summaryrefslogtreecommitdiffstats
path: root/contrib/libstdc++/include/bits/stl_multimap.h
blob: 5947d7537a67154cd3339841f7d04f9843f3fd0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// Multimap implementation -*- C++ -*-

// Copyright (C) 2001 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_multimap.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef __GLIBCPP_INTERNAL_MULTIMAP_H
#define __GLIBCPP_INTERNAL_MULTIMAP_H

#include <bits/concept_check.h>

namespace std
{
// Forward declaration of operators < and ==, needed for friend declaration.
template <class _Key, class _Tp,
          class _Compare = less<_Key>,
          class _Alloc = allocator<pair<const _Key, _Tp> > >
class multimap;

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
                       const multimap<_Key,_Tp,_Compare,_Alloc>& __y);

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
                      const multimap<_Key,_Tp,_Compare,_Alloc>& __y);

/**
 *  @brief A standard container made up of pairs (see std::pair in <utility>)
 *         which can be retrieved based on a key.
 *
 *  This is an associative container.  Values contained within it can be
 *  quickly retrieved through a key element. In contrast with a map a
 *  multimap can have multiple duplicate keys.
*/
template <class _Key, class _Tp, class _Compare, class _Alloc>
class multimap
{
  // concept requirements
  __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
  __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept);

public:

// typedefs:

  typedef _Key                  key_type;
  typedef _Tp                   data_type;
  typedef _Tp                   mapped_type;
  typedef pair<const _Key, _Tp> value_type;
  typedef _Compare              key_compare;

  class value_compare : public binary_function<value_type, value_type, bool> {
  friend class multimap<_Key,_Tp,_Compare,_Alloc>;
  protected:
    _Compare comp;
    value_compare(_Compare __c) : comp(__c) {}
  public:
    bool operator()(const value_type& __x, const value_type& __y) const {
      return comp(__x.first, __y.first);
    }
  };

private:
  typedef _Rb_tree<key_type, value_type,
                  _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
  _Rep_type _M_t;  // red-black tree representing multimap
public:
  typedef typename _Rep_type::pointer pointer;
  typedef typename _Rep_type::const_pointer const_pointer;
  typedef typename _Rep_type::reference reference;
  typedef typename _Rep_type::const_reference const_reference;
  typedef typename _Rep_type::iterator iterator;
  typedef typename _Rep_type::const_iterator const_iterator; 
  typedef typename _Rep_type::reverse_iterator reverse_iterator;
  typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
  typedef typename _Rep_type::size_type size_type;
  typedef typename _Rep_type::difference_type difference_type;
  typedef typename _Rep_type::allocator_type allocator_type;

// allocation/deallocation

  multimap() : _M_t(_Compare(), allocator_type()) { }
  explicit multimap(const _Compare& __comp,
                    const allocator_type& __a = allocator_type())
    : _M_t(__comp, __a) { }

  template <class _InputIterator>
  multimap(_InputIterator __first, _InputIterator __last)
    : _M_t(_Compare(), allocator_type())
    { _M_t.insert_equal(__first, __last); }

  template <class _InputIterator>
  multimap(_InputIterator __first, _InputIterator __last,
           const _Compare& __comp,
           const allocator_type& __a = allocator_type())
    : _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
  multimap(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) { }

  multimap<_Key,_Tp,_Compare,_Alloc>&
  operator=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) {
    _M_t = __x._M_t;
    return *this; 
  }

  // accessors:

  key_compare key_comp() const { return _M_t.key_comp(); }
  value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
  allocator_type get_allocator() const { return _M_t.get_allocator(); }

  /**
   *  Returns a read/write iterator that points to the first pair in the
   *  multimap.  Iteration is done in ascending order according to the keys.
  */
  iterator begin() { return _M_t.begin(); }

  /**
   *  Returns a read-only (constant) iterator that points to the first pair
   *  in the multimap.  Iteration is done in ascending order according to the
   *  keys.
  */
  const_iterator begin() const { return _M_t.begin(); }

  /**
   *  Returns a read/write iterator that points one past the last pair in the
   *  multimap.  Iteration is done in ascending order according to the keys.
  */
  iterator end() { return _M_t.end(); }

  /**
   *  Returns a read-only (constant) iterator that points one past the last
   *  pair in the multimap.  Iteration is done in ascending order according
   *  to the keys.
  */
  const_iterator end() const { return _M_t.end(); }

  /**
   *  Returns a read/write reverse iterator that points to the last pair in
   *  the multimap.  Iteration is done in descending order according to the
   *  keys.
  */
  reverse_iterator rbegin() { return _M_t.rbegin(); }

  /**
   *  Returns a read-only (constant) reverse iterator that points to the last
   *  pair in the multimap.  Iteration is done in descending order according
   *  to the keys.
  */
  const_reverse_iterator rbegin() const { return _M_t.rbegin(); }

