp3;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;
	if (!iniflg) {
		iniflg = 1;
		memset((char *)epoch_mf, 0, sizeof(epoch_mf));
	}

	/*
	 * A three-stage median filter is used to help denoise the
	 * seconds sync pulse. The median sample becomes the candidate
	 * epoch; the difference between the other two samples becomes
	 * the span, which is used currently only for debugging.
	 */
	epoch_mf[2] = epoch_mf[1];
	epoch_mf[1] = epoch_mf[0];
	epoch_mf[0] = epopos;
	if (epoch_mf[0] > epoch_mf[1]) {
		if (epoch_mf[1] > epoch_mf[2]) {
			tepoch = epoch_mf[1];	/* 0 1 2 */
			tspan = epoch_mf[0] - epoch_mf[2];
		} else if (epoch_mf[2] > epoch_mf[0]) {
			tepoch = epoch_mf[0];	/* 2 0 1 */
			tspan = epoch_mf[2] - epoch_mf[1];
		} else {
			tepoch = epoch_mf[2];	/* 0 2 1 */
			tspan = epoch_mf[0] - epoch_mf[1];
		}
	} else {
		if (epoch_mf[1] < epoch_mf[2]) {
			tepoch = epoch_mf[1];	/* 2 1 0 */
			tspan = epoch_mf[2] - epoch_mf[0];
		} else if (epoch_mf[2] < epoch_mf[0]) {
			tepoch = epoch_mf[0];	/* 1 0 2 */
			tspan = epoch_mf[1] - epoch_mf[2];
		} else {
			tepoch = epoch_mf[2];	/* 1 2 0 */
			tspan = epoch_mf[1] - epoch_mf[0];
		}
	}

	/*
	 * If the epoch candidate is within 1 ms of the last one, the
	 * new candidate replaces the last one and the jitter counter is
	 * reset; otherwise, the candidate is ignored and the jitter
	 * counter is incremented. If the jitter counter exceeds the
	 * frequency averaging interval, the new candidate replaces the
	 * old one anyway. The compare counter is incremented if the new
	 * candidate is identical to the last one; otherwise, it is
	 * forced to zero. If the compare counter increments to 10, the
	 * epoch is reset and the receiver second epoch is set.
	 *
	 * Careful attention to detail here. If the signal amplitude
	 * falls below the threshold or if no stations are heard, we
	 * certainly cannot be in sync.
	 */
	tmp2 = MOD(tepoch - xepoch, SECOND);
	if (up->epomax < STHR || !(up->status & (SELV | SELH))) {
		up->status &= ~SSYNC;
		jitcnt = syncnt = avgcnt = 0;
	} else if (abs(tmp2) <= MS || jitcnt >= (MINAVG << up->avgint))
	    {
		jitcnt = 0;
		if (tmp2 != 0) {
			xepoch = tepoch;
			syncnt = 0;
		} else {
			if (syncnt < SCMP) {
				syncnt++;
			} else {
				up->status |= SSYNC;
				up->swatch = 0;
				up->repoch = tepoch;
				up->yepoch = up->repoch;
				if (up->yepoch < 0)
					up->yepoch += SECOND;
			}
		}
		avgcnt++;
	} else {
		jitcnt++;
		syncnt = avgcnt = 0;
	}
	if (!(up->status & SSYNC) && 0) {
		sprintf(tbuf,
		    "wwv1 %2d %04x %5.0f %2d %5.0f %5d %5d %5d %2d %4d",
		    up->rsec, up->status, up->epomax, avgcnt, epomax,
		    tepoch, tspan, tmp2, syncnt, jitcnt);
		if (pp->sloppyclockflag & CLK_FLAG4)
			record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
		if (debug)
			printf("%s\n", tbuf);
#endif /* DEBUG */
	}

	/*
	 * The sample clock frequency is disciplined using a first-order
	 * feedback loop with time constant consistent with the Allan
	 * intercept of typical computer clocks. The loop update is
	 * calculated each averaging interval from the epoch change in
	 * 125-us units and interval length in seconds. The interval is
	 * doubled after four intervals where epoch change is not more
	 * than one sample.
	 *
	 * The averaging interval affects other receiver functions,
	 * including the the 1000/1200-Hz comb filter and sample clock
	 * loop. It also affects the 100-Hz subcarrier loop and the bit
	 * and digit comparison counter thresholds.
	 */
	tmp3 = MOD(tepoch - zepoch, SECOND);
	if (avgcnt >= (MINAVG << up->avgint)) {
		if (abs(tmp3) < MS) {
			dtemp = (double)tmp3 / avgcnt;
			up->freq += dtemp / SYNCTC;
			if (up->freq > MAXFREQ)
				up->freq = MAXFREQ;
			else if (up->freq < -MAXFREQ)
				up->freq = -MAXFREQ;
			if (abs(tmp3) <= 1 && up->avgint < MAXAVG) {
				if (avginc < 4) {
					avginc++;
				} else {
					avginc = 0;
					up->avgint++;
				}
			}
			if (up->avgint < MAXAVG) {
				sprintf(tbuf,
				    "wwv2 %2d %04x %5.0f %5d %5d %2d %2d %6.1f %6.1f",
				    up->rsec, up->status, up->epomax,
				    MINAVG << up->avgint, avgcnt,
				    avginc, tmp3, dtemp / SECOND * 1e6,
				    up->freq / SECOND * 1e6);
				if (pp->sloppyclockflag & CLK_FLAG4)
					record_clock_stats(
					    &peer->srcadr, tbuf);
#ifdef DEBUG
				if (debug)
					printf("%s\n", tbuf);
#endif /* DEBUG */
			}
		}
		zepoch = tepoch;
		avgcnt = 0;
	}
}


