summaryrefslogtreecommitdiffstats
path: root/contrib/libg++/libstdc++/stl/tree.h
blob: 3ae5da02b08c512aea7aa1ccd17cf17c5d6a5c77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */

#ifndef TREE_H
#define TREE_H

/*

Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
except that

(1) the header cell is maintained with links not only to the root
but also to the leftmost node of the tree, to enable constant time
begin(), and to the rightmost node of the tree, to enable linear time
performance when used with the generic set algorithms (set_union,
etc.);

(2) when a node being deleted has two children its successor node is
relinked into its place, rather than copied, so that the only
iterators invalidated are those referring to the deleted node.

*/

#include <algobase.h>
#include <iterator.h>
#include <function.h>
#ifndef __GNUG__
#include <bool.h>
#endif
#include <projectn.h>

#ifndef rb_tree 
#define rb_tree rb_tree
#endif

enum __rb_color_type {red, black};

struct __rb_tree_node_base {
  enum __rb_color_type color_field;
  void* parent_link;
  void* left_link;
  void* right_link;
};

extern __rb_tree_node_base __rb_NIL;

template <class Key, class Value, class KeyOfValue, class Compare>
class rb_tree {
protected:
    typedef enum __rb_color_type color_type;
    typedef Allocator<void>::pointer void_pointer;
    struct rb_tree_node;
    friend rb_tree_node;
    struct rb_tree_node  : public __rb_tree_node_base {
        Value value_field;
    };
#ifndef __GNUG__
    static Allocator<rb_tree_node> rb_tree_node_allocator;
    static Allocator<Value> value_allocator;
#endif
public:
    typedef Key key_type;
    typedef Value value_type;
    typedef Allocator<Value>::pointer pointer;
    typedef Allocator<Value>::reference reference;
    typedef Allocator<Value>::const_reference const_reference;
    typedef Allocator<rb_tree_node> rb_tree_node_allocator_type;
    typedef Allocator<rb_tree_node>::pointer link_type;
    typedef Allocator<rb_tree_node>::size_type size_type;
    typedef Allocator<rb_tree_node>::difference_type difference_type;
protected:
#ifndef __GNUG__
    size_type buffer_size() {
        return rb_tree_node_allocator.init_page_size();
    }
#endif
    struct rb_tree_node_buffer;
    friend rb_tree_node_buffer;
    struct rb_tree_node_buffer {
        void_pointer next_buffer;
        link_type buffer;
    };
public:
    typedef Allocator<rb_tree_node_buffer> buffer_allocator_type;
    typedef Allocator<rb_tree_node_buffer>::pointer buffer_pointer;     
protected:
#ifdef __GNUG__
    static Allocator<rb_tree_node_buffer> buffer_allocator;
    static buffer_pointer buffer_list;
    static link_type free_list;
    static link_type next_avail;
    static link_type last;
    link_type get_node() { return (link_type) operator new (sizeof (rb_tree_node)); }
    void put_node(link_type p) { operator delete (p); }
#else
    void add_new_buffer() {
        buffer_pointer tmp = buffer_allocator.allocate((size_type)1);
        tmp->buffer = rb_tree_node_allocator.allocate(buffer_size());
        tmp->next_buffer = buffer_list;
        buffer_list = tmp;
        next_avail = buffer_list->buffer;
        last = next_avail + buffer_size();
    }
    static size_type number_of_trees;
    void deallocate_buffers();
    link_type get_node() {
        link_type tmp = free_list;
        return free_list ? 
            (free_list = (link_type)(free_list->right_link), tmp) 
                : (next_avail == last ? (add_new_buffer(), next_avail++) 
                   : next_avail++);
        // ugly code for inlining - avoids multiple returns
    }
    void put_node(link_type p) {
        p->right_link = free_list;
        free_list = p;
    }
#endif
protected:
    link_type header;  
    link_type& root() { return parent(header); }
    link_type& root() const { return parent(header); }
    link_type& leftmost() { return left(header); }
    link_type& leftmost() const { return left(header); }
    link_type& rightmost() { return right(header); }
    link_type& rightmost() const { return right(header); }
    size_type node_count; // keeps track of size of tree
    bool insert_always;  // controls whether an element already in the
                         // tree is inserted again
//public:
    Compare key_compare;
    static link_type& left(link_type x) { 
        return (link_type&)((*x).left_link);
    }
    static link_type& right(link_type x) {
        return (link_type&)((*x).right_link); 
    }
    static link_type& parent(link_type x) {
        return (link_type&)((*x).parent_link);
    }
    static reference value(link_type x) { return (*x).value_field; }
    static Allocator<Key>::const_reference key(link_type x) {
        return KeyOfValue()(value(x));
    }
    static color_type& color(link_type x) { 
        return (color_type&)(*x).color_field; }
    static link_type minimum(link_type x) {
        while (left(x) != &__rb_NIL)
            x = left(x);
        return x;
    }
    static link_type maximum(link_type x) {
        while (right(x) != &__rb_NIL)
            x = right(x);
        return x;
    }
public:
    class iterator;
    friend iterator;
    class const_iterator;
    friend const_iterator;
    class iterator : public bidirectional_iterator<Value, difference_type> {
