summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/AST/RecordLayoutBuilder.cpp
blob: 88d71ce04287eb01a2ae2b3fea7e0db79b569a9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/Format.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/MathExtras.h"
#include <map>

using namespace clang;

namespace {

/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
/// For a class hierarchy like
///
/// class A { };
/// class B : A { };
/// class C : A, B { };
///
/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
/// instances, one for B and two for A.
///
/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
struct BaseSubobjectInfo {
  /// Class - The class for this base info.
  const CXXRecordDecl *Class;

  /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
  bool IsVirtual;

  /// Bases - Information about the base subobjects.
  llvm::SmallVector<BaseSubobjectInfo*, 4> Bases;

  /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
  /// of this base info (if one exists).
  BaseSubobjectInfo *PrimaryVirtualBaseInfo;

  // FIXME: Document.
  const BaseSubobjectInfo *Derived;
};

/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
/// offsets while laying out a C++ class.
class EmptySubobjectMap {
  ASTContext &Context;

  /// Class - The class whose empty entries we're keeping track of.
  const CXXRecordDecl *Class;

  /// EmptyClassOffsets - A map from offsets to empty record decls.
  typedef llvm::SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
  typedef llvm::DenseMap<uint64_t, ClassVectorTy> EmptyClassOffsetsMapTy;
  EmptyClassOffsetsMapTy EmptyClassOffsets;
  
  /// MaxEmptyClassOffset - The highest offset known to contain an empty
  /// base subobject.
  uint64_t MaxEmptyClassOffset;
  
  /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
  /// member subobject that is empty.
  void ComputeEmptySubobjectSizes();
  
  bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 
                                 uint64_t Offset) const;

  void AddSubobjectAtOffset(const CXXRecordDecl *RD, uint64_t Offset);
  
  bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
                                     uint64_t Offset);
  void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
                                 uint64_t Offset, bool PlacingEmptyBase);
  
  bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 
                                      const CXXRecordDecl *Class,
                                      uint64_t Offset) const;
  bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
                                      uint64_t Offset) const;
  
  void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 
                                  const CXXRecordDecl *Class,
                                  uint64_t Offset);
  void UpdateEmptyFieldSubobjects(const FieldDecl *FD, uint64_t Offset);
  
  /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
  /// subobjects beyond the given offset.
  bool AnyEmptySubobjectsBeyondOffset(uint64_t Offset) const {
    return Offset <= MaxEmptyClassOffset;
  }

public:
  /// This holds the size of the largest empty subobject (either a base
  /// or a member). Will be zero if the record being built doesn't contain
  /// any empty classes.
  uint64_t SizeOfLargestEmptySubobject;

  EmptySubobjectMap(ASTContext &Context, const CXXRecordDecl *Class)
    : Context(Context), Class(Class), MaxEmptyClassOffset(0),
    SizeOfLargestEmptySubobject(0) {
      ComputeEmptySubobjectSizes();
  }

  /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
  /// at the given offset.
  /// Returns false if placing the record will result in two components
  /// (direct or indirect) of the same type having the same offset.
  bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
                            uint64_t Offset);

  /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
  /// offset.
  bool CanPlaceFieldAtOffset(const FieldDecl *FD, uint64_t Offset);
};

void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
  // Check the bases.
  for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
       E = Class->bases_end(); I != E; ++I) {
    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    uint64_t EmptySize = 0;
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    if (BaseDecl->isEmpty()) {
      // If the class decl is empty, get its size.
      EmptySize = Layout.getSize();
    } else {
      // Otherwise, we get the largest empty subobject for the decl.
      EmptySize = Layout.getSizeOfLargestEmptySubobject();
    }

    SizeOfLargestEmptySubobject = std::max(SizeOfLargestEmptySubobject,
                                           EmptySize);
  }

  // Check the fields.
  for (CXXRecordDecl::field_iterator I = Class->field_begin(),
       E = Class->field_end(); I != E; ++I) {
    const FieldDecl *FD = *I;

    const RecordType *RT =
      Context.getBaseElementType(FD->getType())->getAs<RecordType>();

    // We only care about record types.
    if (!RT)
      continue;

    uint64_t EmptySize = 0;
    const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
    if (MemberDecl->isEmpty()) {
      // If the class decl is empty, get its size.
      EmptySize = Layout.getSize();
    } else {
      // Otherwise, we get the largest empty subobject for the decl.
      EmptySize = Layout.getSizeOfLargestEmptySubobject();
    }

   SizeOfLargestEmptySubobject = std::max(SizeOfLargestEmptySubobject,
                                          EmptySize);
  }
}

bool
EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 
                                             uint64_t Offset) const {
  // We only need to check empty bases.
  if (!RD->isEmpty())
    return true;

  EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
  if (I == EmptyClassOffsets.end())
    return true;
  
  const ClassVectorTy& Classes = I->second;
  if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
    return true;

  // There is already an empty class of the same type at this offset.
  return false;
}
  
void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, 
                                             uint64_t Offset) {
  // We only care about empty bases.
  if (!RD->isEmpty())
    return;

  ClassVectorTy& Classes = EmptyClassOffsets[Offset];
  assert(std::find(Classes.begin(), Classes.end(), RD) == Classes.end() &&
         "Duplicate empty class detected!");

  Classes.push_back(RD);
  
  // Update the empty class offset.
  MaxEmptyClassOffset = std::max(MaxEmptyClassOffset, Offset);
}

bool
EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 
                                                 uint64_t Offset) {
  // We don't have to keep looking past the maximum offset that's known to
  // contain an empty class.
  if (!AnyEmptySubobjectsBeyondOffset(Offset))
    return true;

  if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
    return false;

