summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/real.c
blob: 7b8879b87646c6681b38bbb7e210c634b9c9ad4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
/* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF,
   and support for XFmode IEEE extended real floating point arithmetic.
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2002 Free Software Foundation, Inc.
   Contributed by Stephen L. Moshier (moshier@world.std.com).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "tree.h"
#include "toplev.h"
#include "tm_p.h"

/* To enable support of XFmode extended real floating point, define
LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h).

To support cross compilation between IEEE, VAX and IBM floating
point formats, define REAL_ARITHMETIC in the tm.h file.

In either case the machine files (tm.h) must not contain any code
that tries to use host floating point arithmetic to convert
REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf,
etc.  In cross-compile situations a REAL_VALUE_TYPE may not
be intelligible to the host computer's native arithmetic.

The emulator defaults to the host's floating point format so that
its decimal conversion functions can be used if desired (see
real.h).

The first part of this file interfaces gcc to a floating point
arithmetic suite that was not written with gcc in mind.  Avoid
changing the low-level arithmetic routines unless you have suitable
test programs available.  A special version of the PARANOIA floating
point arithmetic tester, modified for this purpose, can be found on
usc.edu: /pub/C-numanal/ieeetest.zoo.  Other tests, and libraries of
XFmode and TFmode transcendental functions, can be obtained by ftp from
netlib.att.com: netlib/cephes.  */

/* Type of computer arithmetic.
   Only one of DEC, IBM, IEEE, C4X, or UNK should get defined.

   `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically
   to big-endian IEEE floating-point data structure.  This definition
   should work in SFmode `float' type and DFmode `double' type on
   virtually all big-endian IEEE machines.  If LONG_DOUBLE_TYPE_SIZE
   has been defined to be 96, then IEEE also invokes the particular
   XFmode (`long double' type) data structure used by the Motorola
   680x0 series processors.

   `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to
   little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE
   has been defined to be 96, then IEEE also invokes the particular
   XFmode `long double' data structure used by the Intel 80x86 series
   processors.

   `DEC' refers specifically to the Digital Equipment Corp PDP-11
   and VAX floating point data structure.  This model currently
   supports no type wider than DFmode.

   `IBM' refers specifically to the IBM System/370 and compatible
   floating point data structure.  This model currently supports
   no type wider than DFmode.  The IBM conversions were contributed by
   frank@atom.ansto.gov.au (Frank Crawford).

   `C4X' refers specifically to the floating point format used on
   Texas Instruments TMS320C3x and TMS320C4x digital signal
   processors.  This supports QFmode (32-bit float, double) and HFmode
   (40-bit long double) where BITS_PER_BYTE is 32. Unlike IEEE
   floats, C4x floats are not rounded to be even. The C4x conversions
   were contributed by m.hayes@elec.canterbury.ac.nz (Michael Hayes) and
   Haj.Ten.Brugge@net.HCC.nl (Herman ten Brugge).

   If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it)
   then `long double' and `double' are both implemented, but they
   both mean DFmode.  In this case, the software floating-point
   support available here is activated by writing
      #define REAL_ARITHMETIC
   in tm.h.

   The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support
   and may deactivate XFmode since `long double' is used to refer
   to both modes.  Defining INTEL_EXTENDED_IEEE_FORMAT to non-zero
   at the same time enables 80387-style 80-bit floats in a 128-bit
   padded image, as seen on IA-64.

   The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN,
   contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>,
   separate the floating point unit's endian-ness from that of
   the integer addressing.  This permits one to define a big-endian
   FPU on a little-endian machine (e.g., ARM).  An extension to
   BYTES_BIG_ENDIAN may be required for some machines in the future.
   These optional macros may be defined in tm.h.  In real.h, they
   default to WORDS_BIG_ENDIAN, etc., so there is no need to define
   them for any normal host or target machine on which the floats
   and the integers have the same endian-ness.  */


/* The following converts gcc macros into the ones used by this file.  */

/* REAL_ARITHMETIC defined means that macros in real.h are
   defined to call emulator functions.  */
#ifdef REAL_ARITHMETIC

#if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
/* PDP-11, Pro350, VAX: */
#define DEC 1
#else /* it's not VAX */
#if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
/* IBM System/370 style */
#define IBM 1
#else /* it's also not an IBM */
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
/* TMS320C3x/C4x style */
#define C4X 1
#else /* it's also not a C4X */
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
#define IEEE
#else /* it's not IEEE either */
/* UNKnown arithmetic.  We don't support this and can't go on.  */
unknown arithmetic type
#define UNK 1
#endif /* not IEEE */
#endif /* not C4X */
#endif /* not IBM */
#endif /* not VAX */

#define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN

#else
/* REAL_ARITHMETIC not defined means that the *host's* data
   structure will be used.  It may differ by endian-ness from the
   target machine's structure and will get its ends swapped
   accordingly (but not here).  Probably only the decimal <-> binary
   functions in this file will actually be used in this case.  */

#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
#define DEC 1
#else /* it's not VAX */
#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
/* IBM System/370 style */
#define IBM 1
#else /* it's also not an IBM */
#if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
#define IEEE
#else /* it's not IEEE either */
unknown arithmetic type
#define UNK 1
#endif /* not IEEE */
#endif /* not IBM */
#endif /* not VAX */

#define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN

#endif /* REAL_ARITHMETIC not defined */

/* Define INFINITY for support of infinity.
   Define NANS for support of Not-a-Number's (NaN's).  */
#if !defined(DEC) && !defined(IBM) && !defined(C4X)
#define INFINITY
#define NANS
#endif

/* Support of NaNs requires support of infinity.  */
#ifdef NANS
#ifndef INFINITY
#define INFINITY
#endif
#endif

/* Find a host integer type that is at least 16 bits wide,
   and another type at least twice whatever that size is.  */

#if HOST_BITS_PER_CHAR >= 16
#define EMUSHORT char
#define EMUSHORT_SIZE HOST_BITS_PER_CHAR
#define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR)
#else
#if HOST_BITS_PER_SHORT >= 16
#define EMUSHORT short
#define EMUSHORT_SIZE HOST_BITS_PER_SHORT
#define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT)
#else
#if HOST_BITS_PER_INT >= 16
#define EMUSHORT int
#define EMUSHORT_SIZE HOST_BITS_PER_INT
#define EMULONG_SIZE (2 * HOST_BITS_PER_INT)
#else
#if HOST_BITS_PER_LONG >= 16
#define EMUSHORT long
#define EMUSHORT_SIZE HOST_BITS_PER_LONG
#define EMULONG_SIZE (2 * HOST_BITS_PER_LONG)
#else
/*  You will have to modify this program to have a smaller unit size.  */
#define EMU_NON_COMPILE
#endif
#endif
#endif
#endif

/* If no 16-bit type has been found and the compiler is GCC, try HImode.  */
#if defined(__GNUC__) && EMUSHORT_SIZE != 16
typedef int HItype __attribute__ ((mode (HI)));
typedef unsigned int UHItype __attribute__ ((mode (HI)));
#undef EMUSHORT
#undef EMUSHORT_SIZE
#undef EMULONG_SIZE
#define EMUSHORT HItype
#define UEMUSHORT UHItype
#define EMUSHORT_SIZE 16
#define EMULONG_SIZE 32
#else
#define UEMUSHORT unsigned EMUSHORT
#endif

#if HOST_BITS_PER_SHORT >= EMULONG_SIZE
#define EMULONG short
#else
#if HOST_BITS_PER_INT >= EMULONG_SIZE
#define EMULONG int
#else
#if HOST_BITS_PER_LONG >= EMULONG_SIZE
#define EMULONG long
#else
#if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE
#define EMULONG long long int
#else
/*  You will have to modify this program to have a smaller unit size.  */
#define EMU_NON_COMPILE
#endif
#endif
#endif
#endif


/* The host interface doesn't work if no 16-bit size exists.  */
#if EMUSHORT_SIZE != 16
#define EMU_NON_COMPILE
#endif

/* OK to continue compilation.  */
#ifndef EMU_NON_COMPILE

/* Construct macros to translate between REAL_VALUE_TYPE and e type.
   In GET_REAL and PUT_REAL, r and e are pointers.
   A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations
   in memory, with no holes.  */

#if MAX_LONG_DOUBLE_TYPE_SIZE == 96 || \
    ((INTEL_EXTENDED_IEEE_FORMAT != 0) && MAX_LONG_DOUBLE_TYPE_SIZE == 128)
/* Number of 16 bit words in external e type format */
# define NE 6
# define MAXDECEXP 4932
# define MINDECEXP -4956
# define GET_REAL(r,e)  memcpy ((e), (r), 2*NE)
# define PUT_REAL(e,r)						\
	do {							\
	  memcpy ((r), (e), 2*NE);				\
	  if (2*NE < sizeof (*r))				\
	    memset ((char *) (r) + 2*NE, 0, sizeof (*r) - 2*NE);	\
	} while (0)
# else /* no XFmode */
#  if MAX_LONG_DOUBLE_TYPE_SIZE == 128
#   define NE 10
#   define MAXDECEXP 4932
#   define MINDECEXP -4977
#   define GET_REAL(r,e) memcpy ((e), (r), 2*NE)
#   define PUT_REAL(e,r)					\
	do {							\
	  memcpy ((r), (e), 2*NE);				\
	  if (2*NE < sizeof (*r))				\
	    memset ((char *) (r) + 2*NE, 0, sizeof (*r) - 2*NE);	\
	} while (0)
#else
#define NE 6
#define MAXDECEXP 4932
#define MINDECEXP -4956
#ifdef REAL_ARITHMETIC
/* Emulator uses target format internally
   but host stores it in host endian-ness.  */

#define GET_REAL(r,e)							\
do {									\
     if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN)		\
       e53toe ((const UEMUSHORT *) (r), (e));				\
     else								\
       {								\
	 UEMUSHORT w[4];					\
         memcpy (&w[3], ((const EMUSHORT *) r), sizeof (EMUSHORT));	\
         memcpy (&w[2], ((const EMUSHORT *) r) + 1, sizeof (EMUSHORT));	\
         memcpy (&w[1], ((const EMUSHORT *) r) + 2, sizeof (EMUSHORT));	\
         memcpy (&w[0], ((const EMUSHORT *) r) + 3, sizeof (EMUSHORT));	\
	 e53toe (w, (e));						\
       }								\
   } while (0)

#define PUT_REAL(e,r)							\
do {									\
     if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN)		\
       etoe53 ((e), (UEMUSHORT *) (r));				\
     else								\
       {								\
	 UEMUSHORT w[4];					\
	 etoe53 ((e), w);						\
         memcpy (((EMUSHORT *) r), &w[3], sizeof (EMUSHORT));		\
         memcpy (((EMUSHORT *) r) + 1, &w[2], sizeof (EMUSHORT));	\
         memcpy (((EMUSHORT *) r) + 2, &w[1], sizeof (EMUSHORT));	\
         memcpy (((EMUSHORT *) r) + 3, &w[0], sizeof (EMUSHORT));	\
       }								\
   } while (0)

#else /* not REAL_ARITHMETIC */

/* emulator uses host format */
#define GET_REAL(r,e) e53toe ((const UEMUSHORT *) (r), (e))
#define PUT_REAL(e,r) etoe53 ((e), (UEMUSHORT *) (r))

#endif /* not REAL_ARITHMETIC */
#endif /* not TFmode */
#endif /* not XFmode */


/* Number of 16 bit words in internal format */
#define NI (NE+3)

/* Array offset to exponent */
#define E 1

/* Array offset to high guard word */
#define M 2

/* Number of bits of precision */
#define NBITS ((NI-4)*16)

/* Maximum number of decimal digits in ASCII conversion
 * = NBITS*log10(2)
 */
#define NDEC (NBITS*8/27)

/* The exponent of 1.0 */
#define EXONE (0x3fff)

#if defined(HOST_EBCDIC)
/* bit 8 is significant in EBCDIC */
#define CHARMASK 0xff
#else
#define CHARMASK 0x7f
#endif

extern int extra_warnings;
extern const UEMUSHORT ezero[NE], ehalf[NE], eone[NE], etwo[NE];
extern const UEMUSHORT elog2[NE], esqrt2[NE];

static void endian	PARAMS ((const UEMUSHORT *, long *,
			       enum machine_mode));
static void eclear	PARAMS ((UEMUSHORT *));
static void emov	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#if 0
static void eabs	PARAMS ((UEMUSHORT *));
#endif
static void eneg	PARAMS ((UEMUSHORT *));
static int eisneg	PARAMS ((const UEMUSHORT *));
static int eisinf	PARAMS ((const UEMUSHORT *));
static int eisnan	PARAMS ((const UEMUSHORT *));
static void einfin	PARAMS ((UEMUSHORT *));
#ifdef NANS
static void enan	PARAMS ((UEMUSHORT *, int));
static void einan	PARAMS ((UEMUSHORT *));
static int eiisnan	PARAMS ((const UEMUSHORT *));
static int eiisneg	PARAMS ((const UEMUSHORT *));
static void make_nan	PARAMS ((UEMUSHORT *, int, enum machine_mode));
#endif
static void emovi	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void emovo	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void ecleaz	PARAMS ((UEMUSHORT *));
static void ecleazs	PARAMS ((UEMUSHORT *));
static void emovz	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#if 0
static void eiinfin	PARAMS ((UEMUSHORT *));
#endif
#ifdef INFINITY
static int eiisinf	PARAMS ((const UEMUSHORT *));
#endif
static int ecmpm	PARAMS ((const UEMUSHORT *, const UEMUSHORT *));
static void eshdn1	PARAMS ((UEMUSHORT *));
static void eshup1	PARAMS ((UEMUSHORT *));
static void eshdn8	PARAMS ((UEMUSHORT *));
static void eshup8	PARAMS ((UEMUSHORT *));
static void eshup6	PARAMS ((UEMUSHORT *));
static void eshdn6	PARAMS ((UEMUSHORT *));
static void eaddm	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void esubm	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void m16m	PARAMS ((unsigned int, const UEMUSHORT *, UEMUSHORT *));
static int edivm	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static int emulm	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void emdnorm	PARAMS ((UEMUSHORT *, int, int, EMULONG, int));
static void esub	PARAMS ((const UEMUSHORT *, const UEMUSHORT *,
				 UEMUSHORT *));
static void eadd	PARAMS ((const UEMUSHORT *, const UEMUSHORT *,
				 UEMUSHORT *));
static void eadd1	PARAMS ((const UEMUSHORT *, const UEMUSHORT *,
				 UEMUSHORT *));
static void ediv	PARAMS ((const UEMUSHORT *, const UEMUSHORT *,
				 UEMUSHORT *));
static void emul	PARAMS ((const UEMUSHORT *, const UEMUSHORT *,
				 UEMUSHORT *));
static void e53toe	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void e64toe	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
static void e113toe	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#endif
static void e24toe	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
static void etoe113	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void toe113	PARAMS ((UEMUSHORT *, UEMUSHORT *));
#endif
static void etoe64	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void toe64	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etoe53	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void toe53	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etoe24	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void toe24	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static int ecmp		PARAMS ((const UEMUSHORT *, const UEMUSHORT *));
#if 0
static void eround	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#endif
static void ltoe	PARAMS ((const HOST_WIDE_INT *, UEMUSHORT *));
static void ultoe	PARAMS ((const unsigned HOST_WIDE_INT *, UEMUSHORT *));
static void eifrac	PARAMS ((const UEMUSHORT *, HOST_WIDE_INT *,
				 UEMUSHORT *));
static void euifrac	PARAMS ((const UEMUSHORT *, unsigned HOST_WIDE_INT *,
				 UEMUSHORT *));
static int eshift	PARAMS ((UEMUSHORT *, int));
static int enormlz	PARAMS ((UEMUSHORT *));
#if 0
static void e24toasc	PARAMS ((const UEMUSHORT *, char *, int));
static void e53toasc	PARAMS ((const UEMUSHORT *, char *, int));
static void e64toasc	PARAMS ((const UEMUSHORT *, char *, int));
static void e113toasc	PARAMS ((const UEMUSHORT *, char *, int));
#endif /* 0 */
static void etoasc	PARAMS ((const UEMUSHORT *, char *, int));
static void asctoe24	PARAMS ((const char *, UEMUSHORT *));
static void asctoe53	PARAMS ((const char *, UEMUSHORT *));
static void asctoe64	PARAMS ((const char *, UEMUSHORT *));
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
static void asctoe113	PARAMS ((const char *, UEMUSHORT *));
#endif
static void asctoe	PARAMS ((const char *, UEMUSHORT *));
static void asctoeg	PARAMS ((const char *, UEMUSHORT *, int));
static void efloor	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#if 0
static void efrexp	PARAMS ((const UEMUSHORT *, int *,
				 UEMUSHORT *));
#endif
static void eldexp	PARAMS ((const UEMUSHORT *, int, UEMUSHORT *));
#if 0
static void eremain	PARAMS ((const UEMUSHORT *, const UEMUSHORT *,
				 UEMUSHORT *));
#endif
static void eiremain	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void mtherr	PARAMS ((const char *, int));
#ifdef DEC
static void dectoe	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void etodec	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void todec	PARAMS ((UEMUSHORT *, UEMUSHORT *));
#endif
#ifdef IBM
static void ibmtoe	PARAMS ((const UEMUSHORT *, UEMUSHORT *,
				 enum machine_mode));
static void etoibm	PARAMS ((const UEMUSHORT *, UEMUSHORT *,
				 enum machine_mode));
static void toibm	PARAMS ((UEMUSHORT *, UEMUSHORT *,
				 enum machine_mode));
#endif
#ifdef C4X
static void c4xtoe	PARAMS ((const UEMUSHORT *, UEMUSHORT *,
				 enum machine_mode));
static void etoc4x	PARAMS ((const UEMUSHORT *, UEMUSHORT *,
				 enum machine_mode));
static void toc4x	PARAMS ((UEMUSHORT *, UEMUSHORT *,
				 enum machine_mode));
#endif
#if 0
static void uditoe	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void ditoe	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void etoudi	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void etodi	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
static void esqrt	PARAMS ((const UEMUSHORT *, UEMUSHORT *));
#endif

/* Copy 32-bit numbers obtained from array containing 16-bit numbers,
   swapping ends if required, into output array of longs.  The
   result is normally passed to fprintf by the ASM_OUTPUT_ macros.  */

static void
endian (e, x, mode)
     const UEMUSHORT e[];
     long x[];
     enum machine_mode mode;
{
  unsigned long th, t;

  if (REAL_WORDS_BIG_ENDIAN)
    {
      switch (mode)
	{
	case TFmode:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
	  /* Swap halfwords in the fourth long.  */
	  th = (unsigned long) e[6] & 0xffff;
	  t = (unsigned long) e[7] & 0xffff;
	  t |= th << 16;
	  x[3] = (long) t;
#else
	  x[3] = 0;
#endif
	  /* FALLTHRU */

	case XFmode:
	  /* Swap halfwords in the third long.  */
	  th = (unsigned long) e[4] & 0xffff;
	  t = (unsigned long) e[5] & 0xffff;
	  t |= th << 16;
	  x[2] = (long) t;
	  /* FALLTHRU */

	case DFmode:
	  /* Swap halfwords in the second word.  */
	  th = (unsigned long) e[2] & 0xffff;
	  t = (unsigned long) e[3] & 0xffff;
	  t |= th << 16;
	  x[1] = (long) t;
	  /* FALLTHRU */

	case SFmode:
	case HFmode:
	  /* Swap halfwords in the first word.  */
	  th = (unsigned long) e[0] & 0xffff;
	  t = (unsigned long) e[1] & 0xffff;
	  t |= th << 16;
	  x[0] = (long) t;
	  break;

	default:
	  abort ();
	}
    }
  else
    {
      /* Pack the output array without swapping.  */

      switch (mode)
	{
	case TFmode:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
	  /* Pack the fourth long.  */
	  th = (unsigned long) e[7] & 0xffff;
	  t = (unsigned long) e[6] & 0xffff;
	  t |= th << 16;
	  x[3] = (long) t;
#else
	  x[3] = 0;
#endif
	  /* FALLTHRU */

	case XFmode:
	  /* Pack the third long.
	     Each element of the input REAL_VALUE_TYPE array has 16 useful bits
	     in it.  */
	  th = (unsigned long) e[5] & 0xffff;
	  t = (unsigned long) e[4] & 0xffff;
	  t |= th << 16;
	  x[2] = (long) t;
	  /* FALLTHRU */

	case DFmode:
	  /* Pack the second long */
	  th = (unsigned long) e[3] & 0xffff;
	  t = (unsigned long) e[2] & 0xffff;
	  t |= th << 16;
	  x[1] = (long) t;
	  /* FALLTHRU */

	case SFmode:
	case HFmode:
	  /* Pack the first long */
	  th = (unsigned long) e[1] & 0xffff;
	  t = (unsigned long) e[0] & 0xffff;
	  t |= th << 16;
	  x[0] = (long) t;
	  break;

	default:
	  abort ();
	}
    }
}


/* This is the implementation of the REAL_ARITHMETIC macro.  */

void
earith (value, icode, r1, r2)
     REAL_VALUE_TYPE *value;
     int icode;
     REAL_VALUE_TYPE *r1;
     REAL_VALUE_TYPE *r2;
{
  UEMUSHORT d1[NE], d2[NE], v[NE];
  enum tree_code code;