    friend class rb_tree<Key, Value, KeyOfValue, Compare>;
    friend class const_iterator;
/*      
    friend bool operator==(const iterator& x, const iterator& y) {
        return x.node == y.node;
    }
*/
    protected:
        link_type node;
        iterator(link_type x) : node(x) {}
    public:
        iterator() {}
        bool operator==(const iterator& y) const { return node == y.node; }
        reference operator*() const { return value(node); }
        iterator& operator++() {
            if (right(node) != &__rb_NIL) {
                node = right(node);
                while (left(node) != &__rb_NIL)
                    node = left(node);
            } else {
                link_type y = parent(node);
                while (node == right(y)) {
                    node = y;
                    y = parent(y);
                }
                if (right(node) != y) // necessary because of rightmost 
                    node = y;
            }
            return *this;
        }
        iterator operator++(int) {
            iterator tmp = *this;
            ++*this;
            return tmp;
        }
        iterator& operator--() {
            if (color(node) == red && parent(parent(node)) == node)  
                // check for header
                node = right(node);   // return rightmost
            else if (left(node) != &__rb_NIL) {
                link_type y = left(node);
                while (right(y) != &__rb_NIL)
                    y = right(y);
                node = y;
            } else {
                link_type y = parent(node);
                while (node == left(y)) {
                    node = y;
                    y = parent(y);
                }
                node = y;
            }
            return *this;
        }
        iterator operator--(int) {
            iterator tmp = *this;
            --*this;
            return tmp;
        }
    };
    class const_iterator 
        : public bidirectional_iterator<Value,difference_type> {
    friend class rb_tree<Key, Value, KeyOfValue, Compare>;
    friend class iterator;
/*      
    friend bool operator==(const const_iterator& x, const const_iterator& y) {
        return x.node == y.node;
    }
*/
    protected:
        link_type node;
        const_iterator(link_type x) : node(x) {}
    public:
        const_iterator() {}
        const_iterator(const iterator& x) : node(x.node) {}
        bool operator==(const const_iterator& y) const { 
            return node == y.node; 
        }
        bool operator!=(const const_iterator& y) const { 
            return node != y.node; 
        }
        const_reference operator*() const { return value(node); }
        const_iterator& operator++() {
            if (right(node) != &__rb_NIL) {
                node = right(node);
                while (left(node) != &__rb_NIL)
                    node = left(node);
            } else {
                link_type y = parent(node);
                while (node == right(y)) {
                    node = y;
                    y = parent(y);
                }
                if (right(node) != y) // necessary because of rightmost 
                    node = y;
            }
            return *this;
        }
        const_iterator operator++(int) {
            const_iterator tmp = *this;
            ++*this;
            return tmp;
        }
        const_iterator& operator--() {
            if (color(node) == red && parent(parent(node)) == node)  
                // check for header
                node = right(node);   // return rightmost
            else if (left(node) != &__rb_NIL) {
                link_type y = left(node);
                while (right(y) != &__rb_NIL)
                    y = right(y);
                node = y;
            } else {
                link_type y = parent(node);
                while (node == left(y)) {
                    node = y;
                    y = parent(y);
                }
                node = y;
            }
            return *this;
        }
        const_iterator operator--(int) {
            const_iterator tmp = *this;
            --*this;
            return tmp;
        }
    };
    typedef reverse_bidirectional_iterator<iterator, value_type, reference,
                                           difference_type>
        reverse_iterator; 
    typedef reverse_bidirectional_iterator<const_iterator, value_type,
                                           const_reference, difference_type>
	const_reverse_iterator;
private:
#ifdef __GNUC__
     rb_tree_iterator<Key, Value, KeyOfValue, Compare> __insert(void* x, void* y, const value_type& v);
    link_type __copy(link_type x, link_type p) {
        return (link_type) __copy_hack (x, p);
    }
private:
    void * __copy_hack (void *, void *);
public:
    void __erase(void* x);
#else
    iterator __insert(link_type x, link_type y, const value_type& v);
    link_type __copy(link_type x, link_type p);
    void __erase(link_type x);
#endif
    void init() {
#ifndef __GNUG__
        ++number_of_trees;
#endif
        header = get_node();
        color(header) = red;  // used to distinguish header from root,
                              // in iterator.operator++
        header->parent_link = &__rb_NIL;
        leftmost() = header;
        rightmost() = header;
    }
public:
    