/*
 * wwv_epoch -  main loop
 *
 * This routine establishes receiver and transmitter epoch
 * synchronization and determines the data subcarrier pulse length.
 * Receiver synchronization is determined by the minute sync pulse
 * detected in the wwv_rf() routine and the second sync pulse detected
 * in the wwv_epoch() routine. This establishes when to sample the data
 * subcarrier in-phase signal for the maximum level and noise level and
 * when to determine the pulse length. The transmitter second leads the
 * receiver second by the propagation delay, receiver delay and filter
 * delay of this program. It establishes the clock time and implements
 * the sometimes idiosyncratic conventional clock time and civil
 * calendar. 
 *
 * Most communications radios use a highpass filter in the audio stages,
 * which can do nasty things to the subcarrier phase relative to the
 * sync pulses. Therefore, the data subcarrier reference phase is
 * disciplined using the hardlimited quadrature-phase signal sampled at
 * the same time as the in-phase signal. The phase tracking loop uses
 * phase adjustments of plus-minus one sample (125 us).
 */
static void
wwv_epoch(
	struct peer *peer	/* peer structure pointer */
	)
{
	static double dpulse;	/* data pulse length */
	struct refclockproc *pp;
	struct wwvunit *up;
	struct chan *cp;
	struct sync *sp;
	l_fp offset;		/* NTP format offset */
	double dtemp;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;

	/*
	 * Sample the minute sync pulse amplitude at epoch 800 for both
	 * the WWV and WWVH stations. This will be used later for
	 * channel mitigation.
	 */
	cp = &up->mitig[up->achan];
	if (up->rphase == 800 * MS) {
		sp = &cp->wwv;
		sp->synamp = SQRT(sp->amp);
		sp = &cp->wwvh;
		sp->synamp = SQRT(sp->amp);
	}

	if (up->rsec == 0) {
		up->sigamp = up->datsnr = 0;
	} else {

		/*
		 * Estimate the noise level by integrating the I-channel
		 * energy at epoch 30 ms.
		 */
		if (up->rphase == 30 * MS) {
			if (!(up->status & SFLAG))
				up->noiamp += (up->irig - up->noiamp) /
				    (MINAVG << up->avgint);
			else
				cp->noiamp += (SQRT(up->irig *
				    up->irig + up->qrig * up->qrig) -
				    cp->noiamp) / 8;

		/*
		 * Strobe the peak I-channel data signal at epoch 200
		 * ms. Compute the SNR and adjust the 100-Hz reference
		 * oscillator phase using the Q-channel data signal at
		 * that epoch. Save the envelope amplitude for the probe
		 * channel.
		 */
		} else if (up->rphase == 200 * MS) {
			if (!(up->status & SFLAG)) {
				up->sigamp = up->irig;
				if (up->sigamp < 0)
					up->sigamp = 0;
				up->datsnr = wwv_snr(up->sigamp,
				    up->noiamp);
				up->datpha = up->qrig / (MINAVG <<
				    up->avgint);
				if (up->datpha >= 0) {
					up->datapt++;
					if (up->datapt >= 80)
						up->datapt -= 80;
				} else {
					up->datapt--;
					if (up->datapt < 0)
						up->datapt += 80;
				}
			} else {
				up->sigamp = SQRT(up->irig * up->irig +
				    up->qrig * up->qrig);
				up->datsnr = wwv_snr(up->sigamp,
				    cp->noiamp);
			}

		/*
		 * The slice level is set half way between the peak
		 * signal and noise levels. Strobe the negative zero
		 * crossing after epoch 200 ms and record the epoch at
		 * that time. This defines the length of the data pulse,
		 * which will later be converted into scaled bit
		 * probabilities.
		 */
		} else if (up->rphase > 200 * MS) {
			dtemp = (up->sigamp + up->noiamp) / 2;
			if (up->irig < dtemp && dpulse == 0)
				dpulse = up->rphase;
		}
 	}

	/*
	 * At the end of the transmitter second, crank the clock state
	 * machine. Note we have to be careful to set the transmitter
	 * epoch at the same time as the receiver epoch to be sure the
	 * right propagation delay is used. We don't bother the heavy
	 * machinery unless the clock is set.
	 */
	up->tphase++;
	if (up->epoch == up->yepoch) {
		wwv_tsec(up);
		up->tphase = 0;