  GET_REAL (r1, d1);
  GET_REAL (r2, d2);
#ifdef NANS
/*  Return NaN input back to the caller.  */
  if (eisnan (d1))
    {
      PUT_REAL (d1, value);
      return;
    }
  if (eisnan (d2))
    {
      PUT_REAL (d2, value);
      return;
    }
#endif
  code = (enum tree_code) icode;
  switch (code)
    {
    case PLUS_EXPR:
      eadd (d2, d1, v);
      break;

    case MINUS_EXPR:
      esub (d2, d1, v);		/* d1 - d2 */
      break;

    case MULT_EXPR:
      emul (d2, d1, v);
      break;

    case RDIV_EXPR:
#ifndef REAL_INFINITY
      if (ecmp (d2, ezero) == 0)
	{
#ifdef NANS
	enan (v, eisneg (d1) ^ eisneg (d2));
	break;
#else
	abort ();
#endif
	}
#endif
      ediv (d2, d1, v);	/* d1/d2 */
      break;

    case MIN_EXPR:		/* min (d1,d2) */
      if (ecmp (d1, d2) < 0)
	emov (d1, v);
      else
	emov (d2, v);
      break;

    case MAX_EXPR:		/* max (d1,d2) */
      if (ecmp (d1, d2) > 0)
	emov (d1, v);
      else
	emov (d2, v);
      break;
    default:
      emov (ezero, v);
      break;
    }
PUT_REAL (v, value);
}


/* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT.
   implements REAL_VALUE_RNDZINT (x) (etrunci (x)).  */

REAL_VALUE_TYPE
etrunci (x)
     REAL_VALUE_TYPE x;
{
  UEMUSHORT f[NE], g[NE];
  REAL_VALUE_TYPE r;
  HOST_WIDE_INT l;

  GET_REAL (&x, g);
#ifdef NANS
  if (eisnan (g))
    return (x);
#endif
  eifrac (g, &l, f);
  ltoe (&l, g);
  PUT_REAL (g, &r);
  return (r);
}


/* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT;
   implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)).  */

REAL_VALUE_TYPE
etruncui (x)
     REAL_VALUE_TYPE x;
{
  UEMUSHORT f[NE], g[NE];
  REAL_VALUE_TYPE r;
  unsigned HOST_WIDE_INT l;

  GET_REAL (&x, g);
#ifdef NANS
  if (eisnan (g))
    return (x);
#endif
  euifrac (g, &l, f);
  ultoe (&l, g);
  PUT_REAL (g, &r);
  return (r);
}


/* This is the REAL_VALUE_ATOF function.  It converts a decimal or hexadecimal
   string to binary, rounding off as indicated by the machine_mode argument.
   Then it promotes the rounded value to REAL_VALUE_TYPE.  */

REAL_VALUE_TYPE
ereal_atof (s, t)
     const char *s;
     enum machine_mode t;
{
  UEMUSHORT tem[NE], e[NE];
  REAL_VALUE_TYPE r;

  switch (t)
    {
#ifdef C4X
    case QFmode:
    case HFmode:
      asctoe53 (s, tem);
      e53toe (tem, e);
      break;
#else
    case HFmode:
#endif

    case SFmode:
      asctoe24 (s, tem);
      e24toe (tem, e);
      break;

    case DFmode:
      asctoe53 (s, tem);
      e53toe (tem, e);
      break;

    case TFmode:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
      asctoe113 (s, tem);
      e113toe (tem, e);
      break;
#endif
      /* FALLTHRU */

    case XFmode:
      asctoe64 (s, tem);
      e64toe (tem, e);
      break;

    default:
      asctoe (s, e);
    }
  PUT_REAL (e, &r);
  return (r);
}


/* Expansion of REAL_NEGATE.  */

REAL_VALUE_TYPE
ereal_negate (x)
     REAL_VALUE_TYPE x;
{
  UEMUSHORT e[NE];
  REAL_VALUE_TYPE r;

  GET_REAL (&x, e);
  eneg (e);
  PUT_REAL (e, &r);
  return (r);
}


/* Round real toward zero to HOST_WIDE_INT;
   implements REAL_VALUE_FIX (x).  */

HOST_WIDE_INT
efixi (x)
     REAL_VALUE_TYPE x;
{
  UEMUSHORT f[NE], g[NE];
  HOST_WIDE_INT l;

  GET_REAL (&x, f);
#ifdef NANS
  if (eisnan (f))
    {
      warning ("conversion from NaN to int");
      return (-1);
    }
#endif
  eifrac (f, &l, g);
  return l;
}

/* Round real toward zero to unsigned HOST_WIDE_INT
   implements  REAL_VALUE_UNSIGNED_FIX (x).
   Negative input returns zero.  */

unsigned HOST_WIDE_INT
efixui (x)
     REAL_VALUE_TYPE x;
{
  UEMUSHORT f[NE], g[NE];
  unsigned HOST_WIDE_INT l;

  GET_REAL (&x, f);
#ifdef NANS
  if (eisnan (f))
    {
      warning ("conversion from NaN to unsigned int");
      return (-1);
    }
#endif
  euifrac (f, &l, g);
  return l;
}


/* REAL_VALUE_FROM_INT macro.  */

void
ereal_from_int (d, i, j, mode)
     REAL_VALUE_TYPE *d;
     HOST_WIDE_INT i, j;
     enum machine_mode mode;
{
  UEMUSHORT df[NE], dg[NE];
  HOST_WIDE_INT low, high;
  int sign;

  if (GET_MODE_CLASS (mode) != MODE_FLOAT)
    abort ();
  sign = 0;
  low = i;
  if ((high = j) < 0)
    {
      sign = 1;
      /* complement and add 1 */
      high = ~high;
      if (low)
	low = -low;
      else
	high += 1;
    }
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
  ultoe ((unsigned HOST_WIDE_INT *) &high, dg);
  emul (dg, df, dg);
  ultoe ((unsigned HOST_WIDE_INT *) &low, df);
  eadd (df, dg, dg);
  if (sign)
    eneg (dg);

  /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
     Avoid double-rounding errors later by rounding off now from the
     extra-wide internal format to the requested precision.  */
  switch (GET_MODE_BITSIZE (mode))
    {
    case 32:
      etoe24 (dg, df);
      e24toe (df, dg);
      break;

    case 64:
      etoe53 (dg, df);
      e53toe (df, dg);
      break;

    case 96:
      etoe64 (dg, df);
      e64toe (df, dg);
      break;

    case 128:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
      etoe113 (dg, df);
      e113toe (df, dg);
#else
      etoe64 (dg, df);
      e64toe (df, dg);
#endif
      break;

    default:
      abort ();
  }

  PUT_REAL (dg, d);
}


/* REAL_VALUE_FROM_UNSIGNED_INT macro.  */

void
ereal_from_uint (d, i, j, mode)
     REAL_VALUE_TYPE *d;
     unsigned HOST_WIDE_INT i, j;
     enum machine_mode mode;
{
  UEMUSHORT df[NE], dg[NE];
  unsigned HOST_WIDE_INT low, high;

  if (GET_MODE_CLASS (mode) != MODE_FLOAT)
    abort ();
  low = i;
  high = j;
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
  ultoe (&high, dg);
  emul (dg, df, dg);
  ultoe (&low, df);
  eadd (df, dg, dg);

  /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
     Avoid double-rounding errors later by rounding off now from the
     extra-wide internal format to the requested precision.  */
  switch (GET_MODE_BITSIZE (mode))
    {
    case 32:
      etoe24 (dg, df);
      e24toe (df, dg);
      break;

    case 64:
      etoe53 (dg, df);
      e53toe (df, dg);
      break;

    case 96:
      etoe64 (dg, df);
      e64toe (df, dg);
      break;

    case 128:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
      etoe113 (dg, df);
      e113toe (df, dg);
#else
      etoe64 (dg, df);
      e64toe (df, dg);
#endif
      break;

    default:
      abort ();
  }

  PUT_REAL (dg, d);
}


/* REAL_VALUE_TO_INT macro.  */

void
ereal_to_int (low, high, rr)
     HOST_WIDE_INT *low, *high;
     REAL_VALUE_TYPE rr;
{
  UEMUSHORT d[NE], df[NE], dg[NE], dh[NE];
  int s;

  GET_REAL (&rr, d);
#ifdef NANS
  if (eisnan (d))
    {
      warning ("conversion from NaN to int");
      *low = -1;
      *high = -1;
      return;
    }
#endif
  /* convert positive value */
  s = 0;
  if (eisneg (d))
    {
      eneg (d);
      s = 1;
    }
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
  ediv (df, d, dg);		/* dg = d / 2^32 is the high word */
  euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh);
  emul (df, dh, dg);		/* fractional part is the low word */
  euifrac (dg, (unsigned HOST_WIDE_INT *) low, dh);
  if (s)
    {
      /* complement and add 1 */
      *high = ~(*high);
      if (*low)
	*low = -(*low);
      else
	*high += 1;
    }
}


/* REAL_VALUE_LDEXP macro.  */

REAL_VALUE_TYPE
ereal_ldexp (x, n)
     REAL_VALUE_TYPE x;
     int n;
{
  UEMUSHORT e[NE], y[NE];
  REAL_VALUE_TYPE r;

  GET_REAL (&x, e);
#ifdef NANS
  if (eisnan (e))
    return (x);
#endif
  eldexp (e, n, y);
  PUT_REAL (y, &r);
  return (r);
}

/* These routines are conditionally compiled because functions
   of the same names may be defined in fold-const.c.  */

#ifdef REAL_ARITHMETIC

/* Check for infinity in a REAL_VALUE_TYPE.  */

int
target_isinf (x)
     REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
{
#ifdef INFINITY
  UEMUSHORT e[NE];

  GET_REAL (&x, e);
  return (eisinf (e));
#else
  return 0;
#endif
}

/* Check whether a REAL_VALUE_TYPE item is a NaN.  */

int
target_isnan (x)
     REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
{
#ifdef NANS
  UEMUSHORT e[NE];

  GET_REAL (&x, e);
  return (eisnan (e));
#else
  return (0);
#endif
}


/* Check for a negative REAL_VALUE_TYPE number.
   This just checks the sign bit, so that -0 counts as negative.  */

int
target_negative (x)
     REAL_VALUE_TYPE x;
{
  return ereal_isneg (x);
}

/* Expansion of REAL_VALUE_TRUNCATE.
   The result is in floating point, rounded to nearest or even.  */

REAL_VALUE_TYPE
real_value_truncate (mode, arg)
     enum machine_mode mode;
     REAL_VALUE_TYPE arg;
{
  UEMUSHORT e[NE], t[NE];
  REAL_VALUE_TYPE r;

  GET_REAL (&arg, e);
#ifdef NANS
  if (eisnan (e))
    return (arg);
#endif
  eclear (t);
  switch (mode)
    {
    case TFmode:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
      etoe113 (e, t);
      e113toe (t, t);
      break;
#endif
      /* FALLTHRU */

    case XFmode:
      etoe64 (e, t);
      e64toe (t, t);
      break;

    case DFmode:
      etoe53 (e, t);
      e53toe (t, t);
      break;

    case SFmode:
#ifndef C4X
    case HFmode:
#endif
      etoe24 (e, t);
      e24toe (t, t);
      break;

#ifdef C4X
    case HFmode:
    case QFmode:
      etoe53 (e, t);
      e53toe (t, t);
      break;
#endif

    case SImode:
      r = etrunci (arg);
      return (r);

    /* If an unsupported type was requested, presume that
       the machine files know something useful to do with
       the unmodified value.  */

    default:
      return (arg);
    }
  PUT_REAL (t, &r);
  return (r);
}

/* Try to change R into its exact multiplicative inverse in machine mode
   MODE.  Return nonzero function value if successful.  */

int
exact_real_inverse (mode, r)
     enum machine_mode mode;
     REAL_VALUE_TYPE *r;
{
  UEMUSHORT e[NE], einv[NE];
  REAL_VALUE_TYPE rinv;
  int i;

  GET_REAL (r, e);

  /* Test for input in range.  Don't transform IEEE special values.  */
  if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0))
    return 0;

  /* Test for a power of 2: all significand bits zero except the MSB.
     We are assuming the target has binary (or hex) arithmetic.  */
  if (e[NE - 2] != 0x8000)
    return 0;

  for (i = 0; i < NE - 2; i++)
    {
      if (e[i] != 0)
	return 0;
    }

  /* Compute the inverse and truncate it to the required mode.  */
  ediv (e, eone, einv);
  PUT_REAL (einv, &rinv);
  rinv = real_value_truncate (mode, rinv);

#ifdef CHECK_FLOAT_VALUE
  /* This check is not redundant.  It may, for example, flush
     a supposedly IEEE denormal value to zero.  */
  i = 0;
  if (CHECK_FLOAT_VALUE (mode, rinv, i))
    return 0;
#endif
  GET_REAL (&rinv, einv);

  /* Check the bits again, because the truncation might have
     generated an arbitrary saturation value on overflow.  */
  if (einv[NE - 2] != 0x8000)
    return 0;

  for (i = 0; i < NE - 2; i++)
    {
      if (einv[i] != 0)
	return 0;
    }

  /* Fail if the computed inverse is out of range.  */
  if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0))
    return 0;

  /* Output the reciprocal and return success flag.  */
  PUT_REAL (einv, r);
  return 1;
}
#endif /* REAL_ARITHMETIC defined */

/* Used for debugging--print the value of R in human-readable format
   on stderr.  */

void
debug_real (r)
     REAL_VALUE_TYPE r;
{
  char dstr[30];

  REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr);
  fprintf (stderr, "%s", dstr);
}


/* The following routines convert REAL_VALUE_TYPE to the various floating
   point formats that are meaningful to supported computers.

   The results are returned in 32-bit pieces, each piece stored in a `long'.
   This is so they can be printed by statements like

      fprintf (file, "%lx, %lx", L[0],  L[1]);

   that will work on both narrow- and wide-word host computers.  */

/* Convert R to a 128-bit long double precision value.  The output array L
   contains four 32-bit pieces of the result, in the order they would appear
   in memory.  */

void
etartdouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
  UEMUSHORT e[NE];

  GET_REAL (&r, e);
#if INTEL_EXTENDED_IEEE_FORMAT == 0
  etoe113 (e, e);
#else
  etoe64 (e, e);
#endif
  endian (e, l, TFmode);
}

/* Convert R to a double extended precision value.  The output array L
   contains three 32-bit pieces of the result, in the order they would
   appear in memory.  */

void
etarldouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
  UEMUSHORT e[NE];

  GET_REAL (&r, e);
  etoe64 (e, e);
  endian (e, l, XFmode);
}

/* Convert R to a double precision value.  The output array L contains two
   32-bit pieces of the result, in the order they would appear in memory.  */

void
etardouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
  UEMUSHORT e[NE];

  GET_REAL (&r, e);
  etoe53 (e, e);
  endian (e, l, DFmode);
}

/* Convert R to a single precision float value stored in the least-significant
   bits of a `long'.  */

long
etarsingle (r)
     REAL_VALUE_TYPE r;
{
  UEMUSHORT e[NE];
  long l;

  GET_REAL (&r, e);
  etoe24 (e, e);
  endian (e, &l, SFmode);
  return ((long) l);
}

/* Convert X to a decimal ASCII string S for output to an assembly
   language file.  Note, there is no standard way to spell infinity or
   a NaN, so these values may require special treatment in the tm.h
   macros.  */

void
ereal_to_decimal (x, s)
     REAL_VALUE_TYPE x;
     char *s;
{
  UEMUSHORT e[NE];

  GET_REAL (&x, e);
  etoasc (e, s, 20);
}

/* Compare X and Y.  Return 1 if X > Y, 0 if X == Y, -1 if X < Y,
   or -2 if either is a NaN.  */

int
ereal_cmp (x, y)
     REAL_VALUE_TYPE x, y;
{
  UEMUSHORT ex[NE], ey[NE];

  GET_REAL (&x, ex);
  GET_REAL (&y, ey);
  return (ecmp (ex, ey));
}

/*  Return 1 if the sign bit of X is set, else return 0.  */

int
ereal_isneg (x)
     REAL_VALUE_TYPE x;
{
  UEMUSHORT ex[NE];

  GET_REAL (&x, ex);
  return (eisneg (ex));
}

/* End of REAL_ARITHMETIC interface */

/*
  Extended precision IEEE binary floating point arithmetic routines

  Numbers are stored in C language as arrays of 16-bit unsigned
  short integers.  The arguments of the routines are pointers to
  the arrays.

  External e type data structure, similar to Intel 8087 chip
  temporary real format but possibly with a larger significand:

	NE-1 significand words	(least significant word first,
				 most significant bit is normally set)
	exponent		(value = EXONE for 1.0,
				top bit is the sign)


  Internal exploded e-type data structure of a number (a "word" is 16 bits):

  ei[0]	sign word	(0 for positive, 0xffff for negative)
  ei[1]	biased exponent	(value = EXONE for the number 1.0)
  ei[2]	high guard word	(always zero after normalization)
  ei[3]
  to ei[NI-2]	significand	(NI-4 significand words,
 				 most significant word first,
 				 most significant bit is set)
  ei[NI-1]	low guard word	(0x8000 bit is rounding place)



 		Routines for external format e-type numbers

 	asctoe (string, e)	ASCII string to extended double e type
 	asctoe64 (string, &d)	ASCII string to long double
 	asctoe53 (string, &d)	ASCII string to double
 	asctoe24 (string, &f)	ASCII string to single
 	asctoeg (string, e, prec) ASCII string to specified precision
 	e24toe (&f, e)		IEEE single precision to e type
 	e53toe (&d, e)		IEEE double precision to e type
 	e64toe (&d, e)		IEEE long double precision to e type
 	e113toe (&d, e)		128-bit long double precision to e type
#if 0
 	eabs (e)			absolute value
#endif
 	eadd (a, b, c)		c = b + a
 	eclear (e)		e = 0
 	ecmp (a, b)		Returns 1 if a > b, 0 if a == b,
 				-1 if a < b, -2 if either a or b is a NaN.
 	ediv (a, b, c)		c = b / a
 	efloor (a, b)		truncate to integer, toward -infinity
 	efrexp (a, exp, s)	extract exponent and significand
 	eifrac (e, &l, frac)    e to HOST_WIDE_INT and e type fraction
 	euifrac (e, &l, frac)   e to unsigned HOST_WIDE_INT and e type fraction
 	einfin (e)		set e to infinity, leaving its sign alone
 	eldexp (a, n, b)	multiply by 2**n
 	emov (a, b)		b = a
 	emul (a, b, c)		c = b * a
 	eneg (e)			e = -e
#if 0
 	eround (a, b)		b = nearest integer value to a
#endif
 	esub (a, b, c)		c = b - a
#if 0
 	e24toasc (&f, str, n)	single to ASCII string, n digits after decimal
 	e53toasc (&d, str, n)	double to ASCII string, n digits after decimal
 	e64toasc (&d, str, n)	80-bit long double to ASCII string
 	e113toasc (&d, str, n)	128-bit long double to ASCII string
#endif
 	etoasc (e, str, n)	e to ASCII string, n digits after decimal
 	etoe24 (e, &f)		convert e type to IEEE single precision
 	etoe53 (e, &d)		convert e type to IEEE double precision
 	etoe64 (e, &d)		convert e type to IEEE long double precision
 	ltoe (&l, e)		HOST_WIDE_INT to e type
 	ultoe (&l, e)		unsigned HOST_WIDE_INT to e type
	eisneg (e)              1 if sign bit of e != 0, else 0
	eisinf (e)              1 if e has maximum exponent (non-IEEE)
 				or is infinite (IEEE)
        eisnan (e)              1 if e is a NaN


 		Routines for internal format exploded e-type numbers

 	eaddm (ai, bi)		add significands, bi = bi + ai
 	ecleaz (ei)		ei = 0
 	ecleazs (ei)		set ei = 0 but leave its sign alone
 	ecmpm (ai, bi)		compare significands, return 1, 0, or -1
 	edivm (ai, bi)		divide  significands, bi = bi / ai
 	emdnorm (ai,l,s,exp)	normalize and round off
 	emovi (a, ai)		convert external a to internal ai
 	emovo (ai, a)		convert internal ai to external a
 	emovz (ai, bi)		bi = ai, low guard word of bi = 0
 	emulm (ai, bi)		multiply significands, bi = bi * ai
 	enormlz (ei)		left-justify the significand
 	eshdn1 (ai)		shift significand and guards down 1 bit
 	eshdn8 (ai)		shift down 8 bits
 	eshdn6 (ai)		shift down 16 bits
 	eshift (ai, n)		shift ai n bits up (or down if n < 0)
 	eshup1 (ai)		shift significand and guards up 1 bit
 	eshup8 (ai)		shift up 8 bits
 	eshup6 (ai)		shift up 16 bits
 	esubm (ai, bi)		subtract significands, bi = bi - ai
        eiisinf (ai)            1 if infinite
        eiisnan (ai)            1 if a NaN
 	eiisneg (ai)		1 if sign bit of ai != 0, else 0
        einan (ai)              set ai = NaN
#if 0
        eiinfin (ai)            set ai = infinity
#endif

  The result is always normalized and rounded to NI-4 word precision
  after each arithmetic operation.