// allocation/deallocation
    
    rb_tree(const Compare& comp = Compare(), bool always = true) 
           : node_count(0), insert_always(always), key_compare(comp) { 
        init();
    }
    rb_tree(const value_type* first, const value_type* last, 
            const Compare& comp = Compare(), bool always = true)
          : node_count(0), insert_always(always), key_compare(comp) { 
        init();
        insert(first, last);
    }
    rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare>& x, 
            bool always = true) : node_count(x.node_count), 
                 insert_always(always), key_compare(x.key_compare) { 
#ifndef __GNUG__
        ++number_of_trees;
#endif
        header = get_node();
        color(header) = red;
        root() = __copy(x.root(), header);
        if (root() == &__rb_NIL) {
            leftmost() = header;
            rightmost() = header;
        } else {
	    leftmost() = minimum(root());
            rightmost() = maximum(root());
        }
    }
    ~rb_tree() {
        erase(begin(), end());
        put_node(header);
#ifndef __GNUG__
        if (--number_of_trees == 0) {
            deallocate_buffers();
            free_list = 0;    
            next_avail = 0;
            last = 0;
        }
#endif
    }
    rb_tree<Key, Value, KeyOfValue, Compare>& 
        operator=(const rb_tree<Key, Value, KeyOfValue, Compare>& x);
    
// accessors:

    Compare key_comp() const { return key_compare; }
    iterator begin() { return leftmost(); }
    const_iterator begin() const { return leftmost(); }
    iterator end() { return header; }
    const_iterator end() const { return header; }
    reverse_iterator rbegin() { return reverse_iterator(end()); }
    const_reverse_iterator rbegin() const { 
        return const_reverse_iterator(end()); 
    }
    reverse_iterator rend() { return reverse_iterator(begin()); }
    const_reverse_iterator rend() const { 
        return const_reverse_iterator(begin());
    } 
    bool empty() const { return node_count == 0; }
    size_type size() const { return node_count; }
#ifndef __GNUG__
    size_type max_size() const { 
        return rb_tree_node_allocator.max_size(); 
    }
#else
    size_type max_size() const { 
        return rb_tree_node_allocator_type::max_size(); 
    }
#endif
    void swap(rb_tree<Key, Value, KeyOfValue, Compare>& t) {
        ::swap(header, t.header);
        ::swap(node_count, t.node_count);
        ::swap(insert_always, t.insert_always);
        ::swap(key_compare, t.key_compare);
    }
    
// insert/erase

    typedef  pair<iterator, bool> pair_iterator_bool; 
    // typedef done to get around compiler bug
#ifdef __GNUG__
    pair_iterator_bool insert(const value_type& x) {
	return insert_hack(x);
    }
private:
    rb_tree_pair_iterator_bool<Key, Value, KeyOfValue, Compare>
	insert_hack(const Value& v);
public:
    iterator insert(iterator position, const value_type& x) {
        return insert_hack(position, x);
    }
private:
    rb_tree_iterator<Key, Value, KeyOfValue, Compare>
    insert_hack(rb_tree_iterator<Key, Value, KeyOfValue, Compare> posn,
						      const Value& v);
public:
    void insert(iterator first, iterator last) {
        while (first != last) insert(*first++);
    }
    void insert(const value_type* first, const value_type* last){
	while (first != last) insert(*first++);
    }
    void erase(iterator position) {
	erase_hack(position);
    }
private:
    void erase_hack(rb_tree_iterator<Key, Value, KeyOfValue, Compare> position);
public:
    size_type erase(const key_type& x);
    void erase(iterator first, iterator last) {
	while (first != last) erase(first++);
    }
#else
    pair_iterator_bool insert(const value_type& x);
    iterator insert(iterator position, const value_type& x);
    void insert(iterator first, iterator last);
    void insert(const value_type* first, const value_type* last);
    void erase(iterator position);
    size_type erase(const key_type& x);
    void erase(iterator first, iterator last);
#endif
    void erase(const key_type* first, const key_type* last);

// set operations:

