summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/ntpd/ntp_loopfilter.c
blob: 4b38aa8fd7d477fd535ac85dfde8c5db87d385a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
/*
 * ntp_loopfilter.c - implements the NTP loop filter algorithm
 *
 * ATTENTION: Get approval from Dave Mills on all changes to this file!
 *
 */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

#ifdef USE_SNPRINTB
# include <util.h>
#endif
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"

#include <limits.h>
#include <stdio.h>
#include <ctype.h>

#include <signal.h>
#include <setjmp.h>

#ifdef KERNEL_PLL
#include "ntp_syscall.h"
#endif /* KERNEL_PLL */

/*
 * This is an implementation of the clock discipline algorithm described
 * in UDel TR 97-4-3, as amended. It operates as an adaptive parameter,
 * hybrid phase/frequency-lock loop. A number of sanity checks are
 * included to protect against timewarps, timespikes and general mayhem.
 * All units are in s and s/s, unless noted otherwise.
 */
#define CLOCK_MAX	.128	/* default step threshold (s) */
#define CLOCK_MINSTEP	300.	/* default stepout threshold (s) */
#define CLOCK_PANIC	1000.	/* default panic threshold (s) */
#define	CLOCK_PHI	15e-6	/* max frequency error (s/s) */
#define CLOCK_PLL	16.	/* PLL loop gain (log2) */
#define CLOCK_AVG	8.	/* parameter averaging constant */
#define CLOCK_FLL	.25	/* FLL loop gain */
#define	CLOCK_FLOOR	.0005	/* startup offset floor (s) */
#define	CLOCK_ALLAN	11	/* Allan intercept (log2 s) */
#define CLOCK_LIMIT	30	/* poll-adjust threshold */
#define CLOCK_PGATE	4.	/* poll-adjust gate */
#define PPS_MAXAGE	120	/* kernel pps signal timeout (s) */
#define	FREQTOD(x)	((x) / 65536e6) /* NTP to double */
#define	DTOFREQ(x)	((int32)((x) * 65536e6)) /* double to NTP */

/*
 * Clock discipline state machine. This is used to control the
 * synchronization behavior during initialization and following a
 * timewarp.
 *
 *	State	< step		> step		Comments
 *	========================================================
 *	NSET	FREQ		step, FREQ	freq not set
 *
 *	FSET	SYNC		step, SYNC	freq set
 *
 *	FREQ	if (mu < 900)	if (mu < 900)	set freq direct
 *		    ignore	    ignore
 *		else		else
 *		    freq, SYNC	    freq, step, SYNC
 *
 *	SYNC	SYNC		SPIK, ignore	adjust phase/freq
 *
 *	SPIK	SYNC		if (mu < 900)	adjust phase/freq
 *				    ignore
 *				step, SYNC
 */
/*
 * Kernel PLL/PPS state machine. This is used with the kernel PLL
 * modifications described in the documentation.
 *
 * If kernel support for the ntp_adjtime() system call is available, the
 * ntp_control flag is set. The ntp_enable and kern_enable flags can be
 * set at configuration time or run time using ntpdc. If ntp_enable is
 * false, the discipline loop is unlocked and no corrections of any kind
 * are made. If both ntp_control and kern_enable are set, the kernel
 * support is used as described above; if false, the kernel is bypassed
 * entirely and the daemon discipline used instead.
 *
 * There have been three versions of the kernel discipline code. The
 * first (microkernel) now in Solaris discipilnes the microseconds. The
 * second and third (nanokernel) disciplines the clock in nanoseconds.
 * These versions are identifed if the symbol STA_PLL is present in the
 * header file /usr/include/sys/timex.h. The third and current version
 * includes TAI offset and is identified by the symbol NTP_API with
 * value 4.
 *
 * Each PPS time/frequency discipline can be enabled by the atom driver
 * or another driver. If enabled, the STA_PPSTIME and STA_FREQ bits are
 * set in the kernel status word; otherwise, these bits are cleared.
 * These bits are also cleard if the kernel reports an error.
 *
 * If an external clock is present, the clock driver sets STA_CLK in the
 * status word. When the local clock driver sees this bit, it updates
 * via this routine, which then calls ntp_adjtime() with the STA_PLL bit
 * set to zero, in which case the system clock is not adjusted. This is
 * also a signal for the external clock driver to discipline the system
 * clock. Unless specified otherwise, all times are in seconds.
 */
/*
 * Program variables that can be tinkered.
 */
double	clock_max_back = CLOCK_MAX;	/* step threshold */
double	clock_max_fwd =  CLOCK_MAX;	/* step threshold */
double	clock_minstep = CLOCK_MINSTEP; /* stepout threshold */
double	clock_panic = CLOCK_PANIC; /* panic threshold */
double	clock_phi = CLOCK_PHI;	/* dispersion rate (s/s) */
u_char	allan_xpt = CLOCK_ALLAN; /* Allan intercept (log2 s) */

/*
 * Program variables
 */
static double clock_offset;	/* offset */
double	clock_jitter;		/* offset jitter */
double	drift_comp;		/* frequency (s/s) */
static double init_drift_comp; /* initial frequency (PPM) */
double	clock_stability;	/* frequency stability (wander) (s/s) */
double	clock_codec;		/* audio codec frequency (samples/s) */
static u_long clock_epoch;	/* last update */
u_int	sys_tai;		/* TAI offset from UTC */
static int loop_started;	/* TRUE after LOOP_DRIFTINIT */
static void rstclock (int, double); /* transition function */
static double direct_freq(double); /* direct set frequency */
static void set_freq(double);	/* set frequency */
#ifndef PATH_MAX
# define PATH_MAX MAX_PATH
#endif
static char relative_path[PATH_MAX + 1]; /* relative path per recursive make */
static char *this_file = NULL;

#ifdef KERNEL_PLL
static struct timex ntv;	/* ntp_adjtime() parameters */
int	pll_status;		/* last kernel status bits */
#if defined(STA_NANO) && NTP_API == 4
static u_int loop_tai;		/* last TAI offset */
#endif /* STA_NANO */
static	void	start_kern_loop(void);
static	void	stop_kern_loop(void);
#endif /* KERNEL_PLL */