  // Traverse all non-virtual bases.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
  for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    BaseSubobjectInfo* Base = Info->Bases[I];
    if (Base->IsVirtual)
      continue;

    uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);

    if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
      return false;
  }

  if (Info->PrimaryVirtualBaseInfo) {
    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;

    if (Info == PrimaryVirtualBaseInfo->Derived) {
      if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
        return false;
    }
  }
  
  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 
       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    const FieldDecl *FD = *I;

    uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo);
    if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
      return false;
  }
  
  return true;
}

void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 
                                                  uint64_t Offset,
                                                  bool PlacingEmptyBase) {
  if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
    // We know that the only empty subobjects that can conflict with empty
    // subobject of non-empty bases, are empty bases that can be placed at
    // offset zero. Because of this, we only need to keep track of empty base 
    // subobjects with offsets less than the size of the largest empty
    // subobject for our class.    
    return;
  }

  AddSubobjectAtOffset(Info->Class, Offset);

  // Traverse all non-virtual bases.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
  for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    BaseSubobjectInfo* Base = Info->Bases[I];
    if (Base->IsVirtual)
      continue;

    uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
  }

  if (Info->PrimaryVirtualBaseInfo) {
    BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    
    if (Info == PrimaryVirtualBaseInfo->Derived)
      UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
                                PlacingEmptyBase);
  }

  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 
       E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    const FieldDecl *FD = *I;

    uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo);
    UpdateEmptyFieldSubobjects(FD, FieldOffset);
  }
}

bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
                                             uint64_t Offset) {
  // If we know this class doesn't have any empty subobjects we don't need to
  // bother checking.
  if (!SizeOfLargestEmptySubobject)
    return true;

  if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
    return false;

  // We are able to place the base at this offset. Make sure to update the
  // empty base subobject map.
  UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
  return true;
}

bool
EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 
                                                  const CXXRecordDecl *Class,
                                                  uint64_t Offset) const {
  // We don't have to keep looking past the maximum offset that's known to
  // contain an empty class.
  if (!AnyEmptySubobjectsBeyondOffset(Offset))
    return true;

  if (!CanPlaceSubobjectAtOffset(RD, Offset))
    return false;
  
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  // Traverse all non-virtual bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
       E = RD->bases_end(); I != E; ++I) {
    if (I->isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
      return false;
  }

  if (RD == Class) {
    // This is the most derived class, traverse virtual bases as well.
    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
         E = RD->vbases_end(); I != E; ++I) {
      const CXXRecordDecl *VBaseDecl =
        cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
      
      uint64_t VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
      if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
        return false;
    }
  }
    
  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
       I != E; ++I, ++FieldNo) {
    const FieldDecl *FD = *I;
    
    uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo);
    
    if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
      return false;
  }

  return true;
}

bool EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
                                                       uint64_t Offset) const {
  // We don't have to keep looking past the maximum offset that's known to
  // contain an empty class.
  if (!AnyEmptySubobjectsBeyondOffset(Offset))
    return true;
  
  QualType T = FD->getType();
  if (const RecordType *RT = T->getAs<RecordType>()) {
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
  }

  // If we have an array type we need to look at every element.
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    QualType ElemTy = Context.getBaseElementType(AT);
    const RecordType *RT = ElemTy->getAs<RecordType>();
    if (!RT)
      return true;
  
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    uint64_t ElementOffset = Offset;
    for (uint64_t I = 0; I != NumElements; ++I) {
      // We don't have to keep looking past the maximum offset that's known to
      // contain an empty class.
      if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
        return true;
      
      if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
        return false;

      ElementOffset += Layout.getSize();
    }
  }

  return true;
}

bool
EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, uint64_t Offset) {
  if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
    return false;
  
  // We are able to place the member variable at this offset.
  // Make sure to update the empty base subobject map.
  UpdateEmptyFieldSubobjects(FD, Offset);
  return true;
}

void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 
                                                   const CXXRecordDecl *Class,
                                                   uint64_t Offset) {
  // We know that the only empty subobjects that can conflict with empty
  // field subobjects are subobjects of empty bases that can be placed at offset
  // zero. Because of this, we only need to keep track of empty field 
  // subobjects with offsets less than the size of the largest empty
  // subobject for our class.
  if (Offset >= SizeOfLargestEmptySubobject)
    return;

  AddSubobjectAtOffset(RD, Offset);

  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  // Traverse all non-virtual bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
       E = RD->bases_end(); I != E; ++I) {
    if (I->isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
  }

  if (RD == Class) {
    // This is the most derived class, traverse virtual bases as well.
    for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
         E = RD->vbases_end(); I != E; ++I) {
      const CXXRecordDecl *VBaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
      
      uint64_t VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
      UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
    }
  }
  
  // Traverse all member variables.
  unsigned FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
       I != E; ++I, ++FieldNo) {
    const FieldDecl *FD = *I;
    
    uint64_t FieldOffset = Offset + Layout.getFieldOffset(FieldNo);

    UpdateEmptyFieldSubobjects(FD, FieldOffset);
  }
}
  
void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
                                                   uint64_t Offset) {
  QualType T = FD->getType();
  if (const RecordType *RT = T->getAs<RecordType>()) {
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    UpdateEmptyFieldSubobjects(RD, RD, Offset);
    return;
  }

  // If we have an array type we need to update every element.
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    QualType ElemTy = Context.getBaseElementType(AT);
    const RecordType *RT = ElemTy->getAs<RecordType>();
    if (!RT)
      return;
    
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    
    uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    uint64_t ElementOffset = Offset;
    
    for (uint64_t I = 0; I != NumElements; ++I) {
      // We know that the only empty subobjects that can conflict with empty
      // field subobjects are subobjects of empty bases that can be placed at 
      // offset zero. Because of this, we only need to keep track of empty field
      // subobjects with offsets less than the size of the largest empty
      // subobject for our class.
      if (ElementOffset >= SizeOfLargestEmptySubobject)
        return;

      UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
      ElementOffset += Layout.getSize();
    }
  }
}

class RecordLayoutBuilder {
  // FIXME: Remove this and make the appropriate fields public.
  friend class clang::ASTContext;

  ASTContext &Context;

  EmptySubobjectMap *EmptySubobjects;

  /// Size - The current size of the record layout.
  uint64_t Size;

  /// Alignment - The current alignment of the record layout.
  unsigned Alignment;

  llvm::SmallVector<uint64_t, 16> FieldOffsets;

  /// Packed - Whether the record is packed or not.
  unsigned Packed : 1;

  unsigned IsUnion : 1;

  unsigned IsMac68kAlign : 1;

  /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
  /// this contains the number of bits in the last byte that can be used for
  /// an adjacent bitfield if necessary.
  unsigned char UnfilledBitsInLastByte;

  /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
  /// #pragma pack.
  unsigned MaxFieldAlignment;

  /// DataSize - The data size of the record being laid out.
  uint64_t DataSize;

  uint64_t NonVirtualSize;
  unsigned NonVirtualAlignment;

  /// PrimaryBase - the primary base class (if one exists) of the class
  /// we're laying out.
  const CXXRecordDecl *PrimaryBase;

  /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
  /// out is virtual.
  bool PrimaryBaseIsVirtual;

  typedef llvm::DenseMap<const CXXRecordDecl *, uint64_t> BaseOffsetsMapTy;

  /// Bases - base classes and their offsets in the record.
  BaseOffsetsMapTy Bases;

  // VBases - virtual base classes and their offsets in the record.
  BaseOffsetsMapTy VBases;

  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
  /// primary base classes for some other direct or indirect base class.
  llvm::SmallSet<const CXXRecordDecl*, 32> IndirectPrimaryBases;

  /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
  /// inheritance graph order. Used for determining the primary base class.
  const CXXRecordDecl *FirstNearlyEmptyVBase;

  /// VisitedVirtualBases - A set of all the visited virtual bases, used to
  /// avoid visiting virtual bases more than once.
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;

  RecordLayoutBuilder(ASTContext &Context, EmptySubobjectMap *EmptySubobjects)
    : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), Alignment(8),
      Packed(false), IsUnion(false), IsMac68kAlign(false),
      UnfilledBitsInLastByte(0), MaxFieldAlignment(0), DataSize(0),
      NonVirtualSize(0), NonVirtualAlignment(8), PrimaryBase(0),
      PrimaryBaseIsVirtual(false), FirstNearlyEmptyVBase(0) { }

  void Layout(const RecordDecl *D);
  void Layout(const CXXRecordDecl *D);
  void Layout(const ObjCInterfaceDecl *D);

  void LayoutFields(const RecordDecl *D);
  void LayoutField(const FieldDecl *D);
  void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize);
  void LayoutBitField(const FieldDecl *D);

  /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
  llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
  
  typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
    BaseSubobjectInfoMapTy;

  /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
  /// of the class we're laying out to their base subobject info.
  BaseSubobjectInfoMapTy VirtualBaseInfo;
  
  /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
  /// class we're laying out to their base subobject info.
  BaseSubobjectInfoMapTy NonVirtualBaseInfo;

  /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
  /// bases of the given class.
  void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);

  /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
  /// single class and all of its base classes.
  BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 
                                              bool IsVirtual,
                                              BaseSubobjectInfo *Derived);

  /// DeterminePrimaryBase - Determine the primary base of the given class.
  void DeterminePrimaryBase(const CXXRecordDecl *RD);

  void SelectPrimaryVBase(const CXXRecordDecl *RD);

  /// IdentifyPrimaryBases - Identify all virtual base classes, direct or
  /// indirect, that are primary base classes for some other direct or indirect
  /// base class.
  void IdentifyPrimaryBases(const CXXRecordDecl *RD);

  bool IsNearlyEmpty(const CXXRecordDecl *RD) const;

  /// LayoutNonVirtualBases - Determines the primary base class (if any) and
  /// lays it out. Will then proceed to lay out all non-virtual base clasess.
  void LayoutNonVirtualBases(const CXXRecordDecl *RD);

  /// LayoutNonVirtualBase - Lays out a single non-virtual base.
  void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);

  void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 
                                    uint64_t Offset);

  /// LayoutVirtualBases - Lays out all the virtual bases.
  void LayoutVirtualBases(const CXXRecordDecl *RD,
                          const CXXRecordDecl *MostDerivedClass);

  /// LayoutVirtualBase - Lays out a single virtual base.
  void LayoutVirtualBase(const BaseSubobjectInfo *Base);

  /// LayoutBase - Will lay out a base and return the offset where it was
  /// placed, in bits.
  uint64_t LayoutBase(const BaseSubobjectInfo *Base);

  /// InitializeLayout - Initialize record layout for the given record decl.
  void InitializeLayout(const Decl *D);

  /// FinishLayout - Finalize record layout. Adjust record size based on the
  /// alignment.
  void FinishLayout();

  void UpdateAlignment(unsigned NewAlignment);

  RecordLayoutBuilder(const RecordLayoutBuilder&);   // DO NOT IMPLEMENT
  void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
public:
  static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD);
};
} // end anonymous namespace

/// IsNearlyEmpty - Indicates when a class has a vtable pointer, but
/// no other data.
bool RecordLayoutBuilder::IsNearlyEmpty(const CXXRecordDecl *RD) const {
  // FIXME: Audit the corners
  if (!RD->isDynamicClass())
    return false;
  const ASTRecordLayout &BaseInfo = Context.getASTRecordLayout(RD);
  if (BaseInfo.getNonVirtualSize() == Context.Target.getPointerWidth(0))
    return true;
  return false;
}

void RecordLayoutBuilder::IdentifyPrimaryBases(const CXXRecordDecl *RD) {
  const ASTRecordLayout::PrimaryBaseInfo &BaseInfo =
    Context.getASTRecordLayout(RD).getPrimaryBaseInfo();