  /**
   *  Returns a read/write reverse iterator that points to one before the
   *  first pair in the multimap.  Iteration is done in descending order
   *  according to the keys.
  */
  reverse_iterator rend() { return _M_t.rend(); }

  /**
   *  Returns a read-only (constant) reverse iterator that points to one
   *  before the first pair in the multimap.  Iteration is done in descending
   *  order according to the keys.
  */
  const_reverse_iterator rend() const { return _M_t.rend(); }

  /** Returns true if the map is empty.  (Thus begin() would equal end().)  */
  bool empty() const { return _M_t.empty(); }

  /** Returns the size of the map.  */
  size_type size() const { return _M_t.size(); }

  /** Returns the maximum size of the map.  */
  size_type max_size() const { return _M_t.max_size(); }

  void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }

  // insert/erase
  /**
   *  @brief Inserts a std::pair into the multimap.
   *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
   *             pairs).
   *  @return An iterator that points to the inserted (key,value) pair.
   *
   *  This function inserts a (key, value) pair into the multimap.  Contrary
   *  to a std::map the multimap does not rely on unique keys and thus a
   *  multiple pairs with the same key can be inserted.
  */
  iterator insert(const value_type& __x) { return _M_t.insert_equal(__x); }

  /**
   *  @brief Inserts a std::pair into the multimap.
   *  @param  position  An iterator that serves as a hint as to where the
   *                    pair should be inserted.
   *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
   *             pairs).
   *  @return An iterator that points to the inserted (key,value) pair.
   *
   *  This function inserts a (key, value) pair into the multimap.  Contrary
   *  to a std::map the multimap does not rely on unique keys and thus a
   *  multiple pairs with the same key can be inserted.
   *  Note that the first parameter is only a hint and can potentially
   *  improve the performance of the insertion process.  A bad hint would
   *  cause no gains in efficiency.
  */
  iterator insert(iterator __position, const value_type& __x) {
    return _M_t.insert_equal(__position, __x);
  }

  /**
   *  @brief A template function that attemps to insert elements from
   *         another range (possibly another multimap or standard container).
   *  @param  first  Iterator pointing to the start of the range to be
   *                 inserted.
   *  @param  last  Iterator pointing to the end of the range to be inserted.
  */
  template <class _InputIterator>
  void insert(_InputIterator __first, _InputIterator __last) {
    _M_t.insert_equal(__first, __last);
  }

  /**
   *  @brief Erases an element from a multimap.
   *  @param  position  An iterator pointing to the element to be erased.
   *
   *  This function erases an element, pointed to by the given iterator, from
   *  a mutlimap.  Note that this function only erases the element, and that
   *  if the element is itself a pointer, the pointed-to memory is not
   *  touched in any way.  Managing the pointer is the user's responsibilty.
  */
  void erase(iterator __position) { _M_t.erase(__position); }

  /**
   *  @brief Erases an element according to the provided key.
   *  @param  x  Key of element to be erased.
   *  @return  Doc me! (Number of elements erased?)
   *
   *  This function erases all elements, located by the given key, from a
   *  multimap.
   *  Note that this function only erases the element, and that if
   *  the element is itself a pointer, the pointed-to memory is not touched
   *  in any way.  Managing the pointer is the user's responsibilty.
  */
  size_type erase(const key_type& __x) { return _M_t.erase(__x); }

  /**
   *  @brief Erases a [first,last) range of elements from a multimap.
   *  @param  first  Iterator pointing to the start of the range to be erased.
   *  @param  last  Iterator pointing to the end of the range to be erased.
   *
   *  This function erases a sequence of elements from a multimap.
   *  Note that this function only erases the elements, and that if
   *  the elements themselves are pointers, the pointed-to memory is not
   *  touched in any way.  Managing the pointer is the user's responsibilty.
  */
  void erase(iterator __first, iterator __last)
    { _M_t.erase(__first, __last); }

  /** Erases all elements in a multimap.  Note that this function only erases
   *  the elements, and that if the elements themselves are pointers, the
   *  pointed-to memory is not touched in any way.  Managing the pointer is
   *  the user's responsibilty.
  */
  void clear() { _M_t.clear(); }

  // multimap operations:

  /**
   *  @brief Tries to locate an element in a multimap.
   *  @param  x  Key of (key, value) pair to be located.
   *  @return  Iterator pointing to sought-after (first matching?) element,
   *           or end() if not found.
   *
   *  This function takes a key and tries to locate the element with which
   *  the key matches.  If successful the function returns an iterator
   *  pointing to the sought after pair. If unsuccessful it returns the
   *  one past the end ( end() ) iterator.
  */
  iterator find(const key_type& __x) { return _M_t.find(__x); }