/*
 * Clock state machine control flags
 */
int	ntp_enable = TRUE;	/* clock discipline enabled */
int	pll_control;		/* kernel support available */
int	kern_enable = TRUE;	/* kernel support enabled */
int	hardpps_enable;		/* kernel PPS discipline enabled */
int	ext_enable;		/* external clock enabled */
int	pps_stratum;		/* pps stratum */
int	kernel_status;		/* from ntp_adjtime */
int	force_step_once = FALSE; /* always step time once at startup (-G) */
int	mode_ntpdate = FALSE;	/* exit on first clock set (-q) */
int	freq_cnt;		/* initial frequency clamp */
int	freq_set;		/* initial set frequency switch */

/*
 * Clock state machine variables
 */
int	state = 0;		/* clock discipline state */
u_char	sys_poll;		/* time constant/poll (log2 s) */
int	tc_counter;		/* jiggle counter */
double	last_offset;		/* last offset (s) */

/*
 * Huff-n'-puff filter variables
 */
static double *sys_huffpuff;	/* huff-n'-puff filter */
static int sys_hufflen;		/* huff-n'-puff filter stages */
static int sys_huffptr;		/* huff-n'-puff filter pointer */
static double sys_mindly;	/* huff-n'-puff filter min delay */

#if defined(KERNEL_PLL)
/* Emacs cc-mode goes nuts if we split the next line... */
#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | \
    MOD_STATUS | MOD_TIMECONST)
#ifdef SIGSYS
static void pll_trap (int);	/* configuration trap */
static struct sigaction sigsys;	/* current sigaction status */
static struct sigaction newsigsys; /* new sigaction status */
static sigjmp_buf env;		/* environment var. for pll_trap() */
#endif /* SIGSYS */
#endif /* KERNEL_PLL */

static void
sync_status(const char *what, int ostatus, int nstatus)
{
	char obuf[256], nbuf[256], tbuf[1024];
#if defined(USE_SNPRINTB) && defined (STA_FMT)
	snprintb(obuf, sizeof(obuf), STA_FMT, ostatus);
	snprintb(nbuf, sizeof(nbuf), STA_FMT, nstatus);
#else
	snprintf(obuf, sizeof(obuf), "%04x", ostatus);
	snprintf(nbuf, sizeof(nbuf), "%04x", nstatus);
#endif
	snprintf(tbuf, sizeof(tbuf), "%s status: %s -> %s", what, obuf, nbuf);
	report_event(EVNT_KERN, NULL, tbuf);
}

/*
 * file_name - return pointer to non-relative portion of this C file pathname
 */
static char *file_name(void)
{
	if (this_file == NULL) {
	    (void)strncpy(relative_path, __FILE__, PATH_MAX);
	    for (this_file=relative_path;
		*this_file && ! isalnum((unsigned char)*this_file);
		this_file++) ;
	}
	return this_file;
}

/*
 * init_loopfilter - initialize loop filter data
 */
void
init_loopfilter(void)
{
	/*
	 * Initialize state variables.
	 */
	sys_poll = ntp_minpoll;
	clock_jitter = LOGTOD(sys_precision);
	freq_cnt = (int)clock_minstep;
}

#ifdef KERNEL_PLL
/*
 * ntp_adjtime_error_handler - process errors from ntp_adjtime
 */
static void
ntp_adjtime_error_handler(
	const char *caller,	/* name of calling function */
	struct timex *ptimex,	/* pointer to struct timex */
	int ret,		/* return value from ntp_adjtime */
	int saved_errno,	/* value of errno when ntp_adjtime returned */
	int pps_call,		/* ntp_adjtime call was PPS-related */
	int tai_call,		/* ntp_adjtime call was TAI-related */
	int line		/* line number of ntp_adjtime call */
	)
{
	char des[1024] = "";	/* Decoded Error Status */

	switch (ret) {
	    case -1:
		switch (saved_errno) {
		    case EFAULT:
			msyslog(LOG_ERR, "%s: %s line %d: invalid struct timex pointer: 0x%lx",
			    caller, file_name(), line,
			    (long)((void *)ptimex)
			);
		    break;
		    case EINVAL:
			msyslog(LOG_ERR, "%s: %s line %d: invalid struct timex \"constant\" element value: %ld",
			    caller, file_name(), line,
			    (long)(ptimex->constant)
			);
		    break;
		    case EPERM:
			if (tai_call) {
			    errno = saved_errno;
			    msyslog(LOG_ERR,
				"%s: ntp_adjtime(TAI) failed: %m",
				caller);
			}
			errno = saved_errno;
			msyslog(LOG_ERR, "%s: %s line %d: ntp_adjtime: %m",
			    caller, file_name(), line
			);
		    break;
		    default:
			msyslog(LOG_NOTICE, "%s: %s line %d: unhandled errno value %d after failed ntp_adjtime call",
			    caller, file_name(), line,
			    saved_errno
			);
		    break;
		}
	    break;
#ifdef TIME_OK
	    case TIME_OK: /* 0: synchronized, no leap second warning */
		/* msyslog(LOG_INFO, "kernel reports time is synchronized normally"); */
	    break;
#else
# warning TIME_OK is not defined
#endif
#ifdef TIME_INS
	    case TIME_INS: /* 1: positive leap second warning */
		msyslog(LOG_INFO, "kernel reports leap second insertion scheduled");
	    break;
#else
# warning TIME_INS is not defined
#endif
#ifdef TIME_DEL
	    case TIME_DEL: /* 2: negative leap second warning */
		msyslog(LOG_INFO, "kernel reports leap second deletion scheduled");
	    break;
#else
# warning TIME_DEL is not defined
#endif
#ifdef TIME_OOP
	    case TIME_OOP: /* 3: leap second in progress */
		msyslog(LOG_INFO, "kernel reports leap second in progress");
	    break;
#else
# warning TIME_OOP is not defined
#endif
#ifdef TIME_WAIT
	    case TIME_WAIT: /* 4: leap second has occured */
		msyslog(LOG_INFO, "kernel reports leap second has occurred");
	    break;
#else
# warning TIME_WAIT is not defined
#endif
#ifdef TIME_ERROR
#if 0

from the reference implementation of ntp_gettime():

