summaryrefslogtreecommitdiffstats
path: root/contrib/libstdc++/include/bits/stl_deque.h
blob: 5fa8d125e75612525b88637bd34f556418f40c8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
// deque implementation -*- C++ -*-

// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_deque.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#include <bits/concept_check.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>

#ifndef __GLIBCPP_INTERNAL_DEQUE_H
#define __GLIBCPP_INTERNAL_DEQUE_H


// Since this entire file is within namespace std, there's no reason to
// waste two spaces along the left column.  Thus the leading indentation is
// slightly violated from here on.
namespace std
{ 

/**
 *  @if maint
 *  @brief This function controls the size of memory nodes.
 *  @param  size  The size of an element.
 *  @return   The number (not bytesize) of elements per node.
 *
 *  This function started off as a compiler kludge from SGI, but seems to
 *  be a useful wrapper around a repeated constant expression.
 *  @endif
*/
inline size_t 
__deque_buf_size(size_t __size) 
{ return __size < 512 ? size_t(512 / __size) : size_t(1); }


/// A deque::iterator.
/**
 *  Quite a bit of intelligence here.  Much of the functionality of deque is
 *  actually passed off to this class.  A deque holds two of these internally,
 *  marking its valid range.  Access to elements is done as offsets of either
 *  of those two, relying on operator overloading in this class.
 *
 *  @if maint
 *  All the functions are op overloads except for _M_set_node.
 *  @endif
*/
template <class _Tp, class _Ref, class _Ptr>
struct _Deque_iterator
{
  typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
  typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
  static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }

  typedef random_access_iterator_tag iterator_category;
  typedef _Tp                        value_type;
  typedef _Ptr                       pointer;
  typedef _Ref                       reference;
  typedef size_t                     size_type;
  typedef ptrdiff_t                  difference_type;
  typedef _Tp**                      _Map_pointer;
  typedef _Deque_iterator            _Self;

  _Tp* _M_cur;
  _Tp* _M_first;
  _Tp* _M_last;
  _Map_pointer _M_node;

  _Deque_iterator(_Tp* __x, _Map_pointer __y) 
    : _M_cur(__x), _M_first(*__y),
      _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
  _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
  _Deque_iterator(const iterator& __x)
    : _M_cur(__x._M_cur), _M_first(__x._M_first), 
      _M_last(__x._M_last), _M_node(__x._M_node) {}

  reference operator*() const { return *_M_cur; }
  pointer operator->() const { return _M_cur; }

  difference_type operator-(const _Self& __x) const {
    return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) +
      (_M_cur - _M_first) + (__x._M_last - __x._M_cur);
  }

  _Self& operator++() {
    ++_M_cur;
    if (_M_cur == _M_last) {
      _M_set_node(_M_node + 1);
      _M_cur = _M_first;
    }
    return *this; 
  }
  _Self operator++(int)  {
    _Self __tmp = *this;
    ++*this;
    return __tmp;
  }

  _Self& operator--() {
    if (_M_cur == _M_first) {
      _M_set_node(_M_node - 1);
      _M_cur = _M_last;
    }
    --_M_cur;
    return *this;
  }
  _Self operator--(int) {
    _Self __tmp = *this;
    --*this;
    return __tmp;
  }

  _Self& operator+=(difference_type __n)
  {
    difference_type __offset = __n + (_M_cur - _M_first);
    if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
      _M_cur += __n;
    else {
      difference_type __node_offset =
        __offset > 0 ? __offset / difference_type(_S_buffer_size())
                   : -difference_type((-__offset - 1) / _S_buffer_size()) - 1;
      _M_set_node(_M_node + __node_offset);
      _M_cur = _M_first + 
        (__offset - __node_offset * difference_type(_S_buffer_size()));
    }
    return *this;
  }

  _Self operator+(difference_type __n) const
  {
    _Self __tmp = *this;
    return __tmp += __n;
  }

  _Self& operator-=(difference_type __n) { return *this += -__n; }
 
  _Self operator-(difference_type __n) const {
    _Self __tmp = *this;
    return __tmp -= __n;
  }

  reference operator[](difference_type __n) const { return *(*this + __n); }

  bool operator==(const _Self& __x) const { return _M_cur == __x._M_cur; }
  bool operator!=(const _Self& __x) const { return !(*this == __x); }
  bool operator<(const _Self& __x) const {
    return (_M_node == __x._M_node) ? 
      (_M_cur < __x._M_cur) : (_M_node < __x._M_node);
  }
  bool operator>(const _Self& __x) const  { return __x < *this; }
  bool operator<=(const _Self& __x) const { return !(__x < *this); }
  bool operator>=(const _Self& __x) const { return !(*this < __x); }

  /** @if maint
   *  Prepares to traverse new_node.  Sets everything except _M_cur, which
   *  should therefore be set by the caller immediately afterwards, based on
   *  _M_first and _M_last.
   *  @endif
  */
  void _M_set_node(_Map_pointer __new_node) {
    _M_node = __new_node;
    _M_first = *__new_node;
    _M_last = _M_first + difference_type(_S_buffer_size());
  }
};

template <class _Tp, class _Ref, class _Ptr>
inline _Deque_iterator<_Tp, _Ref, _Ptr>
operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
{
  return __x + __n;
}


/// @if maint Primary default version.  @endif
/**
 *  @if maint
 *  Deque base class.  It has two purposes.  First, its constructor
 *  and destructor allocate (but don't initialize) storage.  This makes
 *  exception safety easier.  Second, the base class encapsulates all of
 *  the differences between SGI-style allocators and standard-conforming
 *  allocators.  There are two versions:  this ordinary one, and the
 *  space-saving specialization for instanceless allocators.
 *  @endif
*/
template <class _Tp, class _Alloc, bool __is_static>
class _Deque_alloc_base
{
public:
  typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
  allocator_type get_allocator() const { return _M_node_allocator; }