  // If the record has a primary base class that is virtual, add it to the set
  // of primary bases.
  if (BaseInfo.isVirtual())
    IndirectPrimaryBases.insert(BaseInfo.getBase());

  // Now traverse all bases and find primary bases for them.
  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
         e = RD->bases_end(); i != e; ++i) {
    assert(!i->getType()->isDependentType() &&
           "Cannot layout class with dependent bases.");
    const CXXRecordDecl *Base =
      cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());

    // Only bases with virtual bases participate in computing the
    // indirect primary virtual base classes.
    if (Base->getNumVBases())
      IdentifyPrimaryBases(Base);
  }
}

void
RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
         E = RD->bases_end(); I != E; ++I) {
    assert(!I->getType()->isDependentType() &&
           "Cannot layout class with dependent bases.");

    const CXXRecordDecl *Base =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    // Check if this is a nearly empty virtual base.
    if (I->isVirtual() && IsNearlyEmpty(Base)) {
      // If it's not an indirect primary base, then we've found our primary
      // base.
      if (!IndirectPrimaryBases.count(Base)) {
        PrimaryBase = Base;
        PrimaryBaseIsVirtual = true;
        return;
      }

      // Is this the first nearly empty virtual base?
      if (!FirstNearlyEmptyVBase)
        FirstNearlyEmptyVBase = Base;
    }

    SelectPrimaryVBase(Base);
    if (PrimaryBase)
      return;
  }
}

/// DeterminePrimaryBase - Determine the primary base of the given class.
void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
  // If the class isn't dynamic, it won't have a primary base.
  if (!RD->isDynamicClass())
    return;

  // Compute all the primary virtual bases for all of our direct and
  // indirect bases, and record all their primary virtual base classes.
  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
         e = RD->bases_end(); i != e; ++i) {
    assert(!i->getType()->isDependentType() &&
           "Cannot lay out class with dependent bases.");
    const CXXRecordDecl *Base =
      cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
    IdentifyPrimaryBases(Base);
  }

  // If the record has a dynamic base class, attempt to choose a primary base
  // class. It is the first (in direct base class order) non-virtual dynamic
  // base class, if one exists.
  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
         e = RD->bases_end(); i != e; ++i) {
    // Ignore virtual bases.
    if (i->isVirtual())
      continue;

    const CXXRecordDecl *Base =
      cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());

    if (Base->isDynamicClass()) {
      // We found it.
      PrimaryBase = Base;
      PrimaryBaseIsVirtual = false;
      return;
    }
  }

  // Otherwise, it is the first nearly empty virtual base that is not an
  // indirect primary virtual base class, if one exists.
  if (RD->getNumVBases() != 0) {
    SelectPrimaryVBase(RD);
    if (PrimaryBase)
      return;
  }

  // Otherwise, it is the first nearly empty virtual base that is not an
  // indirect primary virtual base class, if one exists.
  if (FirstNearlyEmptyVBase) {
    PrimaryBase = FirstNearlyEmptyVBase;
    PrimaryBaseIsVirtual = true;
    return;
  }

  // Otherwise there is no primary base class.
  assert(!PrimaryBase && "Should not get here with a primary base!");

  // Allocate the virtual table pointer at offset zero.
  assert(DataSize == 0 && "Vtable pointer must be at offset zero!");

  // Update the size.
  Size += Context.Target.getPointerWidth(0);
  DataSize = Size;

  // Update the alignment.
  UpdateAlignment(Context.Target.getPointerAlign(0));
}

BaseSubobjectInfo *
RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 
                                              bool IsVirtual,
                                              BaseSubobjectInfo *Derived) {
  BaseSubobjectInfo *Info;
  
  if (IsVirtual) {
    // Check if we already have info about this virtual base.
    BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
    if (InfoSlot) {
      assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
      return InfoSlot;
    }

    // We don't, create it.
    InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    Info = InfoSlot;
  } else {
    Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
  }
  
  Info->Class = RD;
  Info->IsVirtual = IsVirtual;
  Info->Derived = 0;
  Info->PrimaryVirtualBaseInfo = 0;
  
  const CXXRecordDecl *PrimaryVirtualBase = 0;
  BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;

  // Check if this base has a primary virtual base.
  if (RD->getNumVBases()) {
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    if (Layout.getPrimaryBaseWasVirtual()) {
      // This base does have a primary virtual base.
      PrimaryVirtualBase = Layout.getPrimaryBase();
      assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
      
      // Now check if we have base subobject info about this primary base.
      PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
      
      if (PrimaryVirtualBaseInfo) {
        if (PrimaryVirtualBaseInfo->Derived) {
          // We did have info about this primary base, and it turns out that it
          // has already been claimed as a primary virtual base for another
          // base. 
          PrimaryVirtualBase = 0;        
        } else {
          // We can claim this base as our primary base.
          Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
          PrimaryVirtualBaseInfo->Derived = Info;
        }
      }
    }
  }

  // Now go through all direct bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
       E = RD->bases_end(); I != E; ++I) {
    bool IsVirtual = I->isVirtual();
    
    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    
    Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
  }
  
  if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
    // Traversing the bases must have created the base info for our primary
    // virtual base.
    PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    assert(PrimaryVirtualBaseInfo &&
           "Did not create a primary virtual base!");
      
    // Claim the primary virtual base as our primary virtual base.
    Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    PrimaryVirtualBaseInfo->Derived = Info;
  }
  
  return Info;
}

void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
       E = RD->bases_end(); I != E; ++I) {
    bool IsVirtual = I->isVirtual();