		// Hardware or software error
        if ((time_status & (STA_UNSYNC | STA_CLOCKERR))

	/*
         * PPS signal lost when either time or frequency synchronization
         * requested
         */
	|| (time_status & (STA_PPSFREQ | STA_PPSTIME)
	    && !(time_status & STA_PPSSIGNAL))

        /*
         * PPS jitter exceeded when time synchronization requested
         */
	|| (time_status & STA_PPSTIME &&
            time_status & STA_PPSJITTER)

        /*
         * PPS wander exceeded or calibration error when frequency
         * synchronization requested
         */
	|| (time_status & STA_PPSFREQ &&
            time_status & (STA_PPSWANDER | STA_PPSERROR)))
                return (TIME_ERROR);

or, from ntp_adjtime():

	if (  (time_status & (STA_UNSYNC | STA_CLOCKERR))
	    || (time_status & (STA_PPSFREQ | STA_PPSTIME)
		&& !(time_status & STA_PPSSIGNAL)) 
	    || (time_status & STA_PPSTIME
		&& time_status & STA_PPSJITTER)
	    || (time_status & STA_PPSFREQ
		&& time_status & (STA_PPSWANDER | STA_PPSERROR))
	   )
		return (TIME_ERROR);
#endif

	    case TIME_ERROR: /* 5: unsynchronized, or loss of synchronization */
				/* error (see status word) */

		if (ptimex->status & STA_UNSYNC)
			snprintf(des, sizeof(des), "%s%sClock Unsynchronized",
				des, (*des) ? "; " : "");

		if (ptimex->status & STA_CLOCKERR)
			snprintf(des, sizeof(des), "%s%sClock Error",
				des, (*des) ? "; " : "");

		if (!(ptimex->status & STA_PPSSIGNAL)
		    && ptimex->status & STA_PPSFREQ)
			snprintf(des, sizeof(des), "%s%sPPS Frequency Sync wanted but no PPS",
				des, (*des) ? "; " : "");

		if (!(ptimex->status & STA_PPSSIGNAL)
		    && ptimex->status & STA_PPSTIME)
			snprintf(des, sizeof(des), "%s%sPPS Time Sync wanted but no PPS signal",
				des, (*des) ? "; " : "");

		if (   ptimex->status & STA_PPSTIME
		    && ptimex->status & STA_PPSJITTER)
			snprintf(des, sizeof(des), "%s%sPPS Time Sync wanted but PPS Jitter exceeded",
				des, (*des) ? "; " : "");

		if (   ptimex->status & STA_PPSFREQ
		    && ptimex->status & STA_PPSWANDER)
			snprintf(des, sizeof(des), "%s%sPPS Frequency Sync wanted but PPS Wander exceeded",
				des, (*des) ? "; " : "");

		if (   ptimex->status & STA_PPSFREQ
		    && ptimex->status & STA_PPSERROR)
			snprintf(des, sizeof(des), "%s%sPPS Frequency Sync wanted but Calibration error detected",
				des, (*des) ? "; " : "");

		if (pps_call && !(ptimex->status & STA_PPSSIGNAL))
			report_event(EVNT_KERN, NULL,
			    "no PPS signal");
		DPRINTF(1, ("kernel loop status %#x (%s)\n",
			ptimex->status, des));
		/*
		 * This code may be returned when ntp_adjtime() has just
		 * been called for the first time, quite a while after
		 * startup, when ntpd just starts to discipline the kernel
		 * time. In this case the occurrence of this message
		 * can be pretty confusing.
		 *
		 * HMS: How about a message when we begin kernel processing:
		 *    Determining kernel clock state...
		 * so an initial TIME_ERROR message is less confising,
		 * or skipping the first message (ugh),
		 * or ???
		 * msyslog(LOG_INFO, "kernel reports time synchronization lost");
		 */
		msyslog(LOG_INFO, "kernel reports TIME_ERROR: %#x: %s",
			ptimex->status, des);
	    break;
#else
# warning TIME_ERROR is not defined
#endif
	    default:
		msyslog(LOG_NOTICE, "%s: %s line %d: unhandled return value %d from ntp_adjtime() in %s at line %d",
		    caller, file_name(), line,
		    ret,
		    __func__, __LINE__
		);
	    break;
	}
	return;
}
#endif

/*
 * local_clock - the NTP logical clock loop filter.
 *
 * Return codes:
 * -1	update ignored: exceeds panic threshold
 * 0	update ignored: popcorn or exceeds step threshold
 * 1	clock was slewed
 * 2	clock was stepped
 *
 * LOCKCLOCK: The only thing this routine does is set the
 * sys_rootdisp variable equal to the peer dispersion.
 */
int
local_clock(
	struct	peer *peer,	/* synch source peer structure */
	double	fp_offset	/* clock offset (s) */
	)
{
	int	rval;		/* return code */
	int	osys_poll;	/* old system poll */
	int	ntp_adj_ret;	/* returned by ntp_adjtime */
	double	mu;		/* interval since last update */
	double	clock_frequency; /* clock frequency */
	double	dtemp, etemp;	/* double temps */
	char	tbuf[80];	/* report buffer */

	(void)ntp_adj_ret; /* not always used below... */
	/*
	 * If the loop is opened or the NIST LOCKCLOCK is in use,
	 * monitor and record the offsets anyway in order to determine
	 * the open-loop response and then go home.
	 */
#ifndef LOCKCLOCK
	if (!ntp_enable)
#endif /* not LOCKCLOCK */
	{
		record_loop_stats(fp_offset, drift_comp, clock_jitter,
		    clock_stability, sys_poll);
		return (0);
	}