		/*
		 * Determine the current offset from the time of century
		 * and the sample timestamp, but only if the SYNERR
		 * alarm has not been raised in the present or previous
		 * minute.
		 */
		if (!(up->status & SFLAG) && up->status & INSYNC &&
		    (up->alarm & (3 << SYNERR)) == 0) {
			pp->second = up->tsec;
			pp->minute = up->decvec[MN].digit +
			    up->decvec[MN + 1].digit * 10;
			pp->hour = up->decvec[HR].digit +
			    up->decvec[HR + 1].digit * 10;
			pp->day = up->decvec[DA].digit + up->decvec[DA +
			    1].digit * 10 + up->decvec[DA + 2].digit *
			    100;
			pp->year = up->decvec[YR].digit +
			    up->decvec[YR + 1].digit * 10;
			if (pp->year < UTCYEAR)
				pp->year += 2000;
			else
				pp->year += 1900;

			/*
			 * We have to simulate refclock_process() here,
			 * since the fudgetime gets added much earlier
			 * than this.
			 */
			pp->lastrec = up->timestamp;
			L_CLR(&offset);
			if (!clocktime(pp->day, pp->hour, pp->minute,
			    pp->second, GMT, pp->lastrec.l_ui,
			    &pp->yearstart, &offset.l_ui))
				up->errflg = CEVNT_BADTIME;
			else
				refclock_process_offset(pp, offset,
				    pp->lastrec, 0.);
		}
	}

	/*
	 * At the end of the receiver second, process the data bit and
	 * update the decoding matrix probabilities.
	 */
	up->rphase++;
	if (up->epoch == up->repoch) {
		wwv_rsec(peer, dpulse);
		wwv_gain(peer);
		up->rphase = dpulse = 0;
	}
}


/*
 * wwv_rsec - process receiver second
 *
 * This routine is called at the end of each receiver second to
 * implement the per-second state machine. The machine assembles BCD
 * digit bits, decodes miscellaneous bits and dances the leap seconds.
 *
 * Normally, the minute has 60 seconds numbered 0-59. If the leap
 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
 * for leap years) or 31 December (day 365 or 366 for leap years) is
 * augmented by one second numbered 60. This is accomplished by
 * extending the minute interval by one second and teaching the state
 * machine to ignore it. BTW, stations WWV/WWVH cowardly kill the
 * transmitter carrier for a few seconds around the leap to avoid icky
 * details of transmission format during the leap.
 */
static void
wwv_rsec(
	struct peer *peer,	/* peer structure pointer */
	double dpulse
	)
{
	static int iniflg;	/* initialization flag */
	static double bcddld[4]; /* BCD data bits */
	static double bitvec[61]; /* bit integrator for misc bits */
	struct refclockproc *pp;
	struct wwvunit *up;
	struct chan *cp;
	struct sync *sp, *rp;
	double bit;		/* bit likelihood */
	char tbuf[80];		/* monitor buffer */
	int sw, arg, nsec;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;
	if (!iniflg) {
		iniflg = 1;
		memset((char *)bitvec, 0, sizeof(bitvec));
	}

	/*
	 * The bit represents the probability of a hit on zero (negative
	 * values), a hit on one (positive values) or a miss (zero
	 * value). The likelihood vector is the exponential average of
	 * these probabilities. Only the bits of this vector
	 * corresponding to the miscellaneous bits of the timecode are
	 * used, but it's easier to do them all. After that, crank the
	 * seconds state machine.
	 */
	nsec = up->rsec + 1;
	bit = wwv_data(up, dpulse);
	bitvec[up->rsec] += (bit - bitvec[up->rsec]) / TCONST;
	sw = progx[up->rsec].sw;
	arg = progx[up->rsec].arg;
	switch (sw) {

	/*
	 * Ignore this second.
	 */
	case IDLE:			/* 9, 45-49 */
		break;

	/*
	 * Probe channel stuff
	 *
	 * The WWV/H format contains data pulses in second 59 (position
	 * identifier) and second 1 (not used), and the minute sync
	 * pulse in second 0. At the end of second 58, we QSYed to the
	 * probe channel, which rotates over all WWV/H frequencies. At
	 * the end of second 59, we latched the sync noise and tested
	 * for data bit error. At the end of second 0, we now latch the
	 * sync peak.
	 */
	case SYNC2:			/* 0 */
		cp = &up->mitig[up->achan];
		sp = &cp->wwv;
		sp->synmax = sp->synamp;
		sp = &cp->wwvh;
		sp->synmax = sp->synamp;
		break;