  _Deque_alloc_base(const allocator_type& __a)
    : _M_node_allocator(__a), _M_map_allocator(__a),
      _M_map(0), _M_map_size(0)
  {}
  
protected:
  typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
          _Map_allocator_type;

  allocator_type      _M_node_allocator;
  _Map_allocator_type _M_map_allocator;

  _Tp* _M_allocate_node() {
    return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
  }
  void _M_deallocate_node(_Tp* __p) {
    _M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
  }
  _Tp** _M_allocate_map(size_t __n) 
    { return _M_map_allocator.allocate(__n); }
  void _M_deallocate_map(_Tp** __p, size_t __n) 
    { _M_map_allocator.deallocate(__p, __n); }

  _Tp** _M_map;
  size_t _M_map_size;
};

/// @if maint Specialization for instanceless allocators.  @endif
template <class _Tp, class _Alloc>
class _Deque_alloc_base<_Tp, _Alloc, true>
{
public:
  typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
  allocator_type get_allocator() const { return allocator_type(); }

  _Deque_alloc_base(const allocator_type&) : _M_map(0), _M_map_size(0) {}
  
protected:
  typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Node_alloc_type;
  typedef typename _Alloc_traits<_Tp*, _Alloc>::_Alloc_type _Map_alloc_type;

  _Tp* _M_allocate_node() {
    return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
  }
  void _M_deallocate_node(_Tp* __p) {
    _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
  }
  _Tp** _M_allocate_map(size_t __n) 
    { return _Map_alloc_type::allocate(__n); }
  void _M_deallocate_map(_Tp** __p, size_t __n) 
    { _Map_alloc_type::deallocate(__p, __n); }

  _Tp** _M_map;
  size_t _M_map_size;
};


/**
 *  @if maint
 *  Deque base class.  Using _Alloc_traits in the instantiation of the parent
 *  class provides the compile-time dispatching mentioned in the parent's docs.
 *  This class provides the unified face for deque's allocation.
 *
 *  Nothing in this class ever constructs or destroys an actual Tp element.
 *  (Deque handles that itself.)  Only/All memory management is performed here.
 *  @endif
*/
template <class _Tp, class _Alloc>
class _Deque_base
  : public _Deque_alloc_base<_Tp,_Alloc,
                              _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
public:
  typedef _Deque_alloc_base<_Tp,_Alloc,
                             _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
          _Base;
  typedef typename _Base::allocator_type             allocator_type;
  typedef _Deque_iterator<_Tp,_Tp&,_Tp*>             iterator;
  typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;

  _Deque_base(const allocator_type& __a, size_t __num_elements)
    : _Base(__a), _M_start(), _M_finish()
    { _M_initialize_map(__num_elements); }
  _Deque_base(const allocator_type& __a) 
    : _Base(__a), _M_start(), _M_finish() {}
  ~_Deque_base();    

protected:
  void _M_initialize_map(size_t);
  void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
  void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
  enum { _S_initial_map_size = 8 };

protected:
  iterator _M_start;
  iterator _M_finish;
};


template <class _Tp, class _Alloc>
_Deque_base<_Tp,_Alloc>::~_Deque_base()
{
  if (_M_map) {
    _M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
    _M_deallocate_map(_M_map, _M_map_size);
  }
}

/**
 *  @if maint
 *  @brief Layout storage.
 *  @param  num_elements  The count of T's for which to allocate space at first.
 *  @return   Nothing.
 *
 *  The initial underlying memory layout is a bit complicated...
 *  @endif
*/
template <class _Tp, class _Alloc>
void
_Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
{
  size_t __num_nodes = 
    __num_elements / __deque_buf_size(sizeof(_Tp)) + 1;

  _M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
  _M_map = _M_allocate_map(_M_map_size);

  _Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;
  _Tp** __nfinish = __nstart + __num_nodes;
    
  try 
    { _M_create_nodes(__nstart, __nfinish); }
  catch(...)
    {
      _M_deallocate_map(_M_map, _M_map_size);
      _M_map = 0;
      _M_map_size = 0;
      __throw_exception_again;
    }
  
  _M_start._M_set_node(__nstart);
  _M_finish._M_set_node(__nfinish - 1);
  _M_start._M_cur = _M_start._M_first;
  _M_finish._M_cur = _M_finish._M_first +
               __num_elements % __deque_buf_size(sizeof(_Tp));
}

template <class _Tp, class _Alloc>
void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
{
  _Tp** __cur;
  try {
    for (__cur = __nstart; __cur < __nfinish; ++__cur)
      *__cur = _M_allocate_node();
  }
  catch(...)
    { 
      _M_destroy_nodes(__nstart, __cur);
      __throw_exception_again; 
    }
}

template <class _Tp, class _Alloc>
void
_Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
{
  for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
    _M_deallocate_node(*__n);
}