  /**
   *  @brief Tries to locate an element in a multimap.
   *  @param  x  Key of (key, value) pair to be located.
   *  @return  Read-only (constant) iterator pointing to sought-after (first
   *           matching?) element, or end() if not found.
   *
   *  This function takes a key and tries to locate the element with which
   *  the key matches.  If successful the function returns a constant iterator
   *  pointing to the sought after pair. If unsuccessful it returns the
   *  one past the end ( end() ) iterator.
  */
  const_iterator find(const key_type& __x) const { return _M_t.find(__x); }

  /**
   *  @brief Finds the number of elements with given key.
   *  @param  x  Key of (key, value) pairs to be located.
   *  @return Number of elements with specified key.
  */
  size_type count(const key_type& __x) const { return _M_t.count(__x); }

  /**
   *  @brief Finds the beginning of a subsequence matching given key.
   *  @param  x  Key of (key, value) pair to be located.
   *  @return  Iterator pointing to first element matching given key, or
   *           end() if not found.
   *
   *  This function returns the first element of a subsequence of elements
   *  that matches the given key.  If unsuccessful it returns an iterator
   *  pointing to the first element that has a greater value than given key
   *  or end() if no such element exists.
  */
  iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }

  /**
   *  @brief Finds the beginning of a subsequence matching given key.
   *  @param  x  Key of (key, value) pair to be located.
   *  @return  Read-only (constant) iterator pointing to first element
   *           matching given key, or end() if not found.
   *
   *  This function returns the first element of a subsequence of elements
   *  that matches the given key.  If unsuccessful the iterator will point
   *  to the next greatest element or, if no such greater element exists, to
   *  end().
  */
  const_iterator lower_bound(const key_type& __x) const {
    return _M_t.lower_bound(__x);
  }

  /**
   *  @brief Finds the end of a subsequence matching given key.
   *  @param  x  Key of (key, value) pair to be located.
   *  @return Iterator pointing to last element matching given key.
  */
  iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }

  /**
   *  @brief Finds the end of a subsequence matching given key.
   *  @param  x  Key of (key, value) pair to be located.
   *  @return  Read-only (constant) iterator pointing to last element matching
   *           given key.
  */
  const_iterator upper_bound(const key_type& __x) const {
    return _M_t.upper_bound(__x);
  }

  /**
   *  @brief Finds a subsequence matching given key.
   *  @param  x  Key of (key, value) pairs to be located.
   *  @return  Pair of iterators that possibly points to the subsequence
   *           matching given key.
   *
   *  This function improves on lower_bound() and upper_bound() by giving a more
   *  elegant and efficient solution.  It returns a pair of which the first
   *  element possibly points to the first element matching the given key
   *  and the second element possibly points to the last element matching the
   *  given key.  If unsuccessful the first element of the returned pair will
   *  contain an iterator pointing to the next greatest element or, if no such
   *  greater element exists, to end().
  */
  pair<iterator,iterator> equal_range(const key_type& __x) {
    return _M_t.equal_range(__x);
  }

  /**
   *  @brief Finds a subsequence matching given key.
   *  @param  x  Key of (key, value) pairs to be located.
   *  @return  Pair of read-only (constant) iterators that possibly points to
   *           the subsequence matching given key.
   *
   *  This function improves on lower_bound() and upper_bound() by giving a more
   *  elegant and efficient solution.  It returns a pair of which the first
   *  element possibly points to the first element matching the given key
   *  and the second element possibly points to the last element matching the
   *  given key.  If unsuccessful the first element of the returned pair will
   *  contain an iterator pointing to the next greatest element or, if no such
   *  a greater element exists, to end().
  */
  pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
    return _M_t.equal_range(__x);
  }

  template <class _K1, class _T1, class _C1, class _A1>
  friend bool operator== (const multimap<_K1, _T1, _C1, _A1>&,
                          const multimap<_K1, _T1, _C1, _A1>&);
  template <class _K1, class _T1, class _C1, class _A1>
  friend bool operator< (const multimap<_K1, _T1, _C1, _A1>&,
                         const multimap<_K1, _T1, _C1, _A1>&);
};

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
                       const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
  return __x._M_t == __y._M_t;
}

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, 
                      const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
  return __x._M_t < __y._M_t;
}

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, 
                       const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
  return !(__x == __y);
}

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, 
                      const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
  return __y < __x;
}

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, 
                       const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
  return !(__y < __x);
}

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, 
                       const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
  return !(__x < __y);
}

template <class _Key, class _Tp, class _Compare, class _Alloc>
inline void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x, 
                 multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
  __x.swap(__y);
}

} // namespace std

#endif /* __GLIBCPP_INTERNAL_MULTIMAP_H */

// Local Variables:
// mode:C++
// End:
OpenPOWER on IntegriCloud