summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Mips/Mips64InstrInfo.td
blob: 49b0223643bbb2f60be1317fd11d0dade6cd10e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//

// Instruction operand types
def shamt_64       : Operand<i64>;

// Unsigned Operand
def uimm16_64      : Operand<i64> {
  let PrintMethod = "printUnsignedImm";
}

// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
  return getI32Imm((unsigned)N->getZExtValue() - 32);
}]>;

// imm32_63 predicate - True if imm is in range [32, 63].
def imm32_63 : ImmLeaf<i64,
                       [{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
                       Subtract32>;

//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Shifts
class LogicR_shift_rotate_imm64<bits<6> func, bits<5> _rs, string instr_asm,
                                SDNode OpNode, PatFrag PF>:
  FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, shamt_64:$c),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, (i64 PF:$c)))],
     IIAlu> {
  let rs = _rs;
}

class LogicR_shift_rotate_reg64<bits<6> func, bits<5> _shamt, string instr_asm,
                                SDNode OpNode>:
  FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$c, CPU64Regs:$b),
     !strconcat(instr_asm, "\t$dst, $b, $c"),
     [(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], IIAlu> {
  let shamt = _shamt;
}

// Mul, Div
let Defs = [HI64, LO64] in {
  let isCommutable = 1 in
  class Mul64<bits<6> func, string instr_asm, InstrItinClass itin>:
    FR<0x00, func, (outs), (ins CPU64Regs:$a, CPU64Regs:$b),
       !strconcat(instr_asm, "\t$a, $b"), [], itin>;

  class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
              FR<0x00, func, (outs), (ins CPU64Regs:$a, CPU64Regs:$b),
              !strconcat(instr_asm, "\t$$zero, $a, $b"),
              [(op CPU64Regs:$a, CPU64Regs:$b)], itin>;
}

// Move from Hi/Lo
let shamt = 0 in {
let rs = 0, rt = 0 in
class MoveFromLOHI64<bits<6> func, string instr_asm>:
  FR<0x00, func, (outs CPU64Regs:$dst), (ins),
     !strconcat(instr_asm, "\t$dst"), [], IIHiLo>;

let rt = 0, rd = 0 in
class MoveToLOHI64<bits<6> func, string instr_asm>:
  FR<0x00, func, (outs), (ins CPU64Regs:$src),
     !strconcat(instr_asm, "\t$src"), [], IIHiLo>;
}

// Count Leading Ones/Zeros in Word
class CountLeading64<bits<6> func, string instr_asm, list<dag> pattern>:
  FR<0x1c, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$src),
     !strconcat(instr_asm, "\t$dst, $src"), pattern, IIAlu>,
     Requires<[HasBitCount]> {
  let shamt = 0;
  let rt = rd;
}

//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//

/// Arithmetic Instructions (ALU Immediate)
def DADDiu   : ArithLogicI<0x19, "daddiu", add, simm16_64, immSExt16,
                           CPU64Regs>;
def DANDi    : ArithLogicI<0x0c, "andi", and, uimm16_64, immZExt16, CPU64Regs>;
def SLTi64   : SetCC_I<0x0a, "slti", setlt, simm16_64, immSExt16, CPU64Regs>;
def SLTiu64  : SetCC_I<0x0b, "sltiu", setult, simm16_64, immSExt16, CPU64Regs>;
def ORi64    : ArithLogicI<0x0d, "ori", or, uimm16_64, immZExt16, CPU64Regs>;
def XORi64   : ArithLogicI<0x0e, "xori", xor, uimm16_64, immZExt16, CPU64Regs>;

/// Arithmetic Instructions (3-Operand, R-Type)
def DADDu    : ArithLogicR<0x00, 0x2d, "daddu", add, IIAlu, CPU64Regs, 1>;
def DSUBu    : ArithLogicR<0x00, 0x2f, "dsubu", sub, IIAlu, CPU64Regs>;
def SLT64    : SetCC_R<0x00, 0x2a, "slt", setlt, CPU64Regs>;
def SLTu64   : SetCC_R<0x00, 0x2b, "sltu", setult, CPU64Regs>;
def AND64    : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPU64Regs, 1>;
def OR64     : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPU64Regs, 1>;
def XOR64    : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPU64Regs, 1>;
def NOR64    : LogicNOR<0x00, 0x27, "nor", CPU64Regs>;

/// Shift Instructions
def DSLL     : LogicR_shift_rotate_imm64<0x38, 0x00, "dsll", shl, immZExt5>;
def DSRL     : LogicR_shift_rotate_imm64<0x3a, 0x00, "dsrl", srl, immZExt5>;
def DSRA     : LogicR_shift_rotate_imm64<0x3b, 0x00, "dsra", sra, immZExt5>;
def DSLL32   : LogicR_shift_rotate_imm64<0x3c, 0x00, "dsll32", shl, imm32_63>;
def DSRL32   : LogicR_shift_rotate_imm64<0x3e, 0x00, "dsrl32", srl, imm32_63>;
def DSRA32   : LogicR_shift_rotate_imm64<0x3f, 0x00, "dsra32", sra, imm32_63>;
def DSLLV    : LogicR_shift_rotate_reg64<0x24, 0x00, "dsllv", shl>;
def DSRLV    : LogicR_shift_rotate_reg64<0x26, 0x00, "dsrlv", srl>;
def DSRAV    : LogicR_shift_rotate_reg64<0x27, 0x00, "dsrav", sra>;