/**
 *  @ingroup Containers
 *  @ingroup Sequences
 *
 *  Meets the requirements of a <a href="tables.html#65">container</a>, a
 *  <a href="tables.html#66">reversible container</a>, and a
 *  <a href="tables.html#67">sequence</a>, including the
 *  <a href="tables.html#68">optional sequence requirements</a>.
 *
 *  Placeholder:  see http://www.sgi.com/tech/stl/Deque.html for now.
 *
 *  In previous HP/SGI versions of deque, there was an extra template parameter
 *  so users could control the node size.  This extension turned out to violate
 *  the C++ standard (it can be detected using template template parameters),
 *  and it was removed.
 *
 *  @if maint
 *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
 *  
 *  - Tp**        _M_map
 *  - size_t      _M_map_size
 *  - iterator    _M_start, _M_finish
 *  
 *  map_size is at least 8.  %map is an array of map_size pointers-to-"nodes".
 *  (The name has nothing to do with the std::map class.)
 *  
 *  A "node" has no specific type name as such, but it is referred to as
 *  "node" in this file.  It is a simple array-of-Tp.  If Tp is very large,
 *  there will be one Tp element per node (i.e., an "array" of one).
 *  For non-huge Tp's, node size is inversely related to Tp size:  the
 *  larger the Tp, the fewer Tp's will fit in a node.  The goal here is to
 *  keep the total size of a node relatively small and constant over different
 *  Tp's, to improve allocator efficiency.
 *  
 *  **** As I write this, the nodes are /not/ allocated using the high-speed
 *  memory pool.  There are 20 hours left in the year; perhaps I can fix
 *  this before 2002.
 *  
 *  Not every pointer in the %map array will point to a node.  If the initial
 *  number of elements in the deque is small, the /middle/ %map pointers will
 *  be valid, and the ones at the edges will be unused.  This same situation
 *  will arise as the %map grows:  available %map pointers, if any, will be on
 *  the ends.  As new nodes are created, only a subset of the %map's pointers
 *  need to be copied "outward".
 *
 *  Class invariants:
 * - For any nonsingular iterator i:
 *    - i.node points to a member of the %map array.  (Yes, you read that
 *      correctly:  i.node does not actually point to a node.)  The member of
 *      the %map array is what actually points to the node.
 *    - i.first == *(i.node)    (This points to the node (first Tp element).)
 *    - i.last  == i.first + node_size
 *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
 *      the implication of this is that i.cur is always a dereferenceable
 *      pointer, even if i is a past-the-end iterator.
 * - Start and Finish are always nonsingular iterators.  NOTE: this means that
 *   an empty deque must have one node, a deque with <N elements (where N is
 *   the node buffer size) must have one node, a deque with N through (2N-1)
 *   elements must have two nodes, etc.
 * - For every node other than start.node and finish.node, every element in the
 *   node is an initialized object.  If start.node == finish.node, then
 *   [start.cur, finish.cur) are initialized objects, and the elements outside
 *   that range are uninitialized storage.  Otherwise, [start.cur, start.last)
 *   and [finish.first, finish.cur) are initialized objects, and [start.first,
 *   start.cur) and [finish.cur, finish.last) are uninitialized storage.
 * - [%map, %map + map_size) is a valid, non-empty range.  
 * - [start.node, finish.node] is a valid range contained within 
 *   [%map, %map + map_size).  
 * - A pointer in the range [%map, %map + map_size) points to an allocated node
 *   if and only if the pointer is in the range [start.node, finish.node].
 *
 *  Here's the magic:  nothing in deque is "aware" of the discontiguous storage!
 *
 *  The memory setup and layout occurs in the parent, _Base, and the iterator
 *  class is entirely responsible for "leaping" from one node to the next.  All
 *  the implementation routines for deque itself work only through the start
 *  and finish iterators.  This keeps the routines simple and sane, and we can
 *  use other standard algorithms as well.
 *  @endif
*/
template <class _Tp, class _Alloc = allocator<_Tp> >
class deque : protected _Deque_base<_Tp, _Alloc>
{
  // concept requirements
  __glibcpp_class_requires(_Tp, _SGIAssignableConcept)

  typedef _Deque_base<_Tp, _Alloc> _Base;

public:
  typedef _Tp                                value_type;
  typedef value_type*                        pointer;
  typedef const value_type*                  const_pointer;
  typedef value_type&                        reference;
  typedef const value_type&                  const_reference;
  typedef size_t                             size_type;
  typedef ptrdiff_t                          difference_type;

  typedef typename _Base::allocator_type allocator_type;
  allocator_type get_allocator() const { return _Base::get_allocator(); }

  typedef typename _Base::iterator           iterator;
  typedef typename _Base::const_iterator     const_iterator;
  typedef reverse_iterator<const_iterator>   const_reverse_iterator;
  typedef reverse_iterator<iterator>         reverse_iterator;

protected:
  typedef pointer* _Map_pointer;
  static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }

  // Functions controlling memory layout, and nothing else.
  using _Base::_M_initialize_map;
  using _Base::_M_create_nodes;
  using _Base::_M_destroy_nodes;
  using _Base::_M_allocate_node;
  using _Base::_M_deallocate_node;
  using _Base::_M_allocate_map;
  using _Base::_M_deallocate_map;

  /** @if maint
   *  A total of four data members accumulated down the heirarchy.  If the
   *  _Alloc type requires separate instances, then two of them will also be
   *  included in each deque.
   *  @endif
  */
  using _Base::_M_map;
  using _Base::_M_map_size;
  using _Base::_M_start;
  using _Base::_M_finish;

public:                         // Basic accessors
  iterator begin() { return _M_start; }
  iterator end() { return _M_finish; }
  const_iterator begin() const { return _M_start; }
  const_iterator end() const { return _M_finish; }

  reverse_iterator rbegin() { return reverse_iterator(_M_finish); }
  reverse_iterator rend() { return reverse_iterator(_M_start); }
  const_reverse_iterator rbegin() const 
    { return const_reverse_iterator(_M_finish); }
  const_reverse_iterator rend() const 
    { return const_reverse_iterator(_M_start); }

  reference operator[](size_type __n)
    { return _M_start[difference_type(__n)]; }
  const_reference operator[](size_type __n) const 
    { return _M_start[difference_type(__n)]; }

  void _M_range_check(size_type __n) const {
    if (__n >= this->size())
      __throw_range_error("deque");
  }

  reference at(size_type __n)
    { _M_range_check(__n); return (*this)[__n]; }
  const_reference at(size_type __n) const
    { _M_range_check(__n); return (*this)[__n]; }

  reference front() { return *_M_start; }
  reference back() {
    iterator __tmp = _M_finish;
    --__tmp;
    return *__tmp;
  }
  const_reference front() const { return *_M_start; }
  const_reference back() const {
    const_iterator __tmp = _M_finish;
    --__tmp;
    return *__tmp;
  }

  size_type size() const { return _M_finish - _M_start; }
  size_type max_size() const { return size_type(-1); }
  bool empty() const { return _M_finish == _M_start; }

public:                         // Constructor, destructor.
  explicit deque(const allocator_type& __a = allocator_type()) 
    : _Base(__a, 0) {}
  deque(const deque& __x) : _Base(__x.get_allocator(), __x.size()) 
    { uninitialized_copy(__x.begin(), __x.end(), _M_start); }
  deque(size_type __n, const value_type& __value,
        const allocator_type& __a = allocator_type()) : _Base(__a, __n)
    { _M_fill_initialize(__value); }

  explicit
  deque(size_type __n)
  : _Base(allocator_type(), __n)
  { _M_fill_initialize(value_type()); }