  Exception flags are NOT fully supported.

  Signaling NaN's are NOT supported; they are treated the same
  as quiet NaN's.

  Define INFINITY for support of infinity; otherwise a
  saturation arithmetic is implemented.

  Define NANS for support of Not-a-Number items; otherwise the
  arithmetic will never produce a NaN output, and might be confused
  by a NaN input.
  If NaN's are supported, the output of `ecmp (a,b)' is -2 if
  either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)'
  may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than'
  if in doubt.

  Denormals are always supported here where appropriate (e.g., not
  for conversion to DEC numbers).  */

/* Definitions for error codes that are passed to the common error handling
   routine mtherr.

   For Digital Equipment PDP-11 and VAX computers, certain
  IBM systems, and others that use numbers with a 56-bit
  significand, the symbol DEC should be defined.  In this
  mode, most floating point constants are given as arrays
  of octal integers to eliminate decimal to binary conversion
  errors that might be introduced by the compiler.

  For computers, such as IBM PC, that follow the IEEE
  Standard for Binary Floating Point Arithmetic (ANSI/IEEE
  Std 754-1985), the symbol IEEE should be defined.
  These numbers have 53-bit significands.  In this mode, constants
  are provided as arrays of hexadecimal 16 bit integers.
  The endian-ness of generated values is controlled by
  REAL_WORDS_BIG_ENDIAN.

  To accommodate other types of computer arithmetic, all
  constants are also provided in a normal decimal radix
  which one can hope are correctly converted to a suitable
  format by the available C language compiler.  To invoke
  this mode, the symbol UNK is defined.

  An important difference among these modes is a predefined
  set of machine arithmetic constants for each.  The numbers
  MACHEP (the machine roundoff error), MAXNUM (largest number
  represented), and several other parameters are preset by
  the configuration symbol.  Check the file const.c to
  ensure that these values are correct for your computer.

  For ANSI C compatibility, define ANSIC equal to 1.  Currently
  this affects only the atan2 function and others that use it.  */

/* Constant definitions for math error conditions.  */

#define DOMAIN		1	/* argument domain error */
#define SING		2	/* argument singularity */
#define OVERFLOW	3	/* overflow range error */
#define UNDERFLOW	4	/* underflow range error */
#define TLOSS		5	/* total loss of precision */
#define PLOSS		6	/* partial loss of precision */
#define INVALID		7	/* NaN-producing operation */

/*  e type constants used by high precision check routines */

#if MAX_LONG_DOUBLE_TYPE_SIZE == 128 && (INTEL_EXTENDED_IEEE_FORMAT == 0)
/* 0.0 */
const UEMUSHORT ezero[NE] =
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,};

/* 5.0E-1 */
const UEMUSHORT ehalf[NE] =
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,};

/* 1.0E0 */
const UEMUSHORT eone[NE] =
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};

/* 2.0E0 */
const UEMUSHORT etwo[NE] =
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,};

/* 3.2E1 */
const UEMUSHORT e32[NE] =
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,};

/* 6.93147180559945309417232121458176568075500134360255E-1 */
const UEMUSHORT elog2[NE] =
 {0x40f3, 0xf6af, 0x03f2, 0xb398,
  0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};

/* 1.41421356237309504880168872420969807856967187537695E0 */
const UEMUSHORT esqrt2[NE] =
 {0x1d6f, 0xbe9f, 0x754a, 0x89b3,
  0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};

/* 3.14159265358979323846264338327950288419716939937511E0 */
const UEMUSHORT epi[NE] =
 {0x2902, 0x1cd1, 0x80dc, 0x628b,
  0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};

#else
/* LONG_DOUBLE_TYPE_SIZE is other than 128 */
const UEMUSHORT ezero[NE] =
 {0, 0000000, 0000000, 0000000, 0000000, 0000000,};
const UEMUSHORT ehalf[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,};
const UEMUSHORT eone[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,};
const UEMUSHORT etwo[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0040000,};
const UEMUSHORT e32[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0040004,};
const UEMUSHORT elog2[NE] =
 {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
const UEMUSHORT esqrt2[NE] =
 {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
const UEMUSHORT epi[NE] =
 {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
#endif

/* Control register for rounding precision.
   This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits.  */

int rndprc = NBITS;
extern int rndprc;

/*  Clear out entire e-type number X.  */

static void
eclear (x)
     UEMUSHORT *x;
{
  int i;

  for (i = 0; i < NE; i++)
    *x++ = 0;
}

/* Move e-type number from A to B.  */

static void
emov (a, b)
     const UEMUSHORT *a;
     UEMUSHORT *b;
{
  int i;

  for (i = 0; i < NE; i++)
    *b++ = *a++;
}


#if 0
/* Absolute value of e-type X.  */

static void
eabs (x)
     UEMUSHORT x[];
{
  /* sign is top bit of last word of external format */
  x[NE - 1] &= 0x7fff;
}
#endif /* 0 */

/* Negate the e-type number X.  */

static void
eneg (x)
     UEMUSHORT x[];
{

  x[NE - 1] ^= 0x8000;		/* Toggle the sign bit */
}

/* Return 1 if sign bit of e-type number X is nonzero, else zero.  */

static int
eisneg (x)
     const UEMUSHORT x[];
{

  if (x[NE - 1] & 0x8000)
    return (1);
  else
    return (0);
}

/* Return 1 if e-type number X is infinity, else return zero.  */

static int
eisinf (x)
     const UEMUSHORT x[];
{

#ifdef NANS
  if (eisnan (x))
    return (0);
#endif
  if ((x[NE - 1] & 0x7fff) == 0x7fff)
    return (1);
  else
    return (0);
}

/* Check if e-type number is not a number.  The bit pattern is one that we
   defined, so we know for sure how to detect it.  */

static int
eisnan (x)
     const UEMUSHORT x[] ATTRIBUTE_UNUSED;
{
#ifdef NANS
  int i;

  /* NaN has maximum exponent */
  if ((x[NE - 1] & 0x7fff) != 0x7fff)
    return (0);
  /* ... and non-zero significand field.  */
  for (i = 0; i < NE - 1; i++)
    {
      if (*x++ != 0)
        return (1);
    }
#endif

  return (0);
}

/*  Fill e-type number X with infinity pattern (IEEE)
    or largest possible number (non-IEEE).  */

static void
einfin (x)
     UEMUSHORT *x;
{
  int i;

#ifdef INFINITY
  for (i = 0; i < NE - 1; i++)
    *x++ = 0;
  *x |= 32767;
#else
  for (i = 0; i < NE - 1; i++)
    *x++ = 0xffff;
  *x |= 32766;
  if (rndprc < NBITS)
    {
      if (rndprc == 113)
	{
	  *(x - 9) = 0;
	  *(x - 8) = 0;
	}
      if (rndprc == 64)
	{
	  *(x - 5) = 0;
	}
      if (rndprc == 53)
	{
	  *(x - 4) = 0xf800;
	}
      else
	{
	  *(x - 4) = 0;
	  *(x - 3) = 0;
	  *(x - 2) = 0xff00;
	}
    }
#endif
}

/* Output an e-type NaN.
   This generates Intel's quiet NaN pattern for extended real.
   The exponent is 7fff, the leading mantissa word is c000.  */

#ifdef NANS
static void
enan (x, sign)
     UEMUSHORT *x;
     int sign;
{
  int i;

  for (i = 0; i < NE - 2; i++)
    *x++ = 0;
  *x++ = 0xc000;
  *x = (sign << 15) | 0x7fff;
}
#endif /* NANS */

/* Move in an e-type number A, converting it to exploded e-type B.  */

static void
emovi (a, b)
     const UEMUSHORT *a;
     UEMUSHORT *b;
{
  const UEMUSHORT *p;
  UEMUSHORT *q;
  int i;

  q = b;
  p = a + (NE - 1);		/* point to last word of external number */
  /* get the sign bit */
  if (*p & 0x8000)
    *q++ = 0xffff;
  else
    *q++ = 0;
  /* get the exponent */
  *q = *p--;
  *q++ &= 0x7fff;		/* delete the sign bit */
#ifdef INFINITY
  if ((*(q - 1) & 0x7fff) == 0x7fff)
    {
#ifdef NANS
      if (eisnan (a))
	{
	  *q++ = 0;
	  for (i = 3; i < NI; i++)
	    *q++ = *p--;
	  return;
	}
#endif

      for (i = 2; i < NI; i++)
	*q++ = 0;
      return;
    }
#endif

  /* clear high guard word */
  *q++ = 0;
  /* move in the significand */
  for (i = 0; i < NE - 1; i++)
    *q++ = *p--;
  /* clear low guard word */
  *q = 0;
}

/* Move out exploded e-type number A, converting it to e type B.  */

static void
emovo (a, b)
     const UEMUSHORT *a;
     UEMUSHORT *b;
{
  const UEMUSHORT *p;
  UEMUSHORT *q;
  UEMUSHORT i;
  int j;

  p = a;
  q = b + (NE - 1);		/* point to output exponent */
  /* combine sign and exponent */
  i = *p++;
  if (i)
    *q-- = *p++ | 0x8000;
  else
    *q-- = *p++;
#ifdef INFINITY
  if (*(p - 1) == 0x7fff)
    {
#ifdef NANS
      if (eiisnan (a))
	{
	  enan (b, eiisneg (a));
	  return;
	}
#endif
      einfin (b);
	return;
    }
#endif
  /* skip over guard word */
  ++p;
  /* move the significand */
  for (j = 0; j < NE - 1; j++)
    *q-- = *p++;
}

/* Clear out exploded e-type number XI.  */

static void
ecleaz (xi)
     UEMUSHORT *xi;
{
  int i;

  for (i = 0; i < NI; i++)
    *xi++ = 0;
}

/* Clear out exploded e-type XI, but don't touch the sign.  */

static void
ecleazs (xi)
     UEMUSHORT *xi;
{
  int i;

  ++xi;
  for (i = 0; i < NI - 1; i++)
    *xi++ = 0;
}

/* Move exploded e-type number from A to B.  */

static void
emovz (a, b)
     const UEMUSHORT *a;
     UEMUSHORT *b;
{
  int i;

  for (i = 0; i < NI - 1; i++)
    *b++ = *a++;
  /* clear low guard word */
  *b = 0;
}

/* Generate exploded e-type NaN.
   The explicit pattern for this is maximum exponent and
   top two significant bits set.  */

#ifdef NANS
static void
einan (x)
     UEMUSHORT x[];
{

  ecleaz (x);
  x[E] = 0x7fff;
  x[M + 1] = 0xc000;
}
#endif /* NANS */

/* Return nonzero if exploded e-type X is a NaN.  */

#ifdef NANS
static int
eiisnan (x)
     const UEMUSHORT x[];
{
  int i;

  if ((x[E] & 0x7fff) == 0x7fff)
    {
      for (i = M + 1; i < NI; i++)
	{
	  if (x[i] != 0)
	    return (1);
	}
    }
  return (0);
}
#endif /* NANS */

/* Return nonzero if sign of exploded e-type X is nonzero.  */

#ifdef NANS
static int
eiisneg (x)
     const UEMUSHORT x[];
{

  return x[0] != 0;
}
#endif /* NANS */

#if 0
/* Fill exploded e-type X with infinity pattern.
   This has maximum exponent and significand all zeros.  */

static void
eiinfin (x)
     UEMUSHORT x[];
{

  ecleaz (x);
  x[E] = 0x7fff;
}
#endif /* 0 */

/* Return nonzero if exploded e-type X is infinite.  */

#ifdef INFINITY
static int
eiisinf (x)
     const UEMUSHORT x[];
{

#ifdef NANS
  if (eiisnan (x))
    return (0);
#endif
  if ((x[E] & 0x7fff) == 0x7fff)
    return (1);
  return (0);
}
#endif /* INFINITY */

/* Compare significands of numbers in internal exploded e-type format.
   Guard words are included in the comparison.

   Returns	+1 if a > b
		 0 if a == b
		-1 if a < b   */

static int
ecmpm (a, b)
     const UEMUSHORT *a, *b;
{
  int i;

  a += M;			/* skip up to significand area */
  b += M;
  for (i = M; i < NI; i++)
    {
      if (*a++ != *b++)
	goto difrnt;
    }
  return (0);

 difrnt:
  if (*(--a) > *(--b))
    return (1);
  else
    return (-1);
}

/* Shift significand of exploded e-type X down by 1 bit.  */

static void
eshdn1 (x)
     UEMUSHORT *x;
{
  UEMUSHORT bits;
  int i;

  x += M;			/* point to significand area */

  bits = 0;
  for (i = M; i < NI; i++)
    {
      if (*x & 1)
	bits |= 1;
      *x >>= 1;
      if (bits & 2)
	*x |= 0x8000;
      bits <<= 1;
      ++x;
    }
}

/* Shift significand of exploded e-type X up by 1 bit.  */

static void
eshup1 (x)
     UEMUSHORT *x;
{
  UEMUSHORT bits;
  int i;

  x += NI - 1;
  bits = 0;

  for (i = M; i < NI; i++)
    {
      if (*x & 0x8000)
	bits |= 1;
      *x <<= 1;
      if (bits & 2)
	*x |= 1;
      bits <<= 1;
      --x;
    }
}


/* Shift significand of exploded e-type X down by 8 bits.  */

static void
eshdn8 (x)
     UEMUSHORT *x;
{
  UEMUSHORT newbyt, oldbyt;
  int i;

  x += M;
  oldbyt = 0;
  for (i = M; i < NI; i++)
    {
      newbyt = *x << 8;
      *x >>= 8;
      *x |= oldbyt;
      oldbyt = newbyt;
      ++x;
    }
}

/* Shift significand of exploded e-type X up by 8 bits.  */

static void
eshup8 (x)
     UEMUSHORT *x;
{
  int i;
  UEMUSHORT newbyt, oldbyt;

  x += NI - 1;
  oldbyt = 0;

  for (i = M; i < NI; i++)
    {
      newbyt = *x >> 8;
      *x <<= 8;
      *x |= oldbyt;
      oldbyt = newbyt;
      --x;
    }
}

/* Shift significand of exploded e-type X up by 16 bits.  */

static void
eshup6 (x)
     UEMUSHORT *x;
{
  int i;
  UEMUSHORT *p;

  p = x + M;
  x += M + 1;

  for (i = M; i < NI - 1; i++)
    *p++ = *x++;

  *p = 0;
}

/* Shift significand of exploded e-type X down by 16 bits.  */

static void
eshdn6 (x)
     UEMUSHORT *x;
{
  int i;
  UEMUSHORT *p;

  x += NI - 1;
  p = x + 1;

  for (i = M; i < NI - 1; i++)
    *(--p) = *(--x);

  *(--p) = 0;
}

/* Add significands of exploded e-type X and Y.  X + Y replaces Y.  */

static void
eaddm (x, y)
     const UEMUSHORT *x;
     UEMUSHORT *y;
{
  unsigned EMULONG a;
  int i;
  unsigned int carry;

  x += NI - 1;
  y += NI - 1;
  carry = 0;
  for (i = M; i < NI; i++)
    {
      a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry;
      if (a & 0x10000)
	carry = 1;
      else
	carry = 0;
      *y = (UEMUSHORT) a;
      --x;
      --y;
    }
}

/* Subtract significands of exploded e-type X and Y.  Y - X replaces Y.  */

static void
esubm (x, y)
     const UEMUSHORT *x;
     UEMUSHORT *y;
{
  unsigned EMULONG a;
  int i;
  unsigned int carry;

  x += NI - 1;
  y += NI - 1;
  carry = 0;
  for (i = M; i < NI; i++)
    {
      a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry;
      if (a & 0x10000)
	carry = 1;
      else
	carry = 0;
      *y = (UEMUSHORT) a;
      --x;
      --y;
    }
}


static UEMUSHORT equot[NI];


#if 0
/* Radix 2 shift-and-add versions of multiply and divide  */


/* Divide significands */

int
edivm (den, num)
     UEMUSHORT den[], num[];
{
  int i;
  UEMUSHORT *p, *q;
  UEMUSHORT j;

  p = &equot[0];
  *p++ = num[0];
  *p++ = num[1];

  for (i = M; i < NI; i++)
    {
      *p++ = 0;
    }

  /* Use faster compare and subtraction if denominator has only 15 bits of
     significance.  */

  p = &den[M + 2];
  if (*p++ == 0)
    {
      for (i = M + 3; i < NI; i++)
	{
	  if (*p++ != 0)
	    goto fulldiv;
	}
      if ((den[M + 1] & 1) != 0)
	goto fulldiv;
      eshdn1 (num);
      eshdn1 (den);

      p = &den[M + 1];
      q = &num[M + 1];

      for (i = 0; i < NBITS + 2; i++)
	{
	  if (*p <= *q)
	    {
	      *q -= *p;
	      j = 1;
	    }
	  else
	    {
	      j = 0;
	    }
	  eshup1 (equot);
	  equot[NI - 2] |= j;
	  eshup1 (num);
	}
      goto divdon;
    }

  /* The number of quotient bits to calculate is NBITS + 1 scaling guard
     bit + 1 roundoff bit.  */

 fulldiv:

  p = &equot[NI - 2];
  for (i = 0; i < NBITS + 2; i++)
    {
      if (ecmpm (den, num) <= 0)
	{
	  esubm (den, num);
	  j = 1;		/* quotient bit = 1 */
	}
      else
	j = 0;
      eshup1 (equot);
      *p |= j;
      eshup1 (num);
    }

 divdon:

  eshdn1 (equot);
  eshdn1 (equot);

  /* test for nonzero remainder after roundoff bit */
  p = &num[M];
  j = 0;
  for (i = M; i < NI; i++)
    {
      j |= *p++;
    }
  if (j)
    j = 1;


  for (i = 0; i < NI; i++)
    num[i] = equot[i];
  return ((int) j);
}


/* Multiply significands */

int
emulm (a, b)
     UEMUSHORT a[], b[];
{
  UEMUSHORT *p, *q;
  int i, j, k;

  equot[0] = b[0];
  equot[1] = b[1];
  for (i = M; i < NI; i++)
    equot[i] = 0;

  p = &a[NI - 2];
  k = NBITS;
  while (*p == 0)		/* significand is not supposed to be zero */
    {
      eshdn6 (a);
      k -= 16;
    }
  if ((*p & 0xff) == 0)
    {
      eshdn8 (a);
      k -= 8;
    }

  q = &equot[NI - 1];
  j = 0;
  for (i = 0; i < k; i++)
    {
      if (*p & 1)
	eaddm (b, equot);
      /* remember if there were any nonzero bits shifted out */
      if (*q & 1)
	j |= 1;
      eshdn1 (a);
      eshdn1 (equot);
    }

  for (i = 0; i < NI; i++)
    b[i] = equot[i];

  /* return flag for lost nonzero bits */
  return (j);
}

#else

/* Radix 65536 versions of multiply and divide.  */

/* Multiply significand of e-type number B
   by 16-bit quantity A, return e-type result to C.  */

static void
m16m (a, b, c)
     unsigned int a;
     const UEMUSHORT b[];
     UEMUSHORT c[];
{
  UEMUSHORT *pp;
  unsigned EMULONG carry;
  const UEMUSHORT *ps;
  UEMUSHORT p[NI];
  unsigned EMULONG aa, m;
  int i;

  aa = a;
  pp = &p[NI-2];
  *pp++ = 0;
  *pp = 0;
  ps = &b[NI-1];

  for (i=M+1; i<NI; i++)
    {
      if (*ps == 0)
	{
	  --ps;
	  --pp;
	  *(pp-1) = 0;
	}
      else
	{
	  m = (unsigned EMULONG) aa * *ps--;
	  carry = (m & 0xffff) + *pp;
	  *pp-- = (UEMUSHORT) carry;
	  carry = (carry >> 16) + (m >> 16) + *pp;
	  *pp = (UEMUSHORT) carry;
	  *(pp-1) = carry >> 16;
	}
    }
  for (i=M; i<NI; i++)
    c[i] = p[i];
}

/* Divide significands of exploded e-types NUM / DEN.  Neither the
   numerator NUM nor the denominator DEN is permitted to have its high guard
   word nonzero.  */

static int
edivm (den, num)
     const UEMUSHORT den[];
     UEMUSHORT num[];
{
  int i;
  UEMUSHORT *p;
  unsigned EMULONG tnum;
  UEMUSHORT j, tdenm, tquot;
  UEMUSHORT tprod[NI+1];

  p = &equot[0];
  *p++ = num[0];
  *p++ = num[1];

  for (i=M; i<NI; i++)
    {
      *p++ = 0;
    }
  eshdn1 (num);
  tdenm = den[M+1];
  for (i=M; i<NI; i++)
    {
      /* Find trial quotient digit (the radix is 65536).  */
      tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1];

      /* Do not execute the divide instruction if it will overflow.  */
      if ((tdenm * (unsigned long) 0xffff) < tnum)
	tquot = 0xffff;
      else
	tquot = tnum / tdenm;
      /* Multiply denominator by trial quotient digit.  */
      m16m ((unsigned int) tquot, den, tprod);
      /* The quotient digit may have been overestimated.  */
      if (ecmpm (tprod, num) > 0)
	{
	  tquot -= 1;
	  esubm (den, tprod);
	  if (ecmpm (tprod, num) > 0)
	    {
	      tquot -= 1;
	      esubm (den, tprod);
	    }
	}
      esubm (tprod, num);
      equot[i] = tquot;
      eshup6 (num);
    }
  /* test for nonzero remainder after roundoff bit */
  p = &num[M];
  j = 0;
  for (i=M; i<NI; i++)
    {
      j |= *p++;
    }
  if (j)
    j = 1;

  for (i=0; i<NI; i++)
    num[i] = equot[i];

  return ((int) j);
}

/* Multiply significands of exploded e-type A and B, result in B.  */

static int
emulm (a, b)
     const UEMUSHORT a[];
     UEMUSHORT b[];
{
  const UEMUSHORT *p;
  UEMUSHORT *q;
  UEMUSHORT pprod[NI];
  UEMUSHORT j;
  int i;

  equot[0] = b[0];
  equot[1] = b[1];
  for (i=M; i<NI; i++)
    equot[i] = 0;

  j = 0;
  p = &a[NI-1];
  q = &equot[NI-1];
  for (i=M+1; i<NI; i++)
    {
      if (*p == 0)
	{
	  --p;
	}
      else
	{
	  m16m ((unsigned int) *p--, b, pprod);
	  eaddm (pprod, equot);
	}
      j |= *q;
      eshdn6 (equot);
    }

  for (i=0; i<NI; i++)
    b[i] = equot[i];

  /* return flag for lost nonzero bits */
  return ((int) j);
}
#endif


/* Normalize and round off.