#ifndef LOCKCLOCK
	/*
	 * If the clock is way off, panic is declared. The clock_panic
	 * defaults to 1000 s; if set to zero, the panic will never
	 * occur. The allow_panic defaults to FALSE, so the first panic
	 * will exit. It can be set TRUE by a command line option, in
	 * which case the clock will be set anyway and time marches on.
	 * But, allow_panic will be set FALSE when the update is less
	 * than the step threshold; so, subsequent panics will exit.
	 */
	if (fabs(fp_offset) > clock_panic && clock_panic > 0 &&
	    !allow_panic) {
		snprintf(tbuf, sizeof(tbuf),
		    "%+.0f s; set clock manually within %.0f s.",
		    fp_offset, clock_panic);
		report_event(EVNT_SYSFAULT, NULL, tbuf);
		return (-1);
	}

	allow_panic = FALSE;

	/*
	 * This section simulates ntpdate. If the offset exceeds the
	 * step threshold (128 ms), step the clock to that time and
	 * exit. Otherwise, slew the clock to that time and exit. Note
	 * that the slew will persist and eventually complete beyond the
	 * life of this program. Note that while ntpdate is active, the
	 * terminal does not detach, so the termination message prints
	 * directly to the terminal.
	 */
	if (mode_ntpdate) {
		if (  ( fp_offset > clock_max_fwd  && clock_max_fwd  > 0)
		   || (-fp_offset > clock_max_back && clock_max_back > 0)) {
			step_systime(fp_offset);
			msyslog(LOG_NOTICE, "ntpd: time set %+.6f s",
			    fp_offset);
			printf("ntpd: time set %+.6fs\n", fp_offset);
		} else {
			adj_systime(fp_offset);
			msyslog(LOG_NOTICE, "ntpd: time slew %+.6f s",
			    fp_offset);
			printf("ntpd: time slew %+.6fs\n", fp_offset);
		}
		record_loop_stats(fp_offset, drift_comp, clock_jitter,
		    clock_stability, sys_poll);
		exit (0);
	}

	/*
	 * The huff-n'-puff filter finds the lowest delay in the recent
	 * interval. This is used to correct the offset by one-half the
	 * difference between the sample delay and minimum delay. This
	 * is most effective if the delays are highly assymetric and
	 * clockhopping is avoided and the clock frequency wander is
	 * relatively small.
	 */
	if (sys_huffpuff != NULL) {
		if (peer->delay < sys_huffpuff[sys_huffptr])
			sys_huffpuff[sys_huffptr] = peer->delay;
		if (peer->delay < sys_mindly)
			sys_mindly = peer->delay;
		if (fp_offset > 0)
			dtemp = -(peer->delay - sys_mindly) / 2;
		else
			dtemp = (peer->delay - sys_mindly) / 2;
		fp_offset += dtemp;
		DPRINTF(1, ("local_clock: size %d mindly %.6f huffpuff %.6f\n",
			    sys_hufflen, sys_mindly, dtemp));
	}

	/*
	 * Clock state machine transition function which defines how the
	 * system reacts to large phase and frequency excursion. There
	 * are two main regimes: when the offset exceeds the step
	 * threshold (128 ms) and when it does not. Under certain
	 * conditions updates are suspended until the stepout theshold
	 * (900 s) is exceeded. See the documentation on how these
	 * thresholds interact with commands and command line options.
	 *
	 * Note the kernel is disabled if step is disabled or greater
	 * than 0.5 s or in ntpdate mode.
	 */
	osys_poll = sys_poll;
	if (sys_poll < peer->minpoll)
		sys_poll = peer->minpoll;
	if (sys_poll > peer->maxpoll)
		sys_poll = peer->maxpoll;
	mu = current_time - clock_epoch;
	clock_frequency = drift_comp;
	rval = 1;
	if (  ( fp_offset > clock_max_fwd  && clock_max_fwd  > 0)
	   || (-fp_offset > clock_max_back && clock_max_back > 0)
	   || force_step_once ) {
		if (force_step_once) {
			force_step_once = FALSE;  /* we want this only once after startup */
			msyslog(LOG_NOTICE, "Doing intital time step" );
		}

		switch (state) {

		/*
		 * In SYNC state we ignore the first outlier and switch
		 * to SPIK state.
		 */
		case EVNT_SYNC:
			snprintf(tbuf, sizeof(tbuf), "%+.6f s",
			    fp_offset);
			report_event(EVNT_SPIK, NULL, tbuf);
			state = EVNT_SPIK;
			return (0);

		/*
		 * In FREQ state we ignore outliers and inlyers. At the
		 * first outlier after the stepout threshold, compute
		 * the apparent frequency correction and step the phase.
		 */
		case EVNT_FREQ:
			if (mu < clock_minstep)
				return (0);

			clock_frequency = direct_freq(fp_offset);

			/* fall through to EVNT_SPIK */

		/*
		 * In SPIK state we ignore succeeding outliers until
		 * either an inlyer is found or the stepout threshold is
		 * exceeded.
		 */
		case EVNT_SPIK:
			if (mu < clock_minstep)
				return (0);

			/* fall through to default */

		/*
		 * We get here by default in NSET and FSET states and
		 * from above in FREQ or SPIK states.
		 *
		 * In NSET state an initial frequency correction is not
		 * available, usually because the frequency file has not
		 * yet been written. Since the time is outside the step
		 * threshold, the clock is stepped. The frequency will
		 * be set directly following the stepout interval.
		 *
		 * In FSET state the initial frequency has been set from
		 * the frequency file. Since the time is outside the
		 * step threshold, the clock is stepped immediately,
		 * rather than after the stepout interval. Guys get
		 * nervous if it takes 15 minutes to set the clock for
		 * the first time.
		 *
		 * In FREQ and SPIK states the stepout threshold has
		 * expired and the phase is still above the step
		 * threshold. Note that a single spike greater than the
		 * step threshold is always suppressed, even with a
		 * long time constant.
		 */
		default:
			snprintf(tbuf, sizeof(tbuf), "%+.6f s",
			    fp_offset);
			report_event(EVNT_CLOCKRESET, NULL, tbuf);
			step_systime(fp_offset);
			reinit_timer();
			tc_counter = 0;
			clock_jitter = LOGTOD(sys_precision);
			rval = 2;
			if (state == EVNT_NSET) {
				rstclock(EVNT_FREQ, 0);
				return (rval);
			}
			break;
		}
		rstclock(EVNT_SYNC, 0);
	} else {
		/*
		 * The offset is less than the step threshold. Calculate
		 * the jitter as the exponentially weighted offset
		 * differences.
		 */
		etemp = SQUARE(clock_jitter);
		dtemp = SQUARE(max(fabs(fp_offset - last_offset),
		    LOGTOD(sys_precision)));
		clock_jitter = SQRT(etemp + (dtemp - etemp) /
		    CLOCK_AVG);
		switch (state) {