#ifdef __GNUG__
    iterator find(const key_type& x) {
	return find_hack(x);
    }
    const_iterator find(const key_type& x) const {
	return find_hack(x);
    }
private:
    rb_tree_iterator<Key, Value, KeyOfValue, Compare>
        find_hack(const key_type& x);
    rb_tree_const_iterator<Key, Value, KeyOfValue, Compare>
	find_hack(const Key& k) const;
public:
    
    size_type count(const key_type& x) const;
    iterator lower_bound(const key_type& x) {
	return lower_bound_hack(x);
    }
    const_iterator lower_bound(const key_type& x) const {
	return lower_bound_hack(x);
    }
    iterator upper_bound(const key_type& x) {
	return upper_bound_hack(x);
    }
    const_iterator upper_bound(const key_type& x) const {
	return upper_bound_hack(x);
    }
private:
    rb_tree_iterator<Key, Value, KeyOfValue, Compare>
        lower_bound_hack(const key_type& x);
    rb_tree_const_iterator<Key, Value, KeyOfValue, Compare>
	lower_bound_hack(const Key& k) const;
    rb_tree_iterator<Key, Value, KeyOfValue, Compare>
        upper_bound_hack(const key_type& x);
    rb_tree_const_iterator<Key, Value, KeyOfValue, Compare>
	upper_bound_hack(const Key& k) const;
public:
    typedef  pair<iterator, iterator> pair_iterator_iterator; 
    // typedef done to get around compiler bug
    pair_iterator_iterator equal_range(const key_type& x) {
	return pair_iterator_iterator(lower_bound(x), upper_bound(x));
    }
    typedef  pair<const_iterator, const_iterator> pair_citerator_citerator;
    
    // typedef done to get around compiler bug
    pair_citerator_citerator equal_range(const key_type& x) const {
	return pair_citerator_citerator(lower_bound(x), upper_bound(x));
    }
    inline void rotate_left(link_type x) {
	link_type y = right(x);
	right(x) = left(y);
	if (left(y) != &__rb_NIL)
	    parent(left(y)) = x;
	parent(y) = parent(x);
	if (x == root())
	    root() = y;
	else if (x == left(parent(x)))
	    left(parent(x)) = y;
	else
	    right(parent(x)) = y;
	left(y) = x;
	parent(x) = y;
    }

    inline void rotate_right(link_type x) {
	link_type y = left(x);
	left(x) = right(y);
	if (right(y) != &__rb_NIL)
	    parent(right(y)) = x;
	parent(y) = parent(x);
	if (x == root())
	    root() = y;
	else if (x == right(parent(x)))
	    right(parent(x)) = y;
	else
	    left(parent(x)) = y;
	right(y) = x;
	parent(x) = y;
    }
    friend bidirectional_iterator_tag iterator_category(iterator) {
	return bidirectional_iterator_tag();
    }
    friend bidirectional_iterator_tag iterator_category(const_iterator) {
	return bidirectional_iterator_tag();
    }
#else
    iterator find(const key_type& x);
    const_iterator find(const key_type& x) const;
    size_type count(const key_type& x) const;
    iterator lower_bound(const key_type& x);
    const_iterator lower_bound(const key_type& x) const;
    iterator upper_bound(const key_type& x);
    const_iterator upper_bound(const key_type& x) const;
    typedef  pair<iterator, iterator> pair_iterator_iterator; 
    // typedef done to get around compiler bug
    pair_iterator_iterator equal_range(const key_type& x);
    typedef  pair<const_iterator, const_iterator> pair_citerator_citerator; 
    // typedef done to get around compiler bug
    pair_citerator_citerator equal_range(const key_type& x) const;
    inline void rotate_left(link_type x);
    inline void rotate_right(link_type x);
#endif
};

#ifndef __GNUG__
template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::buffer_pointer 
        rb_tree<Key, Value, KeyOfValue, Compare>::buffer_list = 0;

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::link_type 
        rb_tree<Key, Value, KeyOfValue, Compare>::free_list = 0;

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::link_type 
        rb_tree<Key, Value, KeyOfValue, Compare>::next_avail = 0;

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::link_type 
        rb_tree<Key, Value, KeyOfValue, Compare>::last = 0;

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::size_type 
        rb_tree<Key, Value, KeyOfValue, Compare>::number_of_trees = 0;

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::rb_tree_node_allocator_type 
        rb_tree<Key, Value, KeyOfValue, Compare>::rb_tree_node_allocator;

template <class Key, class Value, class KeyOfValue, class Compare>
Allocator<Value> rb_tree<Key, Value, KeyOfValue, Compare>::value_allocator;

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::buffer_allocator_type 
        rb_tree<Key, Value, KeyOfValue, Compare>::buffer_allocator;

template <class Key, class Value, class KeyOfValue, class Compare>
void rb_tree<Key, Value, KeyOfValue, Compare>::deallocate_buffers() {
    while (buffer_list) {
        buffer_pointer tmp = buffer_list;
        buffer_list = (buffer_pointer)(buffer_list->next_buffer);
        rb_tree_node_allocator.deallocate(tmp->buffer);
        buffer_allocator.deallocate(tmp);
    }
}
#endif