// Rotate Instructions
let Predicates = [HasMips64r2] in {
  def DROTR    : LogicR_shift_rotate_imm64<0x3a, 0x01, "drotr", rotr, immZExt5>;
  def DROTR32  : LogicR_shift_rotate_imm64<0x3e, 0x01, "drotr32", rotr,
                                           imm32_63>;
  def DROTRV   : LogicR_shift_rotate_reg64<0x16, 0x01, "drotrv", rotr>;
}

/// Load and Store Instructions
///  aligned 
defm LB64    : LoadM64<0x20, "lb",  sextloadi8>;
defm LBu64   : LoadM64<0x24, "lbu", zextloadi8>;
defm LH64    : LoadM64<0x21, "lh",  sextloadi16_a>;
defm LHu64   : LoadM64<0x25, "lhu", zextloadi16_a>;
defm LW64    : LoadM64<0x23, "lw",  sextloadi32_a>;
defm LWu64   : LoadM64<0x27, "lwu", zextloadi32_a>;
defm SB64    : StoreM64<0x28, "sb", truncstorei8>;
defm SH64    : StoreM64<0x29, "sh", truncstorei16_a>;
defm SW64    : StoreM64<0x2b, "sw", truncstorei32_a>;
defm LD      : LoadM64<0x37, "ld",  load_a>;
defm SD      : StoreM64<0x3f, "sd", store_a>;

///  unaligned
defm ULH64     : LoadM64<0x21, "ulh",  sextloadi16_u, 1>;
defm ULHu64    : LoadM64<0x25, "ulhu", zextloadi16_u, 1>;
defm ULW64     : LoadM64<0x23, "ulw",  sextloadi32_u, 1>;
defm USH64     : StoreM64<0x29, "ush", truncstorei16_u, 1>;
defm USW64     : StoreM64<0x2b, "usw", truncstorei32_u, 1>;
defm ULD       : LoadM64<0x37, "uld",  load_u, 1>;
defm USD       : StoreM64<0x3f, "usd", store_u, 1>;

/// Jump and Branch Instructions
def BEQ64  : CBranch<0x04, "beq", seteq, CPU64Regs>;
def BNE64  : CBranch<0x05, "bne", setne, CPU64Regs>;
def BGEZ64 : CBranchZero<0x01, 1, "bgez", setge, CPU64Regs>;
def BGTZ64 : CBranchZero<0x07, 0, "bgtz", setgt, CPU64Regs>;
def BLEZ64 : CBranchZero<0x07, 0, "blez", setle, CPU64Regs>;
def BLTZ64 : CBranchZero<0x01, 0, "bltz", setlt, CPU64Regs>;

/// Multiply and Divide Instructions.
def DMULT    : Mul64<0x1c, "dmult", IIImul>;
def DMULTu   : Mul64<0x1d, "dmultu", IIImul>;
def DSDIV    : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
def DUDIV    : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;

let Defs = [HI64] in
  def MTHI64  : MoveToLOHI64<0x11, "mthi">;
let Defs = [LO64] in
  def MTLO64  : MoveToLOHI64<0x13, "mtlo">;

let Uses = [HI64] in
  def MFHI64  : MoveFromLOHI64<0x10, "mfhi">;
let Uses = [LO64] in
  def MFLO64  : MoveFromLOHI64<0x12, "mflo">;

/// Count Leading
def DCLZ : CountLeading64<0x24, "dclz",
                          [(set CPU64Regs:$dst, (ctlz CPU64Regs:$src))]>;
def DCLO : CountLeading64<0x25, "dclo",
                          [(set CPU64Regs:$dst, (ctlz (not CPU64Regs:$src)))]>;

//===----------------------------------------------------------------------===//
//  Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//

// Small immediates
def : Pat<(i64 immSExt16:$in),
          (DADDiu ZERO_64, imm:$in)>;
def : Pat<(i64 immZExt16:$in),
          (ORi64 ZERO_64, imm:$in)>;

// zextloadi32_u
def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64_P8 addr:$a), 32), 32)>,
      Requires<[IsN64]>;
def : Pat<(zextloadi32_u addr:$a), (DSRL (DSLL (ULW64 addr:$a), 32), 32)>,
      Requires<[NotN64]>;

// hi/lo relocs
def : Pat<(i64 (MipsLo tglobaladdr:$in)), (DADDiu ZERO_64, tglobaladdr:$in)>;

defm : BrcondPats<CPU64Regs, BEQ64, BNE64, SLT64, SLTu64, SLTi64, SLTiu64,
                  ZERO_64>;

// setcc patterns
defm : SeteqPats<CPU64Regs, SLTiu64, XOR64, SLTu64, ZERO_64>;
defm : SetlePats<CPU64Regs, SLT64, SLTu64>;
defm : SetgtPats<CPU64Regs, SLT64, SLTu64>;
defm : SetgePats<CPU64Regs, SLT64, SLTu64>;
defm : SetgeImmPats<CPU64Regs, SLTi64, SLTiu64>;
OpenPOWER on IntegriCloud