	/*
	 * At the end of second 1, latch and average the sync noise and
	 * test for data bit error. Set SYNCNG if the sync pulse
	 * amplitude and SNR are not above thresholds. Set DATANG if
	 * data error occured on both second 59 and second 1. Finally,
	 * QSY back to the data channel.
	 */
	case SYNC3:			/* 1 */
		cp = &up->mitig[up->achan];
		if (up->sigamp < DTHR || up->datsnr < DSNR)
			cp->errcnt++;

		sp = &cp->wwv;
		sp->synmin = (sp->synmin + sp->synamp) / 2;
		sp->synsnr = wwv_snr(sp->synmax, sp->synmin);
		sp->select &= ~(DATANG | SYNCNG);
		if (sp->synmax < QTHR || sp->synsnr < QSNR)
			sp->select |= SYNCNG;
		if (cp->errcnt > 1)
			sp->select |= DATANG;

		rp = &cp->wwvh;
		rp->synmin = (rp->synmin + rp->synamp) / 2;
		rp->synsnr = wwv_snr(rp->synmax, rp->synmin);
		rp->select &= ~(DATANG | SYNCNG);
		if (rp->synmax < QTHR || rp->synsnr < QSNR)
			rp->select |= SYNCNG;
		if (cp->errcnt > 1)
			rp->select |= DATANG;

		cp->errcnt = 0;
		sprintf(tbuf,
    "wwv5 %d %3d %-3s %04x %d %.0f/%.1f/%ld %s %04x %d %.0f/%.1f/%ld",
		    up->port, up->gain, sp->ident, sp->select,
		    sp->count, sp->synmax, sp->synsnr, sp->jitter,
		    rp->ident, rp->select, rp->count, rp->synmax,
		    rp->synsnr, rp->jitter);
		if (pp->sloppyclockflag & CLK_FLAG4)
			record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
		if (debug)
			printf("%s\n", tbuf);
#endif /* DEBUG */
		up->status &= ~SFLAG;
		wwv_newchan(peer);
		break;

	/*
	 * Save the bit probability in the BCD data vector at the index
	 * given by the argument. Note that all bits of the vector have
	 * to be above the data gate threshold for the digit to be
	 * considered valid. Bits not used in the digit are forced to
	 * zero and not checked for errors.
	 */
	case COEF1:			/* 10-13 */
		if (up->status & DGATE)
			up->status |= BGATE;
		bcddld[arg] = bit;
		break;

	case COEF2:			/* 18, 27-28, 42-43 */
		bcddld[arg] = 0;
		break;

	case COEF:			/* 4-7, 15-17, 20-23, 25-26,
					   30-33, 35-38, 40-41, 51-54 */ 
		if (up->status & DGATE || !(up->status & DSYNC))
			up->status |= BGATE;
		bcddld[arg] = bit;
		break;

	/*
	 * Correlate coefficient vector with each valid digit vector and
	 * save in decoding matrix. We step through the decoding matrix
	 * digits correlating each with the coefficients and saving the
	 * greatest and the next lower for later SNR calculation.
	 */
	case DECIM2:			/* 29 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd2);
		break;

	case DECIM3:			/* 44 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd3);
		break;

	case DECIM6:			/* 19 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd6);
		break;

	case DECIM9:			/* 8, 14, 24, 34, 39 */
		wwv_corr4(peer, &up->decvec[arg], bcddld, bcd9);
		break;

	/*
	 * Miscellaneous bits. If above the positive threshold, declare
	 * 1; if below the negative threshold, declare 0; otherwise
	 * raise the SYMERR alarm. At the end of second 58, QSY to the
	 * probe channel.
	 */
	case MSC20:			/* 55 */
		wwv_corr4(peer, &up->decvec[YR + 1], bcddld, bcd9);
		/* fall through */

	case MSCBIT:			/* 2, 3, 50, 56-57 */
		if (bitvec[up->rsec] > BTHR)
			up->misc |= arg;
		else if (bitvec[up->rsec] < -BTHR)
			up->misc &= ~arg;
		else
			up->alarm |= 1 << SYMERR;
		break;

	case MSC21:			/* 58 */
		if (bitvec[up->rsec] > BTHR)
			up->misc |= arg;
		else if (bitvec[up->rsec] < -BTHR)
			up->misc &= ~arg;
		else
			up->alarm |= 1 << SYMERR;
		up->schan = (up->schan + 1) % NCHAN;
		wwv_qsy(peer, up->schan);
		up->status |= SFLAG;
		break;

	/*
	 * The endgames
	 *
	 * Second 59 contains the first data pulse of the probe
	 * sequence. Check it for validity and establish the noise floor
	 * for the minute sync SNR.
	 */
	case MIN1:			/* 59 */
		cp = &up->mitig[up->achan];
		if (up->sigamp < DTHR || up->datsnr < DSNR)
			cp->errcnt++;
		sp = &cp->wwv;
		sp->synmin = sp->synamp;
		sp = &cp->wwvh;
		sp->synmin = sp->synamp;

		/*
		 * If SECWARN is set on the last minute of 30 June or 31
		 * December, LEPSEC bit is set. At the end of the minute
		 * in which LEPSEC is set the transmitter and receiver
		 * insert an extra second (60) in the timescale and the
		 * minute sync skips a second. We only get to test this
		 * wrinkle at intervals of about 18 months, the actual
		 * mileage may vary.
		 */
		if (up->tsec == 60) {
			up->status &= ~LEPSEC;
			break;
		}
		/* fall through */