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    
    // Compute the base subobject info for this base.
    BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);

    if (IsVirtual) {
      // ComputeBaseInfo has already added this base for us.
      assert(VirtualBaseInfo.count(BaseDecl) &&
             "Did not add virtual base!");
    } else {
      // Add the base info to the map of non-virtual bases.
      assert(!NonVirtualBaseInfo.count(BaseDecl) &&
             "Non-virtual base already exists!");
      NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
    }
  }
}

void
RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
  // Then, determine the primary base class.
  DeterminePrimaryBase(RD);

  // Compute base subobject info.
  ComputeBaseSubobjectInfo(RD);
  
  // If we have a primary base class, lay it out.
  if (PrimaryBase) {
    if (PrimaryBaseIsVirtual) {
      // If the primary virtual base was a primary virtual base of some other
      // base class we'll have to steal it.
      BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
      PrimaryBaseInfo->Derived = 0;
      
      // We have a virtual primary base, insert it as an indirect primary base.
      IndirectPrimaryBases.insert(PrimaryBase);

      assert(!VisitedVirtualBases.count(PrimaryBase) &&
             "vbase already visited!");
      VisitedVirtualBases.insert(PrimaryBase);

      LayoutVirtualBase(PrimaryBaseInfo);
    } else {
      BaseSubobjectInfo *PrimaryBaseInfo = 
        NonVirtualBaseInfo.lookup(PrimaryBase);
      assert(PrimaryBaseInfo && 
             "Did not find base info for non-virtual primary base!");

      LayoutNonVirtualBase(PrimaryBaseInfo);
    }
  }

  // Now lay out the non-virtual bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
         E = RD->bases_end(); I != E; ++I) {

    // Ignore virtual bases.
    if (I->isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    // Skip the primary base.
    if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
      continue;

    // Lay out the base.
    BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
    assert(BaseInfo && "Did not find base info for non-virtual base!");

    LayoutNonVirtualBase(BaseInfo);
  }
}

void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
  // Layout the base.
  uint64_t Offset = LayoutBase(Base);

  // Add its base class offset.
  assert(!Bases.count(Base->Class) && "base offset already exists!");
  Bases.insert(std::make_pair(Base->Class, Offset));

  AddPrimaryVirtualBaseOffsets(Base, Offset);
}

void
RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 
                                                  uint64_t Offset) {
  // This base isn't interesting, it has no virtual bases.
  if (!Info->Class->getNumVBases())
    return;
  
  // First, check if we have a virtual primary base to add offsets for.
  if (Info->PrimaryVirtualBaseInfo) {
    assert(Info->PrimaryVirtualBaseInfo->IsVirtual && 
           "Primary virtual base is not virtual!");
    if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
      // Add the offset.
      assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && 
             "primary vbase offset already exists!");
      VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
                                   Offset));

      // Traverse the primary virtual base.
      AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
    }
  }

  // Now go through all direct non-virtual bases.
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
  for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    const BaseSubobjectInfo *Base = Info->Bases[I];
    if (Base->IsVirtual)
      continue;

    uint64_t BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
  }
}

void
RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
                                        const CXXRecordDecl *MostDerivedClass) {
  const CXXRecordDecl *PrimaryBase;
  bool PrimaryBaseIsVirtual;

  if (MostDerivedClass == RD) {
    PrimaryBase = this->PrimaryBase;
    PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
  } else {
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    PrimaryBase = Layout.getPrimaryBase();
    PrimaryBaseIsVirtual = Layout.getPrimaryBaseWasVirtual();
  }

  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
         E = RD->bases_end(); I != E; ++I) {
    assert(!I->getType()->isDependentType() &&
           "Cannot layout class with dependent bases.");

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    if (I->isVirtual()) {
      if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
        bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);

        // Only lay out the virtual base if it's not an indirect primary base.
        if (!IndirectPrimaryBase) {
          // Only visit virtual bases once.
          if (!VisitedVirtualBases.insert(BaseDecl))
            continue;

          const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
          assert(BaseInfo && "Did not find virtual base info!");
          LayoutVirtualBase(BaseInfo);
        }
      }
    }

    if (!BaseDecl->getNumVBases()) {
      // This base isn't interesting since it doesn't have any virtual bases.
      continue;
    }

    LayoutVirtualBases(BaseDecl, MostDerivedClass);
  }
}

void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
  assert(!Base->Derived && "Trying to lay out a primary virtual base!");
  
  // Layout the base.
  uint64_t Offset = LayoutBase(Base);

  // Add its base class offset.
  assert(!VBases.count(Base->Class) && "vbase offset already exists!");
  VBases.insert(std::make_pair(Base->Class, Offset));
  
  AddPrimaryVirtualBaseOffsets(Base, Offset);
}

uint64_t RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);

  // If we have an empty base class, try to place it at offset 0.
  if (Base->Class->isEmpty() &&
      EmptySubobjects->CanPlaceBaseAtOffset(Base, 0)) {
    Size = std::max(Size, Layout.getSize());

    return 0;
  }

  unsigned BaseAlign = Layout.getNonVirtualAlign();

  // Round up the current record size to the base's alignment boundary.
  uint64_t Offset = llvm::RoundUpToAlignment(DataSize, BaseAlign);

  // Try to place the base.
  while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
    Offset += BaseAlign;

  if (!Base->Class->isEmpty()) {
    // Update the data size.
    DataSize = Offset + Layout.getNonVirtualSize();

    Size = std::max(Size, DataSize);
  } else
    Size = std::max(Size, Offset + Layout.getSize());

  // Remember max struct/class alignment.
  UpdateAlignment(BaseAlign);

  return Offset;
}

void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
  if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
    IsUnion = RD->isUnion();