  The internal format number to be rounded is S.
  Input LOST is 0 if the value is exact.  This is the so-called sticky bit.

  Input SUBFLG indicates whether the number was obtained
  by a subtraction operation.  In that case if LOST is nonzero
  then the number is slightly smaller than indicated.

  Input EXP is the biased exponent, which may be negative.
  the exponent field of S is ignored but is replaced by
  EXP as adjusted by normalization and rounding.

  Input RCNTRL is the rounding control.  If it is nonzero, the
  returned value will be rounded to RNDPRC bits.

  For future reference:  In order for emdnorm to round off denormal
   significands at the right point, the input exponent must be
   adjusted to be the actual value it would have after conversion to
   the final floating point type.  This adjustment has been
   implemented for all type conversions (etoe53, etc.) and decimal
   conversions, but not for the arithmetic functions (eadd, etc.).
   Data types having standard 15-bit exponents are not affected by
   this, but SFmode and DFmode are affected. For example, ediv with
   rndprc = 24 will not round correctly to 24-bit precision if the
   result is denormal.  */

static int rlast = -1;
static int rw = 0;
static UEMUSHORT rmsk = 0;
static UEMUSHORT rmbit = 0;
static UEMUSHORT rebit = 0;
static int re = 0;
static UEMUSHORT rbit[NI];

static void
emdnorm (s, lost, subflg, exp, rcntrl)
     UEMUSHORT s[];
     int lost;
     int subflg;
     EMULONG exp;
     int rcntrl;
{
  int i, j;
  UEMUSHORT r;

  /* Normalize */
  j = enormlz (s);

  /* a blank significand could mean either zero or infinity.  */
#ifndef INFINITY
  if (j > NBITS)
    {
      ecleazs (s);
      return;
    }
#endif
  exp -= j;
#ifndef INFINITY
  if (exp >= 32767L)
    goto overf;
#else
  if ((j > NBITS) && (exp < 32767))
    {
      ecleazs (s);
      return;
    }
#endif
  if (exp < 0L)
    {
      if (exp > (EMULONG) (-NBITS - 1))
	{
	  j = (int) exp;
	  i = eshift (s, j);
	  if (i)
	    lost = 1;
	}
      else
	{
	  ecleazs (s);
	  return;
	}
    }
  /* Round off, unless told not to by rcntrl.  */
  if (rcntrl == 0)
    goto mdfin;
  /* Set up rounding parameters if the control register changed.  */
  if (rndprc != rlast)
    {
      ecleaz (rbit);
      switch (rndprc)
	{
	default:
	case NBITS:
	  rw = NI - 1;		/* low guard word */
	  rmsk = 0xffff;
	  rmbit = 0x8000;
	  re = rw - 1;
	  rebit = 1;
	  break;

	case 113:
	  rw = 10;
	  rmsk = 0x7fff;
	  rmbit = 0x4000;
	  rebit = 0x8000;
	  re = rw;
	  break;

	case 64:
	  rw = 7;
	  rmsk = 0xffff;
	  rmbit = 0x8000;
	  re = rw - 1;
	  rebit = 1;
	  break;

	  /* For DEC or IBM arithmetic */
	case 56:
	  rw = 6;
	  rmsk = 0xff;
	  rmbit = 0x80;
	  rebit = 0x100;
	  re = rw;
	  break;

	case 53:
	  rw = 6;
	  rmsk = 0x7ff;
	  rmbit = 0x0400;
	  rebit = 0x800;
	  re = rw;
	  break;

	  /* For C4x arithmetic */
	case 32:
	  rw = 5;
	  rmsk = 0xffff;
	  rmbit = 0x8000;
	  rebit = 1;
	  re = rw - 1;
	  break;

	case 24:
	  rw = 4;
	  rmsk = 0xff;
	  rmbit = 0x80;
	  rebit = 0x100;
	  re = rw;
	  break;
	}
      rbit[re] = rebit;
      rlast = rndprc;
    }

  /* Shift down 1 temporarily if the data structure has an implied
     most significant bit and the number is denormal.
     Intel long double denormals also lose one bit of precision.  */
  if ((exp <= 0) && (rndprc != NBITS)
      && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
    {
      lost |= s[NI - 1] & 1;
      eshdn1 (s);
    }
  /* Clear out all bits below the rounding bit,
     remembering in r if any were nonzero.  */
  r = s[rw] & rmsk;
  if (rndprc < NBITS)
    {
      i = rw + 1;
      while (i < NI)
	{
	  if (s[i])
	    r |= 1;
	  s[i] = 0;
	  ++i;
	}
    }
  s[rw] &= ~rmsk;
  if ((r & rmbit) != 0)
    {
#ifndef C4X
      if (r == rmbit)
	{
	  if (lost == 0)
	    {			/* round to even */
	      if ((s[re] & rebit) == 0)
		goto mddone;
	    }
	  else
	    {
	      if (subflg != 0)
		goto mddone;
	    }
	}
#endif
      eaddm (rbit, s);
    }
 mddone:
/* Undo the temporary shift for denormal values.  */
  if ((exp <= 0) && (rndprc != NBITS)
      && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
    {
      eshup1 (s);
    }
  if (s[2] != 0)
    {				/* overflow on roundoff */
      eshdn1 (s);
      exp += 1;
    }
 mdfin:
  s[NI - 1] = 0;
  if (exp >= 32767L)
    {
#ifndef INFINITY
    overf:
#endif
#ifdef INFINITY
      s[1] = 32767;
      for (i = 2; i < NI - 1; i++)
	s[i] = 0;
      if (extra_warnings)
	warning ("floating point overflow");
#else
      s[1] = 32766;
      s[2] = 0;
      for (i = M + 1; i < NI - 1; i++)
	s[i] = 0xffff;
      s[NI - 1] = 0;
      if ((rndprc < 64) || (rndprc == 113))
	{
	  s[rw] &= ~rmsk;
	  if (rndprc == 24)
	    {
	      s[5] = 0;
	      s[6] = 0;
	    }
	}
#endif
      return;
    }
  if (exp < 0)
    s[1] = 0;
  else
    s[1] = (UEMUSHORT) exp;
}

/*  Subtract.  C = B - A, all e type numbers.  */

static int subflg = 0;

static void
esub (a, b, c)
     const UEMUSHORT *a, *b;
     UEMUSHORT *c;
{

#ifdef NANS
  if (eisnan (a))
    {
      emov (a, c);
      return;
    }
  if (eisnan (b))
    {
      emov (b, c);
      return;
    }
/* Infinity minus infinity is a NaN.
   Test for subtracting infinities of the same sign.  */
  if (eisinf (a) && eisinf (b)
      && ((eisneg (a) ^ eisneg (b)) == 0))
    {
      mtherr ("esub", INVALID);
      enan (c, 0);
      return;
    }
#endif
  subflg = 1;
  eadd1 (a, b, c);
}

/* Add.  C = A + B, all e type.  */

static void
eadd (a, b, c)
     const UEMUSHORT *a, *b;
     UEMUSHORT *c;
{

#ifdef NANS
/* NaN plus anything is a NaN.  */
  if (eisnan (a))
    {
      emov (a, c);
      return;
    }
  if (eisnan (b))
    {
      emov (b, c);
      return;
    }
/* Infinity minus infinity is a NaN.
   Test for adding infinities of opposite signs.  */
  if (eisinf (a) && eisinf (b)
      && ((eisneg (a) ^ eisneg (b)) != 0))
    {
      mtherr ("esub", INVALID);
      enan (c, 0);
      return;
    }
#endif
  subflg = 0;
  eadd1 (a, b, c);
}

/* Arithmetic common to both addition and subtraction.  */

static void
eadd1 (a, b, c)
     const UEMUSHORT *a, *b;
     UEMUSHORT *c;
{
  UEMUSHORT ai[NI], bi[NI], ci[NI];
  int i, lost, j, k;
  EMULONG lt, lta, ltb;

#ifdef INFINITY
  if (eisinf (a))
    {
      emov (a, c);
      if (subflg)
	eneg (c);
      return;
    }
  if (eisinf (b))
    {
      emov (b, c);
      return;
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  if (subflg)
    ai[0] = ~ai[0];

  /* compare exponents */
  lta = ai[E];
  ltb = bi[E];
  lt = lta - ltb;
  if (lt > 0L)
    {				/* put the larger number in bi */
      emovz (bi, ci);
      emovz (ai, bi);
      emovz (ci, ai);
      ltb = bi[E];
      lt = -lt;
    }
  lost = 0;
  if (lt != 0L)
    {
      if (lt < (EMULONG) (-NBITS - 1))
	goto done;		/* answer same as larger addend */
      k = (int) lt;
      lost = eshift (ai, k);	/* shift the smaller number down */
    }
  else
    {
      /* exponents were the same, so must compare significands */
      i = ecmpm (ai, bi);
      if (i == 0)
	{			/* the numbers are identical in magnitude */
	  /* if different signs, result is zero */
	  if (ai[0] != bi[0])
	    {
	      eclear (c);
	      return;
	    }
	  /* if same sign, result is double */
	  /* double denormalized tiny number */
	  if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0))
	    {
	      eshup1 (bi);
	      goto done;
	    }
	  /* add 1 to exponent unless both are zero! */
	  for (j = 1; j < NI - 1; j++)
	    {
	      if (bi[j] != 0)
		{
		  ltb += 1;
		  if (ltb >= 0x7fff)
		    {
		      eclear (c);
		      if (ai[0] != 0)
			eneg (c);
		      einfin (c);
		      return;
		    }
		  break;
		}
	    }
	  bi[E] = (UEMUSHORT) ltb;
	  goto done;
	}
      if (i > 0)
	{			/* put the larger number in bi */
	  emovz (bi, ci);
	  emovz (ai, bi);
	  emovz (ci, ai);
	}
    }
  if (ai[0] == bi[0])
    {
      eaddm (ai, bi);
      subflg = 0;
    }
  else
    {
      esubm (ai, bi);
      subflg = 1;
    }
  emdnorm (bi, lost, subflg, ltb, 64);

 done:
  emovo (bi, c);
}

/* Divide: C = B/A, all e type.  */

static void
ediv (a, b, c)
     const UEMUSHORT *a, *b;
     UEMUSHORT *c;
{
  UEMUSHORT ai[NI], bi[NI];
  int i, sign;
  EMULONG lt, lta, ltb;

/* IEEE says if result is not a NaN, the sign is "-" if and only if
   operands have opposite signs -- but flush -0 to 0 later if not IEEE.  */
  sign = eisneg (a) ^ eisneg (b);

#ifdef NANS
/* Return any NaN input.  */
  if (eisnan (a))
    {
    emov (a, c);
    return;
    }
  if (eisnan (b))
    {
    emov (b, c);
    return;
    }
/* Zero over zero, or infinity over infinity, is a NaN.  */
  if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0))
      || (eisinf (a) && eisinf (b)))
    {
    mtherr ("ediv", INVALID);
    enan (c, sign);
    return;
    }
#endif
/* Infinity over anything else is infinity.  */
#ifdef INFINITY
  if (eisinf (b))
    {
      einfin (c);
      goto divsign;
    }
/* Anything else over infinity is zero.  */
  if (eisinf (a))
    {
      eclear (c);
      goto divsign;
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  lta = ai[E];
  ltb = bi[E];
  if (bi[E] == 0)
    {				/* See if numerator is zero.  */
      for (i = 1; i < NI - 1; i++)
	{
	  if (bi[i] != 0)
	    {
	      ltb -= enormlz (bi);
	      goto dnzro1;
	    }
	}
      eclear (c);
      goto divsign;
    }
 dnzro1:

  if (ai[E] == 0)
    {				/* possible divide by zero */
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    {
	      lta -= enormlz (ai);
	      goto dnzro2;
	    }
	}
/* Divide by zero is not an invalid operation.
   It is a divide-by-zero operation!   */
      einfin (c);
      mtherr ("ediv", SING);
      goto divsign;
    }
 dnzro2:

  i = edivm (ai, bi);
  /* calculate exponent */
  lt = ltb - lta + EXONE;
  emdnorm (bi, i, 0, lt, 64);
  emovo (bi, c);

 divsign:

  if (sign
#ifndef IEEE
      && (ecmp (c, ezero) != 0)
#endif
      )
     *(c+(NE-1)) |= 0x8000;
  else
     *(c+(NE-1)) &= ~0x8000;
}

/* Multiply e-types A and B, return e-type product C.  */

static void
emul (a, b, c)
     const UEMUSHORT *a, *b;
     UEMUSHORT *c;
{
  UEMUSHORT ai[NI], bi[NI];
  int i, j, sign;
  EMULONG lt, lta, ltb;

/* IEEE says if result is not a NaN, the sign is "-" if and only if
   operands have opposite signs -- but flush -0 to 0 later if not IEEE.  */
  sign = eisneg (a) ^ eisneg (b);

#ifdef NANS
/* NaN times anything is the same NaN.  */
  if (eisnan (a))
    {
    emov (a, c);
    return;
    }
  if (eisnan (b))
    {
    emov (b, c);
    return;
    }
/* Zero times infinity is a NaN.  */
  if ((eisinf (a) && (ecmp (b, ezero) == 0))
      || (eisinf (b) && (ecmp (a, ezero) == 0)))
    {
    mtherr ("emul", INVALID);
    enan (c, sign);
    return;
    }
#endif
/* Infinity times anything else is infinity.  */
#ifdef INFINITY
  if (eisinf (a) || eisinf (b))
    {
      einfin (c);
      goto mulsign;
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  lta = ai[E];
  ltb = bi[E];
  if (ai[E] == 0)
    {
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    {
	      lta -= enormlz (ai);
	      goto mnzer1;
	    }
	}
      eclear (c);
      goto mulsign;
    }
 mnzer1:

  if (bi[E] == 0)
    {
      for (i = 1; i < NI - 1; i++)
	{
	  if (bi[i] != 0)
	    {
	      ltb -= enormlz (bi);
	      goto mnzer2;
	    }
	}
      eclear (c);
      goto mulsign;
    }
 mnzer2:

  /* Multiply significands */
  j = emulm (ai, bi);
  /* calculate exponent */
  lt = lta + ltb - (EXONE - 1);
  emdnorm (bi, j, 0, lt, 64);
  emovo (bi, c);

 mulsign:

  if (sign
#ifndef IEEE
      && (ecmp (c, ezero) != 0)
#endif
      )
     *(c+(NE-1)) |= 0x8000;
  else
     *(c+(NE-1)) &= ~0x8000;
}

/* Convert double precision PE to e-type Y.  */

static void
e53toe (pe, y)
     const UEMUSHORT *pe;
     UEMUSHORT *y;
{
#ifdef DEC

  dectoe (pe, y);

#else
#ifdef IBM

  ibmtoe (pe, y, DFmode);

#else
#ifdef C4X

  c4xtoe (pe, y, HFmode);

#else
  UEMUSHORT r;
  const UEMUSHORT *e;
  UEMUSHORT *p;
  UEMUSHORT yy[NI];
  int denorm, k;

  e = pe;
  denorm = 0;			/* flag if denormalized number */
  ecleaz (yy);
  if (! REAL_WORDS_BIG_ENDIAN)
    e += 3;
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
  yy[M] = (r & 0x0f) | 0x10;
  r &= ~0x800f;			/* strip sign and 4 significand bits */
#ifdef INFINITY
  if (r == 0x7ff0)
    {
#ifdef NANS
      if (! REAL_WORDS_BIG_ENDIAN)
	{
	  if (((pe[3] & 0xf) != 0) || (pe[2] != 0)
	      || (pe[1] != 0) || (pe[0] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
	}
      else
	{
	  if (((pe[0] & 0xf) != 0) || (pe[1] != 0)
	      || (pe[2] != 0) || (pe[3] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
	}
#endif  /* NANS */
      eclear (y);
      einfin (y);
      if (yy[0])
	eneg (y);
      return;
    }
#endif  /* INFINITY */
  r >>= 4;
  /* If zero exponent, then the significand is denormalized.
     So take back the understood high significand bit.  */

  if (r == 0)
    {
      denorm = 1;
      yy[M] &= ~0x10;
    }
  r += EXONE - 01777;
  yy[E] = r;
  p = &yy[M + 1];
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    {
      *p++ = *(--e);
      *p++ = *(--e);
      *p++ = *(--e);
    }
  else
    {
      ++e;
      *p++ = *e++;
      *p++ = *e++;
      *p++ = *e++;
    }
#endif
  eshift (yy, -5);
  if (denorm)
    {
	/* If zero exponent, then normalize the significand.  */
      if ((k = enormlz (yy)) > NBITS)
	ecleazs (yy);
      else
	yy[E] -= (UEMUSHORT) (k - 1);
    }
  emovo (yy, y);
#endif /* not C4X */
#endif /* not IBM */
#endif /* not DEC */
}

/* Convert double extended precision float PE to e type Y.  */

static void
e64toe (pe, y)
     const UEMUSHORT *pe;
     UEMUSHORT *y;
{
  UEMUSHORT yy[NI];
  const UEMUSHORT *e;
  UEMUSHORT *p, *q;
  int i;

  e = pe;
  p = yy;
  for (i = 0; i < NE - 5; i++)
    *p++ = 0;
/* This precision is not ordinarily supported on DEC or IBM.  */
#ifdef DEC
  for (i = 0; i < 5; i++)
    *p++ = *e++;
#endif
#ifdef IBM
  p = &yy[0] + (NE - 1);
  *p-- = *e++;
  ++e;
  for (i = 0; i < 5; i++)
    *p-- = *e++;
#endif
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    {
      for (i = 0; i < 5; i++)
	*p++ = *e++;