	/*
	 * If all nine clock digits are valid and the SYNERR alarm is
	 * not raised in the current or previous second, the clock is
	 * set or validated. If at least one digit is set, which by
	 * design must be the minute units digit, the clock state
	 * machine begins to count the minutes.
	 */
	case MIN2:			/* 59/60 */
		up->minset = ((current_time - peer->update) + 30) / 60;
		if (up->digcnt > 0)
			up->status |= DSYNC;
		if (up->digcnt >= 9 && (up->alarm & (3 << SYNERR)) == 0)
		    {
			up->status |= INSYNC;
			up->watch = 0;
		}
		pp->lencode = timecode(up, pp->a_lastcode);
		if (up->misc & SECWAR)
			pp->leap = LEAP_ADDSECOND;
		else
			pp->leap = LEAP_NOWARNING;
		refclock_receive(peer);
		record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
		if (debug)
			printf("wwv: timecode %d %s\n", pp->lencode,
			    pp->a_lastcode);
#endif /* DEBUG */

		/*
		 * The ultimate watchdog is the interval since the
		 * reference clock interface code last received an
		 * update from this driver. If the interval is greater
		 * than a couple of days, manual intervention is
		 * probably required, so the program resets and tries to
		 * resynchronized from scratch.
		 */
		if (up->minset > PANIC)
			up->status = 0;
		up->alarm = (up->alarm & ~0x8888) << 1;
		up->nepoch = (up->mphase + SYNSIZ) % MINUTE;
		up->errcnt = up->digcnt = nsec = 0;
		break;
	}
	if (!(up->status & DSYNC)) {
		sprintf(tbuf,
	    "wwv3 %2d %04x %5.0f %5.0f %5.0f %5.1f %5.0f %5.0f",
		    up->rsec, up->status, up->epomax, up->sigamp,
		    up->datpha, up->datsnr, bit, bitvec[up->rsec]);
		if (pp->sloppyclockflag & CLK_FLAG4)
			record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
		if (debug)
			printf("%s\n", tbuf);
#endif /* DEBUG */
		}
	up->rsec = up->tsec = nsec;
	return;
}


/*
 * wwv_data - calculate bit probability
 *
 * This routine is called at the end of the receiver second to calculate
 * the probabilities that the previous second contained a zero (P0), one
 * (P1) or position indicator (P2) pulse. If not in sync or if the data
 * bit is bad, a bit error is declared and the probabilities are forced
 * to zero. Otherwise, the data gate is enabled and the probabilities
 * are calculated. Note that the data matched filter contributes half
 * the pulse width, or 85 ms..
 */
static double
wwv_data(
	struct wwvunit *up,	/* driver unit pointer */
	double pulse		/* pulse length (sample units) */
	)
{
	double p0, p1, p2;	/* probabilities */
	double dpulse;		/* pulse length in ms */

	p0 = p1 = p2 = 0;
	dpulse = pulse - DATSIZ / 2;

	/*
	 * If the data amplitude or SNR are below threshold or if the
	 * pulse length is less than 170 ms, declare an erasure.
	 */
	if (up->sigamp < DTHR || up->datsnr < DSNR || dpulse < DATSIZ) {
		up->status |= DGATE;
		up->errcnt++;
		if (up->errcnt > MAXERR)
			up->alarm |= 1 << MODERR;
		return (0); 
	}

	/*
	 * The probability of P0 is one below 200 ms falling to zero at
	 * 500 ms. The probability of P1 is zero below 200 ms rising to
	 * one at 500 ms and falling to zero at 800 ms. The probability
	 * of P2 is zero below 500 ms, rising to one above 800 ms.
	 */
	up->status &= ~DGATE;
	if (dpulse < (200 * MS)) {
		p0 = 1;
	} else if (dpulse < 500 * MS) {
		dpulse -= 200 * MS;
		p1 = dpulse / (300 * MS);
		p0 = 1 - p1;
	} else if (dpulse < 800 * MS) {
		dpulse -= 500 * MS;
		p2 = dpulse / (300 * MS);
		p1 = 1 - p2;
	} else {
		p2 = 1;
	}

	/*
	 * The ouput is a metric that ranges from -1 (P0), to +1 (P1)
	 * scaled for convenience. An output of zero represents an
	 * erasure, either because of a data error or pulse length
	 * greater than 500 ms. At the moment, we don't use P2.
	 */
	return ((p1 - p0) * MAXSIG);
}