  Packed = D->hasAttr<PackedAttr>();

  // mac68k alignment supersedes maximum field alignment and attribute aligned,
  // and forces all structures to have 2-byte alignment. The IBM docs on it
  // allude to additional (more complicated) semantics, especially with regard
  // to bit-fields, but gcc appears not to follow that.
  if (D->hasAttr<AlignMac68kAttr>()) {
    IsMac68kAlign = true;
    MaxFieldAlignment = 2 * 8;
    Alignment = 2 * 8;
  } else {
    if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
      MaxFieldAlignment = MFAA->getAlignment();

    if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
      UpdateAlignment(AA->getMaxAlignment());
  }
}

void RecordLayoutBuilder::Layout(const RecordDecl *D) {
  InitializeLayout(D);
  LayoutFields(D);

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  FinishLayout();
}

void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
  InitializeLayout(RD);

  // Lay out the vtable and the non-virtual bases.
  LayoutNonVirtualBases(RD);

  LayoutFields(RD);

  NonVirtualSize = Size;
  NonVirtualAlignment = Alignment;

  // Lay out the virtual bases and add the primary virtual base offsets.
  LayoutVirtualBases(RD, RD);

  VisitedVirtualBases.clear();

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  FinishLayout();

#ifndef NDEBUG
  // Check that we have base offsets for all bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
       E = RD->bases_end(); I != E; ++I) {
    if (I->isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    assert(Bases.count(BaseDecl) && "Did not find base offset!");
  }

  // And all virtual bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
       E = RD->vbases_end(); I != E; ++I) {
    const CXXRecordDecl *BaseDecl =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    assert(VBases.count(BaseDecl) && "Did not find base offset!");
  }
#endif
}

void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
    const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);

    UpdateAlignment(SL.getAlignment());

    // We start laying out ivars not at the end of the superclass
    // structure, but at the next byte following the last field.
    Size = llvm::RoundUpToAlignment(SL.getDataSize(), 8);
    DataSize = Size;
  }

  InitializeLayout(D);

  // Layout each ivar sequentially.
  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
  Context.ShallowCollectObjCIvars(D, Ivars);
  for (unsigned i = 0, e = Ivars.size(); i != e; ++i)
    LayoutField(Ivars[i]);

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  FinishLayout();
}

void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
  // Layout each field, for now, just sequentially, respecting alignment.  In
  // the future, this will need to be tweakable by targets.
  for (RecordDecl::field_iterator Field = D->field_begin(),
         FieldEnd = D->field_end(); Field != FieldEnd; ++Field)
    LayoutField(*Field);
}

void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
                                                uint64_t TypeSize) {
  assert(Context.getLangOptions().CPlusPlus &&
         "Can only have wide bit-fields in C++!");

  // Itanium C++ ABI 2.4:
  //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
  //   sizeof(T')*8 <= n.

  QualType IntegralPODTypes[] = {
    Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
    Context.UnsignedLongTy, Context.UnsignedLongLongTy
  };

  QualType Type;
  for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
       I != E; ++I) {
    uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);

    if (Size > FieldSize)
      break;

    Type = IntegralPODTypes[I];
  }
  assert(!Type.isNull() && "Did not find a type!");

  unsigned TypeAlign = Context.getTypeAlign(Type);

  // We're not going to use any of the unfilled bits in the last byte.
  UnfilledBitsInLastByte = 0;

  uint64_t FieldOffset;

  if (IsUnion) {
    DataSize = std::max(DataSize, FieldSize);
    FieldOffset = 0;
  } else {
    // The bitfield is allocated starting at the next offset aligned appropriately
    // for T', with length n bits.
    FieldOffset = llvm::RoundUpToAlignment(DataSize, TypeAlign);

    uint64_t NewSizeInBits = FieldOffset + FieldSize;

    DataSize = llvm::RoundUpToAlignment(NewSizeInBits, 8);
    UnfilledBitsInLastByte = DataSize - NewSizeInBits;
  }

  // Place this field at the current location.
  FieldOffsets.push_back(FieldOffset);

  // Update the size.
  Size = std::max(Size, DataSize);

  // Remember max struct/class alignment.
  UpdateAlignment(TypeAlign);
}

void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
  uint64_t FieldOffset = IsUnion ? 0 : (DataSize - UnfilledBitsInLastByte);
  uint64_t FieldSize = D->getBitWidth()->EvaluateAsInt(Context).getZExtValue();

  std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
  uint64_t TypeSize = FieldInfo.first;
  unsigned FieldAlign = FieldInfo.second;

  if (FieldSize > TypeSize) {
    LayoutWideBitField(FieldSize, TypeSize);
    return;
  }

  if (FieldPacked || !Context.Target.useBitFieldTypeAlignment())
    FieldAlign = 1;
  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
    FieldAlign = std::max(FieldAlign, AA->getMaxAlignment());

  // The maximum field alignment overrides the aligned attribute.
  if (MaxFieldAlignment)
    FieldAlign = std::min(FieldAlign, MaxFieldAlignment);

  // Check if we need to add padding to give the field the correct alignment.
  if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
    FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);

  // Padding members don't affect overall alignment.
  if (!D->getIdentifier())
    FieldAlign = 1;

  // Place this field at the current location.
  FieldOffsets.push_back(FieldOffset);

  // Update DataSize to include the last byte containing (part of) the bitfield.
  if (IsUnion) {
    // FIXME: I think FieldSize should be TypeSize here.
    DataSize = std::max(DataSize, FieldSize);
  } else {
    uint64_t NewSizeInBits = FieldOffset + FieldSize;

    DataSize = llvm::RoundUpToAlignment(NewSizeInBits, 8);
    UnfilledBitsInLastByte = DataSize - NewSizeInBits;
  }

