1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
|
/* Data flow analysis for GNU compiler.
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This file contains the data flow analysis pass of the compiler. It
computes data flow information which tells combine_instructions
which insns to consider combining and controls register allocation.
Additional data flow information that is too bulky to record is
generated during the analysis, and is used at that time to create
autoincrement and autodecrement addressing.
The first step is dividing the function into basic blocks.
find_basic_blocks does this. Then life_analysis determines
where each register is live and where it is dead.
** find_basic_blocks **
find_basic_blocks divides the current function's rtl into basic
blocks and constructs the CFG. The blocks are recorded in the
basic_block_info array; the CFG exists in the edge structures
referenced by the blocks.
find_basic_blocks also finds any unreachable loops and deletes them.
** life_analysis **
life_analysis is called immediately after find_basic_blocks.
It uses the basic block information to determine where each
hard or pseudo register is live.
** live-register info **
The information about where each register is live is in two parts:
the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
basic_block->global_live_at_start has an element for each basic
block, and the element is a bit-vector with a bit for each hard or
pseudo register. The bit is 1 if the register is live at the
beginning of the basic block.
Two types of elements can be added to an insn's REG_NOTES.
A REG_DEAD note is added to an insn's REG_NOTES for any register
that meets both of two conditions: The value in the register is not
needed in subsequent insns and the insn does not replace the value in
the register (in the case of multi-word hard registers, the value in
each register must be replaced by the insn to avoid a REG_DEAD note).
In the vast majority of cases, an object in a REG_DEAD note will be
used somewhere in the insn. The (rare) exception to this is if an
insn uses a multi-word hard register and only some of the registers are
needed in subsequent insns. In that case, REG_DEAD notes will be
provided for those hard registers that are not subsequently needed.
Partial REG_DEAD notes of this type do not occur when an insn sets
only some of the hard registers used in such a multi-word operand;
omitting REG_DEAD notes for objects stored in an insn is optional and
the desire to do so does not justify the complexity of the partial
REG_DEAD notes.
REG_UNUSED notes are added for each register that is set by the insn
but is unused subsequently (if every register set by the insn is unused
and the insn does not reference memory or have some other side-effect,
the insn is deleted instead). If only part of a multi-word hard
register is used in a subsequent insn, REG_UNUSED notes are made for
the parts that will not be used.
To determine which registers are live after any insn, one can
start from the beginning of the basic block and scan insns, noting
which registers are set by each insn and which die there.
** Other actions of life_analysis **
life_analysis sets up the LOG_LINKS fields of insns because the
information needed to do so is readily available.
life_analysis deletes insns whose only effect is to store a value
that is never used.
life_analysis notices cases where a reference to a register as
a memory address can be combined with a preceding or following
incrementation or decrementation of the register. The separate
instruction to increment or decrement is deleted and the address
is changed to a POST_INC or similar rtx.
Each time an incrementing or decrementing address is created,
a REG_INC element is added to the insn's REG_NOTES list.
life_analysis fills in certain vectors containing information about
register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
life_analysis sets current_function_sp_is_unchanging if the function
doesn't modify the stack pointer. */
/* TODO:
Split out from life_analysis:
- local property discovery (bb->local_live, bb->local_set)
- global property computation
- log links creation
- pre/post modify transformation
*/
#include "config.h"
#include "system.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "expr.h"
#include "ssa.h"
#include "timevar.h"
#include "obstack.h"
#include "splay-tree.h"
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#ifndef EXIT_IGNORE_STACK
#define EXIT_IGNORE_STACK 0
#endif
#ifndef HAVE_epilogue
#define HAVE_epilogue 0
#endif
#ifndef HAVE_prologue
#define HAVE_prologue 0
#endif
#ifndef HAVE_sibcall_epilogue
#define HAVE_sibcall_epilogue 0
#endif
#ifndef LOCAL_REGNO
#define LOCAL_REGNO(REGNO) 0
#endif
#ifndef EPILOGUE_USES
#define EPILOGUE_USES(REGNO) 0
#endif
#ifndef EH_USES
#define EH_USES(REGNO) 0
#endif
#ifdef HAVE_conditional_execution
#ifndef REVERSE_CONDEXEC_PREDICATES_P
#define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
#endif
#endif
/* Nonzero if the second flow pass has completed. */
int flow2_completed;
/* Maximum register number used in this function, plus one. */
int max_regno;
/* Indexed by n, giving various register information */
varray_type reg_n_info;
/* Size of a regset for the current function,
in (1) bytes and (2) elements. */
int regset_bytes;
int regset_size;
/* Regset of regs live when calls to `setjmp'-like functions happen. */
/* ??? Does this exist only for the setjmp-clobbered warning message? */
regset regs_live_at_setjmp;
/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
that have to go in the same hard reg.
The first two regs in the list are a pair, and the next two
are another pair, etc. */
rtx regs_may_share;
/* Callback that determines if it's ok for a function to have no
noreturn attribute. */
int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
/* Set of registers that may be eliminable. These are handled specially
in updating regs_ever_live. */
static HARD_REG_SET elim_reg_set;
/* Holds information for tracking conditional register life information. */
struct reg_cond_life_info
{
/* A boolean expression of conditions under which a register is dead. */
rtx condition;
/* Conditions under which a register is dead at the basic block end. */
rtx orig_condition;
/* A boolean expression of conditions under which a register has been
stored into. */
rtx stores;
/* ??? Could store mask of bytes that are dead, so that we could finally
track lifetimes of multi-word registers accessed via subregs. */
};
/* For use in communicating between propagate_block and its subroutines.