/*
 * wwv_corr4 - determine maximum likelihood digit
 *
 * This routine correlates the received digit vector with the BCD
 * coefficient vectors corresponding to all valid digits at the given
 * position in the decoding matrix. The maximum value corresponds to the
 * maximum likelihood digit, while the ratio of this value to the next
 * lower value determines the likelihood function. Note that, if the
 * digit is invalid, the likelihood vector is averaged toward a miss.
 */
static void
wwv_corr4(
	struct peer *peer,	/* peer unit pointer */
	struct decvec *vp,	/* decoding table pointer */
	double data[],		/* received data vector */
	double tab[][4]		/* correlation vector array */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	double topmax, nxtmax;	/* metrics */
	double acc;		/* accumulator */
	char tbuf[80];		/* monitor buffer */
	int mldigit;		/* max likelihood digit */
	int diff;		/* decoding difference */
	int i, j;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;

	/*
	 * Correlate digit vector with each BCD coefficient vector. If
	 * any BCD digit bit is bad, consider all bits a miss.
	 */
	mldigit = 0;
	topmax = nxtmax = -MAXSIG;
	for (i = 0; tab[i][0] != 0; i++) {
		acc = 0;
		for (j = 0; j < 4; j++) {
			if (!(up->status & BGATE))
				acc += data[j] * tab[i][j];
		}
		acc = (vp->like[i] += (acc - vp->like[i]) / TCONST);
		if (acc > topmax) {
			nxtmax = topmax;
			topmax = acc;
			mldigit = i;
		} else if (acc > nxtmax) {
			nxtmax = acc;
		}
	}
	vp->mldigit = mldigit;
	vp->digprb = topmax;
	vp->digsnr = wwv_snr(topmax, nxtmax);

	/*
	 * The maximum likelihood digit is compared with the current
	 * clock digit. The difference represents the decoding phase
	 * error. If the digit probability and likelihood are good and
	 * the difference stays the same for a number of comparisons,
	 * the clock digit is reset to the maximum likelihood digit.
	 */
	diff = mldigit - vp->digit;
	if (diff < 0)
		diff += vp->radix;
	if (diff != vp->phase) {
		vp->phase = diff;
		vp->count = 0;
	}
	if (vp->digprb < BTHR || vp->digsnr < BSNR) {
		vp->count = 0;
		up->alarm |= 1 << SYMERR;
	} else if (vp->count < BCMP) {
		if (!(up->status & INSYNC)) {
			vp->phase = 0;
			vp->digit = mldigit;
		}
		vp->count++;
	} else {
		vp->phase = 0;
		vp->digit = mldigit;
		up->digcnt++;
	}
	if (vp->digit != mldigit)
		up->alarm |= 1 << DECERR;
	if (!(up->status & INSYNC)) {
		sprintf(tbuf,
		    "wwv4 %2d %04x %5.0f %2d %d %d %d %d %5.0f %5.1f",
		    up->rsec, up->status, up->epomax,  vp->radix,
		    vp->digit, vp->mldigit, vp->phase, vp->count,
		    vp->digprb, vp->digsnr);
		if (pp->sloppyclockflag & CLK_FLAG4)
			record_clock_stats(&peer->srcadr, tbuf);
#ifdef DEBUG
	if (debug)
		printf("%s\n", tbuf);
#endif /* DEBUG */
	}
	up->status &= ~BGATE;
}


/*
 * wwv_tsec - transmitter second processing
 *
 * This routine is called at the end of the transmitter second. It
 * implements a state machine that advances the logical clock subject to
 * the funny rules that govern the conventional clock and calendar. Note
 * that carries from the least significant (minutes) digit are inhibited
 * until that digit is synchronized.
 */
static void
wwv_tsec(
	struct wwvunit *up	/* driver structure pointer */
	)
{
	int minute, day, isleap;
	int temp;

	up->tsec++;
	if (up->tsec < 60 || up->status & LEPSEC)
		return;
	up->tsec = 0;

	/*
	 * Advance minute unit of the day. If the minute unit is not
	 * synchronized, go no further.
	 */
	temp = carry(&up->decvec[MN]);	/* minute units */
	if (!(up->status & DSYNC))
		return;

	/*
	 * Propagate carries through the day.
	 */ 
	if (temp == 0)			/* carry minutes */
		temp = carry(&up->decvec[MN + 1]);
	if (temp == 0)			/* carry hours */
		temp = carry(&up->decvec[HR]);
	if (temp == 0)
		temp = carry(&up->decvec[HR + 1]);

	/*
	 * Decode the current minute and day. Set the leap second enable
	 * bit on the last minute of 30 June and 31 December.
	 */
	minute = up->decvec[MN].digit + up->decvec[MN + 1].digit *
	    10 + up->decvec[HR].digit * 60 + up->decvec[HR +
	    1].digit * 600;
	day = up->decvec[DA].digit + up->decvec[DA + 1].digit * 10 +
	    up->decvec[DA + 2].digit * 100;
	isleap = (up->decvec[YR].digit & 0x3) == 0;
	if (minute == 1439 && (day == (isleap ? 182 : 183) || day ==
	     (isleap ? 365 : 366)) && up->misc & SECWAR)
		up->status |= LEPSEC;