#ifdef __GNUC__
template <class Key, class Value, class KeyOfValue, class Compare>
struct rb_tree_iterator {
  rb_tree<Key, Value, KeyOfValue, Compare>::iterator it;
  rb_tree_iterator(rb_tree<Key, Value, KeyOfValue, Compare>::iterator i) : it(i) {}
  operator rb_tree<Key, Value, KeyOfValue, Compare>::iterator() {
    return it;
  }
};

template <class Key, class Value, class KeyOfValue, class Compare>
inline Value* value_type(const rb_tree_iterator<Key, Value, KeyOfValue, Compare>&) {
    return (Value*)(0);
}

template <class Key, class Value, class KeyOfValue, class Compare>
struct rb_tree_const_iterator {
    rb_tree<Key, Value, KeyOfValue, Compare>::const_iterator it;
    rb_tree_const_iterator(rb_tree<Key, Value, KeyOfValue, Compare>::const_iterator i) : it(i) {}
    operator rb_tree<Key, Value, KeyOfValue, Compare>::const_iterator() {
	return it;
    }
};

template <class Key, class Value, class KeyOfValue, class Compare>
inline Value* value_type(const rb_tree_const_iterator<Key, Value, KeyOfValue, Compare>&) {
    return (Value*)(0);
}

template <class Key, class Value, class KeyOfValue, class Compare>
struct rb_tree_pair_iterator_bool {
    rb_tree<Key, Value, KeyOfValue, Compare>::pair_iterator_bool it;
    rb_tree_pair_iterator_bool(rb_tree<Key, Value, KeyOfValue, Compare>::pair_iterator_bool i) : it(i) {}
    operator rb_tree<Key, Value, KeyOfValue, Compare>::pair_iterator_bool() {
	return it;
    }
};

template <class Key, class Value, class KeyOfValue, class Compare>
inline Value* value_type(rb_tree_pair_iterator_bool<Key, Value, KeyOfValue, Compare>&) {
    return (Value*)(0);
}
#endif

template <class Key, class Value, class KeyOfValue, class Compare>
inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare>& x, 
                       const rb_tree<Key, Value, KeyOfValue, Compare>& y) {
    return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}

template <class Key, class Value, class KeyOfValue, class Compare>
inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare>& x, 
                      const rb_tree<Key, Value, KeyOfValue, Compare>& y) {
    return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>& 
rb_tree<Key, Value, KeyOfValue, Compare>::
operator=(const rb_tree<Key, Value, KeyOfValue, Compare>& x) {
    if (this != &x) {
        // can't be done as in list because Key may be a constant type
        erase(begin(), end());
        root() = __copy(x.root(), header);
        if (root() == &__rb_NIL) {
            leftmost() = header;
            rightmost() = header;
        } else {
	    leftmost() = minimum(root());
            rightmost() = maximum(root());
        }
        node_count = x.node_count;
    }
    return *this;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::__insert
(void* xa, void* ya, const Value& v) {
    link_type x = (link_type)xa;
    link_type y = (link_type)ya;
#else
rb_tree<Key, Value, KeyOfValue, Compare>::iterator
rb_tree<Key, Value, KeyOfValue, Compare>::
__insert(link_type x, link_type y, const Value& v) {
#endif
    ++node_count;
    link_type z = get_node();
#ifdef __GNUG__
    construct(&(value(z)), v);
#else
    construct(value_allocator.address(value(z)), v);
#endif
    if (y == header || x != &__rb_NIL || key_compare(KeyOfValue()(v), key(y))) {
        left(y) = z;  // also makes leftmost() = z when y == header
        if (y == header) {
            root() = z;
            rightmost() = z;
        } else if (y == leftmost())
            leftmost() = z;   // maintain leftmost() pointing to minimum node
    } else {
        right(y) = z;
        if (y == rightmost())
            rightmost() = z;   // maintain rightmost() pointing to maximum node
    }
    parent(z) = y;