  // Update the size.
  Size = std::max(Size, DataSize);

  // Remember max struct/class alignment.
  UpdateAlignment(FieldAlign);
}

void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
  if (D->isBitField()) {
    LayoutBitField(D);
    return;
  }

  // Reset the unfilled bits.
  UnfilledBitsInLastByte = 0;

  bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
  uint64_t FieldOffset = IsUnion ? 0 : DataSize;
  uint64_t FieldSize;
  unsigned FieldAlign;

  if (D->getType()->isIncompleteArrayType()) {
    // This is a flexible array member; we can't directly
    // query getTypeInfo about these, so we figure it out here.
    // Flexible array members don't have any size, but they
    // have to be aligned appropriately for their element type.
    FieldSize = 0;
    const ArrayType* ATy = Context.getAsArrayType(D->getType());
    FieldAlign = Context.getTypeAlign(ATy->getElementType());
  } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
    unsigned AS = RT->getPointeeType().getAddressSpace();
    FieldSize = Context.Target.getPointerWidth(AS);
    FieldAlign = Context.Target.getPointerAlign(AS);
  } else {
    std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
    FieldSize = FieldInfo.first;
    FieldAlign = FieldInfo.second;
  }

  if (FieldPacked)
    FieldAlign = 8;
  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
    FieldAlign = std::max(FieldAlign, AA->getMaxAlignment());

  // The maximum field alignment overrides the aligned attribute.
  if (MaxFieldAlignment)
    FieldAlign = std::min(FieldAlign, MaxFieldAlignment);

  // Round up the current record size to the field's alignment boundary.
  FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);

  if (!IsUnion && EmptySubobjects) {
    // Check if we can place the field at this offset.
    while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
      // We couldn't place the field at the offset. Try again at a new offset.
      FieldOffset += FieldAlign;
    }
  }

  // Place this field at the current location.
  FieldOffsets.push_back(FieldOffset);

  // Reserve space for this field.
  if (IsUnion)
    Size = std::max(Size, FieldSize);
  else
    Size = FieldOffset + FieldSize;

  // Update the data size.
  DataSize = Size;

  // Remember max struct/class alignment.
  UpdateAlignment(FieldAlign);
}

void RecordLayoutBuilder::FinishLayout() {
  // In C++, records cannot be of size 0.
  if (Context.getLangOptions().CPlusPlus && Size == 0)
    Size = 8;
  // Finally, round the size of the record up to the alignment of the
  // record itself.
  Size = llvm::RoundUpToAlignment(Size, Alignment);
}

void RecordLayoutBuilder::UpdateAlignment(unsigned NewAlignment) {
  // The alignment is not modified when using 'mac68k' alignment.
  if (IsMac68kAlign)
    return;

  if (NewAlignment <= Alignment)
    return;

  assert(llvm::isPowerOf2_32(NewAlignment && "Alignment not a power of 2"));

  Alignment = NewAlignment;
}

const CXXMethodDecl *
RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
  // If a class isn't polymorphic it doesn't have a key function.
  if (!RD->isPolymorphic())
    return 0;

  // A class inside an anonymous namespace doesn't have a key function.  (Or
  // at least, there's no point to assigning a key function to such a class;
  // this doesn't affect the ABI.)
  if (RD->isInAnonymousNamespace())
    return 0;

  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
         E = RD->method_end(); I != E; ++I) {
    const CXXMethodDecl *MD = *I;

    if (!MD->isVirtual())
      continue;

    if (MD->isPure())
      continue;

    // Ignore implicit member functions, they are always marked as inline, but
    // they don't have a body until they're defined.
    if (MD->isImplicit())
      continue;

    if (MD->isInlineSpecified())
      continue;

    if (MD->hasInlineBody())
      continue;

    // We found it.
    return MD;
  }

  return 0;
}

/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
  D = D->getDefinition();
  assert(D && "Cannot get layout of forward declarations!");

  // Look up this layout, if already laid out, return what we have.
  // Note that we can't save a reference to the entry because this function
  // is recursive.
  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
  if (Entry) return *Entry;

  const ASTRecordLayout *NewEntry;

  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    EmptySubobjectMap EmptySubobjects(*this, RD);

    RecordLayoutBuilder Builder(*this, &EmptySubobjects);
    Builder.Layout(RD);

    // FIXME: This is not always correct. See the part about bitfields at
    // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
    // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
    bool IsPODForThePurposeOfLayout = cast<CXXRecordDecl>(D)->isPOD();

    // FIXME: This should be done in FinalizeLayout.
    uint64_t DataSize =
      IsPODForThePurposeOfLayout ? Builder.Size : Builder.DataSize;
    uint64_t NonVirtualSize =
      IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;

    NewEntry =
      new (*this) ASTRecordLayout(*this, Builder.Size, Builder.Alignment,
                                  DataSize, Builder.FieldOffsets.data(),
                                  Builder.FieldOffsets.size(),
                                  NonVirtualSize,
                                  Builder.NonVirtualAlignment,
                                  EmptySubobjects.SizeOfLargestEmptySubobject,
                                  Builder.PrimaryBase,
                                  Builder.PrimaryBaseIsVirtual,
                                  Builder.Bases, Builder.VBases);
  } else {
    RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
    Builder.Layout(D);

    NewEntry =
      new (*this) ASTRecordLayout(*this, Builder.Size, Builder.Alignment,
                                  Builder.Size,
                                  Builder.FieldOffsets.data(),
                                  Builder.FieldOffsets.size());
  }