Holds all information needed to compute life and def-use information. */
struct propagate_block_info
{
/* The basic block we're considering. */
basic_block bb;
/* Bit N is set if register N is conditionally or unconditionally live. */
regset reg_live;
/* Bit N is set if register N is set this insn. */
regset new_set;
/* Element N is the next insn that uses (hard or pseudo) register N
within the current basic block; or zero, if there is no such insn. */
rtx *reg_next_use;
/* Contains a list of all the MEMs we are tracking for dead store
elimination. */
rtx mem_set_list;
/* If non-null, record the set of registers set unconditionally in the
basic block. */
regset local_set;
/* If non-null, record the set of registers set conditionally in the
basic block. */
regset cond_local_set;
#ifdef HAVE_conditional_execution
/* Indexed by register number, holds a reg_cond_life_info for each
register that is not unconditionally live or dead. */
splay_tree reg_cond_dead;
/* Bit N is set if register N is in an expression in reg_cond_dead. */
regset reg_cond_reg;
#endif
/* The length of mem_set_list. */
int mem_set_list_len;
/* Nonzero if the value of CC0 is live. */
int cc0_live;
/* Flags controling the set of information propagate_block collects. */
int flags;
};
/* Number of dead insns removed. */
static int ndead;
/* Maximum length of pbi->mem_set_list before we start dropping
new elements on the floor. */
#define MAX_MEM_SET_LIST_LEN 100
/* Forward declarations */
static int verify_wide_reg_1 PARAMS ((rtx *, void *));
static void verify_wide_reg PARAMS ((int, basic_block));
static void verify_local_live_at_start PARAMS ((regset, basic_block));
static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
static void notice_stack_pointer_modification PARAMS ((rtx));
static void mark_reg PARAMS ((rtx, void *));
static void mark_regs_live_at_end PARAMS ((regset));
static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
static void propagate_block_delete_insn PARAMS ((rtx));
static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
static int insn_dead_p PARAMS ((struct propagate_block_info *,
rtx, int, rtx));
static int libcall_dead_p PARAMS ((struct propagate_block_info *,
rtx, rtx));
static void mark_set_regs PARAMS ((struct propagate_block_info *,
rtx, rtx));
static void mark_set_1 PARAMS ((struct propagate_block_info *,
enum rtx_code, rtx, rtx,
rtx, int));
static int find_regno_partial PARAMS ((rtx *, void *));
#ifdef HAVE_conditional_execution
static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
int, rtx));
static void free_reg_cond_life_info PARAMS ((splay_tree_value));
static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
int));
static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
static rtx not_reg_cond PARAMS ((rtx));
static rtx and_reg_cond PARAMS ((rtx, rtx, int));
#endif
#ifdef AUTO_INC_DEC
static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
rtx, rtx, rtx, rtx, rtx));
static void find_auto_inc PARAMS ((struct propagate_block_info *,
rtx, rtx));
static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
rtx));
static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
#endif
static void mark_used_reg PARAMS ((struct propagate_block_info *,
rtx, rtx, rtx));
static void mark_used_regs PARAMS ((struct propagate_block_info *,
rtx, rtx, rtx));
void dump_flow_info PARAMS ((FILE *));
void debug_flow_info PARAMS ((void));
static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
rtx));
static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
rtx));
static void clear_log_links PARAMS ((sbitmap));
void
check_function_return_warnings ()
{
if (warn_missing_noreturn
&& !TREE_THIS_VOLATILE (cfun->decl)
&& EXIT_BLOCK_PTR->pred == NULL
&& (lang_missing_noreturn_ok_p
&& !lang_missing_noreturn_ok_p (cfun->decl)))
warning ("function might be possible candidate for attribute `noreturn'");
/* If we have a path to EXIT, then we do return. */
if (TREE_THIS_VOLATILE (cfun->decl)
&& EXIT_BLOCK_PTR->pred != NULL)
warning ("`noreturn' function does return");
/* If the clobber_return_insn appears in some basic block, then we
do reach the end without returning a value. */
else if (warn_return_type
&& cfun->x_clobber_return_insn != NULL
&& EXIT_BLOCK_PTR->pred != NULL)
{
int max_uid = get_max_uid ();
/* If clobber_return_insn was excised by jump1, then renumber_insns
can make max_uid smaller than the number still recorded in our rtx.
That's fine, since this is a quick way of verifying that the insn
is no longer in the chain. */
if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
{
rtx insn;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (insn == cfun->x_clobber_return_insn)
{
warning ("control reaches end of non-void function");
break;
}
}
}
}
/* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
note associated with the BLOCK. */
rtx
first_insn_after_basic_block_note (block)
basic_block block;
{
rtx insn;
/* Get the first instruction in the block. */
insn = block->head;
if (insn == NULL_RTX)
return NULL_RTX;
if (GET_CODE (insn) == CODE_LABEL)
insn = NEXT_INSN (insn);
if (!NOTE_INSN_BASIC_BLOCK_P (insn))
abort ();
return NEXT_INSN (insn);
}
/* Perform data flow analysis.
F is the first insn of the function; FLAGS is a set of PROP_* flags
to be used in accumulating flow info. */
void
life_analysis (f, file, flags)
rtx f;
FILE *file;
int flags;
{
#ifdef ELIMINABLE_REGS
int i;
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif
/* Record which registers will be eliminated. We use this in
mark_used_regs. */
CLEAR_HARD_REG_SET (elim_reg_set);
#ifdef ELIMINABLE_REGS
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
#else
SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
#endif
#ifdef CANNOT_CHANGE_MODE_CLASS
bitmap_initialize (&subregs_of_mode, 1);
#endif
if (! optimize)
flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
/* The post-reload life analysis have (on a global basis) the same
registers live as was computed by reload itself. elimination
Otherwise offsets and such may be incorrect.
Reload will make some registers as live even though they do not
appear in the rtl.
We don't want to create new auto-incs after reload, since they
are unlikely to be useful and can cause problems with shared
stack slots. */
if (reload_completed)
flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
/* We want alias analysis information for local dead store elimination. */
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
init_alias_analysis ();
/* Always remove no-op moves. Do this before other processing so
that we don't have to keep re-scanning them. */
delete_noop_moves (f);
/* Some targets can emit simpler epilogues if they know that sp was
not ever modified during the function. After reload, of course,
we've already emitted the epilogue so there's no sense searching. */
if (! reload_completed)
notice_stack_pointer_modification (f);
/* Allocate and zero out data structures that will record the
data from lifetime analysis. */
allocate_reg_life_data ();
allocate_bb_life_data ();
/* Find the set of registers live on function exit. */
mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
/* "Update" life info from zero. It'd be nice to begin the
relaxation with just the exit and noreturn blocks, but that set
is not immediately handy. */
if (flags & PROP_REG_INFO)
memset (regs_ever_live, 0, sizeof (regs_ever_live));
update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
/* Clean up. */
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
end_alias_analysis ();
if (file)
dump_flow_info (file);
free_basic_block_vars (1);
/* Removing dead insns should've made jumptables really dead. */
delete_dead_jumptables ();
}
/* A subroutine of verify_wide_reg, called through for_each_rtx.