    z->left_link = &__rb_NIL;
    z->right_link = &__rb_NIL;
    x = z;  // recolor and rebalance the tree
    color(x) = red;
    while (x != root() && color(parent(x)) == red) 
        if (parent(x) == left(parent(parent(x)))) {
            y = right(parent(parent(x)));
            if (color(y) == red) {
                color(parent(x)) = black;
                color(y) = black;
                color(parent(parent(x))) = red;
                x = parent(parent(x));
            } else {
                if (x == right(parent(x))) {
                    x = parent(x);
                    rotate_left(x);
                }
                color(parent(x)) = black;
                color(parent(parent(x))) = red;
                rotate_right(parent(parent(x)));
            }
        } else {
            y = left(parent(parent(x)));
            if (color(y) == red) {
                color(parent(x)) = black;
                color(y) = black;
                color(parent(parent(x))) = red;
                x = parent(parent(x));
            } else {
                if (x == left(parent(x))) {
                    x = parent(x);
                    rotate_right(x);
                }
                color(parent(x)) = black;
                color(parent(parent(x))) = red;
                rotate_left(parent(parent(x)));
            }
        }
    color(root()) = black;
    return iterator(z);
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_pair_iterator_bool<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::insert_hack(const Value& v) {
#else
rb_tree<Key, Value, KeyOfValue, Compare>::pair_iterator_bool
rb_tree<Key, Value, KeyOfValue, Compare>::insert(const Value& v) {
#endif
    link_type y = header;
    link_type x = root();
    bool comp = true;
    while (x != &__rb_NIL) {
        y = x;
        comp = key_compare(KeyOfValue()(v), key(x));
        x = comp ? left(x) : right(x);
    }
    if (insert_always)
        return pair_iterator_bool(__insert(x, y, v), true);
    iterator j = iterator(y);   
    if (comp)
        if (j == begin())     
            return pair_iterator_bool(__insert(x, y, v), true);
        else
            --j;
    if (key_compare(key(j.node), KeyOfValue()(v)))
        return pair_iterator_bool(__insert(x, y, v), true);
    return pair_iterator_bool(j, false);
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::insert_hack(rb_tree_iterator<Key, Value, KeyOfValue, Compare> posn,
                                                 const Value& v) {
    iterator position = posn;
#else
rb_tree<Key, Value, KeyOfValue, Compare>::iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::insert(iterator position,
                                                 const Value& v) {
#endif
    if (position == iterator(begin()))
        if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
            return __insert(position.node, position.node, v);
            // first argument just needs to be non-&__rb_NIL 
        else
            return insert(v).first;
    else if (position == iterator(end()))
        if (key_compare(key(rightmost()), KeyOfValue()(v)))
            return __insert(&__rb_NIL, rightmost(), v);
        else
            return insert(v).first;
    else {
        iterator before = --position;
        if (key_compare(key(before.node), KeyOfValue()(v))
            && key_compare(KeyOfValue()(v), key(position.node)))
            if (right(before.node) == &__rb_NIL)
                return __insert(&__rb_NIL, before.node, v); 
            else
                return __insert(position.node, position.node, v);
                // first argument just needs to be non-&__rb_NIL 
        else
            return insert(v).first;
    }
}