      /* For denormal long double Intel format, shift significand up one
	 -- but only if the top significand bit is zero.  A top bit of 1
	 is "pseudodenormal" when the exponent is zero.  */
      if ((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0)
	{
	  UEMUSHORT temp[NI];

	  emovi (yy, temp);
	  eshup1 (temp);
	  emovo (temp,y);
	  return;
	}
    }
  else
    {
      p = &yy[0] + (NE - 1);
#ifdef ARM_EXTENDED_IEEE_FORMAT
      /* For ARMs, the exponent is in the lowest 15 bits of the word.  */
      *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff);
      e += 2;
#else
      *p-- = *e++;
      ++e;
#endif
      for (i = 0; i < 4; i++)
	*p-- = *e++;
    }
#endif
#ifdef INFINITY
  /* Point to the exponent field and check max exponent cases.  */
  p = &yy[NE - 1];
  if ((*p & 0x7fff) == 0x7fff)
    {
#ifdef NANS
      if (! REAL_WORDS_BIG_ENDIAN)
	{
	  for (i = 0; i < 4; i++)
	    {
	      if ((i != 3 && pe[i] != 0)
		  /* Anything but 0x8000 here, including 0, is a NaN.  */
		  || (i == 3 && pe[i] != 0x8000))
		{
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
	    }
	}
      else
	{
#ifdef ARM_EXTENDED_IEEE_FORMAT
	  for (i = 2; i <= 5; i++)
	    {
	      if (pe[i] != 0)
		{
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
	    }
#else /* not ARM */
	  /* In Motorola extended precision format, the most significant
	     bit of an infinity mantissa could be either 1 or 0.  It is
	     the lower order bits that tell whether the value is a NaN.  */
	  if ((pe[2] & 0x7fff) != 0)
	    goto bigend_nan;

	  for (i = 3; i <= 5; i++)
	    {
	      if (pe[i] != 0)
		{
bigend_nan:
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
	    }
#endif /* not ARM */
	}
#endif /* NANS */
      eclear (y);
      einfin (y);
      if (*p & 0x8000)
	eneg (y);
      return;
    }
#endif  /* INFINITY */
  p = yy;
  q = y;
  for (i = 0; i < NE; i++)
    *q++ = *p++;
}

#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
/* Convert 128-bit long double precision float PE to e type Y.  */

static void
e113toe (pe, y)
     const UEMUSHORT *pe;
     UEMUSHORT *y;
{
  UEMUSHORT r;
  const UEMUSHORT *e;
  UEMUSHORT *p;
  UEMUSHORT yy[NI];
  int denorm, i;

  e = pe;
  denorm = 0;
  ecleaz (yy);
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    e += 7;
#endif
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
  r &= 0x7fff;
#ifdef INFINITY
  if (r == 0x7fff)
    {
#ifdef NANS
      if (! REAL_WORDS_BIG_ENDIAN)
	{
	  for (i = 0; i < 7; i++)
	    {
	      if (pe[i] != 0)
		{
		  enan (y, yy[0] != 0);
		  return;
		}
	    }
	}
      else
	{
	  for (i = 1; i < 8; i++)
	    {
	      if (pe[i] != 0)
		{
		  enan (y, yy[0] != 0);
		  return;
		}
	    }
	}
#endif /* NANS */
      eclear (y);
      einfin (y);
      if (yy[0])
	eneg (y);
      return;
    }
#endif  /* INFINITY */
  yy[E] = r;
  p = &yy[M + 1];
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    {
      for (i = 0; i < 7; i++)
	*p++ = *(--e);
    }
  else
    {
      ++e;
      for (i = 0; i < 7; i++)
	*p++ = *e++;
    }
#endif
/* If denormal, remove the implied bit; else shift down 1.  */
  if (r == 0)
    {
      yy[M] = 0;
    }
  else
    {
      yy[M] = 1;
      eshift (yy, -1);
    }
  emovo (yy, y);
}
#endif

/* Convert single precision float PE to e type Y.  */

static void
e24toe (pe, y)
     const UEMUSHORT *pe;
     UEMUSHORT *y;
{
#ifdef IBM

  ibmtoe (pe, y, SFmode);

#else

#ifdef C4X

  c4xtoe (pe, y, QFmode);

#else

  UEMUSHORT r;
  const UEMUSHORT *e;
  UEMUSHORT *p;
  UEMUSHORT yy[NI];
  int denorm, k;

  e = pe;
  denorm = 0;			/* flag if denormalized number */
  ecleaz (yy);
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    e += 1;
#endif
#ifdef DEC
  e += 1;
#endif
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
  yy[M] = (r & 0x7f) | 0200;
  r &= ~0x807f;			/* strip sign and 7 significand bits */
#ifdef INFINITY
  if (r == 0x7f80)
    {
#ifdef NANS
      if (REAL_WORDS_BIG_ENDIAN)
	{
	  if (((pe[0] & 0x7f) != 0) || (pe[1] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
	}
      else
	{
	  if (((pe[1] & 0x7f) != 0) || (pe[0] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
	}
#endif  /* NANS */
      eclear (y);
      einfin (y);
      if (yy[0])
	eneg (y);
      return;
    }
#endif  /* INFINITY */
  r >>= 7;
  /* If zero exponent, then the significand is denormalized.
     So take back the understood high significand bit.  */
  if (r == 0)
    {
      denorm = 1;
      yy[M] &= ~0200;
    }
  r += EXONE - 0177;
  yy[E] = r;
  p = &yy[M + 1];
#ifdef DEC
  *p++ = *(--e);
#endif
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    *p++ = *(--e);
  else
    {
      ++e;
      *p++ = *e++;
    }
#endif
  eshift (yy, -8);
  if (denorm)
    {				/* if zero exponent, then normalize the significand */
      if ((k = enormlz (yy)) > NBITS)
	ecleazs (yy);
      else
	yy[E] -= (UEMUSHORT) (k - 1);
    }
  emovo (yy, y);
#endif /* not C4X */
#endif /* not IBM */
}

#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
/* Convert e-type X to IEEE 128-bit long double format E.  */

static void
etoe113 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  UEMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

#ifdef NANS
  if (eisnan (x))
    {
      make_nan (e, eisneg (x), TFmode);
      return;
    }
#endif
  emovi (x, xi);
  exp = (EMULONG) xi[E];
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 113;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
#ifdef INFINITY
 nonorm:
#endif
  toe113 (xi, e);
}

/* Convert exploded e-type X, that has already been rounded to
   113-bit precision, to IEEE 128-bit long double format Y.  */

static void
toe113 (a, b)
     UEMUSHORT *a, *b;
{
  UEMUSHORT *p, *q;
  UEMUSHORT i;

#ifdef NANS
  if (eiisnan (a))
    {
      make_nan (b, eiisneg (a), TFmode);
      return;
    }
#endif
  p = a;
  if (REAL_WORDS_BIG_ENDIAN)
    q = b;
  else
    q = b + 7;			/* point to output exponent */

  /* If not denormal, delete the implied bit.  */
  if (a[E] != 0)
    {
      eshup1 (a);
    }
  /* combine sign and exponent */
  i = *p++;
  if (REAL_WORDS_BIG_ENDIAN)
    {
      if (i)
	*q++ = *p++ | 0x8000;
      else
	*q++ = *p++;
    }
  else
    {
      if (i)
	*q-- = *p++ | 0x8000;
      else
	*q-- = *p++;
    }
  /* skip over guard word */
  ++p;
  /* move the significand */
  if (REAL_WORDS_BIG_ENDIAN)
    {
      for (i = 0; i < 7; i++)
	*q++ = *p++;
    }
  else
    {
      for (i = 0; i < 7; i++)
	*q-- = *p++;
    }
}
#endif

/* Convert e-type X to IEEE double extended format E.  */

static void
etoe64 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  UEMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

#ifdef NANS
  if (eisnan (x))
    {
      make_nan (e, eisneg (x), XFmode);
      return;
    }
#endif
  emovi (x, xi);
  /* adjust exponent for offset */
  exp = (EMULONG) xi[E];
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 64;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
#ifdef INFINITY
 nonorm:
#endif
  toe64 (xi, e);
}

/* Convert exploded e-type X, that has already been rounded to
   64-bit precision, to IEEE double extended format Y.  */

static void
toe64 (a, b)
     UEMUSHORT *a, *b;
{
  UEMUSHORT *p, *q;
  UEMUSHORT i;

#ifdef NANS
  if (eiisnan (a))
    {
      make_nan (b, eiisneg (a), XFmode);
      return;
    }
#endif
  /* Shift denormal long double Intel format significand down one bit.  */
  if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN)
    eshdn1 (a);
  p = a;
#ifdef IBM
  q = b;
#endif
#ifdef DEC
  q = b + 4;
#endif
#ifdef IEEE
  if (REAL_WORDS_BIG_ENDIAN)
    q = b;
  else
    {
      q = b + 4;			/* point to output exponent */
      /* Clear the last two bytes of 12-byte Intel format.  q is pointing
	 into an array of size 6 (e.g. x[NE]), so the last two bytes are
	 always there, and there are never more bytes, even when we are using
	 INTEL_EXTENDED_IEEE_FORMAT.  */
      *(q+1) = 0;
    }
#endif

  /* combine sign and exponent */
  i = *p++;
#ifdef IBM
  if (i)
    *q++ = *p++ | 0x8000;
  else
    *q++ = *p++;
  *q++ = 0;
#endif
#ifdef DEC
  if (i)
    *q-- = *p++ | 0x8000;
  else
    *q-- = *p++;
#endif
#ifdef IEEE
  if (REAL_WORDS_BIG_ENDIAN)
    {
#ifdef ARM_EXTENDED_IEEE_FORMAT
      /* The exponent is in the lowest 15 bits of the first word.  */
      *q++ = i ? 0x8000 : 0;
      *q++ = *p++;
#else
      if (i)
	*q++ = *p++ | 0x8000;
      else
	*q++ = *p++;
      *q++ = 0;
#endif
    }
  else
    {
      if (i)
	*q-- = *p++ | 0x8000;
      else
	*q-- = *p++;
    }
#endif
  /* skip over guard word */
  ++p;
  /* move the significand */
#ifdef IBM
  for (i = 0; i < 4; i++)
    *q++ = *p++;
#endif
#ifdef DEC
  for (i = 0; i < 4; i++)
    *q-- = *p++;
#endif
#ifdef IEEE
  if (REAL_WORDS_BIG_ENDIAN)
    {
      for (i = 0; i < 4; i++)
	*q++ = *p++;
    }
  else
    {
#ifdef INFINITY
      if (eiisinf (a))
	{
	  /* Intel long double infinity significand.  */
	  *q-- = 0x8000;
	  *q-- = 0;
	  *q-- = 0;
	  *q = 0;
	  return;
	}
#endif
      for (i = 0; i < 4; i++)
	*q-- = *p++;
    }
#endif
}

/* e type to double precision.  */

#ifdef DEC
/* Convert e-type X to DEC-format double E.  */

static void
etoe53 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  etodec (x, e);		/* see etodec.c */
}

/* Convert exploded e-type X, that has already been rounded to
   56-bit double precision, to DEC double Y.  */

static void
toe53 (x, y)
     UEMUSHORT *x, *y;
{
  todec (x, y);
}

#else
#ifdef IBM
/* Convert e-type X to IBM 370-format double E.  */

static void
etoe53 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  etoibm (x, e, DFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to IBM 370 double Y.  */

static void
toe53 (x, y)
     UEMUSHORT *x, *y;
{
  toibm (x, y, DFmode);
}

#else /* it's neither DEC nor IBM */
#ifdef C4X
/* Convert e-type X to C4X-format long double E.  */

static void
etoe53 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  etoc4x (x, e, HFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to IBM 370 double Y.  */

static void
toe53 (x, y)
     UEMUSHORT *x, *y;
{
  toc4x (x, y, HFmode);
}

#else  /* it's neither DEC nor IBM nor C4X */

/* Convert e-type X to IEEE double E.  */

static void
etoe53 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  UEMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

#ifdef NANS
  if (eisnan (x))
    {
      make_nan (e, eisneg (x), DFmode);
      return;
    }
#endif
  emovi (x, xi);
  /* adjust exponent for offsets */
  exp = (EMULONG) xi[E] - (EXONE - 0x3ff);
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 53;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
#ifdef INFINITY
 nonorm:
#endif
  toe53 (xi, e);
}

/* Convert exploded e-type X, that has already been rounded to
   53-bit precision, to IEEE double Y.  */

static void
toe53 (x, y)
     UEMUSHORT *x, *y;
{
  UEMUSHORT i;
  UEMUSHORT *p;

#ifdef NANS
  if (eiisnan (x))
    {
      make_nan (y, eiisneg (x), DFmode);
      return;
    }
#endif
  p = &x[0];
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    y += 3;
#endif
  *y = 0;			/* output high order */
  if (*p++)
    *y = 0x8000;		/* output sign bit */

  i = *p++;
  if (i >= (unsigned int) 2047)
    {
      /* Saturate at largest number less than infinity.  */
#ifdef INFINITY
      *y |= 0x7ff0;
      if (! REAL_WORDS_BIG_ENDIAN)
	{
	  *(--y) = 0;
	  *(--y) = 0;
	  *(--y) = 0;
	}
      else
	{
	  ++y;
	  *y++ = 0;
	  *y++ = 0;
	  *y++ = 0;
	}
#else
      *y |= (UEMUSHORT) 0x7fef;
      if (! REAL_WORDS_BIG_ENDIAN)
	{
	  *(--y) = 0xffff;
	  *(--y) = 0xffff;
	  *(--y) = 0xffff;
	}
      else
	{
	  ++y;
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	}
#endif
      return;
    }
  if (i == 0)
    {
      eshift (x, 4);
    }
  else
    {
      i <<= 4;
      eshift (x, 5);
    }
  i |= *p++ & (UEMUSHORT) 0x0f;	/* *p = xi[M] */
  *y |= (UEMUSHORT) i;	/* high order output already has sign bit set */
  if (! REAL_WORDS_BIG_ENDIAN)
    {
      *(--y) = *p++;
      *(--y) = *p++;
      *(--y) = *p;
    }
  else
    {
      ++y;
      *y++ = *p++;
      *y++ = *p++;
      *y++ = *p++;
    }
}

#endif /* not C4X */
#endif /* not IBM */
#endif /* not DEC */



/* e type to single precision.  */

#ifdef IBM
/* Convert e-type X to IBM 370 float E.  */

static void
etoe24 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  etoibm (x, e, SFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   float precision, to IBM 370 float Y.  */

static void
toe24 (x, y)
     UEMUSHORT *x, *y;
{
  toibm (x, y, SFmode);
}

#else

#ifdef C4X
/* Convert e-type X to C4X float E.  */

static void
etoe24 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  etoc4x (x, e, QFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   float precision, to IBM 370 float Y.  */

static void
toe24 (x, y)
     UEMUSHORT *x, *y;
{
  toc4x (x, y, QFmode);
}

#else

/* Convert e-type X to IEEE float E.  DEC float is the same as IEEE float.  */

static void
etoe24 (x, e)
     const UEMUSHORT *x;
     UEMUSHORT *e;
{
  EMULONG exp;
  UEMUSHORT xi[NI];
  int rndsav;

#ifdef NANS
  if (eisnan (x))
    {
      make_nan (e, eisneg (x), SFmode);
      return;
    }
#endif
  emovi (x, xi);
  /* adjust exponent for offsets */
  exp = (EMULONG) xi[E] - (EXONE - 0177);
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 24;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
#ifdef INFINITY
 nonorm:
#endif
  toe24 (xi, e);
}

/* Convert exploded e-type X, that has already been rounded to
   float precision, to IEEE float Y.  */

static void
toe24 (x, y)
     UEMUSHORT *x, *y;
{
  UEMUSHORT i;
  UEMUSHORT *p;

#ifdef NANS
  if (eiisnan (x))
    {
      make_nan (y, eiisneg (x), SFmode);
      return;
    }
#endif
  p = &x[0];
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    y += 1;
#endif
#ifdef DEC
  y += 1;
#endif
  *y = 0;			/* output high order */
  if (*p++)
    *y = 0x8000;		/* output sign bit */

  i = *p++;
/* Handle overflow cases.  */
  if (i >= 255)
    {
#ifdef INFINITY
      *y |= (UEMUSHORT) 0x7f80;
#ifdef DEC
      *(--y) = 0;
#endif
#ifdef IEEE
      if (! REAL_WORDS_BIG_ENDIAN)
	*(--y) = 0;
      else
	{
	  ++y;
	  *y = 0;
	}
#endif
#else  /* no INFINITY */
      *y |= (UEMUSHORT) 0x7f7f;
#ifdef DEC
      *(--y) = 0xffff;
#endif
#ifdef IEEE
      if (! REAL_WORDS_BIG_ENDIAN)
	*(--y) = 0xffff;
      else
	{
	  ++y;
	  *y = 0xffff;
	}
#endif
#ifdef ERANGE
      errno = ERANGE;
#endif
#endif  /* no INFINITY */
      return;
    }
  if (i == 0)
    {
      eshift (x, 7);
    }
  else
    {
      i <<= 7;
      eshift (x, 8);
    }
  i |= *p++ & (UEMUSHORT) 0x7f;	/* *p = xi[M] */
  /* High order output already has sign bit set.  */
  *y |= i;
#ifdef DEC
  *(--y) = *p;
#endif
#ifdef IEEE
  if (! REAL_WORDS_BIG_ENDIAN)
    *(--y) = *p;
  else
    {
      ++y;
      *y = *p;
    }
#endif
}
#endif  /* not C4X */
#endif  /* not IBM */

/* Compare two e type numbers.
   Return +1 if a > b
           0 if a == b
          -1 if a < b
          -2 if either a or b is a NaN.  */

static int
ecmp (a, b)
     const UEMUSHORT *a, *b;
{
  UEMUSHORT ai[NI], bi[NI];
  UEMUSHORT *p, *q;
  int i;
  int msign;

#ifdef NANS
  if (eisnan (a)  || eisnan (b))
      return (-2);
#endif
  emovi (a, ai);
  p = ai;
  emovi (b, bi);
  q = bi;

  if (*p != *q)
    {				/* the signs are different */
      /* -0 equals + 0 */
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    goto nzro;
	  if (bi[i] != 0)
	    goto nzro;
	}
      return (0);
    nzro:
      if (*p == 0)
	return (1);
      else
	return (-1);
    }
  /* both are the same sign */
  if (*p == 0)
    msign = 1;
  else
    msign = -1;
  i = NI - 1;
  do
    {
      if (*p++ != *q++)
	{
	  goto diff;
	}
    }
  while (--i > 0);

  return (0);			/* equality */

 diff:

  if (*(--p) > *(--q))
    return (msign);		/* p is bigger */
  else
    return (-msign);		/* p is littler */
}

#if 0
/* Find e-type nearest integer to X, as floor (X + 0.5).  */

static void
eround (x, y)
     const UEMUSHORT *x;
     UEMUSHORT *y;
{
  eadd (ehalf, x, y);
  efloor (y, y);
}
#endif /* 0 */

/* Convert HOST_WIDE_INT LP to e type Y.  */

static void
ltoe (lp, y)
     const HOST_WIDE_INT *lp;
     UEMUSHORT *y;
{
  UEMUSHORT yi[NI];
  unsigned HOST_WIDE_INT ll;
  int k;

  ecleaz (yi);
  if (*lp < 0)
    {
      /* make it positive */
      ll = (unsigned HOST_WIDE_INT) (-(*lp));
      yi[0] = 0xffff;		/* put correct sign in the e type number */
    }
  else
    {
      ll = (unsigned HOST_WIDE_INT) (*lp);
    }
  /* move the long integer to yi significand area */
#if HOST_BITS_PER_WIDE_INT == 64
  yi[M] = (UEMUSHORT) (ll >> 48);
  yi[M + 1] = (UEMUSHORT) (ll >> 32);
  yi[M + 2] = (UEMUSHORT) (ll >> 16);
  yi[M + 3] = (UEMUSHORT) ll;
  yi[E] = EXONE + 47;		/* exponent if normalize shift count were 0 */
#else
  yi[M] = (UEMUSHORT) (ll >> 16);
  yi[M + 1] = (UEMUSHORT) ll;
  yi[E] = EXONE + 15;		/* exponent if normalize shift count were 0 */
#endif

  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (UEMUSHORT) k;/* subtract shift count from exponent */
  emovo (yi, y);		/* output the answer */
}

/* Convert unsigned HOST_WIDE_INT LP to e type Y.  */

static void
ultoe (lp, y)
     const unsigned HOST_WIDE_INT *lp;
     UEMUSHORT *y;
{
  UEMUSHORT yi[NI];
  unsigned HOST_WIDE_INT ll;
  int k;

  ecleaz (yi);
  ll = *lp;

  /* move the long integer to ayi significand area */
#if HOST_BITS_PER_WIDE_INT == 64
  yi[M] = (UEMUSHORT) (ll >> 48);
  yi[M + 1] = (UEMUSHORT) (ll >> 32);
  yi[M + 2] = (UEMUSHORT) (ll >> 16);
  yi[M + 3] = (UEMUSHORT) ll;
  yi[E] = EXONE + 47;		/* exponent if normalize shift count were 0 */
#else
  yi[M] = (UEMUSHORT) (ll >> 16);
  yi[M + 1] = (UEMUSHORT) ll;
  yi[E] = EXONE + 15;		/* exponent if normalize shift count were 0 */
#endif