  // Check whether it's an integral type.  If so, it's not an iterator.
  template<class _InputIterator>
    deque(_InputIterator __first, _InputIterator __last,
          const allocator_type& __a = allocator_type())
    : _Base(__a)
    {
      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
      _M_initialize_dispatch(__first, __last, _Integral());
    }

  template<class _Integer>
    void
    _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
    {
      _M_initialize_map(__n);
      _M_fill_initialize(__x);
    }

  template<class _InputIter>
    void
    _M_initialize_dispatch(_InputIter __first, _InputIter __last, __false_type)
    {
      typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
      _M_range_initialize(__first, __last, _IterCategory());
    }

  ~deque()
  { _Destroy(_M_start, _M_finish); }

  deque& operator= (const deque& __x) {
    const size_type __len = size();
    if (&__x != this) {
      if (__len >= __x.size())
        erase(copy(__x.begin(), __x.end(), _M_start), _M_finish);
      else {
        const_iterator __mid = __x.begin() + difference_type(__len);
        copy(__x.begin(), __mid, _M_start);
        insert(_M_finish, __mid, __x.end());
      }
    }
    return *this;
  }        

  void swap(deque& __x) {
    std::swap(_M_start, __x._M_start);
    std::swap(_M_finish, __x._M_finish);
    std::swap(_M_map, __x._M_map);
    std::swap(_M_map_size, __x._M_map_size);
  }

public: 
  // assign(), a generalized assignment member function.  Two
  // versions: one that takes a count, and one that takes a range.
  // The range version is a member template, so we dispatch on whether
  // or not the type is an integer.

  void _M_fill_assign(size_type __n, const _Tp& __val) {
    if (__n > size()) {
      fill(begin(), end(), __val);
      insert(end(), __n - size(), __val);
    }
    else {
      erase(begin() + __n, end());
      fill(begin(), end(), __val);
    }
  }

  void
  assign(size_type __n, const _Tp& __val)
  { _M_fill_assign(__n, __val); }

  template<class _InputIterator>
    void
    assign(_InputIterator __first, _InputIterator __last)
    {
      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
      _M_assign_dispatch(__first, __last, _Integral());
    }

private:                        // helper functions for assign() 

  template<class _Integer>
    void
    _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
    { _M_fill_assign(static_cast<size_type>(__n), static_cast<_Tp>(__val)); }

  template<class _InputIterator>
    void
    _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type)
    {
      typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
      _M_assign_aux(__first, __last, _IterCategory());
    }

  template <class _InputIterator>
  void _M_assign_aux(_InputIterator __first, _InputIterator __last,
                     input_iterator_tag);

  template <class _ForwardIterator>
  void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
                     forward_iterator_tag) {
    size_type __len = distance(__first, __last);
    if (__len > size()) {
      _ForwardIterator __mid = __first;
      advance(__mid, size());
      copy(__first, __mid, begin());
      insert(end(), __mid, __last);
    }
    else
      erase(copy(__first, __last, begin()), end());
  }

public:                         // push_* and pop_*
  
  void
  push_back(const value_type& __t)
  {
    if (_M_finish._M_cur != _M_finish._M_last - 1) {
      _Construct(_M_finish._M_cur, __t);
      ++_M_finish._M_cur;
    }
    else
      _M_push_back_aux(__t);
  }

  void
  push_back()
  {
    if (_M_finish._M_cur != _M_finish._M_last - 1) {
      _Construct(_M_finish._M_cur);
      ++_M_finish._M_cur;
    }
    else
      _M_push_back_aux();
  }

  void
  push_front(const value_type& __t) 
  {
    if (_M_start._M_cur != _M_start._M_first) {
      _Construct(_M_start._M_cur - 1, __t);
      --_M_start._M_cur;
    }
    else
      _M_push_front_aux(__t);
  }

  void
  push_front()
  {
    if (_M_start._M_cur != _M_start._M_first) {
      _Construct(_M_start._M_cur - 1);
      --_M_start._M_cur;
    }
    else
      _M_push_front_aux();
  }


  void
  pop_back()
  {
    if (_M_finish._M_cur != _M_finish._M_first) {
      --_M_finish._M_cur;
      _Destroy(_M_finish._M_cur);
    }
    else
      _M_pop_back_aux();
  }

  void
  pop_front()
  {
    if (_M_start._M_cur != _M_start._M_last - 1) {
      _Destroy(_M_start._M_cur);
      ++_M_start._M_cur;
    }
    else 
      _M_pop_front_aux();
  }

public:                         // Insert

  iterator
  insert(iterator position, const value_type& __x)
  {
    if (position._M_cur == _M_start._M_cur) {
      push_front(__x);
      return _M_start;
    }
    else if (position._M_cur == _M_finish._M_cur) {
      push_back(__x);
      iterator __tmp = _M_finish;
      --__tmp;
      return __tmp;
    }
    else {
      return _M_insert_aux(position, __x);
    }
  }

  iterator
  insert(iterator __position)
  { return insert(__position, value_type()); }

  void
  insert(iterator __pos, size_type __n, const value_type& __x)
  { _M_fill_insert(__pos, __n, __x); }