  ASTRecordLayouts[D] = NewEntry;

  if (getLangOptions().DumpRecordLayouts) {
    llvm::errs() << "\n*** Dumping AST Record Layout\n";
    DumpRecordLayout(D, llvm::errs());
  }

  return *NewEntry;
}

const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
  RD = cast<CXXRecordDecl>(RD->getDefinition());
  assert(RD && "Cannot get key function for forward declarations!");

  const CXXMethodDecl *&Entry = KeyFunctions[RD];
  if (!Entry)
    Entry = RecordLayoutBuilder::ComputeKeyFunction(RD);
  else
    assert(Entry == RecordLayoutBuilder::ComputeKeyFunction(RD) &&
           "Key function changed!");

  return Entry;
}

/// getInterfaceLayoutImpl - Get or compute information about the
/// layout of the given interface.
///
/// \param Impl - If given, also include the layout of the interface's
/// implementation. This may differ by including synthesized ivars.
const ASTRecordLayout &
ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
                          const ObjCImplementationDecl *Impl) {
  assert(!D->isForwardDecl() && "Invalid interface decl!");

  // Look up this layout, if already laid out, return what we have.
  ObjCContainerDecl *Key =
    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
    return *Entry;

  // Add in synthesized ivar count if laying out an implementation.
  if (Impl) {
    unsigned SynthCount = CountNonClassIvars(D);
    // If there aren't any sythesized ivars then reuse the interface
    // entry. Note we can't cache this because we simply free all
    // entries later; however we shouldn't look up implementations
    // frequently.
    if (SynthCount == 0)
      return getObjCLayout(D, 0);
  }

  RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
  Builder.Layout(D);

  const ASTRecordLayout *NewEntry =
    new (*this) ASTRecordLayout(*this, Builder.Size, Builder.Alignment,
                                Builder.DataSize,
                                Builder.FieldOffsets.data(),
                                Builder.FieldOffsets.size());

  ObjCLayouts[Key] = NewEntry;

  return *NewEntry;
}

static void PrintOffset(llvm::raw_ostream &OS,
                        uint64_t Offset, unsigned IndentLevel) {
  OS << llvm::format("%4d | ", Offset);
  OS.indent(IndentLevel * 2);
}

static void DumpCXXRecordLayout(llvm::raw_ostream &OS,
                                const CXXRecordDecl *RD, ASTContext &C,
                                uint64_t Offset,
                                unsigned IndentLevel,
                                const char* Description,
                                bool IncludeVirtualBases) {
  const ASTRecordLayout &Info = C.getASTRecordLayout(RD);

  PrintOffset(OS, Offset, IndentLevel);
  OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
  if (Description)
    OS << ' ' << Description;
  if (RD->isEmpty())
    OS << " (empty)";
  OS << '\n';

  IndentLevel++;

  const CXXRecordDecl *PrimaryBase = Info.getPrimaryBase();

  // Vtable pointer.
  if (RD->isDynamicClass() && !PrimaryBase) {
    PrintOffset(OS, Offset, IndentLevel);
    OS << '(' << RD << " vtable pointer)\n";
  }
  // Dump (non-virtual) bases
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
         E = RD->bases_end(); I != E; ++I) {
    assert(!I->getType()->isDependentType() &&
           "Cannot layout class with dependent bases.");
    if (I->isVirtual())
      continue;

    const CXXRecordDecl *Base =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    uint64_t BaseOffset = Offset + Info.getBaseClassOffset(Base) / 8;

    DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
                        Base == PrimaryBase ? "(primary base)" : "(base)",
                        /*IncludeVirtualBases=*/false);
  }

  // Dump fields.
  uint64_t FieldNo = 0;
  for (CXXRecordDecl::field_iterator I = RD->field_begin(),
         E = RD->field_end(); I != E; ++I, ++FieldNo) {
    const FieldDecl *Field = *I;
    uint64_t FieldOffset = Offset + Info.getFieldOffset(FieldNo) / 8;

    if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
      if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
        DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
                            Field->getNameAsCString(),
                            /*IncludeVirtualBases=*/true);
        continue;
      }
    }

    PrintOffset(OS, FieldOffset, IndentLevel);
    OS << Field->getType().getAsString() << ' ' << Field << '\n';
  }

  if (!IncludeVirtualBases)
    return;

  // Dump virtual bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
         E = RD->vbases_end(); I != E; ++I) {
    assert(I->isVirtual() && "Found non-virtual class!");
    const CXXRecordDecl *VBase =
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    uint64_t VBaseOffset = Offset + Info.getVBaseClassOffset(VBase) / 8;
    DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
                        VBase == PrimaryBase ?
                        "(primary virtual base)" : "(virtual base)",
                        /*IncludeVirtualBases=*/false);
  }

  OS << "  sizeof=" << Info.getSize() / 8;
  OS << ", dsize=" << Info.getDataSize() / 8;
  OS << ", align=" << Info.getAlignment() / 8 << '\n';
  OS << "  nvsize=" << Info.getNonVirtualSize() / 8;
  OS << ", nvalign=" << Info.getNonVirtualAlign() / 8 << '\n';
  OS << '\n';
}

void ASTContext::DumpRecordLayout(const RecordDecl *RD,
                                  llvm::raw_ostream &OS) {
  const ASTRecordLayout &Info = getASTRecordLayout(RD);

  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    return DumpCXXRecordLayout(OS, CXXRD, *this, 0, 0, 0,
                               /*IncludeVirtualBases=*/true);

  OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
  OS << "Record: ";
  RD->dump();
  OS << "\nLayout: ";
  OS << "<ASTRecordLayout\n";
  OS << "  Size:" << Info.getSize() << "\n";
  OS << "  DataSize:" << Info.getDataSize() << "\n";
  OS << "  Alignment:" << Info.getAlignment() << "\n";
  OS << "  FieldOffsets: [";
  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
    if (i) OS << ", ";
    OS << Info.getFieldOffset(i);
  }
  OS << "]>\n";
}
OpenPOWER on IntegriCloud