		/*
		 * In NSET state this is the first update received and
		 * the frequency has not been initialized. Adjust the
		 * phase, but do not adjust the frequency until after
		 * the stepout threshold.
		 */
		case EVNT_NSET:
			adj_systime(fp_offset);
			rstclock(EVNT_FREQ, fp_offset);
			break;

		/*
		 * In FREQ state ignore updates until the stepout
		 * threshold. After that, compute the new frequency, but
		 * do not adjust the frequency until the holdoff counter
		 * decrements to zero.
		 */
		case EVNT_FREQ:
			if (mu < clock_minstep)
				return (0);

			clock_frequency = direct_freq(fp_offset);
			/* fall through */

		/*
		 * We get here by default in FSET, SPIK and SYNC states.
		 * Here compute the frequency update due to PLL and FLL
		 * contributions. Note, we avoid frequency discipline at
		 * startup until the initial transient has subsided.
		 */
		default:
			if (freq_cnt == 0) {

				/*
				 * The FLL and PLL frequency gain constants
				 * depend on the time constant and Allan
				 * intercept. The PLL is always used, but
				 * becomes ineffective above the Allan intercept
				 * where the FLL becomes effective.
				 */
				if (sys_poll >= allan_xpt)
					clock_frequency += (fp_offset -
					    clock_offset) / max(ULOGTOD(sys_poll),
					    mu) * CLOCK_FLL;

				/*
				 * The PLL frequency gain (numerator) depends on
				 * the minimum of the update interval and Allan
				 * intercept. This reduces the PLL gain when the
				 * FLL becomes effective.
				 */
				etemp = min(ULOGTOD(allan_xpt), mu);
				dtemp = 4 * CLOCK_PLL * ULOGTOD(sys_poll);
				clock_frequency += fp_offset * etemp / (dtemp *
				    dtemp);
			}
			rstclock(EVNT_SYNC, fp_offset);
			if (fabs(fp_offset) < CLOCK_FLOOR)
				freq_cnt = 0;
			break;
		}
	}

#ifdef KERNEL_PLL
	/*
	 * This code segment works when clock adjustments are made using
	 * precision time kernel support and the ntp_adjtime() system
	 * call. This support is available in Solaris 2.6 and later,
	 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
	 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
	 * DECstation 5000/240 and Alpha AXP, additional kernel
	 * modifications provide a true microsecond clock and nanosecond
	 * clock, respectively.
	 *
	 * Important note: The kernel discipline is used only if the
	 * step threshold is less than 0.5 s, as anything higher can
	 * lead to overflow problems. This might occur if some misguided
	 * lad set the step threshold to something ridiculous.
	 */
	if (pll_control && kern_enable && freq_cnt == 0) {

		/*
		 * We initialize the structure for the ntp_adjtime()
		 * system call. We have to convert everything to
		 * microseconds or nanoseconds first. Do not update the
		 * system variables if the ext_enable flag is set. In
		 * this case, the external clock driver will update the
		 * variables, which will be read later by the local
		 * clock driver. Afterwards, remember the time and
		 * frequency offsets for jitter and stability values and
		 * to update the frequency file.
		 */
		ZERO(ntv);
		if (ext_enable) {
			ntv.modes = MOD_STATUS;
		} else {
#ifdef STA_NANO
			ntv.modes = MOD_BITS | MOD_NANO;
#else /* STA_NANO */
			ntv.modes = MOD_BITS;
#endif /* STA_NANO */
			if (clock_offset < 0)
				dtemp = -.5;
			else
				dtemp = .5;
#ifdef STA_NANO
			ntv.offset = (int32)(clock_offset * 1e9 +
			    dtemp);
			ntv.constant = sys_poll;
#else /* STA_NANO */
			ntv.offset = (int32)(clock_offset * 1e6 +
			    dtemp);
			ntv.constant = sys_poll - 4;
#endif /* STA_NANO */
			if (ntv.constant < 0)
				ntv.constant = 0;

			ntv.esterror = (u_int32)(clock_jitter * 1e6);
			ntv.maxerror = (u_int32)((sys_rootdelay / 2 +
			    sys_rootdisp) * 1e6);
			ntv.status = STA_PLL;

			/*
			 * Enable/disable the PPS if requested.
			 */
			if (hardpps_enable) {
				ntv.status |= (STA_PPSTIME | STA_PPSFREQ);
				if (!(pll_status & STA_PPSTIME))
					sync_status("PPS enabled",
						pll_status,
						ntv.status);
			} else {
				ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
				if (pll_status & STA_PPSTIME)
					sync_status("PPS disabled",
						pll_status,
						ntv.status);
			}
			if (sys_leap == LEAP_ADDSECOND)
				ntv.status |= STA_INS;
			else if (sys_leap == LEAP_DELSECOND)
				ntv.status |= STA_DEL;
		}