Search for REGNO. If found, return 2 if it is not wider than
word_mode. */
static int
verify_wide_reg_1 (px, pregno)
rtx *px;
void *pregno;
{
rtx x = *px;
unsigned int regno = *(int *) pregno;
if (GET_CODE (x) == REG && REGNO (x) == regno)
{
if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
return 2;
return 1;
}
return 0;
}
/* A subroutine of verify_local_live_at_start. Search through insns
of BB looking for register REGNO. */
static void
verify_wide_reg (regno, bb)
int regno;
basic_block bb;
{
rtx head = bb->head, end = bb->end;
while (1)
{
if (INSN_P (head))
{
int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, ®no);
if (r == 1)
return;
if (r == 2)
break;
}
if (head == end)
break;
head = NEXT_INSN (head);
}
if (rtl_dump_file)
{
fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
dump_bb (bb, rtl_dump_file);
}
abort ();
}
/* A subroutine of update_life_info. Verify that there are no untoward
changes in live_at_start during a local update. */
static void
verify_local_live_at_start (new_live_at_start, bb)
regset new_live_at_start;
basic_block bb;
{
if (reload_completed)
{
/* After reload, there are no pseudos, nor subregs of multi-word
registers. The regsets should exactly match. */
if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
{
if (rtl_dump_file)
{
fprintf (rtl_dump_file,
"live_at_start mismatch in bb %d, aborting\nNew:\n",
bb->index);
debug_bitmap_file (rtl_dump_file, new_live_at_start);
fputs ("Old:\n", rtl_dump_file);
dump_bb (bb, rtl_dump_file);
}
abort ();
}
}
else
{
int i;
/* Find the set of changed registers. */
XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
{
/* No registers should die. */
if (REGNO_REG_SET_P (bb->global_live_at_start, i))
{
if (rtl_dump_file)
{
fprintf (rtl_dump_file,
"Register %d died unexpectedly.\n", i);
dump_bb (bb, rtl_dump_file);
}
abort ();
}
/* Verify that the now-live register is wider than word_mode. */
verify_wide_reg (i, bb);
});
}
}
/* Updates life information starting with the basic blocks set in BLOCKS.
If BLOCKS is null, consider it to be the universal set.
If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
we are only expecting local modifications to basic blocks. If we find
extra registers live at the beginning of a block, then we either killed
useful data, or we have a broken split that wants data not provided.
If we find registers removed from live_at_start, that means we have
a broken peephole that is killing a register it shouldn't.
??? This is not true in one situation -- when a pre-reload splitter
generates subregs of a multi-word pseudo, current life analysis will
lose the kill. So we _can_ have a pseudo go live. How irritating.
Including PROP_REG_INFO does not properly refresh regs_ever_live
unless the caller resets it to zero. */
int
update_life_info (blocks, extent, prop_flags)
sbitmap blocks;
enum update_life_extent extent;
int prop_flags;
{
regset tmp;
regset_head tmp_head;
int i;
int stabilized_prop_flags = prop_flags;
basic_block bb;
tmp = INITIALIZE_REG_SET (tmp_head);
ndead = 0;
timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
? TV_LIFE_UPDATE : TV_LIFE);
/* Changes to the CFG are only allowed when
doing a global update for the entire CFG. */
if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
&& (extent == UPDATE_LIFE_LOCAL || blocks))
abort ();
/* For a global update, we go through the relaxation process again. */
if (extent != UPDATE_LIFE_LOCAL)
{
for ( ; ; )
{
int changed = 0;
calculate_global_regs_live (blocks, blocks,
prop_flags & (PROP_SCAN_DEAD_CODE
| PROP_SCAN_DEAD_STORES
| PROP_ALLOW_CFG_CHANGES));
if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
!= (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
break;
/* Removing dead code may allow the CFG to be simplified which
in turn may allow for further dead code detection / removal. */
FOR_EACH_BB_REVERSE (bb)
{
COPY_REG_SET (tmp, bb->global_live_at_end);
changed |= propagate_block (bb, tmp, NULL, NULL,
prop_flags & (PROP_SCAN_DEAD_CODE
| PROP_SCAN_DEAD_STORES
| PROP_KILL_DEAD_CODE));
}
/* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
subsequent propagate_block calls, since removing or acting as
removing dead code can affect global register liveness, which
is supposed to be finalized for this call after this loop. */
stabilized_prop_flags
&= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
| PROP_KILL_DEAD_CODE);
if (! changed)
break;
/* We repeat regardless of what cleanup_cfg says. If there were
instructions deleted above, that might have been only a
partial improvement (see MAX_MEM_SET_LIST_LEN usage).
Further improvement may be possible. */
cleanup_cfg (CLEANUP_EXPENSIVE);
}
/* If asked, remove notes from the blocks we'll update. */
if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
count_or_remove_death_notes (blocks, 1);
}
/* Clear log links in case we are asked to (re)compute them. */
if (prop_flags & PROP_LOG_LINKS)
clear_log_links (blocks);
if (blocks)
{
EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
{
bb = BASIC_BLOCK (i);
COPY_REG_SET (tmp, bb->global_live_at_end);
propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
if (extent == UPDATE_LIFE_LOCAL)
verify_local_live_at_start (tmp, bb);
});
}
else
{
FOR_EACH_BB_REVERSE (bb)
{
COPY_REG_SET (tmp, bb->global_live_at_end);
propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
if (extent == UPDATE_LIFE_LOCAL)
verify_local_live_at_start (tmp, bb);
}
}
FREE_REG_SET (tmp);
if (prop_flags & PROP_REG_INFO)
{
/* The only pseudos that are live at the beginning of the function
are those that were not set anywhere in the function. local-alloc
doesn't know how to handle these correctly, so mark them as not
local to any one basic block. */
EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
FIRST_PSEUDO_REGISTER, i,
{ REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
/* We have a problem with any pseudoreg that lives across the setjmp.
ANSI says that if a user variable does not change in value between
the setjmp and the longjmp, then the longjmp preserves it. This
includes longjmp from a place where the pseudo appears dead.
(In principle, the value still exists if it is in scope.)
If the pseudo goes in a hard reg, some other value may occupy
that hard reg where this pseudo is dead, thus clobbering the pseudo.