#ifndef __GNUC__
template <class Key, class Value, class KeyOfValue, class Compare>
void rb_tree<Key, Value, KeyOfValue, Compare>::insert(iterator first, 
                                                      iterator last) {
    while (first != last) insert(*first++);
}

template <class Key, class Value, class KeyOfValue, class Compare>
void rb_tree<Key, Value, KeyOfValue, Compare>::insert(const Value* first, 
                                                      const Value* last) {
    while (first != last) insert(*first++);
}
#endif
         
template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
void rb_tree<Key, Value, KeyOfValue, Compare>::erase_hack(
    rb_tree_iterator<Key, Value, KeyOfValue, Compare> posn) {
    iterator position = posn;
#else
void rb_tree<Key, Value, KeyOfValue, Compare>::erase(iterator position) {
#endif
    link_type z = position.node;
    link_type y = z;
    link_type x;
    if (left(y) == &__rb_NIL)
        x = right(y);
    else
        if (right(y) == &__rb_NIL) 
            x = left(y);
        else {
            y = right(y);
            while (left(y) != &__rb_NIL)
                y = left(y);
            x = right(y);
        }
    if (y != z) { // relink y in place of z
        parent(left(z)) = y; 
        left(y) = left(z);
        if (y != right(z)) {
            parent(x) = parent(y); // possibly x == &__rb_NIL
            left(parent(y)) = x;   // y must be a left child
            right(y) = right(z);
            parent(right(z)) = y;
        } else
            parent(x) = y;  // needed in case x == &__rb_NIL
        if (root() == z)
            root() = y;
        else if (left(parent(z)) == z)
            left(parent(z)) = y;
        else 
            right(parent(z)) = y;
        parent(y) = parent(z);
        ::swap(color(y), color(z));
        ::swap(y, z);  
                       // y points to node to be actually deleted,
                       // z points to old z's former successor
    } else {  // y == z
        parent(x) = parent(y);   // possibly x == &__rb_NIL
        if (root() == z)
            root() = x;
        else 
            if (left(parent(z)) == z)
                left(parent(z)) = x;
            else
                right(parent(z)) = x;
        if (leftmost() == z) 
            if (right(z) == &__rb_NIL)  // left(z) must be &__rb_NIL also
                leftmost() = parent(z);
                // makes leftmost() == header if z == root()
        else
            leftmost() = minimum(x);
        if (rightmost() == z)  
            if (left(z) == &__rb_NIL) // right(z) must be &__rb_NIL also
                rightmost() = parent(z);  
                // makes rightmost() == header if z == root()
        else  // x == left(z)
            rightmost() = maximum(x);
    }
    if (color(y) != red) { 
        while (x != root() && color(x) == black)
            if (x == left(parent(x))) {
                link_type w = right(parent(x));
                if (color(w) == red) {
                    color(w) = black;
                    color(parent(x)) = red;
                    rotate_left(parent(x));
                    w = right(parent(x));
                }
                if (color(left(w)) == black && color(right(w)) == black) {
                    color(w) = red;
                    x = parent(x);
                } else {
                    if (color(right(w)) == black) {
                        color(left(w)) = black;
                        color(w) = red;
                        rotate_right(w);
                        w = right(parent(x));
                    }
                    color(w) = color(parent(x));
                    color(parent(x)) = black;
                    color(right(w)) = black;
                    rotate_left(parent(x));
                    break;
                }
            } else {  // same as then clause with "right" and "left" exchanged
                link_type w = left(parent(x));
                if (color(w) == red) {
                    color(w) = black;
                    color(parent(x)) = red;
                    rotate_right(parent(x));
                    w = left(parent(x));
                }
                if (color(right(w)) == black && color(left(w)) == black) {
                    color(w) = red;
                    x = parent(x);
                } else {
                    if (color(left(w)) == black) {
                        color(right(w)) = black;
                        color(w) = red;
                        rotate_left(w);
                        w = left(parent(x));
                    }
                    color(w) = color(parent(x));
                    color(parent(x)) = black;
                    color(left(w)) = black;
                    rotate_right(parent(x));
                    break;
                }
            }
        color(x) = black;
    }
#ifdef __GNUG__
    delete y;
#else
    destroy(value_allocator.address(value(y)));
    put_node(y);
#endif
    --node_count;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
#ifndef __SIZE_TYPE__
#define __SIZE_TYPE__ long unsigned int
#endif
__SIZE_TYPE__
#else
rb_tree<Key, Value, KeyOfValue, Compare>::size_type 
#endif
rb_tree<Key, Value, KeyOfValue, Compare>::erase(const Key& x) {
    pair_iterator_iterator p = equal_range(x);
    size_type n = 0;
    distance(p.first, p.second, n);
    erase(p.first, p.second);
    return n;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUG__
void *
rb_tree<Key, Value, KeyOfValue, Compare>::__copy_hack(void* xa, void* pa) {
   link_type x = (link_type)xa;
   link_type p = (link_type)pa;
#else
rb_tree<Key, Value, KeyOfValue, Compare>::link_type 
rb_tree<Key, Value, KeyOfValue, Compare>::__copy(link_type x, link_type p) {
#endif
   // structural copy
   link_type r = x;
   while (x != &__rb_NIL) {
      link_type y = get_node();
      if (r == x) r = y;  // save for return value
#ifdef __GNUG__
      construct(&(value(y)), value(x));
#else
      construct(value_allocator.address(value(y)), value(x));
#endif
      left(p) = y;
      parent(y) = p;
      color(y) = color(x);
      right(y) = __copy(right(x), y);
      p = y;
      x = left(x);
   }
   left(p) = (link_type)&__rb_NIL;
   return r;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUG__
void rb_tree<Key, Value, KeyOfValue, Compare>::__erase(void* xa) {
    link_type x = (link_type)xa;
#else
void rb_tree<Key, Value, KeyOfValue, Compare>::__erase(link_type x) {
#endif
    // erase without rebalancing
    while (x != &__rb_NIL) {
       __erase(right(x));
       link_type y = left(x);
#ifdef __GNUG__
       delete x;
#else
       destroy(value_allocator.address(value(x)));
       put_node(x);
#endif
       x = y;
    }
}

#ifndef __GNUC__
template <class Key, class Value, class KeyOfValue, class Compare>
void rb_tree<Key, Value, KeyOfValue, Compare>::erase(iterator first, 
                                                     iterator last) {
    if (first == begin() && last == end() && node_count != 0) {
        __erase(root());
        leftmost() = header;
        root() = NIL;
        rightmost() = header;
        node_count = 0;
    } else
        while (first != last) erase(first++);
}
#endif