	/*
	 * Roll the day if this the first minute and propagate carries
	 * through the year.
	 */
	if (minute != 1440)
		return;
	minute = 0;
	while (carry(&up->decvec[HR]) != 0); /* advance to minute 0 */
	while (carry(&up->decvec[HR + 1]) != 0);
	day++;
	temp = carry(&up->decvec[DA]);	/* carry days */
	if (temp == 0)
		temp = carry(&up->decvec[DA + 1]);
	if (temp == 0)
		temp = carry(&up->decvec[DA + 2]);

	/*
	 * Roll the year if this the first day and propagate carries
	 * through the century.
	 */
	if (day != (isleap ? 365 : 366))
		return;
	day = 1;
	while (carry(&up->decvec[DA]) != 1); /* advance to day 1 */
	while (carry(&up->decvec[DA + 1]) != 0);
	while (carry(&up->decvec[DA + 2]) != 0);
	temp = carry(&up->decvec[YR]);	/* carry years */
	if (temp)
		carry(&up->decvec[YR + 1]);
}


/*
 * carry - process digit
 *
 * This routine rotates a likelihood vector one position and increments
 * the clock digit modulo the radix. It returns the new clock digit -
 * zero if a carry occured. Once synchronized, the clock digit will
 * match the maximum likelihood digit corresponding to that position.
 */
static int
carry(
	struct decvec *dp	/* decoding table pointer */
	)
{
	int temp;
	int j;

	dp->digit++;			/* advance clock digit */
	if (dp->digit == dp->radix) {	/* modulo radix */
		dp->digit = 0;
	}
	temp = dp->like[dp->radix - 1];	/* rotate likelihood vector */
	for (j = dp->radix - 1; j > 0; j--)
		dp->like[j] = dp->like[j - 1];
	dp->like[0] = temp;
	return (dp->digit);
}


/*
 * wwv_snr - compute SNR or likelihood function
 */
static double
wwv_snr(
	double signal,		/* signal */
	double noise		/* noise */
	)
{
	double rval;

	/*
	 * This is a little tricky. Due to the way things are measured,
	 * either or both the signal or noise amplitude can be negative
	 * or zero. The intent is that, if the signal is negative or
	 * zero, the SNR must always be zero. This can happen with the
	 * subcarrier SNR before the phase has been aligned. On the
	 * other hand, in the likelihood function the "noise" is the
	 * next maximum down from the peak and this could be negative.
	 * However, in this case the SNR is truly stupendous, so we
	 * simply cap at MAXSNR dB.
	 */
	if (signal <= 0) {
		rval = 0;
	} else if (noise <= 0) {
		rval = MAXSNR;
	} else {
		rval = 20 * log10(signal / noise);
		if (rval > MAXSNR)
			rval = MAXSNR;
	}
	return (rval);
}

/*
 * wwv_newchan - change to new data channel
 *
 * Assuming the radio can be tuned by this program, it actually appears
 * as a 10-channel receiver, one channel for each of WWV and WWVH on
 * each of five frequencies. While the radio is tuned to the working
 * data channel (frequency and station) for most of the minute, during
 * seconds 59, 0 and 1 the radio is tuned to a probe channel, in order
 * to pick up minute sync and data pulses. The search for WWV and WWVH
 * stations operates simultaneously, with WWV on 1000 Hz and WWVH on
 * 1200 Hz. The probe channel rotates for each minute over the five
 * frequencies. At the end of each rotation, this routine mitigates over
 * all channels and chooses the best frequency and station.
 */
static void
wwv_newchan(
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	struct chan *cp;
	struct sync *sp, *rp;
	int rank;
	int i, j;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;

	/*
	 * Reset the matched filter selector and station pointer to
	 * avoid fooling around should we lose this game.
	 */
	up->sptr = 0;
	up->status &= ~(SELV | SELH);

	/*
	 * Search all five station pairs looking for the station with
	 * the maximum compare counter. Ties go to the highest frequency
	 * and then to WWV.
	 */
	j = 0;
	sp = (struct sync *)0;
	rank = 0;
	for (i = 0; i < NCHAN; i++) {
		cp = &up->mitig[i];
		rp = &cp->wwvh;
		if (rp->count >= rank) {
			sp = rp;
			rank = rp->count;
			j = i;
		}
		rp = &cp->wwv;
		if (rp->count >= rank) {
			sp = rp;
			rank = rp->count;
			j = i;
		}
	}

	/*
	 * If we find a station, continue to track it. If not, X marks
	 * the spot and we wait for better ions.
	 */
	if (rank > 0) {
		up->dchan = j;
		up->sptr = sp;
		up->status |= sp->select & (SELV | SELH);
		memcpy((char *)&pp->refid, sp->refid, 4);
		if (peer->stratum <= 1)
			memcpy((char *)&peer->refid, sp->refid, 4);
		wwv_qsy(peer, up->dchan);
	}
}