  void
  _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 

  // Check whether it's an integral type.  If so, it's not an iterator.
  template<class _InputIterator>
    void
    insert(iterator __pos, _InputIterator __first, _InputIterator __last)
    {
      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
      _M_insert_dispatch(__pos, __first, __last, _Integral());
    }

  template<class _Integer>
    void
    _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type)
    { _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<value_type>(__x)); }

  template<class _InputIterator>
    void
    _M_insert_dispatch(iterator __pos,
                       _InputIterator __first, _InputIterator __last,
                       __false_type)
    {
      typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
      insert(__pos, __first, __last, _IterCategory());
    }

  void resize(size_type __new_size, const value_type& __x) {
    const size_type __len = size();
    if (__new_size < __len) 
      erase(_M_start + __new_size, _M_finish);
    else
      insert(_M_finish, __new_size - __len, __x);
  }

  void resize(size_type new_size) { resize(new_size, value_type()); }

public:                         // Erase
  iterator erase(iterator __pos) {
    iterator __next = __pos;
    ++__next;
    size_type __index = __pos - _M_start;
    if (__index < (size() >> 1)) {
      copy_backward(_M_start, __pos, __next);
      pop_front();
    }
    else {
      copy(__next, _M_finish, __pos);
      pop_back();
    }
    return _M_start + __index;
  }

  iterator erase(iterator __first, iterator __last);
  void clear(); 

protected:                        // Internal construction/destruction

  void _M_fill_initialize(const value_type& __value);

  template <class _InputIterator>
  void _M_range_initialize(_InputIterator __first, _InputIterator __last,
                        input_iterator_tag);

  template <class _ForwardIterator>
  void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
                        forward_iterator_tag);

protected:                        // Internal push_* and pop_*

  void _M_push_back_aux(const value_type&);
  void _M_push_back_aux();
  void _M_push_front_aux(const value_type&);
  void _M_push_front_aux();
  void _M_pop_back_aux();
  void _M_pop_front_aux();

protected:                        // Internal insert functions

  template <class _InputIterator>
  void insert(iterator __pos, _InputIterator __first, _InputIterator __last,
              input_iterator_tag);

  template <class _ForwardIterator>
  void insert(iterator __pos,
              _ForwardIterator __first, _ForwardIterator __last,
              forward_iterator_tag);

  iterator _M_insert_aux(iterator __pos, const value_type& __x);
  iterator _M_insert_aux(iterator __pos);
  void _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);

  template <class _ForwardIterator>
  void _M_insert_aux(iterator __pos, 
                     _ForwardIterator __first, _ForwardIterator __last,
                     size_type __n);

  iterator _M_reserve_elements_at_front(size_type __n) {
    size_type __vacancies = _M_start._M_cur - _M_start._M_first;
    if (__n > __vacancies) 
      _M_new_elements_at_front(__n - __vacancies);
    return _M_start - difference_type(__n);
  }

  iterator _M_reserve_elements_at_back(size_type __n) {
    size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
    if (__n > __vacancies)
      _M_new_elements_at_back(__n - __vacancies);
    return _M_finish + difference_type(__n);
  }

  void _M_new_elements_at_front(size_type __new_elements);
  void _M_new_elements_at_back(size_type __new_elements);

protected:                      // Allocation of _M_map and nodes

  // Makes sure the _M_map has space for new nodes.  Does not actually
  //  add the nodes.  Can invalidate _M_map pointers.  (And consequently, 
  //  deque iterators.)

  void _M_reserve_map_at_back (size_type __nodes_to_add = 1) {
    if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map))
      _M_reallocate_map(__nodes_to_add, false);
  }

  void _M_reserve_map_at_front (size_type __nodes_to_add = 1) {
    if (__nodes_to_add > size_type(_M_start._M_node - _M_map))
      _M_reallocate_map(__nodes_to_add, true);
  }

  void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
};

// Non-inline member functions

template <class _Tp, class _Alloc>
template <class _InputIter>
void deque<_Tp, _Alloc>
  ::_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
{
  iterator __cur = begin();
  for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
    *__cur = *__first;
  if (__first == __last)
    erase(__cur, end());
  else
    insert(end(), __first, __last);
}

template <class _Tp, class _Alloc>
void deque<_Tp, _Alloc>::_M_fill_insert(iterator __pos,
                                        size_type __n, const value_type& __x)
{
  if (__pos._M_cur == _M_start._M_cur) {
    iterator __new_start = _M_reserve_elements_at_front(__n);
    try {
      uninitialized_fill(__new_start, _M_start, __x);
      _M_start = __new_start;
    }
    catch(...)
      {
	_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
	__throw_exception_again;
      }
  }
  else if (__pos._M_cur == _M_finish._M_cur) {
    iterator __new_finish = _M_reserve_elements_at_back(__n);
    try {
      uninitialized_fill(_M_finish, __new_finish, __x);
      _M_finish = __new_finish;
    }
    catch(...)
      {
	_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);    
	__throw_exception_again;
      }
  }
  else 
    _M_insert_aux(__pos, __n, __x);
}

template <class _Tp, class _Alloc>
typename deque<_Tp,_Alloc>::iterator 
deque<_Tp,_Alloc>::erase(iterator __first, iterator __last)
{
  if (__first == _M_start && __last == _M_finish) {
    clear();
    return _M_finish;
  }
  else {
    difference_type __n = __last - __first;
    difference_type __elems_before = __first - _M_start;
    if (static_cast<size_type>(__elems_before) < (size() - __n) / 2) {
      copy_backward(_M_start, __first, __last);
      iterator __new_start = _M_start + __n;
      _Destroy(_M_start, __new_start);
      _M_destroy_nodes(_M_start._M_node, __new_start._M_node);
      _M_start = __new_start;
    }
    else {
      copy(__last, _M_finish, __first);
      iterator __new_finish = _M_finish - __n;
      _Destroy(__new_finish, _M_finish);
      _M_destroy_nodes(__new_finish._M_node + 1, _M_finish._M_node + 1);
      _M_finish = __new_finish;
    }
    return _M_start + __elems_before;
  }
}

template <class _Tp, class _Alloc> 
void deque<_Tp,_Alloc>::clear()
{
  for (_Map_pointer __node = _M_start._M_node + 1;
       __node < _M_finish._M_node;
       ++__node) {
    _Destroy(*__node, *__node + _S_buffer_size());
    _M_deallocate_node(*__node);
  }

  if (_M_start._M_node != _M_finish._M_node) {
    _Destroy(_M_start._M_cur, _M_start._M_last);
    _Destroy(_M_finish._M_first, _M_finish._M_cur);
    _M_deallocate_node(_M_finish._M_first);
  }
  else
    _Destroy(_M_start._M_cur, _M_finish._M_cur);