Conclusion: such a pseudo must not go in a hard reg. */
EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
FIRST_PSEUDO_REGISTER, i,
{
if (regno_reg_rtx[i] != 0)
{
REG_LIVE_LENGTH (i) = -1;
REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
}
});
}
timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
? TV_LIFE_UPDATE : TV_LIFE);
if (ndead && rtl_dump_file)
fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
return ndead;
}
/* Update life information in all blocks where BB_DIRTY is set. */
int
update_life_info_in_dirty_blocks (extent, prop_flags)
enum update_life_extent extent;
int prop_flags;
{
sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
int n = 0;
basic_block bb;
int retval = 0;
sbitmap_zero (update_life_blocks);
FOR_EACH_BB (bb)
{
if (extent == UPDATE_LIFE_LOCAL)
{
if (bb->flags & BB_DIRTY)
{
SET_BIT (update_life_blocks, bb->index);
n++;
}
}
else
{
/* ??? Bootstrap with -march=pentium4 fails to terminate
with only a partial life update. */
SET_BIT (update_life_blocks, bb->index);
if (bb->flags & BB_DIRTY)
n++;
}
}
if (n)
retval = update_life_info (update_life_blocks, extent, prop_flags);
sbitmap_free (update_life_blocks);
return retval;
}
/* Free the variables allocated by find_basic_blocks.
KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
void
free_basic_block_vars (keep_head_end_p)
int keep_head_end_p;
{
if (! keep_head_end_p)
{
if (basic_block_info)
{
clear_edges ();
VARRAY_FREE (basic_block_info);
}
n_basic_blocks = 0;
last_basic_block = 0;
ENTRY_BLOCK_PTR->aux = NULL;
ENTRY_BLOCK_PTR->global_live_at_end = NULL;
EXIT_BLOCK_PTR->aux = NULL;
EXIT_BLOCK_PTR->global_live_at_start = NULL;
}
}
/* Delete any insns that copy a register to itself. */
int
delete_noop_moves (f)
rtx f ATTRIBUTE_UNUSED;
{
rtx insn, next;
basic_block bb;
int nnoops = 0;
FOR_EACH_BB (bb)
{
for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
{
next = NEXT_INSN (insn);
if (INSN_P (insn) && noop_move_p (insn))
{
rtx note;
/* If we're about to remove the first insn of a libcall
then move the libcall note to the next real insn and
update the retval note. */
if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
&& XEXP (note, 0) != insn)
{
rtx new_libcall_insn = next_real_insn (insn);
rtx retval_note = find_reg_note (XEXP (note, 0),
REG_RETVAL, NULL_RTX);
REG_NOTES (new_libcall_insn)
= gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
REG_NOTES (new_libcall_insn));
XEXP (retval_note, 0) = new_libcall_insn;
}
delete_insn_and_edges (insn);
nnoops++;
}
}
}
if (nnoops && rtl_dump_file)
fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
return nnoops;
}
/* Delete any jump tables never referenced. We can't delete them at the
time of removing tablejump insn as they are referenced by the preceding
insns computing the destination, so we delay deleting and garbagecollect
them once life information is computed. */
void
delete_dead_jumptables ()
{
rtx insn, next;
for (insn = get_insns (); insn; insn = next)
{
next = NEXT_INSN (insn);
if (GET_CODE (insn) == CODE_LABEL
&& LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
&& GET_CODE (next) == JUMP_INSN
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
{
if (rtl_dump_file)
fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
delete_insn (NEXT_INSN (insn));
delete_insn (insn);
next = NEXT_INSN (next);
}
}
}
/* Determine if the stack pointer is constant over the life of the function.
Only useful before prologues have been emitted. */
static void
notice_stack_pointer_modification_1 (x, pat, data)
rtx x;
rtx pat ATTRIBUTE_UNUSED;
void *data ATTRIBUTE_UNUSED;
{
if (x == stack_pointer_rtx
/* The stack pointer is only modified indirectly as the result
of a push until later in flow. See the comments in rtl.texi
regarding Embedded Side-Effects on Addresses. */
|| (GET_CODE (x) == MEM
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
&& XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
current_function_sp_is_unchanging = 0;
}
static void
notice_stack_pointer_modification (f)
rtx f;
{
rtx insn;
/* Assume that the stack pointer is unchanging if alloca hasn't
been used. */
current_function_sp_is_unchanging = !current_function_calls_alloca;
if (! current_function_sp_is_unchanging)
return;
for (insn = f; insn; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
/* Check if insn modifies the stack pointer. */
note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
NULL);
if (! current_function_sp_is_unchanging)
return;
}
}
}
/* Mark a register in SET. Hard registers in large modes get all
of their component registers set as well. */
static void
mark_reg (reg, xset)
rtx reg;
void *xset;
{
regset set = (regset) xset;
int regno = REGNO (reg);
if (GET_MODE (reg) == BLKmode)
abort ();
SET_REGNO_REG_SET (set, regno);
if (regno < FIRST_PSEUDO_REGISTER)
{
int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
while (--n > 0)
SET_REGNO_REG_SET (set, regno + n);
}
}
/* Mark those regs which are needed at the end of the function as live
at the end of the last basic block. */
static void
mark_regs_live_at_end (set)
regset set;
{
unsigned int i;
/* If exiting needs the right stack value, consider the stack pointer
live at the end of the function. */
if ((HAVE_epilogue && reload_completed)
|| ! EXIT_IGNORE_STACK
|| (! FRAME_POINTER_REQUIRED
&& ! current_function_calls_alloca
&& flag_omit_frame_pointer)
|| current_function_sp_is_unchanging)
{
SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
}
/* Mark the frame pointer if needed at the end of the function. If
we end up eliminating it, it will be removed from the live list
of each basic block by reload. */
if (! reload_completed || frame_pointer_needed)
{
SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
/* If they are different, also mark the hard frame pointer as live. */
if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
#endif
}
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
/* Many architectures have a GP register even without flag_pic.