  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (UEMUSHORT) k;  /* subtract shift count from exponent */
  emovo (yi, y);		/* output the answer */
}


/* Find signed HOST_WIDE_INT integer I and floating point fractional
   part FRAC of e-type (packed internal format) floating point input X.
   The integer output I has the sign of the input, except that
   positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC.
   The output e-type fraction FRAC is the positive fractional
   part of abs (X).  */

static void
eifrac (x, i, frac)
     const UEMUSHORT *x;
     HOST_WIDE_INT *i;
     UEMUSHORT *frac;
{
  UEMUSHORT xi[NI];
  int j, k;
  unsigned HOST_WIDE_INT ll;

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      /* if exponent <= 0, integer = 0 and real output is fraction */
      *i = 0L;
      emovo (xi, frac);
      return;
    }
  if (k > (HOST_BITS_PER_WIDE_INT - 1))
    {
      /* long integer overflow: output large integer
	 and correct fraction  */
      if (xi[0])
	*i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1);
      else
	{
#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
	  /* In this case, let it overflow and convert as if unsigned.  */
	  euifrac (x, &ll, frac);
	  *i = (HOST_WIDE_INT) ll;
	  return;
#else
	  /* In other cases, return the largest positive integer.  */
	  *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1;
#endif
	}
      eshift (xi, k);
      if (extra_warnings)
	warning ("overflow on truncation to integer");
    }
  else if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      eshift (xi, j);
      ll = xi[M];
      k -= j;
      do
	{
	  eshup6 (xi);
	  ll = (ll << 16) | xi[M];
	}
      while ((k -= 16) > 0);
      *i = ll;
      if (xi[0])
	*i = -(*i);
    }
  else
      {
        /* shift not more than 16 bits */
          eshift (xi, k);
        *i = (HOST_WIDE_INT) xi[M] & 0xffff;
        if (xi[0])
	  *i = -(*i);
      }
  xi[0] = 0;
  xi[E] = EXONE - 1;
  xi[M] = 0;
  if ((k = enormlz (xi)) > NBITS)
    ecleaz (xi);
  else
    xi[E] -= (UEMUSHORT) k;

  emovo (xi, frac);
}


/* Find unsigned HOST_WIDE_INT integer I and floating point fractional part
   FRAC of e-type X.  A negative input yields integer output = 0 but
   correct fraction.  */

static void
euifrac (x, i, frac)
     const UEMUSHORT *x;
     unsigned HOST_WIDE_INT *i;
     UEMUSHORT *frac;
{
  unsigned HOST_WIDE_INT ll;
  UEMUSHORT xi[NI];
  int j, k;

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      /* if exponent <= 0, integer = 0 and argument is fraction */
      *i = 0L;
      emovo (xi, frac);
      return;
    }
  if (k > HOST_BITS_PER_WIDE_INT)
    {
      /* Long integer overflow: output large integer
	 and correct fraction.
	 Note, the BSD MicroVAX compiler says that ~(0UL)
	 is a syntax error.  */
      *i = ~(0L);
      eshift (xi, k);
      if (extra_warnings)
	warning ("overflow on truncation to unsigned integer");
    }
  else if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      eshift (xi, j);
      ll = xi[M];
      k -= j;
      do
	{
	  eshup6 (xi);
	  ll = (ll << 16) | xi[M];
	}
      while ((k -= 16) > 0);
      *i = ll;
    }
  else
    {
      /* shift not more than 16 bits */
      eshift (xi, k);
      *i = (HOST_WIDE_INT) xi[M] & 0xffff;
    }

  if (xi[0])  /* A negative value yields unsigned integer 0.  */
    *i = 0L;

  xi[0] = 0;
  xi[E] = EXONE - 1;
  xi[M] = 0;
  if ((k = enormlz (xi)) > NBITS)
    ecleaz (xi);
  else
    xi[E] -= (UEMUSHORT) k;

  emovo (xi, frac);
}

/* Shift the significand of exploded e-type X up or down by SC bits.  */

static int
eshift (x, sc)
     UEMUSHORT *x;
     int sc;
{
  UEMUSHORT lost;
  UEMUSHORT *p;

  if (sc == 0)
    return (0);

  lost = 0;
  p = x + NI - 1;

  if (sc < 0)
    {
      sc = -sc;
      while (sc >= 16)
	{
	  lost |= *p;		/* remember lost bits */
	  eshdn6 (x);
	  sc -= 16;
	}

      while (sc >= 8)
	{
	  lost |= *p & 0xff;
	  eshdn8 (x);
	  sc -= 8;
	}

      while (sc > 0)
	{
	  lost |= *p & 1;
	  eshdn1 (x);
	  sc -= 1;
	}
    }
  else
    {
      while (sc >= 16)
	{
	  eshup6 (x);
	  sc -= 16;
	}

      while (sc >= 8)
	{
	  eshup8 (x);
	  sc -= 8;
	}

      while (sc > 0)
	{
	  eshup1 (x);
	  sc -= 1;
	}
    }
  if (lost)
    lost = 1;
  return ((int) lost);
}

/* Shift normalize the significand area of exploded e-type X.
   Return the shift count (up = positive).  */

static int
enormlz (x)
     UEMUSHORT x[];
{
  UEMUSHORT *p;
  int sc;

  sc = 0;
  p = &x[M];
  if (*p != 0)
    goto normdn;
  ++p;
  if (*p & 0x8000)
    return (0);			/* already normalized */
  while (*p == 0)
    {
      eshup6 (x);
      sc += 16;

      /* With guard word, there are NBITS+16 bits available.
       Return true if all are zero.  */
      if (sc > NBITS)
	return (sc);
    }
  /* see if high byte is zero */
  while ((*p & 0xff00) == 0)
    {
      eshup8 (x);
      sc += 8;
    }
  /* now shift 1 bit at a time */
  while ((*p & 0x8000) == 0)
    {
      eshup1 (x);
      sc += 1;
      if (sc > NBITS)
	{
	  mtherr ("enormlz", UNDERFLOW);
	  return (sc);
	}
    }
  return (sc);

  /* Normalize by shifting down out of the high guard word
     of the significand */
 normdn:

  if (*p & 0xff00)
    {
      eshdn8 (x);
      sc -= 8;
    }
  while (*p != 0)
    {
      eshdn1 (x);
      sc -= 1;

      if (sc < -NBITS)
	{
	  mtherr ("enormlz", OVERFLOW);
	  return (sc);
	}
    }
  return (sc);
}

/* Powers of ten used in decimal <-> binary conversions.  */

#define NTEN 12
#define MAXP 4096

#if MAX_LONG_DOUBLE_TYPE_SIZE == 128 && (INTEL_EXTENDED_IEEE_FORMAT == 0)
static const UEMUSHORT etens[NTEN + 1][NE] =
{
  {0x6576, 0x4a92, 0x804a, 0x153f,
   0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,},	/* 10**4096 */
  {0x6a32, 0xce52, 0x329a, 0x28ce,
   0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,},	/* 10**2048 */
  {0x526c, 0x50ce, 0xf18b, 0x3d28,
   0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
  {0x9c66, 0x58f8, 0xbc50, 0x5c54,
   0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
  {0x851e, 0xeab7, 0x98fe, 0x901b,
   0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
  {0x0235, 0x0137, 0x36b1, 0x336c,
   0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
  {0x50f8, 0x25fb, 0xc76b, 0x6b71,
   0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,},	/* 10**1 */
};

static const UEMUSHORT emtens[NTEN + 1][NE] =
{
  {0x2030, 0xcffc, 0xa1c3, 0x8123,
   0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,},	/* 10**-4096 */
  {0x8264, 0xd2cb, 0xf2ea, 0x12d4,
   0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,},	/* 10**-2048 */
  {0xf53f, 0xf698, 0x6bd3, 0x0158,
   0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
  {0xe731, 0x04d4, 0xe3f2, 0xd332,
   0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
  {0xa23e, 0x5308, 0xfefb, 0x1155,
   0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
  {0xe26d, 0xdbde, 0xd05d, 0xb3f6,
   0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
  {0x2a20, 0x6224, 0x47b3, 0x98d7,
   0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
  {0x0b5b, 0x4af2, 0xa581, 0x18ed,
   0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
  {0xbf71, 0xa9b3, 0x7989, 0xbe68,
   0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
  {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b,
   0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
  {0xc155, 0xa4a8, 0x404e, 0x6113,
   0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
  {0xd70a, 0x70a3, 0x0a3d, 0xa3d7,
   0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
  {0xcccd, 0xcccc, 0xcccc, 0xcccc,
   0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,},	/* 10**-1 */
};
#else
/* LONG_DOUBLE_TYPE_SIZE is other than 128 */
static const UEMUSHORT etens[NTEN + 1][NE] =
{
  {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,},	/* 10**4096 */
  {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,},	/* 10**2048 */
  {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
  {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
  {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
  {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
  {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
  {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
  {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
  {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,},	/* 10**1 */
};

static const UEMUSHORT emtens[NTEN + 1][NE] =
{
  {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,},	/* 10**-4096 */
  {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,},	/* 10**-2048 */
  {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
  {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
  {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
  {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
  {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
  {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
  {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
  {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
  {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
  {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
  {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,},	/* 10**-1 */
};
#endif

#if 0
/* Convert float value X to ASCII string STRING with NDIG digits after
   the decimal point.  */

static void
e24toasc (x, string, ndigs)
     const UEMUSHORT x[];
     char *string;
     int ndigs;
{
  UEMUSHORT w[NI];

  e24toe (x, w);
  etoasc (w, string, ndigs);
}

/* Convert double value X to ASCII string STRING with NDIG digits after
   the decimal point.  */

static void
e53toasc (x, string, ndigs)
     const UEMUSHORT x[];
     char *string;
     int ndigs;
{
  UEMUSHORT w[NI];

  e53toe (x, w);
  etoasc (w, string, ndigs);
}

/* Convert double extended value X to ASCII string STRING with NDIG digits
   after the decimal point.  */

static void
e64toasc (x, string, ndigs)
     const UEMUSHORT x[];
     char *string;
     int ndigs;
{
  UEMUSHORT w[NI];

  e64toe (x, w);
  etoasc (w, string, ndigs);
}

/* Convert 128-bit long double value X to ASCII string STRING with NDIG digits
   after the decimal point.  */

static void
e113toasc (x, string, ndigs)
     const UEMUSHORT x[];
     char *string;
     int ndigs;
{
  UEMUSHORT w[NI];

  e113toe (x, w);
  etoasc (w, string, ndigs);
}
#endif /* 0 */

/* Convert e-type X to ASCII string STRING with NDIGS digits after
   the decimal point.  */

static char wstring[80];	/* working storage for ASCII output */

static void
etoasc (x, string, ndigs)
     const UEMUSHORT x[];
     char *string;
     int ndigs;
{
  EMUSHORT digit;
  UEMUSHORT y[NI], t[NI], u[NI], w[NI];
  const UEMUSHORT *p, *r, *ten;
  UEMUSHORT sign;
  int i, j, k, expon, rndsav;
  char *s, *ss;
  UEMUSHORT m;


  rndsav = rndprc;
  ss = string;
  s = wstring;
  *ss = '\0';
  *s = '\0';
#ifdef NANS
  if (eisnan (x))
    {
      sprintf (wstring, " NaN ");
      goto bxit;
    }
#endif
  rndprc = NBITS;		/* set to full precision */
  emov (x, y);			/* retain external format */
  if (y[NE - 1] & 0x8000)
    {
      sign = 0xffff;
      y[NE - 1] &= 0x7fff;
    }
  else
    {
      sign = 0;
    }
  expon = 0;
  ten = &etens[NTEN][0];
  emov (eone, t);
  /* Test for zero exponent */
  if (y[NE - 1] == 0)
    {
      for (k = 0; k < NE - 1; k++)
	{
	  if (y[k] != 0)
	    goto tnzro;		/* denormalized number */
	}
      goto isone;		/* valid all zeros */
    }
 tnzro:

  /* Test for infinity.  */
  if (y[NE - 1] == 0x7fff)
    {
      if (sign)
	sprintf (wstring, " -Infinity ");
      else
	sprintf (wstring, " Infinity ");
      goto bxit;
    }

  /* Test for exponent nonzero but significand denormalized.
   * This is an error condition.
   */
  if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0))
    {
      mtherr ("etoasc", DOMAIN);
      sprintf (wstring, "NaN");
      goto bxit;
    }

  /* Compare to 1.0 */
  i = ecmp (eone, y);
  if (i == 0)
    goto isone;

  if (i == -2)
    abort ();

  if (i < 0)
    {				/* Number is greater than 1 */
      /* Convert significand to an integer and strip trailing decimal zeros.  */
      emov (y, u);
      u[NE - 1] = EXONE + NBITS - 1;

      p = &etens[NTEN - 4][0];
      m = 16;
      do
	{
	  ediv (p, u, t);
	  efloor (t, w);
	  for (j = 0; j < NE - 1; j++)
	    {
	      if (t[j] != w[j])
		goto noint;
	    }
	  emov (t, u);
	  expon += (int) m;
	noint:
	  p += NE;
	  m >>= 1;
	}
      while (m != 0);

      /* Rescale from integer significand */
      u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1);
      emov (u, y);
      /* Find power of 10 */
      emov (eone, t);
      m = MAXP;
      p = &etens[0][0];
      /* An unordered compare result shouldn't happen here.  */
      while (ecmp (ten, u) <= 0)
	{
	  if (ecmp (p, u) <= 0)
	    {
	      ediv (p, u, u);
	      emul (p, t, t);
	      expon += (int) m;
	    }
	  m >>= 1;
	  if (m == 0)
	    break;
	  p += NE;
	}
    }
  else
    {				/* Number is less than 1.0 */
      /* Pad significand with trailing decimal zeros.  */
      if (y[NE - 1] == 0)
	{
	  while ((y[NE - 2] & 0x8000) == 0)
	    {
	      emul (ten, y, y);
	      expon -= 1;
	    }
	}
      else
	{
	  emovi (y, w);
	  for (i = 0; i < NDEC + 1; i++)
	    {
	      if ((w[NI - 1] & 0x7) != 0)
		break;
	      /* multiply by 10 */
	      emovz (w, u);
	      eshdn1 (u);
	      eshdn1 (u);
	      eaddm (w, u);
	      u[1] += 3;
	      while (u[2] != 0)
		{
		  eshdn1 (u);
		  u[1] += 1;
		}
	      if (u[NI - 1] != 0)
		break;
	      if (eone[NE - 1] <= u[1])
		break;
	      emovz (u, w);
	      expon -= 1;
	    }
	  emovo (w, y);
	}
      k = -MAXP;
      p = &emtens[0][0];
      r = &etens[0][0];
      emov (y, w);
      emov (eone, t);
      while (ecmp (eone, w) > 0)
	{
	  if (ecmp (p, w) >= 0)
	    {
	      emul (r, w, w);
	      emul (r, t, t);
	      expon += k;
	    }
	  k /= 2;
	  if (k == 0)
	    break;
	  p += NE;
	  r += NE;
	}
      ediv (t, eone, t);
    }
 isone:
  /* Find the first (leading) digit.  */
  emovi (t, w);
  emovz (w, t);
  emovi (y, w);
  emovz (w, y);
  eiremain (t, y);
  digit = equot[NI - 1];
  while ((digit == 0) && (ecmp (y, ezero) != 0))
    {
      eshup1 (y);
      emovz (y, u);
      eshup1 (u);
      eshup1 (u);
      eaddm (u, y);
      eiremain (t, y);
      digit = equot[NI - 1];
      expon -= 1;
    }
  s = wstring;
  if (sign)
    *s++ = '-';
  else
    *s++ = ' ';
  /* Examine number of digits requested by caller.  */
  if (ndigs < 0)
    ndigs = 0;
  if (ndigs > NDEC)
    ndigs = NDEC;
  if (digit == 10)
    {
      *s++ = '1';
      *s++ = '.';
      if (ndigs > 0)
	{
	  *s++ = '0';
	  ndigs -= 1;
	}
      expon += 1;
    }
  else
    {
      *s++ = (char) digit + '0';
      *s++ = '.';
    }
  /* Generate digits after the decimal point.  */
  for (k = 0; k <= ndigs; k++)
    {
      /* multiply current number by 10, without normalizing */
      eshup1 (y);
      emovz (y, u);
      eshup1 (u);
      eshup1 (u);
      eaddm (u, y);
      eiremain (t, y);
      *s++ = (char) equot[NI - 1] + '0';
    }
  digit = equot[NI - 1];
  --s;
  ss = s;
  /* round off the ASCII string */
  if (digit > 4)
    {
      /* Test for critical rounding case in ASCII output.  */
      if (digit == 5)
	{
	  emovo (y, t);
	  if (ecmp (t, ezero) != 0)
	    goto roun;		/* round to nearest */
#ifndef C4X
	  if ((*(s - 1) & 1) == 0)
	    goto doexp;		/* round to even */
#endif
	}
      /* Round up and propagate carry-outs */
    roun:
      --s;
      k = *s & CHARMASK;
      /* Carry out to most significant digit? */
      if (k == '.')
	{
	  --s;
	  k = *s;
	  k += 1;
	  *s = (char) k;
	  /* Most significant digit carries to 10? */
	  if (k > '9')
	    {
	      expon += 1;
	      *s = '1';
	    }
	  goto doexp;
	}
      /* Round up and carry out from less significant digits */
      k += 1;
      *s = (char) k;
      if (k > '9')
	{
	  *s = '0';
	  goto roun;
	}
    }
 doexp:
  /*
     if (expon >= 0)
     sprintf (ss, "e+%d", expon);
     else
     sprintf (ss, "e%d", expon);
     */
  sprintf (ss, "e%d", expon);
 bxit:
  rndprc = rndsav;
  /* copy out the working string */
  s = string;
  ss = wstring;
  while (*ss == ' ')		/* strip possible leading space */
    ++ss;
  while ((*s++ = *ss++) != '\0')
    ;
}


/* Convert ASCII string to floating point.