		/*
		 * Pass the stuff to the kernel. If it squeals, turn off
		 * the pps. In any case, fetch the kernel offset,
		 * frequency and jitter.
		 */
		ntp_adj_ret = ntp_adjtime(&ntv);
		/*
		 * A squeal is a return status < 0, or a state change.
		 */
		if ((0 > ntp_adj_ret) || (ntp_adj_ret != kernel_status)) {
			kernel_status = ntp_adj_ret;
			ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, hardpps_enable, 0, __LINE__ - 1);
		}
		pll_status = ntv.status;
#ifdef STA_NANO
		clock_offset = ntv.offset / 1e9;
#else /* STA_NANO */
		clock_offset = ntv.offset / 1e6;
#endif /* STA_NANO */
		clock_frequency = FREQTOD(ntv.freq);

		/*
		 * If the kernel PPS is lit, monitor its performance.
		 */
		if (ntv.status & STA_PPSTIME) {
#ifdef STA_NANO
			clock_jitter = ntv.jitter / 1e9;
#else /* STA_NANO */
			clock_jitter = ntv.jitter / 1e6;
#endif /* STA_NANO */
		}

#if defined(STA_NANO) && NTP_API == 4
		/*
		 * If the TAI changes, update the kernel TAI.
		 */
		if (loop_tai != sys_tai) {
			loop_tai = sys_tai;
			ntv.modes = MOD_TAI;
			ntv.constant = sys_tai;
			if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
			    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 1, __LINE__ - 1);
			}
		}
#endif /* STA_NANO */
	}
#endif /* KERNEL_PLL */

	/*
	 * Clamp the frequency within the tolerance range and calculate
	 * the frequency difference since the last update.
	 */
	if (fabs(clock_frequency) > NTP_MAXFREQ)
		msyslog(LOG_NOTICE,
		    "frequency error %.0f PPM exceeds tolerance %.0f PPM",
		    clock_frequency * 1e6, NTP_MAXFREQ * 1e6);
	dtemp = SQUARE(clock_frequency - drift_comp);
	if (clock_frequency > NTP_MAXFREQ)
		drift_comp = NTP_MAXFREQ;
	else if (clock_frequency < -NTP_MAXFREQ)
		drift_comp = -NTP_MAXFREQ;
	else
		drift_comp = clock_frequency;

	/*
	 * Calculate the wander as the exponentially weighted RMS
	 * frequency differences. Record the change for the frequency
	 * file update.
	 */
	etemp = SQUARE(clock_stability);
	clock_stability = SQRT(etemp + (dtemp - etemp) / CLOCK_AVG);

	/*
	 * Here we adjust the time constant by comparing the current
	 * offset with the clock jitter. If the offset is less than the
	 * clock jitter times a constant, then the averaging interval is
	 * increased, otherwise it is decreased. A bit of hysteresis
	 * helps calm the dance. Works best using burst mode. Don't
	 * fiddle with the poll during the startup clamp period.
	 */
	if (freq_cnt > 0) {
		tc_counter = 0;
	} else if (fabs(clock_offset) < CLOCK_PGATE * clock_jitter) {
		tc_counter += sys_poll;
		if (tc_counter > CLOCK_LIMIT) {
			tc_counter = CLOCK_LIMIT;
			if (sys_poll < peer->maxpoll) {
				tc_counter = 0;
				sys_poll++;
			}
		}
	} else {
		tc_counter -= sys_poll << 1;
		if (tc_counter < -CLOCK_LIMIT) {
			tc_counter = -CLOCK_LIMIT;
			if (sys_poll > peer->minpoll) {
				tc_counter = 0;
				sys_poll--;
			}
		}
	}

	/*
	 * If the time constant has changed, update the poll variables.
	 */
	if (osys_poll != sys_poll)
		poll_update(peer, sys_poll);

	/*
	 * Yibbidy, yibbbidy, yibbidy; that'h all folks.
	 */
	record_loop_stats(clock_offset, drift_comp, clock_jitter,
	    clock_stability, sys_poll);
	DPRINTF(1, ("local_clock: offset %.9f jit %.9f freq %.3f stab %.3f poll %d\n",
		    clock_offset, clock_jitter, drift_comp * 1e6,
		    clock_stability * 1e6, sys_poll));
	return (rval);
#endif /* not LOCKCLOCK */
}


/*
 * adj_host_clock - Called once every second to update the local clock.
 *
 * LOCKCLOCK: The only thing this routine does is increment the
 * sys_rootdisp variable.
 */
void
adj_host_clock(
	void
	)
{
	double	offset_adj;
	double	freq_adj;

	/*
	 * Update the dispersion since the last update. In contrast to
	 * NTPv3, NTPv4 does not declare unsynchronized after one day,
	 * since the dispersion check serves this function. Also,
	 * since the poll interval can exceed one day, the old test
	 * would be counterproductive. During the startup clamp period, the
	 * time constant is clamped at 2.
	 */
	sys_rootdisp += clock_phi;
#ifndef LOCKCLOCK
	if (!ntp_enable || mode_ntpdate)
		return;
	/*
	 * Determine the phase adjustment. The gain factor (denominator)
	 * increases with poll interval, so is dominated by the FLL
	 * above the Allan intercept. Note the reduced time constant at
	 * startup.
	 */
	if (state != EVNT_SYNC) {
		offset_adj = 0.;
	} else if (freq_cnt > 0) {
		offset_adj = clock_offset / (CLOCK_PLL * ULOGTOD(1));
		freq_cnt--;
#ifdef KERNEL_PLL
	} else if (pll_control && kern_enable) {
		offset_adj = 0.;
#endif /* KERNEL_PLL */
	} else {
		offset_adj = clock_offset / (CLOCK_PLL * ULOGTOD(sys_poll));
	}

	/*
	 * If the kernel discipline is enabled the frequency correction
	 * drift_comp has already been engaged via ntp_adjtime() in
	 * set_freq().  Otherwise it is a component of the adj_systime()
	 * offset.
	 */
#ifdef KERNEL_PLL
	if (pll_control && kern_enable)
		freq_adj = 0.;
	else
#endif /* KERNEL_PLL */
		freq_adj = drift_comp;