Assume the pic register is not in use, or will be handled by
other means, if it is not fixed. */
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
#endif
/* Mark all global registers, and all registers used by the epilogue
as being live at the end of the function since they may be
referenced by our caller. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i] || EPILOGUE_USES (i))
SET_REGNO_REG_SET (set, i);
if (HAVE_epilogue && reload_completed)
{
/* Mark all call-saved registers that we actually used. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (regs_ever_live[i] && ! LOCAL_REGNO (i)
&& ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
SET_REGNO_REG_SET (set, i);
}
#ifdef EH_RETURN_DATA_REGNO
/* Mark the registers that will contain data for the handler. */
if (reload_completed && current_function_calls_eh_return)
for (i = 0; ; ++i)
{
unsigned regno = EH_RETURN_DATA_REGNO(i);
if (regno == INVALID_REGNUM)
break;
SET_REGNO_REG_SET (set, regno);
}
#endif
#ifdef EH_RETURN_STACKADJ_RTX
if ((! HAVE_epilogue || ! reload_completed)
&& current_function_calls_eh_return)
{
rtx tmp = EH_RETURN_STACKADJ_RTX;
if (tmp && REG_P (tmp))
mark_reg (tmp, set);
}
#endif
#ifdef EH_RETURN_HANDLER_RTX
if ((! HAVE_epilogue || ! reload_completed)
&& current_function_calls_eh_return)
{
rtx tmp = EH_RETURN_HANDLER_RTX;
if (tmp && REG_P (tmp))
mark_reg (tmp, set);
}
#endif
/* Mark function return value. */
diddle_return_value (mark_reg, set);
}
/* Callback function for for_each_successor_phi. DATA is a regset.
Sets the SRC_REGNO, the regno of the phi alternative for phi node
INSN, in the regset. */
static int
set_phi_alternative_reg (insn, dest_regno, src_regno, data)
rtx insn ATTRIBUTE_UNUSED;
int dest_regno ATTRIBUTE_UNUSED;
int src_regno;
void *data;
{
regset live = (regset) data;
SET_REGNO_REG_SET (live, src_regno);
return 0;
}
/* Propagate global life info around the graph of basic blocks. Begin
considering blocks with their corresponding bit set in BLOCKS_IN.
If BLOCKS_IN is null, consider it the universal set.
BLOCKS_OUT is set for every block that was changed. */
static void
calculate_global_regs_live (blocks_in, blocks_out, flags)
sbitmap blocks_in, blocks_out;
int flags;
{
basic_block *queue, *qhead, *qtail, *qend, bb;
regset tmp, new_live_at_end, invalidated_by_call;
regset_head tmp_head, invalidated_by_call_head;
regset_head new_live_at_end_head;
int i;
/* Some passes used to forget clear aux field of basic block causing
sick behavior here. */
#ifdef ENABLE_CHECKING
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
if (bb->aux)
abort ();
#endif
tmp = INITIALIZE_REG_SET (tmp_head);
new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
/* Inconveniently, this is only readily available in hard reg set form. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
SET_REGNO_REG_SET (invalidated_by_call, i);
/* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
because the `head == tail' style test for an empty queue doesn't
work with a full queue. */
queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
qtail = queue;
qhead = qend = queue + n_basic_blocks + 2;
/* Queue the blocks set in the initial mask. Do this in reverse block
number order so that we are more likely for the first round to do
useful work. We use AUX non-null to flag that the block is queued. */
if (blocks_in)
{
FOR_EACH_BB (bb)
if (TEST_BIT (blocks_in, bb->index))
{
*--qhead = bb;
bb->aux = bb;
}
}
else
{
FOR_EACH_BB (bb)
{
*--qhead = bb;
bb->aux = bb;
}
}
/* We clean aux when we remove the initially-enqueued bbs, but we
don't enqueue ENTRY and EXIT initially, so clean them upfront and
unconditionally. */
ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
if (blocks_out)
sbitmap_zero (blocks_out);
/* We work through the queue until there are no more blocks. What
is live at the end of this block is precisely the union of what
is live at the beginning of all its successors. So, we set its
GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
for its successors. Then, we compute GLOBAL_LIVE_AT_START for
this block by walking through the instructions in this block in
reverse order and updating as we go. If that changed
GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
must either be live at the end of the block, or used within the
block. In the latter case, it will certainly never disappear
from GLOBAL_LIVE_AT_START. In the former case, the register
could go away only if it disappeared from GLOBAL_LIVE_AT_START
for one of the successor blocks. By induction, that cannot
occur. */
while (qhead != qtail)
{
int rescan, changed;
basic_block bb;
edge e;
bb = *qhead++;
if (qhead == qend)
qhead = queue;
bb->aux = NULL;
/* Begin by propagating live_at_start from the successor blocks. */
CLEAR_REG_SET (new_live_at_end);
if (bb->succ)
for (e = bb->succ; e; e = e->succ_next)
{
basic_block sb = e->dest;
/* Call-clobbered registers die across exception and
call edges. */
/* ??? Abnormal call edges ignored for the moment, as this gets
confused by sibling call edges, which crashes reg-stack. */
if (e->flags & EDGE_EH)
{
bitmap_operation (tmp, sb->global_live_at_start,
invalidated_by_call, BITMAP_AND_COMPL);
IOR_REG_SET (new_live_at_end, tmp);
}
else
IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
/* If a target saves one register in another (instead of on
the stack) the save register will need to be live for EH. */
if (e->flags & EDGE_EH)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (EH_USES (i))
SET_REGNO_REG_SET (new_live_at_end, i);
}
else
{
/* This might be a noreturn function that throws. And
even if it isn't, getting the unwind info right helps
debugging. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (EH_USES (i))
SET_REGNO_REG_SET (new_live_at_end, i);
}
/* The all-important stack pointer must always be live. */
SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
/* Before reload, there are a few registers that must be forced
live everywhere -- which might not already be the case for
blocks within infinite loops. */
if (! reload_completed)
{
/* Any reference to any pseudo before reload is a potential
reference of the frame pointer. */
SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
/* Pseudos with argument area equivalences may require
reloading via the argument pointer. */
if (fixed_regs[ARG_POINTER_REGNUM])
SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
#endif
/* Any constant, or pseudo with constant equivalences, may
require reloading from memory using the pic register. */
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
}
/* Regs used in phi nodes are not included in
global_live_at_start, since they are live only along a
particular edge. Set those regs that are live because of a
phi node alternative corresponding to this particular block. */
if (in_ssa_form)
for_each_successor_phi (bb, &set_phi_alternative_reg,
new_live_at_end);
if (bb == ENTRY_BLOCK_PTR)
{
COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
continue;
}
/* On our first pass through this block, we'll go ahead and continue.
Recognize first pass by local_set NULL. On subsequent passes, we
get to skip out early if live_at_end wouldn't have changed. */
if (bb->local_set == NULL)
{
bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
rescan = 1;
}
else
{
/* If any bits were removed from live_at_end, we'll have to
rescan the block. This wouldn't be necessary if we had
precalculated local_live, however with PROP_SCAN_DEAD_CODE
local_live is really dependent on live_at_end. */
CLEAR_REG_SET (tmp);
rescan = bitmap_operation (tmp, bb->global_live_at_end,
new_live_at_end, BITMAP_AND_COMPL);
if (! rescan)
{
/* If any of the registers in the new live_at_end set are
conditionally set in this basic block, we must rescan.