  _M_finish = _M_start;
}

/**
 *  @if maint
 *  @brief Fills the deque with copies of value.
 *  @param  value  Initial value.
 *  @return   Nothing.
 *  @pre _M_start and _M_finish have already been initialized, but none of the
 *       deque's elements have yet been constructed.
 *
 *  This function is called only when the user provides an explicit size (with
 *  or without an explicit exemplar value).
 *  @endif
*/
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_fill_initialize(const value_type& __value)
{
  _Map_pointer __cur;
  try {
    for (__cur = _M_start._M_node; __cur < _M_finish._M_node; ++__cur)
      uninitialized_fill(*__cur, *__cur + _S_buffer_size(), __value);
    uninitialized_fill(_M_finish._M_first, _M_finish._M_cur, __value);
  }
  catch(...)
    {
      _Destroy(_M_start, iterator(*__cur, __cur));
      __throw_exception_again;
    }
}

/** @{
 *  @if maint
 *  @brief Fills the deque with whatever is in [first,last).
 *  @param  first  An input iterator.
 *  @param  last  An input iterator.
 *  @return   Nothing.
 *
 *  If the iterators are actually forward iterators (or better), then the
 *  memory layout can be done all at once.  Else we move forward using
 *  push_back on each value from the iterator.
 *  @endif
*/
template <class _Tp, class _Alloc> template <class _InputIterator>
void deque<_Tp,_Alloc>::_M_range_initialize(_InputIterator __first,
                                            _InputIterator __last,
                                            input_iterator_tag)
{
  _M_initialize_map(0);
  try {
    for ( ; __first != __last; ++__first)
      push_back(*__first);
  }
  catch(...)
    {
      clear();
      __throw_exception_again;
    }
}

template <class _Tp, class _Alloc> template <class _ForwardIterator>
void deque<_Tp,_Alloc>::_M_range_initialize(_ForwardIterator __first,
                                            _ForwardIterator __last,
                                            forward_iterator_tag)
{
  size_type __n = distance(__first, __last);
  _M_initialize_map(__n);

  _Map_pointer __cur_node;
  try {
    for (__cur_node = _M_start._M_node; 
         __cur_node < _M_finish._M_node; 
         ++__cur_node) {
      _ForwardIterator __mid = __first;
      advance(__mid, _S_buffer_size());
      uninitialized_copy(__first, __mid, *__cur_node);
      __first = __mid;
    }
    uninitialized_copy(__first, __last, _M_finish._M_first);
  }
  catch(...)
    {
      _Destroy(_M_start, iterator(*__cur_node, __cur_node));
      __throw_exception_again;
    }
}
/** @} */

// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
template <class _Tp, class _Alloc>
void
deque<_Tp,_Alloc>::_M_push_back_aux(const value_type& __t)
{
  value_type __t_copy = __t;
  _M_reserve_map_at_back();
  *(_M_finish._M_node + 1) = _M_allocate_node();
  try {
    _Construct(_M_finish._M_cur, __t_copy);
    _M_finish._M_set_node(_M_finish._M_node + 1);
    _M_finish._M_cur = _M_finish._M_first;
  }
  catch(...)
    {
      _M_deallocate_node(*(_M_finish._M_node + 1));
      __throw_exception_again;
    }
}

// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
template <class _Tp, class _Alloc>
void
deque<_Tp,_Alloc>::_M_push_back_aux()
{
  _M_reserve_map_at_back();
  *(_M_finish._M_node + 1) = _M_allocate_node();
  try {
    _Construct(_M_finish._M_cur);
    _M_finish._M_set_node(_M_finish._M_node + 1);
    _M_finish._M_cur = _M_finish._M_first;
  }
  catch(...)
    {
      _M_deallocate_node(*(_M_finish._M_node + 1));
      __throw_exception_again;
    }
}

// Called only if _M_start._M_cur == _M_start._M_first.
template <class _Tp, class _Alloc>
void
deque<_Tp,_Alloc>::_M_push_front_aux(const value_type& __t)
{
  value_type __t_copy = __t;
  _M_reserve_map_at_front();
  *(_M_start._M_node - 1) = _M_allocate_node();
  try {
    _M_start._M_set_node(_M_start._M_node - 1);
    _M_start._M_cur = _M_start._M_last - 1;
    _Construct(_M_start._M_cur, __t_copy);
  }
  catch(...)
    {
      ++_M_start;
      _M_deallocate_node(*(_M_start._M_node - 1));
      __throw_exception_again;
    }
} 

// Called only if _M_start._M_cur == _M_start._M_first.
template <class _Tp, class _Alloc>
void
deque<_Tp,_Alloc>::_M_push_front_aux()
{
  _M_reserve_map_at_front();
  *(_M_start._M_node - 1) = _M_allocate_node();
  try {
    _M_start._M_set_node(_M_start._M_node - 1);
    _M_start._M_cur = _M_start._M_last - 1;
    _Construct(_M_start._M_cur);
  }
  catch(...)
    {
      ++_M_start;
      _M_deallocate_node(*(_M_start._M_node - 1));
      __throw_exception_again;
    }
} 