	/* Bound absolute value of total adjustment to NTP_MAXFREQ. */
	if (offset_adj + freq_adj > NTP_MAXFREQ)
		offset_adj = NTP_MAXFREQ - freq_adj;
	else if (offset_adj + freq_adj < -NTP_MAXFREQ)
		offset_adj = -NTP_MAXFREQ - freq_adj;

	clock_offset -= offset_adj;
	/*
	 * Windows port adj_systime() must be called each second,
	 * even if the argument is zero, to ease emulation of
	 * adjtime() using Windows' slew API which controls the rate
	 * but does not automatically stop slewing when an offset
	 * has decayed to zero.
	 */
	DEBUG_INSIST(enable_panic_check == TRUE);
	enable_panic_check = FALSE;
	adj_systime(offset_adj + freq_adj);
	enable_panic_check = TRUE;
#endif /* LOCKCLOCK */
}


/*
 * Clock state machine. Enter new state and set state variables.
 */
static void
rstclock(
	int	trans,		/* new state */
	double	offset		/* new offset */
	)
{
	DPRINTF(2, ("rstclock: mu %lu state %d poll %d count %d\n",
		    current_time - clock_epoch, trans, sys_poll,
		    tc_counter));
	if (trans != state && trans != EVNT_FSET)
		report_event(trans, NULL, NULL);
	state = trans;
	last_offset = clock_offset = offset;
	clock_epoch = current_time;
}


/*
 * calc_freq - calculate frequency directly
 *
 * This is very carefully done. When the offset is first computed at the
 * first update, a residual frequency component results. Subsequently,
 * updates are suppresed until the end of the measurement interval while
 * the offset is amortized. At the end of the interval the frequency is
 * calculated from the current offset, residual offset, length of the
 * interval and residual frequency component. At the same time the
 * frequenchy file is armed for update at the next hourly stats.
 */
static double
direct_freq(
	double	fp_offset
	)
{
	set_freq(fp_offset / (current_time - clock_epoch));

	return drift_comp;
}


/*
 * set_freq - set clock frequency correction
 *
 * Used to step the frequency correction at startup, possibly again once
 * the frequency is measured (that is, transitioning from EVNT_NSET to
 * EVNT_FSET), and finally to switch between daemon and kernel loop
 * discipline at runtime.
 *
 * When the kernel loop discipline is available but the daemon loop is
 * in use, the kernel frequency correction is disabled (set to 0) to
 * ensure drift_comp is applied by only one of the loops.
 */
static void
set_freq(
	double	freq		/* frequency update */
	)
{
	const char *	loop_desc;
	int ntp_adj_ret;

	(void)ntp_adj_ret; /* not always used below... */
	drift_comp = freq;
	loop_desc = "ntpd";
#ifdef KERNEL_PLL
	if (pll_control) {
		ZERO(ntv);
		ntv.modes = MOD_FREQUENCY;
		if (kern_enable) {
			loop_desc = "kernel";
			ntv.freq = DTOFREQ(drift_comp);
		}
		if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
		    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 0, __LINE__ - 1);
		}
	}
#endif /* KERNEL_PLL */
	mprintf_event(EVNT_FSET, NULL, "%s %.3f PPM", loop_desc,
	    drift_comp * 1e6);
}


#ifdef KERNEL_PLL
static void
start_kern_loop(void)
{
	static int atexit_done;
	int ntp_adj_ret;

	pll_control = TRUE;
	ZERO(ntv);
	ntv.modes = MOD_BITS;
	ntv.status = STA_PLL;
	ntv.maxerror = MAXDISPERSE;
	ntv.esterror = MAXDISPERSE;
	ntv.constant = sys_poll; /* why is it that here constant is unconditionally set to sys_poll, whereas elsewhere is is modified depending on nanosecond vs. microsecond kernel? */
#ifdef SIGSYS
	/*
	 * Use sigsetjmp() to save state and then call ntp_adjtime(); if
	 * it fails, then pll_trap() will set pll_control FALSE before
	 * returning control using siglogjmp().
	 */
	newsigsys.sa_handler = pll_trap;
	newsigsys.sa_flags = 0;
	if (sigaction(SIGSYS, &newsigsys, &sigsys)) {
		msyslog(LOG_ERR, "sigaction() trap SIGSYS: %m");
		pll_control = FALSE;
	} else {
		if (sigsetjmp(env, 1) == 0) {
			if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
			    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 0, __LINE__ - 1);
			}
		}
		if (sigaction(SIGSYS, &sigsys, NULL)) {
			msyslog(LOG_ERR,
			    "sigaction() restore SIGSYS: %m");
			pll_control = FALSE;
		}
	}
#else /* SIGSYS */
	if ((ntp_adj_ret = ntp_adjtime(&ntv)) != 0) {
	    ntp_adjtime_error_handler(__func__, &ntv, ntp_adj_ret, errno, 0, 0, __LINE__ - 1);
	}
#endif /* SIGSYS */

	/*
	 * Save the result status and light up an external clock
	 * if available.
	 */
	pll_status = ntv.status;
	if (pll_control) {
		if (!atexit_done) {
			atexit_done = TRUE;
			atexit(&stop_kern_loop);
		}
#ifdef STA_NANO
		if (pll_status & STA_CLK)
			ext_enable = TRUE;
#endif /* STA_NANO */
		report_event(EVNT_KERN, NULL,
	  	    "kernel time sync enabled");
	}
}
#endif	/* KERNEL_PLL */


#ifdef KERNEL_PLL
static void
stop_kern_loop(void)
{
	if (pll_control && kern_enable)
		report_event(EVNT_KERN, NULL,
		    "kernel time sync disabled");
}
#endif	/* KERNEL_PLL */


/*
 * select_loop() - choose kernel or daemon loop discipline.
 */
void
select_loop(
	int	use_kern_loop
	)
{
	if (kern_enable == use_kern_loop)
		return;
#ifdef KERNEL_PLL
	if (pll_control && !use_kern_loop)
		stop_kern_loop();
#endif
	kern_enable = use_kern_loop;
#ifdef KERNEL_PLL
	if (pll_control && use_kern_loop)
		start_kern_loop();
#endif
	/*
	 * If this loop selection change occurs after initial startup,
	 * call set_freq() to switch the frequency compensation to or
	 * from the kernel loop.
	 */
#ifdef KERNEL_PLL
	if (pll_control && loop_started)
		set_freq(drift_comp);
#endif
}