template <class Key, class Value, class KeyOfValue, class Compare>
void rb_tree<Key, Value, KeyOfValue, Compare>::erase(const Key* first, 
                                                     const Key* last) {
    while (first != last) erase(*first++);
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::find_hack(const Key& k) {
#else
rb_tree<Key, Value, KeyOfValue, Compare>::iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::find(const Key& k) {
#endif
    link_type y = header;
    link_type x = root();
    bool comp = false;
    while (x != &__rb_NIL) {
        y = x;
        comp = key_compare(key(x), k);
        x = comp ? right(x) : left(x);
    }
    iterator j = iterator(y);   
    if (comp) ++j;
    return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_const_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::find_hack(const Key& k) const {
#else
rb_tree<Key, Value, KeyOfValue, Compare>::const_iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::find(const Key& k) const {
#endif
    link_type y = header;
    link_type x = root();
    bool comp = false;
    while (x != &__rb_NIL) {
        y = x;
        comp = key_compare(key(x), k);
        x = comp ? right(x) : left(x);
    }
    const_iterator j = const_iterator(y);   
    if (comp) ++j;
    return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUG__
__SIZE_TYPE__
#else
rb_tree<Key, Value, KeyOfValue, Compare>::size_type 
#endif
rb_tree<Key, Value, KeyOfValue, Compare>::count(const Key& k) const {
    pair<const_iterator, const_iterator> p = equal_range(k);
    size_type n = 0;
    distance(p.first, p.second, n);
    return n;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::lower_bound_hack(const Key& k) {
#else
rb_tree<Key, Value, KeyOfValue, Compare>::iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::lower_bound(const Key& k) {
#endif
    link_type y = header;
    link_type x = root();
    bool comp = false;
    while (x != &__rb_NIL) {
        y = x;
        comp = key_compare(key(x), k);
        x = comp ? right(x) : left(x);
    }
    iterator j = iterator(y);   
    return comp ? ++j : j;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_const_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::lower_bound_hack(const Key& k) const {
#else
rb_tree<Key, Value, KeyOfValue, Compare>::const_iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::lower_bound(const Key& k) const {
#endif
    link_type y = header;
    link_type x = root();
    bool comp = false;
    while (x != &__rb_NIL) {
        y = x;
        comp = key_compare(key(x), k);
        x = comp ? right(x) : left(x);
    }
    const_iterator j = const_iterator(y);   
    return comp ? ++j : j;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::upper_bound_hack(const Key& k) {
#else
rb_tree<Key, Value, KeyOfValue, Compare>::iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::upper_bound(const Key& k) {
#endif
    link_type y = header;
    link_type x = root();
    bool comp = true;
    while (x != &__rb_NIL) {
        y = x;
        comp = key_compare(k, key(x));
        x = comp ? left(x) : right(x);
    }
    iterator j = iterator(y);   
    return comp ? j : ++j;
}

template <class Key, class Value, class KeyOfValue, class Compare>
#ifdef __GNUC__
rb_tree_const_iterator<Key, Value, KeyOfValue, Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::upper_bound_hack(const Key& k) const {
#else
rb_tree<Key, Value, KeyOfValue, Compare>::const_iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::upper_bound(const Key& k) const {
#endif
    link_type y = header;
    link_type x = root();
    bool comp = true;
    while (x != &__rb_NIL) {
        y = x;
        comp = key_compare(k, key(x));
        x = comp ? left(x) : right(x);
    }
    const_iterator j = const_iterator(y);   
    return comp ? j : ++j;
}


#ifndef __GNUC__
template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::pair_iterator_iterator 
rb_tree<Key, Value, KeyOfValue, Compare>::equal_range(const Key& k) {
    return pair_iterator_iterator(lower_bound(k), upper_bound(k));
}

template <class Key, class Value, class KeyOfValue, class Compare>
rb_tree<Key, Value, KeyOfValue, Compare>::pair_citerator_citerator 
rb_tree<Key, Value, KeyOfValue, Compare>::equal_range(const Key& k) const {
    return pair_citerator_citerator(lower_bound(k), upper_bound(k));
}

template <class Key, class Value, class KeyOfValue, class Compare>
inline void 
rb_tree<Key, Value, KeyOfValue, Compare>::rotate_left(link_type x) {
    link_type y = right(x);
    right(x) = left(y);
    if (left(y) != &__rb_NIL)
        parent(left(y)) = x;
    parent(y) = parent(x);
    if (x == root())
        root() = y;
    else if (x == left(parent(x)))
        left(parent(x)) = y;
    else
        right(parent(x)) = y;
    left(y) = x;
    parent(x) = y;
}

template <class Key, class Value, class KeyOfValue, class Compare>
inline void 
rb_tree<Key, Value, KeyOfValue, Compare>::rotate_right(link_type x) {
    link_type y = left(x);
    left(x) = right(y);
    if (right(y) != &__rb_NIL)
        parent(right(y)) = x;
    parent(y) = parent(x);
    if (x == root())
        root() = y;
    else if (x == right(parent(x)))
        right(parent(x)) = y;
    else
        left(parent(x)) = y;
    right(y) = x;
    parent(x) = y;
}
#endif

#endif

OpenPOWER on IntegriCloud