// Called only if _M_finish._M_cur == _M_finish._M_first.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_pop_back_aux()
{
  _M_deallocate_node(_M_finish._M_first);
  _M_finish._M_set_node(_M_finish._M_node - 1);
  _M_finish._M_cur = _M_finish._M_last - 1;
  _Destroy(_M_finish._M_cur);
}

// Called only if _M_start._M_cur == _M_start._M_last - 1.  Note that 
// if the deque has at least one element (a precondition for this member 
// function), and if _M_start._M_cur == _M_start._M_last, then the deque 
// must have at least two nodes.
template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_pop_front_aux()
{
  _Destroy(_M_start._M_cur);
  _M_deallocate_node(_M_start._M_first);
  _M_start._M_set_node(_M_start._M_node + 1);
  _M_start._M_cur = _M_start._M_first;
}      

template <class _Tp, class _Alloc> template <class _InputIterator>
void deque<_Tp,_Alloc>::insert(iterator __pos,
                               _InputIterator __first, _InputIterator __last,
                               input_iterator_tag)
{
  copy(__first, __last, inserter(*this, __pos));
}

template <class _Tp, class _Alloc> template <class _ForwardIterator>
void
deque<_Tp,_Alloc>::insert(iterator __pos,
                          _ForwardIterator __first, _ForwardIterator __last,
                          forward_iterator_tag) {
  size_type __n = distance(__first, __last);
  if (__pos._M_cur == _M_start._M_cur) {
    iterator __new_start = _M_reserve_elements_at_front(__n);
    try {
      uninitialized_copy(__first, __last, __new_start);
      _M_start = __new_start;
    }
    catch(...)
      {
	_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
	__throw_exception_again;
      }
  }
  else if (__pos._M_cur == _M_finish._M_cur) {
    iterator __new_finish = _M_reserve_elements_at_back(__n);
    try {
      uninitialized_copy(__first, __last, _M_finish);
      _M_finish = __new_finish;
    }
    catch(...)
      {
	_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
	__throw_exception_again;
      }
  }
  else
    _M_insert_aux(__pos, __first, __last, __n);
}

template <class _Tp, class _Alloc>
typename deque<_Tp, _Alloc>::iterator
deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos, const value_type& __x)
{
  difference_type __index = __pos - _M_start;
  value_type __x_copy = __x;
  if (static_cast<size_type>(__index) < size() / 2) {
    push_front(front());
    iterator __front1 = _M_start;
    ++__front1;
    iterator __front2 = __front1;
    ++__front2;
    __pos = _M_start + __index;
    iterator __pos1 = __pos;
    ++__pos1;
    copy(__front2, __pos1, __front1);
  }
  else {
    push_back(back());
    iterator __back1 = _M_finish;
    --__back1;
    iterator __back2 = __back1;
    --__back2;
    __pos = _M_start + __index;
    copy_backward(__pos, __back2, __back1);
  }
  *__pos = __x_copy;
  return __pos;
}

template <class _Tp, class _Alloc>
typename deque<_Tp,_Alloc>::iterator 
deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos)
{
  difference_type __index = __pos - _M_start;
  if (static_cast<size_type>(__index) < size() / 2) {
    push_front(front());
    iterator __front1 = _M_start;
    ++__front1;
    iterator __front2 = __front1;
    ++__front2;
    __pos = _M_start + __index;
    iterator __pos1 = __pos;
    ++__pos1;
    copy(__front2, __pos1, __front1);
  }
  else {
    push_back(back());
    iterator __back1 = _M_finish;
    --__back1;
    iterator __back2 = __back1;
    --__back2;
    __pos = _M_start + __index;
    copy_backward(__pos, __back2, __back1);
  }
  *__pos = value_type();
  return __pos;
}

template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
                                      size_type __n,
                                      const value_type& __x)
{
  const difference_type __elems_before = __pos - _M_start;
  size_type __length = this->size();
  value_type __x_copy = __x;
  if (__elems_before < difference_type(__length / 2)) {
    iterator __new_start = _M_reserve_elements_at_front(__n);
    iterator __old_start = _M_start;
    __pos = _M_start + __elems_before;
    try {
      if (__elems_before >= difference_type(__n)) {
        iterator __start_n = _M_start + difference_type(__n);
        uninitialized_copy(_M_start, __start_n, __new_start);
        _M_start = __new_start;
        copy(__start_n, __pos, __old_start);
        fill(__pos - difference_type(__n), __pos, __x_copy);
      }
      else {
        __uninitialized_copy_fill(_M_start, __pos, __new_start, 
                                  _M_start, __x_copy);
        _M_start = __new_start;
        fill(__old_start, __pos, __x_copy);
      }
    }
    catch(...)
      { 
	_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
	__throw_exception_again;
      }
  }
  else {
    iterator __new_finish = _M_reserve_elements_at_back(__n);
    iterator __old_finish = _M_finish;
    const difference_type __elems_after = 
      difference_type(__length) - __elems_before;
    __pos = _M_finish - __elems_after;
    try {
      if (__elems_after > difference_type(__n)) {
        iterator __finish_n = _M_finish - difference_type(__n);
        uninitialized_copy(__finish_n, _M_finish, _M_finish);
        _M_finish = __new_finish;
        copy_backward(__pos, __finish_n, __old_finish);
        fill(__pos, __pos + difference_type(__n), __x_copy);
      }
      else {
        __uninitialized_fill_copy(_M_finish, __pos + difference_type(__n),
                                  __x_copy, __pos, _M_finish);
        _M_finish = __new_finish;
        fill(__pos, __old_finish, __x_copy);
      }
    }
    catch(...)
      { 
	_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
	__throw_exception_again;
      }
  }
}