/*
 * huff-n'-puff filter
 */
void
huffpuff(void)
{
	int i;

	if (sys_huffpuff == NULL)
		return;

	sys_huffptr = (sys_huffptr + 1) % sys_hufflen;
	sys_huffpuff[sys_huffptr] = 1e9;
	sys_mindly = 1e9;
	for (i = 0; i < sys_hufflen; i++) {
		if (sys_huffpuff[i] < sys_mindly)
			sys_mindly = sys_huffpuff[i];
	}
}


/*
 * loop_config - configure the loop filter
 *
 * LOCKCLOCK: The LOOP_DRIFTINIT and LOOP_DRIFTCOMP cases are no-ops.
 */
void
loop_config(
	int	item,
	double	freq
	)
{
	int	i;
	double	ftemp;

	DPRINTF(2, ("loop_config: item %d freq %f\n", item, freq));
	switch (item) {

	/*
	 * We first assume the kernel supports the ntp_adjtime()
	 * syscall. If that syscall works, initialize the kernel time
	 * variables. Otherwise, continue leaving no harm behind.
	 */
	case LOOP_DRIFTINIT:
#ifndef LOCKCLOCK
#ifdef KERNEL_PLL
		if (mode_ntpdate)
			break;

		start_kern_loop();
#endif /* KERNEL_PLL */

		/*
		 * Initialize frequency if given; otherwise, begin frequency
		 * calibration phase.
		 */
		ftemp = init_drift_comp / 1e6;
		if (ftemp > NTP_MAXFREQ)
			ftemp = NTP_MAXFREQ;
		else if (ftemp < -NTP_MAXFREQ)
			ftemp = -NTP_MAXFREQ;
		set_freq(ftemp);
		if (freq_set)
			rstclock(EVNT_FSET, 0);
		else
			rstclock(EVNT_NSET, 0);
		loop_started = TRUE;
#endif /* LOCKCLOCK */
		break;

	case LOOP_KERN_CLEAR:
#if 0		/* XXX: needs more review, and how can we get here? */
#ifndef LOCKCLOCK
# ifdef KERNEL_PLL
		if (pll_control && kern_enable) {
			memset((char *)&ntv, 0, sizeof(ntv));
			ntv.modes = MOD_STATUS;
			ntv.status = STA_UNSYNC;
			ntp_adjtime(&ntv);
			sync_status("kernel time sync disabled",
				pll_status,
				ntv.status);
		   }
# endif /* KERNEL_PLL */
#endif /* LOCKCLOCK */
#endif
		break;

	/*
	 * Tinker command variables for Ulrich Windl. Very dangerous.
	 */
	case LOOP_ALLAN:	/* Allan intercept (log2) (allan) */
		allan_xpt = (u_char)freq;
		break;

	case LOOP_CODEC:	/* audio codec frequency (codec) */
		clock_codec = freq / 1e6;
		break;

	case LOOP_PHI:		/* dispersion threshold (dispersion) */
		clock_phi = freq / 1e6;
		break;

	case LOOP_FREQ:		/* initial frequency (freq) */
		init_drift_comp = freq;
		freq_set++;
		break;

	case LOOP_HUFFPUFF:	/* huff-n'-puff length (huffpuff) */
		if (freq < HUFFPUFF)
			freq = HUFFPUFF;
		sys_hufflen = (int)(freq / HUFFPUFF);
		sys_huffpuff = emalloc(sizeof(sys_huffpuff[0]) *
		    sys_hufflen);
		for (i = 0; i < sys_hufflen; i++)
			sys_huffpuff[i] = 1e9;
		sys_mindly = 1e9;
		break;

	case LOOP_PANIC:	/* panic threshold (panic) */
		clock_panic = freq;
		break;

	case LOOP_MAX:		/* step threshold (step) */
		clock_max_fwd = clock_max_back = freq;
		if (freq == 0 || freq > 0.5)
			select_loop(FALSE);
		break;

	case LOOP_MAX_BACK:	/* step threshold (step) */
		clock_max_back = freq;
		/*
		 * Leave using the kernel discipline code unless both
		 * limits are massive.  This assumes the reason to stop
		 * using it is that it's pointless, not that it goes wrong.
		 */
		if (  (clock_max_back == 0 || clock_max_back > 0.5)
		   || (clock_max_fwd  == 0 || clock_max_fwd  > 0.5))
			select_loop(FALSE);
		break;

	case LOOP_MAX_FWD:	/* step threshold (step) */
		clock_max_fwd = freq;
		if (  (clock_max_back == 0 || clock_max_back > 0.5)
		   || (clock_max_fwd  == 0 || clock_max_fwd  > 0.5))
			select_loop(FALSE);
		break;

	case LOOP_MINSTEP:	/* stepout threshold (stepout) */
		if (freq < CLOCK_MINSTEP)
			clock_minstep = CLOCK_MINSTEP;
		else
			clock_minstep = freq;
		break;

	case LOOP_TICK:		/* tick increment (tick) */
		set_sys_tick_precision(freq);
		break;

	case LOOP_LEAP:		/* not used, fall through */
	default:
		msyslog(LOG_NOTICE,
		    "loop_config: unsupported option %d", item);
	}
}


#if defined(KERNEL_PLL) && defined(SIGSYS)
/*
 * _trap - trap processor for undefined syscalls
 *
 * This nugget is called by the kernel when the SYS_ntp_adjtime()
 * syscall bombs because the silly thing has not been implemented in
 * the kernel. In this case the phase-lock loop is emulated by
 * the stock adjtime() syscall and a lot of indelicate abuse.
 */
static RETSIGTYPE
pll_trap(
	int arg
	)
{
	pll_control = FALSE;
	siglongjmp(env, 1);
}
#endif /* KERNEL_PLL && SIGSYS */
OpenPOWER on IntegriCloud