/*
 * wwv_qsy - Tune ICOM receiver
 *
 * This routine saves the AGC for the current channel, switches to a new
 * channel and restores the AGC for that channel. If a tunable receiver
 * is not available, just fake it.
 */
static int
wwv_qsy(
	struct peer *peer,	/* peer structure pointer */
	int	chan		/* channel */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;
	int rval = 0;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;
	up->mitig[up->achan].gain = up->gain;
#ifdef ICOM
	if (up->fd_icom > 0)
		rval = icom_freq(up->fd_icom, peer->ttlmax & 0x7f,
		    qsy[chan]);
#endif /* ICOM */
	up->achan = chan;
	up->gain = up->mitig[up->achan].gain;
	return (rval);
}


/*
 * timecode - assemble timecode string and length
 *
 * Prettytime format - similar to Spectracom
 *
 * sq yy ddd hh:mm:ss.fff ld dut lset agc stn comp errs freq avgt
 *
 * s	sync indicator ('?' or ' ')
 * q	quality character (hex 0-F)
 * yyyy	year of century
 * ddd	day of year
 * hh	hour of day
 * mm	minute of hour
 * ss	minute of hour
 * fff	millisecond of second
 * l	leap second warning ' ' or 'L'
 * d	DST state 'S', 'D', 'I', or 'O'
 * dut	DUT sign and magnitude in deciseconds
 * lset	minutes since last clock update
 * agc	audio gain (0-255)
 * iden	station identifier (station and frequency)
 * comp	minute sync compare counter
 * errs	bit errors in last minute
 * freq	frequency offset (PPM)
 * avgt	averaging time (s)
 */
static int
timecode(
	struct wwvunit *up,	/* driver structure pointer */
	char *ptr		/* target string */
	)
{
	struct sync *sp;
	int year, day, hour, minute, second, frac, dut;
	char synchar, qual, leapchar, dst;
	char cptr[50];
	

	/*
	 * Common fixed-format fields
	 */
	synchar = (up->status & INSYNC) ? ' ' : '?';
	qual = 0;
	if (up->alarm & (3 << DECERR))
		qual |= 0x1;
	if (up->alarm & (3 << SYMERR))
		qual |= 0x2;
	if (up->alarm & (3 << MODERR))
		qual |= 0x4;
	if (up->alarm & (3 << SYNERR))
		qual |= 0x8;
	year = up->decvec[7].digit + up->decvec[7].digit * 10;
	if (year < UTCYEAR)
		year += 2000;
	else
		year += 1900;
	day = up->decvec[4].digit + up->decvec[5].digit * 10 +
	    up->decvec[6].digit * 100;
	hour = up->decvec[2].digit + up->decvec[3].digit * 10;
	minute = up->decvec[0].digit + up->decvec[1].digit * 10;
	second = up->tsec;
	frac = (up->tphase * 1000) / SECOND;
	leapchar = (up->misc & SECWAR) ? 'L' : ' ';
	dst = dstcod[(up->misc >> 4) & 0x3];
	dut = up->misc & 0x7;
	if (!(up->misc & DUTS))
		dut = -dut;
	sprintf(ptr, "%c%1X", synchar, qual);
	sprintf(cptr, " %4d %03d %02d:%02d:%02d.%.03d %c%c %+d",
	    year, day, hour, minute, second, frac, leapchar, dst, dut);
	strcat(ptr, cptr);

	/*
	 * Specific variable-format fields
	 */
	sp = up->sptr;
	if (sp != 0)
		sprintf(cptr, " %d %d %s %d %d %.1f %d", up->minset,
		    up->mitig[up->dchan].gain, sp->ident, sp->count,
		    up->errcnt, up->freq / SECOND * 1e6, MINAVG <<
		    up->avgint);
	else
		sprintf(cptr, " %d %d X 0 %d %.1f %d", up->minset,
		    up->mitig[up->dchan].gain, up->errcnt, up->freq /
		    SECOND * 1e6, MINAVG << up->avgint);
	strcat(ptr, cptr);
	return (strlen(ptr));
}


/*
 * wwv_gain - adjust codec gain
 *
 * This routine is called once each second. If the signal envelope
 * amplitude is too low, the codec gain is bumped up by four units; if
 * too high, it is bumped down. The decoder is relatively insensitive to
 * amplitude, so this crudity works just fine. The input port is set and
 * the error flag is cleared, mostly to be ornery.
 */
static void
wwv_gain(
	struct peer *peer	/* peer structure pointer */
	)
{
	struct refclockproc *pp;
	struct wwvunit *up;

	pp = peer->procptr;
	up = (struct wwvunit *)pp->unitptr;

	/*
	 * Apparently, the codec uses only the high order bits of the
	 * gain control field. Thus, it may take awhile for changes to
	 * wiggle the hardware bits.
	 */
	if (up->clipcnt == 0) {
		up->gain += 4;
		if (up->gain > 255)
			up->gain = 255;
	} else if (up->clipcnt > SECOND / 100) {
		up->gain -= 4;
		if (up->gain < 0)
			up->gain = 0;
	}
	audio_gain(up->gain, up->port);
	up->clipcnt = 0;
}


#else
int refclock_wwv_bs;
#endif /* REFCLOCK */
OpenPOWER on IntegriCloud