   Numeric input is a free format decimal number of any length, with
   or without decimal point.  Entering E after the number followed by an
   integer number causes the second number to be interpreted as a power of
   10 to be multiplied by the first number (i.e., "scientific" notation).  */

/* Convert ASCII string S to single precision float value Y.  */

static void
asctoe24 (s, y)
     const char *s;
     UEMUSHORT *y;
{
  asctoeg (s, y, 24);
}


/* Convert ASCII string S to double precision value Y.  */

static void
asctoe53 (s, y)
     const char *s;
     UEMUSHORT *y;
{
#if defined(DEC) || defined(IBM)
  asctoeg (s, y, 56);
#else
#if defined(C4X)
  asctoeg (s, y, 32);
#else
  asctoeg (s, y, 53);
#endif
#endif
}


/* Convert ASCII string S to double extended value Y.  */

static void
asctoe64 (s, y)
     const char *s;
     UEMUSHORT *y;
{
  asctoeg (s, y, 64);
}

#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
/* Convert ASCII string S to 128-bit long double Y.  */

static void
asctoe113 (s, y)
     const char *s;
     UEMUSHORT *y;
{
  asctoeg (s, y, 113);
}
#endif

/* Convert ASCII string S to e type Y.  */

static void
asctoe (s, y)
     const char *s;
     UEMUSHORT *y;
{
  asctoeg (s, y, NBITS);
}

/* Convert ASCII string SS to e type Y, with a specified rounding precision
   of OPREC bits.  BASE is 16 for C99 hexadecimal floating constants.  */

static void
asctoeg (ss, y, oprec)
     const char *ss;
     UEMUSHORT *y;
     int oprec;
{
  UEMUSHORT yy[NI], xt[NI], tt[NI];
  int esign, decflg, sgnflg, nexp, exp, prec, lost;
  int i, k, trail, c, rndsav;
  EMULONG lexp;
  UEMUSHORT nsign;
  char *sp, *s, *lstr;
  int base = 10;

  /* Copy the input string.  */
  lstr = (char *) alloca (strlen (ss) + 1);

  while (*ss == ' ')		/* skip leading spaces */
    ++ss;

  sp = lstr;
  while ((*sp++ = *ss++) != '\0')
    ;
  s = lstr;

  if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
    {
      base = 16;
      s += 2;
    }

  rndsav = rndprc;
  rndprc = NBITS;		/* Set to full precision */
  lost = 0;
  nsign = 0;
  decflg = 0;
  sgnflg = 0;
  nexp = 0;
  exp = 0;
  prec = 0;
  ecleaz (yy);
  trail = 0;

 nxtcom:
  k = hex_value (*s);
  if ((k >= 0) && (k < base))
    {
      /* Ignore leading zeros */
      if ((prec == 0) && (decflg == 0) && (k == 0))
	goto donchr;
      /* Identify and strip trailing zeros after the decimal point.  */
      if ((trail == 0) && (decflg != 0))
	{
	  sp = s;
	  while (ISDIGIT (*sp) || (base == 16 && ISXDIGIT (*sp)))
	    ++sp;
	  /* Check for syntax error */
	  c = *sp & CHARMASK;
	  if ((base != 10 || ((c != 'e') && (c != 'E')))
	      && (base != 16 || ((c != 'p') && (c != 'P')))
	      && (c != '\0')
	      && (c != '\n') && (c != '\r') && (c != ' ')
	      && (c != ','))
	    goto unexpected_char_error;
	  --sp;
	  while (*sp == '0')
	    *sp-- = 'z';
	  trail = 1;
	  if (*s == 'z')
	    goto donchr;
	}

      /* If enough digits were given to more than fill up the yy register,
	 continuing until overflow into the high guard word yy[2]
	 guarantees that there will be a roundoff bit at the top
	 of the low guard word after normalization.  */

      if (yy[2] == 0)
	{
	  if (base == 16)
	    {
	      if (decflg)
		nexp += 4;	/* count digits after decimal point */

	      eshup1 (yy);	/* multiply current number by 16 */
	      eshup1 (yy);
	      eshup1 (yy);
	      eshup1 (yy);
	    }
	  else
	    {
	      if (decflg)
		nexp += 1;		/* count digits after decimal point */

	      eshup1 (yy);		/* multiply current number by 10 */
	      emovz (yy, xt);
	      eshup1 (xt);
	      eshup1 (xt);
	      eaddm (xt, yy);
	    }
	  /* Insert the current digit.  */
	  ecleaz (xt);
	  xt[NI - 2] = (UEMUSHORT) k;
	  eaddm (xt, yy);
	}
      else
	{
	  /* Mark any lost non-zero digit.  */
	  lost |= k;
	  /* Count lost digits before the decimal point.  */
	  if (decflg == 0)
	    {
	      if (base == 10)
		nexp -= 1;
	      else
		nexp -= 4;
	    }
	}
      prec += 1;
      goto donchr;
    }

  switch (*s)
    {
    case 'z':
      break;
    case 'E':
    case 'e':
    case 'P':
    case 'p':
      goto expnt;
    case '.':			/* decimal point */
      if (decflg)
	goto unexpected_char_error;
      ++decflg;
      break;
    case '-':
      nsign = 0xffff;
      if (sgnflg)
	goto unexpected_char_error;
      ++sgnflg;
      break;
    case '+':
      if (sgnflg)
	goto unexpected_char_error;
      ++sgnflg;
      break;
    case ',':
    case ' ':
    case '\0':
    case '\n':
    case '\r':
      goto daldone;
    case 'i':
    case 'I':
      goto infinite;
    default:
    unexpected_char_error:
#ifdef NANS
      einan (yy);
#else
      mtherr ("asctoe", DOMAIN);
      eclear (yy);
#endif
      goto aexit;
    }
 donchr:
  ++s;
  goto nxtcom;

  /* Exponent interpretation */
 expnt:
  /* 0.0eXXX is zero, regardless of XXX.  Check for the 0.0.  */
  for (k = 0; k < NI; k++)
    {
      if (yy[k] != 0)
	goto read_expnt;
    }
  goto aexit;

read_expnt:
  esign = 1;
  exp = 0;
  ++s;
  /* check for + or - */
  if (*s == '-')
    {
      esign = -1;
      ++s;
    }
  if (*s == '+')
    ++s;
  while (ISDIGIT (*s))
    {
      exp *= 10;
      exp += *s++ - '0';
      if (exp > 999999)
	break;
    }
  if (esign < 0)
    exp = -exp;
  if ((exp > MAXDECEXP) && (base == 10))
    {
 infinite:
      ecleaz (yy);
      yy[E] = 0x7fff;		/* infinity */
      goto aexit;
    }
  if ((exp < MINDECEXP) && (base == 10))
    {
 zero:
      ecleaz (yy);
      goto aexit;
    }

 daldone:
  if (base == 16)
    {
      /* Base 16 hexadecimal floating constant.  */
      if ((k = enormlz (yy)) > NBITS)
	{
	  ecleaz (yy);
	  goto aexit;
	}
      /* Adjust the exponent.  NEXP is the number of hex digits,
         EXP is a power of 2.  */
      lexp = (EXONE - 1 + NBITS) - k + yy[E] + exp - nexp;
      if (lexp > 0x7fff)
	goto infinite;
      if (lexp < 0)
	goto zero;
      yy[E] = lexp;
      goto expdon;
    }

  nexp = exp - nexp;
  /* Pad trailing zeros to minimize power of 10, per IEEE spec.  */
  while ((nexp > 0) && (yy[2] == 0))
    {
      emovz (yy, xt);
      eshup1 (xt);
      eshup1 (xt);
      eaddm (yy, xt);
      eshup1 (xt);
      if (xt[2] != 0)
	break;
      nexp -= 1;
      emovz (xt, yy);
    }
  if ((k = enormlz (yy)) > NBITS)
    {
      ecleaz (yy);
      goto aexit;
    }
  lexp = (EXONE - 1 + NBITS) - k;
  emdnorm (yy, lost, 0, lexp, 64);
  lost = 0;

  /* Convert to external format:

     Multiply by 10**nexp.  If precision is 64 bits,
     the maximum relative error incurred in forming 10**n
     for 0 <= n <= 324 is 8.2e-20, at 10**180.
     For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947.
     For 0 >= n >= -999, it is -1.55e-19 at 10**-435.  */

  lexp = yy[E];
  if (nexp == 0)
    {
      k = 0;
      goto expdon;
    }
  esign = 1;
  if (nexp < 0)
    {
      nexp = -nexp;
      esign = -1;
      if (nexp > 4096)
	{
	  /* Punt.  Can't handle this without 2 divides.  */
	  emovi (etens[0], tt);
	  lexp -= tt[E];
	  k = edivm (tt, yy);
	  lexp += EXONE;
	  nexp -= 4096;
	}
    }
  emov (eone, xt);
  exp = 1;
  i = NTEN;
  do
    {
      if (exp & nexp)
	emul (etens[i], xt, xt);
      i--;
      exp = exp + exp;
    }
  while (exp <= MAXP);

  emovi (xt, tt);
  if (esign < 0)
    {
      lexp -= tt[E];
      k = edivm (tt, yy);
      lexp += EXONE;
    }
  else
    {
      lexp += tt[E];
      k = emulm (tt, yy);
      lexp -= EXONE - 1;
    }
  lost = k;

 expdon:

  /* Round and convert directly to the destination type */
  if (oprec == 53)
    lexp -= EXONE - 0x3ff;
#ifdef C4X
  else if (oprec == 24 || oprec == 32)
    lexp -= (EXONE - 0x7f);
#else
#ifdef IBM
  else if (oprec == 24 || oprec == 56)
    lexp -= EXONE - (0x41 << 2);
#else
  else if (oprec == 24)
    lexp -= EXONE - 0177;
#endif /* IBM */
#endif /* C4X */
#ifdef DEC
  else if (oprec == 56)
    lexp -= EXONE - 0201;
#endif
  rndprc = oprec;
  emdnorm (yy, lost, 0, lexp, 64);

 aexit:

  rndprc = rndsav;
  yy[0] = nsign;
  switch (oprec)
    {
#ifdef DEC
    case 56:
      todec (yy, y);		/* see etodec.c */
      break;
#endif
#ifdef IBM
    case 56:
      toibm (yy, y, DFmode);
      break;
#endif
#ifdef C4X
    case 32:
      toc4x (yy, y, HFmode);
      break;
#endif

    case 53:
      toe53 (yy, y);
      break;
    case 24:
      toe24 (yy, y);
      break;
    case 64:
      toe64 (yy, y);
      break;
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
    case 113:
      toe113 (yy, y);
      break;
#endif
    case NBITS:
      emovo (yy, y);
      break;
    }
}



/* Return Y = largest integer not greater than X (truncated toward minus
   infinity).  */

static const UEMUSHORT bmask[] =
{
  0xffff,
  0xfffe,
  0xfffc,
  0xfff8,
  0xfff0,
  0xffe0,
  0xffc0,
  0xff80,
  0xff00,
  0xfe00,
  0xfc00,
  0xf800,
  0xf000,
  0xe000,
  0xc000,
  0x8000,
  0x0000,
};

static void
efloor (x, y)
     const UEMUSHORT x[];
     UEMUSHORT y[];
{
  UEMUSHORT *p;
  int e, expon, i;
  UEMUSHORT f[NE];

  emov (x, f);			/* leave in external format */
  expon = (int) f[NE - 1];
  e = (expon & 0x7fff) - (EXONE - 1);
  if (e <= 0)
    {
      eclear (y);
      goto isitneg;
    }
  /* number of bits to clear out */
  e = NBITS - e;
  emov (f, y);
  if (e <= 0)
    return;

  p = &y[0];
  while (e >= 16)
    {
      *p++ = 0;
      e -= 16;
    }
  /* clear the remaining bits */
  *p &= bmask[e];
  /* truncate negatives toward minus infinity */
 isitneg:

  if ((UEMUSHORT) expon & (UEMUSHORT) 0x8000)
    {
      for (i = 0; i < NE - 1; i++)
	{
	  if (f[i] != y[i])
	    {
	      esub (eone, y, y);
	      break;
	    }
	}
    }
}


#if 0
/* Return S and EXP such that  S * 2^EXP = X and .5 <= S < 1.
   For example, 1.1 = 0.55 * 2^1.  */

static void
efrexp (x, exp, s)
     const UEMUSHORT x[];
     int *exp;
     UEMUSHORT s[];
{
  UEMUSHORT xi[NI];
  EMULONG li;

  emovi (x, xi);
  /*  Handle denormalized numbers properly using long integer exponent.  */
  li = (EMULONG) ((EMUSHORT) xi[1]);

  if (li == 0)
    {
      li -= enormlz (xi);
    }
  xi[1] = 0x3ffe;
  emovo (xi, s);
  *exp = (int) (li - 0x3ffe);
}
#endif

/* Return e type Y = X * 2^PWR2.  */

static void
eldexp (x, pwr2, y)
     const UEMUSHORT x[];
     int pwr2;
     UEMUSHORT y[];
{
  UEMUSHORT xi[NI];
  EMULONG li;
  int i;

  emovi (x, xi);
  li = xi[1];
  li += pwr2;
  i = 0;
  emdnorm (xi, i, i, li, 64);
  emovo (xi, y);
}


#if 0
/* C = remainder after dividing B by A, all e type values.
   Least significant integer quotient bits left in EQUOT.  */

static void
eremain (a, b, c)
     const UEMUSHORT a[], b[];
     UEMUSHORT c[];
{
  UEMUSHORT den[NI], num[NI];

#ifdef NANS
  if (eisinf (b)
      || (ecmp (a, ezero) == 0)
      || eisnan (a)
      || eisnan (b))
    {
      enan (c, 0);
      return;
    }
#endif
  if (ecmp (a, ezero) == 0)
    {
      mtherr ("eremain", SING);
      eclear (c);
      return;
    }
  emovi (a, den);
  emovi (b, num);
  eiremain (den, num);
  /* Sign of remainder = sign of quotient */
  if (a[0] == b[0])
    num[0] = 0;
  else
    num[0] = 0xffff;
  emovo (num, c);
}
#endif

/*  Return quotient of exploded e-types NUM / DEN in EQUOT,
    remainder in NUM.  */

static void
eiremain (den, num)
     UEMUSHORT den[], num[];
{
  EMULONG ld, ln;
  UEMUSHORT j;

  ld = den[E];
  ld -= enormlz (den);
  ln = num[E];
  ln -= enormlz (num);
  ecleaz (equot);
  while (ln >= ld)
    {
      if (ecmpm (den, num) <= 0)
	{
	  esubm (den, num);
	  j = 1;
	}
      else
	  j = 0;
      eshup1 (equot);
      equot[NI - 1] |= j;
      eshup1 (num);
      ln -= 1;
    }
  emdnorm (num, 0, 0, ln, 0);
}

/* Report an error condition CODE encountered in function NAME.

    Mnemonic        Value          Significance

     DOMAIN            1       argument domain error
     SING              2       function singularity
     OVERFLOW          3       overflow range error
     UNDERFLOW         4       underflow range error
     TLOSS             5       total loss of precision
     PLOSS             6       partial loss of precision
     INVALID           7       NaN - producing operation
     EDOM             33       Unix domain error code
     ERANGE           34       Unix range error code

   The order of appearance of the following messages is bound to the
   error codes defined above.  */

int merror = 0;
extern int merror;

static void
mtherr (name, code)
     const char *name;
     int code;
{
  /* The string passed by the calling program is supposed to be the
     name of the function in which the error occurred.
     The code argument selects which error message string will be printed.  */

  if (strcmp (name, "esub") == 0)
    name = "subtraction";
  else if (strcmp (name, "ediv") == 0)
    name = "division";
  else if (strcmp (name, "emul") == 0)
    name = "multiplication";
  else if (strcmp (name, "enormlz") == 0)
    name = "normalization";
  else if (strcmp (name, "etoasc") == 0)
    name = "conversion to text";
  else if (strcmp (name, "asctoe") == 0)
    name = "parsing";
  else if (strcmp (name, "eremain") == 0)
    name = "modulus";
  else if (strcmp (name, "esqrt") == 0)
    name = "square root";
  if (extra_warnings)
    {
      switch (code)
	{
	case DOMAIN:    warning ("%s: argument domain error"    , name); break;
	case SING:      warning ("%s: function singularity"     , name); break;
	case OVERFLOW:  warning ("%s: overflow range error"     , name); break;
	case UNDERFLOW: warning ("%s: underflow range error"    , name); break;
	case TLOSS:     warning ("%s: total loss of precision"  , name); break;
	case PLOSS:     warning ("%s: partial loss of precision", name); break;
	case INVALID:   warning ("%s: NaN - producing operation", name); break;
	default:        abort ();
	}
    }

  /* Set global error message word */
  merror = code + 1;
}

#ifdef DEC
/* Convert DEC double precision D to e type E.  */

static void
dectoe (d, e)
     const UEMUSHORT *d;
     UEMUSHORT *e;
{
  UEMUSHORT y[NI];
  UEMUSHORT r, *p;

  ecleaz (y);			/* start with a zero */
  p = y;			/* point to our number */
  r = *d;			/* get DEC exponent word */
  if (*d & (unsigned int) 0x8000)
    *p = 0xffff;		/* fill in our sign */
  ++p;				/* bump pointer to our exponent word */
  r &= 0x7fff;			/* strip the sign bit */
  if (r == 0)			/* answer = 0 if high order DEC word = 0 */
    goto done;


  r >>= 7;			/* shift exponent word down 7 bits */
  r += EXONE - 0201;		/* subtract DEC exponent offset */
  /* add our e type exponent offset */
  *p++ = r;			/* to form our exponent */

  r = *d++;			/* now do the high order mantissa */
  r &= 0177;			/* strip off the DEC exponent and sign bits */
  r |= 0200;			/* the DEC understood high order mantissa bit */
  *p++ = r;			/* put result in our high guard word */

  *p++ = *d++;			/* fill in the rest of our mantissa */
  *p++ = *d++;
  *p = *d;

  eshdn8 (y);			/* shift our mantissa down 8 bits */
 done:
  emovo (y, e);
}

/* Convert e type X to DEC double precision D.  */

static void
etodec (x, d)
     const UEMUSHORT *x;
     UEMUSHORT *d;
{
  UEMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

  emovi (x, xi);
  /* Adjust exponent for offsets.  */
  exp = (EMULONG) xi[E] - (EXONE - 0201);
  /* Round off to nearest or even.  */
  rndsav = rndprc;
  rndprc = 56;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  todec (xi, d);
}

/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to DEC format double Y.  */

static void
todec (x, y)
     UEMUSHORT *x, *y;
{
  UEMUSHORT i;
  UEMUSHORT *p;

  p = x;
  *y = 0;
  if (*p++)
    *y = 0100000;
  i = *p++;
  if (i == 0)
    {
      *y++ = 0;
      *y++ = 0;
      *y++ = 0;
      *y++ = 0;
      return;
    }
  if (i > 0377)
    {
      *y++ |= 077777;
      *y++ = 0xffff;
      *y++ = 0xffff;
      *y++ = 0xffff;
#ifdef ERANGE
      errno = ERANGE;
#endif
      return;
    }
  i &= 0377;
  i <<= 7;
  eshup8 (x);
  x[M] &= 0177;
  i |= x[M];
  *y++ |= i;
  *y++ = x[M + 1];
  *y++ = x[M + 2];
  *y++ = x[M + 3];
}
#endif /* DEC */

#ifdef IBM
/* Convert IBM single/double precision to e type.  */

static void
ibmtoe (d, e, mode)
     const UEMUSHORT *d;
     UEMUSHORT *e;
     enum machine_mode mode;
{
  UEMUSHORT y[NI];
  UEMUSHORT r, *p;

  ecleaz (y);			/* start with a zero */
  p = y;			/* point to our number */
  r = *d;			/* get IBM exponent word */
  if (*d & (unsigned int) 0x8000)
    *p = 0xffff;		/* fill in our sign */
  ++p;				/* bump pointer to our exponent word */
  r &= 0x7f00;			/* strip the sign bit */
  r >>= 6;			/* shift exponent word down 6 bits */
				/* in fact shift by 8 right and 2 left */
  r += EXONE - (0x41 << 2);	/* subtract IBM exponent offset */
  				/* add our e type exponent offset */
  *p++ = r;			/* to form our exponent */

  *p++ = *d++ & 0xff;		/* now do the high order mantissa */
				/* strip off the IBM exponent and sign bits */
  if (mode != SFmode)		/* there are only 2 words in SFmode */
    {
      *p++ = *d++;		/* fill in the rest of our mantissa */
      *p++ = *d++;
    }
  *p = *d;

  if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0)
    y[0] = y[E] = 0;
  else
    y[E] -= 5 + enormlz (y);	/* now normalise the mantissa */
			      /* handle change in RADIX */
  emovo (y, e);
}



/* Convert e type to IBM single/double precision.  */

static void
etoibm (x, d, mode)
     const UEMUSHORT *x;
     UEMUSHORT *d;
     enum machine_mode mode;
{
  UEMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

  emovi (x, xi);
  exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2));	/* adjust exponent for offsets */
							/* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 56;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  toibm (xi, d, mode);
}

static void
toibm (x, y, mode)
     UEMUSHORT *x, *y;
     enum machine_mode mode;
{
  UEMUSHORT i;
  UEMUSHORT *p;
  int r;

  p = x;
  *y = 0;
  if (*p++)
    *y = 0x8000;
  i = *p++;
  if (i == 0)
    {
      *y++ = 0;
      *y++ = 0;
      if (mode != SFmode)
	{
	  *y++ = 0;
	  *y++ = 0;
	}
      return;
    }
  r = i & 0x3;
  i >>= 2;
  if (i > 0x7f)
    {
      *y++ |= 0x7fff;
      *y++ = 0xffff;
      if (mode != SFmode)
	{
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	}
#ifdef ERANGE
      errno = ERANGE;
#endif
      return;
    }
  i &= 0x7f;
  *y |= (i << 8);
  eshift (x, r + 5);
  *y++ |= x[M];
  *y++ = x[M + 1];
  if (mode != SFmode)
    {
      *y++ = x[M + 2];
      *y++ = x[M + 3];
    }
}
#endif /* IBM */


#ifdef C4X
/* Convert C4X single/double precision to e type.  */

static void
c4xtoe (d, e, mode)
     const UEMUSHORT *d;
     UEMUSHORT *e;
     enum machine_mode mode;
{
  UEMUSHORT y[NI];
  UEMUSHORT dn[4];
  int r;
  int isnegative;
  int size;
  int i;
  int carry;

  dn[0] = d[0];
  dn[1] = d[1];
  if (mode != QFmode)
    {
      dn[2] = d[3] << 8;
      dn[3] = 0;
    }

  /* Short-circuit the zero case.  */
  if ((dn[0] == 0x8000)
      && (dn[1] == 0x0000)
      && ((mode == QFmode) || ((dn[2] == 0x0000) && (dn[3] == 0x0000))))
    {
      e[0] = 0;
      e[1] = 0;
      e[2] = 0;
      e[3] = 0;
      e[4] = 0;
      e[5] = 0;
      return;
    }

  ecleaz (y);			/* start with a zero */
  r = dn[0];			/* get sign/exponent part */
  if (r & (unsigned int) 0x0080)
    {
      y[0] = 0xffff;		/* fill in our sign */
      isnegative = TRUE;
    }
  else
    isnegative = FALSE;

  r >>= 8;			/* Shift exponent word down 8 bits.  */
  if (r & 0x80)			/* Make the exponent negative if it is.  */
    r = r | (~0 & ~0xff);

  if (isnegative)
    {
      /* Now do the high order mantissa.  We don't "or" on the high bit
	 because it is 2 (not 1) and is handled a little differently
	 below.  */
      y[M] = dn[0] & 0x7f;

      y[M+1] = dn[1];
      if (mode != QFmode)	/* There are only 2 words in QFmode.  */
        {
	  y[M+2] = dn[2];	/* Fill in the rest of our mantissa.  */
	  y[M+3] = dn[3];
	  size = 4;
        }
      else
	size = 2;
      eshift (y, -8);