This is because conditional lifetimes at the end of the
block do not just take the live_at_end set into account,
but also the liveness at the start of each successor
block. We can miss changes in those sets if we only
compare the new live_at_end against the previous one. */
CLEAR_REG_SET (tmp);
rescan = bitmap_operation (tmp, new_live_at_end,
bb->cond_local_set, BITMAP_AND);
}
if (! rescan)
{
/* Find the set of changed bits. Take this opportunity
to notice that this set is empty and early out. */
CLEAR_REG_SET (tmp);
changed = bitmap_operation (tmp, bb->global_live_at_end,
new_live_at_end, BITMAP_XOR);
if (! changed)
continue;
/* If any of the changed bits overlap with local_set,
we'll have to rescan the block. Detect overlap by
the AND with ~local_set turning off bits. */
rescan = bitmap_operation (tmp, tmp, bb->local_set,
BITMAP_AND_COMPL);
}
}
/* Let our caller know that BB changed enough to require its
death notes updated. */
if (blocks_out)
SET_BIT (blocks_out, bb->index);
if (! rescan)
{
/* Add to live_at_start the set of all registers in
new_live_at_end that aren't in the old live_at_end. */
bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
BITMAP_AND_COMPL);
COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
changed = bitmap_operation (bb->global_live_at_start,
bb->global_live_at_start,
tmp, BITMAP_IOR);
if (! changed)
continue;
}
else
{
COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
/* Rescan the block insn by insn to turn (a copy of) live_at_end
into live_at_start. */
propagate_block (bb, new_live_at_end, bb->local_set,
bb->cond_local_set, flags);
/* If live_at start didn't change, no need to go farther. */
if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
continue;
COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
}
/* Queue all predecessors of BB so that we may re-examine
their live_at_end. */
for (e = bb->pred; e; e = e->pred_next)
{
basic_block pb = e->src;
if (pb->aux == NULL)
{
*qtail++ = pb;
if (qtail == qend)
qtail = queue;
pb->aux = pb;
}
}
}
FREE_REG_SET (tmp);
FREE_REG_SET (new_live_at_end);
FREE_REG_SET (invalidated_by_call);
if (blocks_out)
{
EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
{
basic_block bb = BASIC_BLOCK (i);
FREE_REG_SET (bb->local_set);
FREE_REG_SET (bb->cond_local_set);
});
}
else
{
FOR_EACH_BB (bb)
{
FREE_REG_SET (bb->local_set);
FREE_REG_SET (bb->cond_local_set);
}
}
free (queue);
}
/* This structure is used to pass parameters to and from the
the function find_regno_partial(). It is used to pass in the
register number we are looking, as well as to return any rtx
we find. */
typedef struct {
unsigned regno_to_find;
rtx retval;
} find_regno_partial_param;
/* Find the rtx for the reg numbers specified in 'data' if it is
part of an expression which only uses part of the register. Return
it in the structure passed in. */
static int
find_regno_partial (ptr, data)
rtx *ptr;
void *data;
{
find_regno_partial_param *param = (find_regno_partial_param *)data;
unsigned reg = param->regno_to_find;
param->retval = NULL_RTX;
if (*ptr == NULL_RTX)
return 0;
switch (GET_CODE (*ptr))
{
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case STRICT_LOW_PART:
if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
{
param->retval = XEXP (*ptr, 0);
return 1;
}
break;
case SUBREG:
if (GET_CODE (SUBREG_REG (*ptr)) == REG
&& REGNO (SUBREG_REG (*ptr)) == reg)
{
param->retval = SUBREG_REG (*ptr);
return 1;
}
break;
default:
break;
}
return 0;
}
/* Process all immediate successors of the entry block looking for pseudo
registers which are live on entry. Find all of those whose first
instance is a partial register reference of some kind, and initialize
them to 0 after the entry block. This will prevent bit sets within
registers whose value is unknown, and may contain some kind of sticky
bits we don't want. */
int
initialize_uninitialized_subregs ()
{
rtx insn;
edge e;
int reg, did_something = 0;
find_regno_partial_param param;
for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
{
basic_block bb = e->dest;
regset map = bb->global_live_at_start;
EXECUTE_IF_SET_IN_REG_SET (map,
FIRST_PSEUDO_REGISTER, reg,
{
int uid = REGNO_FIRST_UID (reg);
rtx i;
/* Find an insn which mentions the register we are looking for.
Its preferable to have an instance of the register's rtl since
there may be various flags set which we need to duplicate.
If we can't find it, its probably an automatic whose initial
value doesn't matter, or hopefully something we don't care about. */
for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
;
if (i != NULL_RTX)
{
/* Found the insn, now get the REG rtx, if we can. */
param.regno_to_find = reg;
for_each_rtx (&i, find_regno_partial, ¶m);
if (param.retval != NULL_RTX)
{
start_sequence ();
emit_move_insn (param.retval,
CONST0_RTX (GET_MODE (param.retval)));
insn = get_insns ();
end_sequence ();
insert_insn_on_edge (insn, e);
did_something = 1;
}
}
});
}
if (did_something)
commit_edge_insertions ();
return did_something;
}
/* Subroutines of life analysis. */
/* Allocate the permanent data structures that represent the results
of life analysis. Not static since used also for stupid life analysis. */
void
allocate_bb_life_data ()
{
basic_block bb;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
}
regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
}
void
allocate_reg_life_data ()
{
int i;
max_regno = max_reg_num ();
/* Recalculate the register space, in case it has grown. Old style
vector oriented regsets would set regset_{size,bytes} here also. */
allocate_reg_info (max_regno, FALSE, FALSE);
/* Reset all the data we'll collect in propagate_block and its
subroutines. */
for (i = 0; i < max_regno; i++)
{
REG_N_SETS (i) = 0;
REG_N_REFS (i) = 0;
REG_N_DEATHS (i) = 0;
REG_N_CALLS_CROSSED (i) = 0;
REG_LIVE_LENGTH (i) = 0;
REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
}
}
/* Delete dead instructions for propagate_block. */
static void
propagate_block_delete_insn (insn)
rtx insn;
{
rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
/* If the insn referred to a label, and that label was attached to
an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
pretty much mandatory to delete it, because the ADDR_VEC may be
referencing labels that no longer exist.