template <class _Tp, class _Alloc> template <class _ForwardIterator>
void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
                                      _ForwardIterator __first,
                                      _ForwardIterator __last,
                                      size_type __n)
{
  const difference_type __elemsbefore = __pos - _M_start;
  size_type __length = size();
  if (static_cast<size_type>(__elemsbefore) < __length / 2) {
    iterator __new_start = _M_reserve_elements_at_front(__n);
    iterator __old_start = _M_start;
    __pos = _M_start + __elemsbefore;
    try {
      if (__elemsbefore >= difference_type(__n)) {
        iterator __start_n = _M_start + difference_type(__n); 
        uninitialized_copy(_M_start, __start_n, __new_start);
        _M_start = __new_start;
        copy(__start_n, __pos, __old_start);
        copy(__first, __last, __pos - difference_type(__n));
      }
      else {
        _ForwardIterator __mid = __first;
        advance(__mid, difference_type(__n) - __elemsbefore);
        __uninitialized_copy_copy(_M_start, __pos, __first, __mid,
                                  __new_start);
        _M_start = __new_start;
        copy(__mid, __last, __old_start);
      }
    }
    catch(...)
      {
	_M_destroy_nodes(__new_start._M_node, _M_start._M_node);
	__throw_exception_again;
      }
  }
  else {
    iterator __new_finish = _M_reserve_elements_at_back(__n);
    iterator __old_finish = _M_finish;
    const difference_type __elemsafter = 
      difference_type(__length) - __elemsbefore;
    __pos = _M_finish - __elemsafter;
    try {
      if (__elemsafter > difference_type(__n)) {
        iterator __finish_n = _M_finish - difference_type(__n);
        uninitialized_copy(__finish_n, _M_finish, _M_finish);
        _M_finish = __new_finish;
        copy_backward(__pos, __finish_n, __old_finish);
        copy(__first, __last, __pos);
      }
      else {
        _ForwardIterator __mid = __first;
        advance(__mid, __elemsafter);
        __uninitialized_copy_copy(__mid, __last, __pos, _M_finish, _M_finish);
        _M_finish = __new_finish;
        copy(__first, __mid, __pos);
      }
    }
    catch(...)
      {
	_M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
	__throw_exception_again;
      }
  }
}

template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_new_elements_at_front(size_type __new_elems)
{
  size_type __new_nodes
      = (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
  _M_reserve_map_at_front(__new_nodes);
  size_type __i;
  try {
    for (__i = 1; __i <= __new_nodes; ++__i)
      *(_M_start._M_node - __i) = _M_allocate_node();
  }
  catch(...) {
    for (size_type __j = 1; __j < __i; ++__j)
      _M_deallocate_node(*(_M_start._M_node - __j));      
    __throw_exception_again;
  }
}

template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_new_elements_at_back(size_type __new_elems)
{
  size_type __new_nodes
      = (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
  _M_reserve_map_at_back(__new_nodes);
  size_type __i;
  try {
    for (__i = 1; __i <= __new_nodes; ++__i)
      *(_M_finish._M_node + __i) = _M_allocate_node();
  }
  catch(...) {
    for (size_type __j = 1; __j < __i; ++__j)
      _M_deallocate_node(*(_M_finish._M_node + __j));      
    __throw_exception_again;
  }
}

template <class _Tp, class _Alloc>
void deque<_Tp,_Alloc>::_M_reallocate_map(size_type __nodes_to_add,
                                          bool __add_at_front)
{
  size_type __old_num_nodes = _M_finish._M_node - _M_start._M_node + 1;
  size_type __new_num_nodes = __old_num_nodes + __nodes_to_add;

  _Map_pointer __new_nstart;
  if (_M_map_size > 2 * __new_num_nodes) {
    __new_nstart = _M_map + (_M_map_size - __new_num_nodes) / 2 
                     + (__add_at_front ? __nodes_to_add : 0);
    if (__new_nstart < _M_start._M_node)
      copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
    else
      copy_backward(_M_start._M_node, _M_finish._M_node + 1, 
                    __new_nstart + __old_num_nodes);
  }
  else {
    size_type __new_map_size = 
      _M_map_size + max(_M_map_size, __nodes_to_add) + 2;

    _Map_pointer __new_map = _M_allocate_map(__new_map_size);
    __new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2
                         + (__add_at_front ? __nodes_to_add : 0);
    copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
    _M_deallocate_map(_M_map, _M_map_size);

    _M_map = __new_map;
    _M_map_size = __new_map_size;
  }

  _M_start._M_set_node(__new_nstart);
  _M_finish._M_set_node(__new_nstart + __old_num_nodes - 1);
}


// Nonmember functions.

template <class _Tp, class _Alloc>
inline bool operator==(const deque<_Tp, _Alloc>& __x,
                       const deque<_Tp, _Alloc>& __y) {
  return __x.size() == __y.size() &&
         equal(__x.begin(), __x.end(), __y.begin());
}

template <class _Tp, class _Alloc>
inline bool operator<(const deque<_Tp, _Alloc>& __x,
                      const deque<_Tp, _Alloc>& __y) {
  return lexicographical_compare(__x.begin(), __x.end(), 
                                 __y.begin(), __y.end());
}

template <class _Tp, class _Alloc>
inline bool operator!=(const deque<_Tp, _Alloc>& __x,
                       const deque<_Tp, _Alloc>& __y) {
  return !(__x == __y);
}

template <class _Tp, class _Alloc>
inline bool operator>(const deque<_Tp, _Alloc>& __x,
                      const deque<_Tp, _Alloc>& __y) {
  return __y < __x;
}

template <class _Tp, class _Alloc>
inline bool operator<=(const deque<_Tp, _Alloc>& __x,
                       const deque<_Tp, _Alloc>& __y) {
  return !(__y < __x);
}
template <class _Tp, class _Alloc>
inline bool operator>=(const deque<_Tp, _Alloc>& __x,
                       const deque<_Tp, _Alloc>& __y) {
  return !(__x < __y);
}

template <class _Tp, class _Alloc>
inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) {
  __x.swap(__y);
}

} // namespace std 
  
#endif /* __GLIBCPP_INTERNAL_DEQUE_H */

OpenPOWER on IntegriCloud