      /* Now do the two's complement on the data.  */

      carry = 1;	/* Initially add 1 for the two's complement.  */
      for (i=size + M; i > M; i--)
        {
	  if (carry && (y[i] == 0x0000))
	    /* We overflowed into the next word, carry is the same.  */
	    y[i] = carry ? 0x0000 : 0xffff;
	  else
	    {
	      /* No overflow, just invert and add carry.  */
	      y[i] = ((~y[i]) + carry) & 0xffff;
	      carry = 0;
	    }
        }

      if (carry)
        {
	  eshift (y, -1);
	  y[M+1] |= 0x8000;
	  r++;
         }
       y[1] = r + EXONE;
    }
  else
    {
      /* Add our e type exponent offset to form our exponent.  */
      r += EXONE;
      y[1] = r;

     /* Now do the high order mantissa strip off the exponent and sign
	bits and add the high 1 bit.  */
     y[M] = (dn[0] & 0x7f) | 0x80;

     y[M+1] = dn[1];
     if (mode != QFmode)	/* There are only 2 words in QFmode.  */
       {
	 y[M+2] = dn[2];	/* Fill in the rest of our mantissa.  */
	 y[M+3] = dn[3];
       }
     eshift (y, -8);
    }

  emovo (y, e);
}


/* Convert e type to C4X single/double precision.  */

static void
etoc4x (x, d, mode)
     const UEMUSHORT *x;
     UEMUSHORT *d;
     enum machine_mode mode;
{
  UEMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

  emovi (x, xi);

  /* Adjust exponent for offsets.  */
  exp = (EMULONG) xi[E] - (EXONE - 0x7f);

  /* Round off to nearest or even.  */
  rndsav = rndprc;
  rndprc = mode == QFmode ? 24 : 32;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  toc4x (xi, d, mode);
}

static void
toc4x (x, y, mode)
     UEMUSHORT *x, *y;
     enum machine_mode mode;
{
  int i;
  int v;
  int carry;

  /* Short-circuit the zero case */
  if ((x[0] == 0)	/* Zero exponent and sign */
      && (x[1] == 0)
      && (x[M] == 0)	/* The rest is for zero mantissa */
      && (x[M+1] == 0)
      /* Only check for double if necessary */
      && ((mode == QFmode) || ((x[M+2] == 0) && (x[M+3] == 0))))
    {
      /* We have a zero.  Put it into the output and return.  */
      *y++ = 0x8000;
      *y++ = 0x0000;
      if (mode != QFmode)
        {
          *y++ = 0x0000;
          *y++ = 0x0000;
        }
      return;
    }

  *y = 0;

  /* Negative number require a two's complement conversion of the
     mantissa.  */
  if (x[0])
    {
      *y = 0x0080;

      i = ((int) x[1]) - 0x7f;

      /* Now add 1 to the inverted data to do the two's complement.  */
      if (mode != QFmode)
	v = 4 + M;
      else
	v = 2 + M;
      carry = 1;
      while (v > M)
	{
	  if (x[v] == 0x0000)
	    x[v] = carry ? 0x0000 : 0xffff;
	  else
	    {
	      x[v] = ((~x[v]) + carry) & 0xffff;
	      carry = 0;
	    }
	  v--;
	}

      /* The following is a special case.  The C4X negative float requires
	 a zero in the high bit (because the format is (2 - x) x 2^m), so
	 if a one is in that bit, we have to shift left one to get rid
	 of it.  This only occurs if the number is -1 x 2^m.  */
      if (x[M+1] & 0x8000)
	{
	  /* This is the case of -1 x 2^m, we have to rid ourselves of the
	     high sign bit and shift the exponent.  */
	  eshift (x, 1);
	  i--;
	}
    }
  else
    i = ((int) x[1]) - 0x7f;

  if ((i < -128) || (i > 127))
    {
      y[0] |= 0xff7f;
      y[1] = 0xffff;
      if (mode != QFmode)
	{
	  y[2] = 0xffff;
	  y[3] = 0xffff;
	  y[3] = (y[1] << 8) | ((y[2] >> 8) & 0xff);
	  y[2] = (y[0] << 8) | ((y[1] >> 8) & 0xff);
	}
#ifdef ERANGE
      errno = ERANGE;
#endif
      return;
    }

  y[0] |= ((i & 0xff) << 8);

  eshift (x, 8);

  y[0] |= x[M] & 0x7f;
  y[1] = x[M + 1];
  if (mode != QFmode)
    {
      y[2] = x[M + 2];
      y[3] = x[M + 3];
      y[3] = (y[1] << 8) | ((y[2] >> 8) & 0xff);
      y[2] = (y[0] << 8) | ((y[1] >> 8) & 0xff);
    }
}
#endif /* C4X */

/* Output a binary NaN bit pattern in the target machine's format.  */

/* If special NaN bit patterns are required, define them in tm.h
   as arrays of unsigned 16-bit shorts.  Otherwise, use the default
   patterns here.  */
#ifdef TFMODE_NAN
TFMODE_NAN;
#else
#ifdef IEEE
static const UEMUSHORT TFbignan[8] =
 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
static const UEMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff};
#endif
#endif

#ifdef XFMODE_NAN
XFMODE_NAN;
#else
#ifdef IEEE
static const UEMUSHORT XFbignan[6] =
 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
static const UEMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0};
#endif
#endif

#ifdef DFMODE_NAN
DFMODE_NAN;
#else
#ifdef IEEE
static const UEMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff};
static const UEMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8};
#endif
#endif

#ifdef SFMODE_NAN
SFMODE_NAN;
#else
#ifdef IEEE
static const UEMUSHORT SFbignan[2] = {0x7fff, 0xffff};
static const UEMUSHORT SFlittlenan[2] = {0, 0xffc0};
#endif
#endif


#ifdef NANS
static void
make_nan (nan, sign, mode)
     UEMUSHORT *nan;
     int sign;
     enum machine_mode mode;
{
  int n;
  const UEMUSHORT *p;

  switch (mode)
    {
/* Possibly the `reserved operand' patterns on a VAX can be
   used like NaN's, but probably not in the same way as IEEE.  */
#if !defined(DEC) && !defined(IBM) && !defined(C4X)
    case TFmode:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
      n = 8;
      if (REAL_WORDS_BIG_ENDIAN)
	p = TFbignan;
      else
	p = TFlittlenan;
      break;
#endif
      /* FALLTHRU */

    case XFmode:
      n = 6;
      if (REAL_WORDS_BIG_ENDIAN)
	p = XFbignan;
      else
	p = XFlittlenan;
      break;

    case DFmode:
      n = 4;
      if (REAL_WORDS_BIG_ENDIAN)
	p = DFbignan;
      else
	p = DFlittlenan;
      break;

    case SFmode:
    case HFmode:
      n = 2;
      if (REAL_WORDS_BIG_ENDIAN)
	p = SFbignan;
      else
	p = SFlittlenan;
      break;
#endif

    default:
      abort ();
    }
  if (REAL_WORDS_BIG_ENDIAN)
    *nan++ = (sign << 15) | (*p++ & 0x7fff);
  while (--n != 0)
    *nan++ = *p++;
  if (! REAL_WORDS_BIG_ENDIAN)
    *nan = (sign << 15) | (*p & 0x7fff);
}
#endif /* NANS */

/* This is the inverse of the function `etarsingle' invoked by
   REAL_VALUE_TO_TARGET_SINGLE.  */

REAL_VALUE_TYPE
ereal_unto_float (f)
     long f;
{
  REAL_VALUE_TYPE r;
  UEMUSHORT s[2];
  UEMUSHORT e[NE];

  /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
   This is the inverse operation to what the function `endian' does.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
      s[0] = (UEMUSHORT) (f >> 16);
      s[1] = (UEMUSHORT) f;
    }
  else
    {
      s[0] = (UEMUSHORT) f;
      s[1] = (UEMUSHORT) (f >> 16);
    }
  /* Convert and promote the target float to E-type.  */
  e24toe (s, e);
  /* Output E-type to REAL_VALUE_TYPE.  */
  PUT_REAL (e, &r);
  return r;
}


/* This is the inverse of the function `etardouble' invoked by
   REAL_VALUE_TO_TARGET_DOUBLE.  */

REAL_VALUE_TYPE
ereal_unto_double (d)
     long d[];
{
  REAL_VALUE_TYPE r;
  UEMUSHORT s[4];
  UEMUSHORT e[NE];

  /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
      s[0] = (UEMUSHORT) (d[0] >> 16);
      s[1] = (UEMUSHORT) d[0];
      s[2] = (UEMUSHORT) (d[1] >> 16);
      s[3] = (UEMUSHORT) d[1];
    }
  else
    {
      /* Target float words are little-endian.  */
      s[0] = (UEMUSHORT) d[0];
      s[1] = (UEMUSHORT) (d[0] >> 16);
      s[2] = (UEMUSHORT) d[1];
      s[3] = (UEMUSHORT) (d[1] >> 16);
    }
  /* Convert target double to E-type.  */
  e53toe (s, e);
  /* Output E-type to REAL_VALUE_TYPE.  */
  PUT_REAL (e, &r);
  return r;
}


/* Convert an SFmode target `float' value to a REAL_VALUE_TYPE.
   This is somewhat like ereal_unto_float, but the input types
   for these are different.  */

REAL_VALUE_TYPE
ereal_from_float (f)
     HOST_WIDE_INT f;
{
  REAL_VALUE_TYPE r;
  UEMUSHORT s[2];
  UEMUSHORT e[NE];

  /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
   This is the inverse operation to what the function `endian' does.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
      s[0] = (UEMUSHORT) (f >> 16);
      s[1] = (UEMUSHORT) f;
    }
  else
    {
      s[0] = (UEMUSHORT) f;
      s[1] = (UEMUSHORT) (f >> 16);
    }
  /* Convert and promote the target float to E-type.  */
  e24toe (s, e);
  /* Output E-type to REAL_VALUE_TYPE.  */
  PUT_REAL (e, &r);
  return r;
}


/* Convert a DFmode target `double' value to a REAL_VALUE_TYPE.
   This is somewhat like ereal_unto_double, but the input types
   for these are different.

   The DFmode is stored as an array of HOST_WIDE_INT in the target's
   data format, with no holes in the bit packing.  The first element
   of the input array holds the bits that would come first in the
   target computer's memory.  */

REAL_VALUE_TYPE
ereal_from_double (d)
     HOST_WIDE_INT d[];
{
  REAL_VALUE_TYPE r;
  UEMUSHORT s[4];
  UEMUSHORT e[NE];

  /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
#if HOST_BITS_PER_WIDE_INT == 32
      s[0] = (UEMUSHORT) (d[0] >> 16);
      s[1] = (UEMUSHORT) d[0];
      s[2] = (UEMUSHORT) (d[1] >> 16);
      s[3] = (UEMUSHORT) d[1];
#else
      /* In this case the entire target double is contained in the
	 first array element.  The second element of the input is
	 ignored.  */
      s[0] = (UEMUSHORT) (d[0] >> 48);
      s[1] = (UEMUSHORT) (d[0] >> 32);
      s[2] = (UEMUSHORT) (d[0] >> 16);
      s[3] = (UEMUSHORT) d[0];
#endif
    }
  else
    {
      /* Target float words are little-endian.  */
      s[0] = (UEMUSHORT) d[0];
      s[1] = (UEMUSHORT) (d[0] >> 16);
#if HOST_BITS_PER_WIDE_INT == 32
      s[2] = (UEMUSHORT) d[1];
      s[3] = (UEMUSHORT) (d[1] >> 16);
#else
      s[2] = (UEMUSHORT) (d[0] >> 32);
      s[3] = (UEMUSHORT) (d[0] >> 48);
#endif
    }
  /* Convert target double to E-type.  */
  e53toe (s, e);
  /* Output E-type to REAL_VALUE_TYPE.  */
  PUT_REAL (e, &r);
  return r;
}


#if 0
/* Convert target computer unsigned 64-bit integer to e-type.
   The endian-ness of DImode follows the convention for integers,
   so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN.  */

static void
uditoe (di, e)
     const UEMUSHORT *di;  /* Address of the 64-bit int.  */
     UEMUSHORT *e;
{
  UEMUSHORT yi[NI];
  int k;

  ecleaz (yi);
  if (WORDS_BIG_ENDIAN)
    {
      for (k = M; k < M + 4; k++)
	yi[k] = *di++;
    }
  else
    {
      for (k = M + 3; k >= M; k--)
	yi[k] = *di++;
    }
  yi[E] = EXONE + 47;	/* exponent if normalize shift count were 0 */
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (UEMUSHORT) k;/* subtract shift count from exponent */
  emovo (yi, e);
}

/* Convert target computer signed 64-bit integer to e-type.  */

static void
ditoe (di, e)
     const UEMUSHORT *di;  /* Address of the 64-bit int.  */
     UEMUSHORT *e;
{
  unsigned EMULONG acc;
  UEMUSHORT yi[NI];
  UEMUSHORT carry;
  int k, sign;

  ecleaz (yi);
  if (WORDS_BIG_ENDIAN)
    {
      for (k = M; k < M + 4; k++)
	yi[k] = *di++;
    }
  else
    {
      for (k = M + 3; k >= M; k--)
	yi[k] = *di++;
    }
  /* Take absolute value */
  sign = 0;
  if (yi[M] & 0x8000)
    {
      sign = 1;
      carry = 0;
      for (k = M + 3; k >= M; k--)
	{
	  acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry;
	  yi[k] = acc;
	  carry = 0;
	  if (acc & 0x10000)
	    carry = 1;
	}
    }
  yi[E] = EXONE + 47;	/* exponent if normalize shift count were 0 */
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (UEMUSHORT) k;/* subtract shift count from exponent */
  emovo (yi, e);
  if (sign)
	eneg (e);
}


/* Convert e-type to unsigned 64-bit int.  */

static void
etoudi (x, i)
     const UEMUSHORT *x;
     UEMUSHORT *i;
{
  UEMUSHORT xi[NI];
  int j, k;

  emovi (x, xi);
  if (xi[0])
    {
      xi[M] = 0;
      goto noshift;
    }
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0;
      return;
    }
  if (k > 64)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0xffff;
      if (extra_warnings)
	warning ("overflow on truncation to integer");
      return;
    }
  if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      if (j == 0)
	j = 16;
      eshift (xi, j);
      if (WORDS_BIG_ENDIAN)
	*i++ = xi[M];
      else
	{
	  i += 3;
	  *i-- = xi[M];
	}
      k -= j;
      do
	{
	  eshup6 (xi);
	  if (WORDS_BIG_ENDIAN)
	    *i++ = xi[M];
	  else
	    *i-- = xi[M];
	}
      while ((k -= 16) > 0);
    }
  else
    {
        /* shift not more than 16 bits */
      eshift (xi, k);

noshift:

      if (WORDS_BIG_ENDIAN)
	{
	  i += 3;
	  *i-- = xi[M];
	  *i-- = 0;
	  *i-- = 0;
	  *i = 0;
	}
      else
	{
	  *i++ = xi[M];
	  *i++ = 0;
	  *i++ = 0;
	  *i = 0;
	}
    }
}


/* Convert e-type to signed 64-bit int.  */

static void
etodi (x, i)
     const UEMUSHORT *x;
     UEMUSHORT *i;
{
  unsigned EMULONG acc;
  UEMUSHORT xi[NI];
  UEMUSHORT carry;
  UEMUSHORT *isave;
  int j, k;

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0;
      return;
    }
  if (k > 64)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0xffff;
      if (extra_warnings)
	warning ("overflow on truncation to integer");
      return;
    }
  isave = i;
  if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      if (j == 0)
	j = 16;
      eshift (xi, j);
      if (WORDS_BIG_ENDIAN)
	*i++ = xi[M];
      else
	{
	  i += 3;
	  *i-- = xi[M];
	}
      k -= j;
      do
	{
	  eshup6 (xi);
	  if (WORDS_BIG_ENDIAN)
	    *i++ = xi[M];
	  else
	    *i-- = xi[M];
	}
      while ((k -= 16) > 0);
    }
  else
    {
        /* shift not more than 16 bits */
      eshift (xi, k);

      if (WORDS_BIG_ENDIAN)
	{
	  i += 3;
	  *i = xi[M];
	  *i-- = 0;
	  *i-- = 0;
	  *i = 0;
	}
      else
	{
	  *i++ = xi[M];
	  *i++ = 0;
	  *i++ = 0;
	  *i = 0;
	}
    }
  /* Negate if negative */
  if (xi[0])
    {
      carry = 0;
      if (WORDS_BIG_ENDIAN)
	isave += 3;
      for (k = 0; k < 4; k++)
	{
	  acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry;
	  if (WORDS_BIG_ENDIAN)
	    *isave-- = acc;
	  else
	    *isave++ = acc;
	  carry = 0;
	  if (acc & 0x10000)
	    carry = 1;
	}
    }
}


/* Longhand square root routine.  */


static int esqinited = 0;
static unsigned short sqrndbit[NI];

static void
esqrt (x, y)
     const UEMUSHORT *x;
     UEMUSHORT *y;
{
  UEMUSHORT temp[NI], num[NI], sq[NI], xx[NI];
  EMULONG m, exp;
  int i, j, k, n, nlups;

  if (esqinited == 0)
    {
      ecleaz (sqrndbit);
      sqrndbit[NI - 2] = 1;
      esqinited = 1;
    }
  /* Check for arg <= 0 */
  i = ecmp (x, ezero);
  if (i <= 0)
    {
      if (i == -1)
	{
	  mtherr ("esqrt", DOMAIN);
	  eclear (y);
	}
      else
	emov (x, y);
      return;
    }

#ifdef INFINITY
  if (eisinf (x))
    {
      eclear (y);
      einfin (y);
      return;
    }
#endif
  /* Bring in the arg and renormalize if it is denormal.  */
  emovi (x, xx);
  m = (EMULONG) xx[1];		/* local long word exponent */
  if (m == 0)
    m -= enormlz (xx);

  /* Divide exponent by 2 */
  m -= 0x3ffe;
  exp = (unsigned short) ((m / 2) + 0x3ffe);

  /* Adjust if exponent odd */
  if ((m & 1) != 0)
    {
      if (m > 0)
	exp += 1;
      eshdn1 (xx);
    }

  ecleaz (sq);
  ecleaz (num);
  n = 8;			/* get 8 bits of result per inner loop */
  nlups = rndprc;
  j = 0;

  while (nlups > 0)
    {
      /* bring in next word of arg */
      if (j < NE)
	num[NI - 1] = xx[j + 3];
      /* Do additional bit on last outer loop, for roundoff.  */
      if (nlups <= 8)
	n = nlups + 1;
      for (i = 0; i < n; i++)
	{
	  /* Next 2 bits of arg */
	  eshup1 (num);
	  eshup1 (num);
	  /* Shift up answer */
	  eshup1 (sq);
	  /* Make trial divisor */
	  for (k = 0; k < NI; k++)
	    temp[k] = sq[k];
	  eshup1 (temp);
	  eaddm (sqrndbit, temp);
	  /* Subtract and insert answer bit if it goes in */
	  if (ecmpm (temp, num) <= 0)
	    {
	      esubm (temp, num);
	      sq[NI - 2] |= 1;
	    }
	}
      nlups -= n;
      j += 1;
    }

  /* Adjust for extra, roundoff loop done.  */
  exp += (NBITS - 1) - rndprc;

  /* Sticky bit = 1 if the remainder is nonzero.  */
  k = 0;
  for (i = 3; i < NI; i++)
    k |= (int) num[i];

  /* Renormalize and round off.  */
  emdnorm (sq, k, 0, exp, 64);
  emovo (sq, y);
}
#endif
#endif /* EMU_NON_COMPILE not defined */

/* Return the binary precision of the significand for a given
   floating point mode.  The mode can hold an integer value
   that many bits wide, without losing any bits.  */

unsigned int
significand_size (mode)
     enum machine_mode mode;
{

/* Don't test the modes, but their sizes, lest this
   code won't work for BITS_PER_UNIT != 8 .  */

switch (GET_MODE_BITSIZE (mode))
  {
  case 32:

#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
    return 56;
#endif

    return 24;

  case 64:
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
    return 53;
#else
#if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
    return 56;
#else
#if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
    return 56;
#else
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
    return 56;
#else
    abort ();
#endif
#endif
#endif
#endif

  case 96:
    return 64;

  case 128:
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
    return 113;
#else
    return 64;
#endif

  default:
    abort ();
  }
}
OpenPOWER on IntegriCloud