INSN may reference a deleted label, particularly when a jump
table has been optimized into a direct jump. There's no
real good way to fix up the reference to the deleted label
when the label is deleted, so we just allow it here. */
if (inote && GET_CODE (inote) == CODE_LABEL)
{
rtx label = XEXP (inote, 0);
rtx next;
/* The label may be forced if it has been put in the constant
pool. If that is the only use we must discard the table
jump following it, but not the label itself. */
if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
&& (next = next_nonnote_insn (label)) != NULL
&& GET_CODE (next) == JUMP_INSN
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
{
rtx pat = PATTERN (next);
int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
int i;
for (i = 0; i < len; i++)
LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
delete_insn_and_edges (next);
ndead++;
}
}
delete_insn_and_edges (insn);
ndead++;
}
/* Delete dead libcalls for propagate_block. Return the insn
before the libcall. */
static rtx
propagate_block_delete_libcall ( insn, note)
rtx insn, note;
{
rtx first = XEXP (note, 0);
rtx before = PREV_INSN (first);
delete_insn_chain_and_edges (first, insn);
ndead++;
return before;
}
/* Update the life-status of regs for one insn. Return the previous insn. */
rtx
propagate_one_insn (pbi, insn)
struct propagate_block_info *pbi;
rtx insn;
{
rtx prev = PREV_INSN (insn);
int flags = pbi->flags;
int insn_is_dead = 0;
int libcall_is_dead = 0;
rtx note;
int i;
if (! INSN_P (insn))
return prev;
note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
if (flags & PROP_SCAN_DEAD_CODE)
{
insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
libcall_is_dead = (insn_is_dead && note != 0
&& libcall_dead_p (pbi, note, insn));
}
/* If an instruction consists of just dead store(s) on final pass,
delete it. */
if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
{
/* If we're trying to delete a prologue or epilogue instruction
that isn't flagged as possibly being dead, something is wrong.
But if we are keeping the stack pointer depressed, we might well
be deleting insns that are used to compute the amount to update
it by, so they are fine. */
if (reload_completed
&& !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
&& (TYPE_RETURNS_STACK_DEPRESSED
(TREE_TYPE (current_function_decl))))
&& (((HAVE_epilogue || HAVE_prologue)
&& prologue_epilogue_contains (insn))
|| (HAVE_sibcall_epilogue
&& sibcall_epilogue_contains (insn)))
&& find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
/* Record sets. Do this even for dead instructions, since they
would have killed the values if they hadn't been deleted. */
mark_set_regs (pbi, PATTERN (insn), insn);
/* CC0 is now known to be dead. Either this insn used it,
in which case it doesn't anymore, or clobbered it,
so the next insn can't use it. */
pbi->cc0_live = 0;
if (libcall_is_dead)
prev = propagate_block_delete_libcall ( insn, note);
else
{
/* If INSN contains a RETVAL note and is dead, but the libcall
as a whole is not dead, then we want to remove INSN, but
not the whole libcall sequence.
However, we need to also remove the dangling REG_LIBCALL
note so that we do not have mis-matched LIBCALL/RETVAL
notes. In theory we could find a new location for the
REG_RETVAL note, but it hardly seems worth the effort.
NOTE at this point will be the RETVAL note if it exists. */
if (note)
{
rtx libcall_note;
libcall_note
= find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
remove_note (XEXP (note, 0), libcall_note);
}
/* Similarly if INSN contains a LIBCALL note, remove the
dnagling REG_RETVAL note. */
note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
if (note)
{
rtx retval_note;
retval_note
= find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
remove_note (XEXP (note, 0), retval_note);
}
/* Now delete INSN. */
propagate_block_delete_insn (insn);
}
return prev;
}
/* See if this is an increment or decrement that can be merged into
a following memory address. */
#ifdef AUTO_INC_DEC
{
rtx x = single_set (insn);
/* Does this instruction increment or decrement a register? */
if ((flags & PROP_AUTOINC)
&& x != 0
&& GET_CODE (SET_DEST (x)) == REG
&& (GET_CODE (SET_SRC (x)) == PLUS
|| GET_CODE (SET_SRC (x)) == MINUS)
&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
/* Ok, look for a following memory ref we can combine with.
If one is found, change the memory ref to a PRE_INC
or PRE_DEC, cancel this insn, and return 1.
Return 0 if nothing has been done. */
&& try_pre_increment_1 (pbi, insn))
return prev;
}
#endif /* AUTO_INC_DEC */
CLEAR_REG_SET (pbi->new_set);
/* If this is not the final pass, and this insn is copying the value of
a library call and it's dead, don't scan the insns that perform the
library call, so that the call's arguments are not marked live. */
if (libcall_is_dead)
{
/* Record the death of the dest reg. */
mark_set_regs (pbi, PATTERN (insn), insn);
insn = XEXP (note, 0);
return PREV_INSN (insn);
}
else if (GET_CODE (PATTERN (insn)) == SET
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx
&& GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
&& XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
&& GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
/* We have an insn to pop a constant amount off the stack.
(Such insns use PLUS regardless of the direction of the stack,
and any insn to adjust the stack by a constant is always a pop.)
These insns, if not dead stores, have no effect on life, though
they do have an effect on the memory stores we are tracking. */
invalidate_mems_from_set (pbi, stack_pointer_rtx);
else
{
rtx note;
/* Any regs live at the time of a call instruction must not go
in a register clobbered by calls. Find all regs now live and
record this for them. */
if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
{ REG_N_CALLS_CROSSED (i)++; });
/* Record sets. Do this even for dead instructions, since they
would have killed the values if they hadn't been deleted. */
mark_set_regs (pbi, PATTERN (insn), insn);
if (GET_CODE (insn) == CALL_INSN)
{
int i;
rtx note, cond;
cond = NULL_RTX;
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
cond = COND_EXEC_TEST (PATTERN (insn));
/* Non-constant calls clobber memory, constant calls do not
clobber memory, though they may clobber outgoing arguments
on the stack. */
if (! CONST_OR_PURE_CALL_P (insn))
{
free_EXPR_LIST_list (&pbi->mem_set_list);
pbi->mem_set_list_len = 0;
}
else
invalidate_mems_from_set (pbi, stack_pointer_rtx);
/* There may be extra registers to be clobbered. */
for (note = CALL_INSN_FUNCTION_USAGE (insn);
note;
note = XEXP (note, 1))
if (GET_CODE (XEXP (note, 0)) == CLOBBER)
mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
cond, insn, pbi->flags);
/* Calls change all call-used and global registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
{
/* We do not want REG_UNUSED notes for these registers. */
mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
}
}
/* If an insn doesn't use CC0, it becomes dead since we assume
that every insn clobbers it. So show it dead here;
mark_used_regs will set it live if it is referenced. */
pbi->cc0_live = 0;
/* Record uses. */
if (! insn_is_dead)
mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
if ((flags & PROP_EQUAL_NOTES)
&& ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
|| (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
/* Sometimes we may have inserted something before INSN (such as a move)
when we make an auto-inc. So ensure we will scan those insns. */
#ifdef AUTO_INC_DEC
prev = PREV_INSN (insn);
#endif
if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
{
int i;
rtx note, cond;
cond = NULL_RTX;
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
cond = COND_EXEC_TEST (PATTERN (insn));
/* Calls use their arguments. */
for (note = CALL_INSN_FUNCTION_USAGE (insn);
note;
note = XEXP (note, 1))
if (GET_CODE (XEXP (note, 0)) == USE)
mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
cond, insn);
/* The stack ptr is used (honorarily) by a CALL insn. */
SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
/* Calls may also reference any of the global registers,
so they are made live. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i])
mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
}
}
/* On final pass, update counts of how many insns in which each reg
is live. */
if (flags & PROP_REG_INFO)
EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
{ REG_LIVE_LENGTH (i)++; });
return prev;
}
/* Initialize a propagate_block_info struct for public consumption.
Note that the structure itself is opaque to this file, but that
the user can use the regsets provided here. */
struct propagate_block_info *
init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
basic_block bb;
regset live, local_set, cond_local_set;
int flags;
{
struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
pbi->bb = bb;
pbi->reg_live = live;
pbi->mem_set_list = NULL_RTX;
pbi->mem_set_list_len = 0;
pbi->local_set = local_set;
pbi->cond_local_set = cond_local_set;
pbi->cc0_live = 0;
pbi->flags = flags;
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
else
pbi->reg_next_use = NULL;
pbi->new_set = BITMAP_XMALLOC ();
#ifdef HAVE_conditional_execution
pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
free_reg_cond_life_info);
pbi->reg_cond_reg = BITMAP_XMALLOC ();
/* If this block ends in a conditional branch, for each register live
from one side of the branch and not the other, record the register
as conditionally dead. */
if (GET_CODE (bb->end) == JUMP_INSN
&& any_condjump_p (bb->end))
{
regset_head diff_head;
regset diff = INITIALIZE_REG_SET (diff_head);
basic_block bb_true, bb_false;
rtx cond_true, cond_false, set_src;
int i;
/* Identify the successor blocks. */
bb_true = bb->succ->dest;
if (bb->succ->succ_next != NULL)
{
bb_false = bb->succ->succ_next->dest;
if (bb->succ->flags & EDGE_FALLTHRU)
{
basic_block t = bb_false;
bb_false = bb_true;
bb_true = t;
}
else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
abort ();
}
else
{
/* This can happen with a conditional jump to the next insn. */
if (JUMP_LABEL (bb->end) != bb_true->head)
abort ();
/* Simplest way to do nothing. */
bb_false = bb_true;
}
/* Extract the condition from the branch. */
set_src = SET_SRC (pc_set (bb->end));
cond_true = XEXP (set_src, 0);
cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
GET_MODE (cond_true), XEXP (cond_true, 0),
XEXP (cond_true, 1));
if (GET_CODE (XEXP (set_src, 1)) == PC)
{
rtx t = cond_false;
cond_false = cond_true;
cond_true = t;
}
/* Compute which register lead different lives in the successors. */
if (bitmap_operation (diff, bb_true->global_live_at_start,
bb_false->global_live_at_start, BITMAP_XOR))
{
rtx reg = XEXP (cond_true, 0);
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (GET_CODE (reg) != REG)
abort ();
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
/* For each such register, mark it conditionally dead. */
EXECUTE_IF_SET_IN_REG_SET
(diff, 0, i,
{
struct reg_cond_life_info *rcli;
rtx cond;
rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
cond = cond_false;
else
cond = cond_true;
rcli->condition = cond;
rcli->stores = const0_rtx;
rcli->orig_condition = cond;
splay_tree_insert (pbi->reg_cond_dead, i,
(splay_tree_value) rcli);
});
}
FREE_REG_SET (diff);
}
#endif
/* If this block has no successors, any stores to the frame that aren't
used later in the block are dead. So make a pass over the block
recording any such that are made and show them dead at the end. We do
a very conservative and simple job here. */
if (optimize
&& ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
&& (TYPE_RETURNS_STACK_DEPRESSED
(TREE_TYPE (current_function_decl))))
&& (flags & PROP_SCAN_DEAD_STORES)
&& (bb->succ == NULL
|| (bb->succ->succ_next == NULL
&& bb->succ->dest == EXIT_BLOCK_PTR
&& ! current_function_calls_eh_return)))
{
rtx insn, set;
for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
if (GET_CODE (insn) == INSN
&& (set = single_set (insn))
&& GET_CODE (SET_DEST (set)) == MEM)
{
rtx mem = SET_DEST (set);
rtx canon_mem = canon_rtx (mem);
/* This optimization is performed by faking a store to the
memory at the end of the block. This doesn't work for
unchanging memories because multiple stores to unchanging
memory is illegal and alias analysis doesn't consider it. */
if (RTX_UNCHANGING_P (canon_mem))
continue;
if (XEXP (canon_mem, 0) == frame_pointer_rtx
|| (GET_CODE (XEXP (canon_mem, 0)) == PLUS
&& XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
&& GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
add_to_mem_set_list (pbi, canon_mem);
}
}
return pbi;
}
/* Release a propagate_block_info struct. */
void
free_propagate_block_info (pbi)
struct propagate_block_info *pbi;
{
free_EXPR_LIST_list (&pbi->mem_set_list);
BITMAP_XFREE (pbi->new_set);
#ifdef HAVE_conditional_execution
splay_tree_delete (pbi->reg_cond_dead);
BITMAP_XFREE (pbi->reg_cond_reg);
#endif
if (pbi->reg_next_use)
free (pbi->reg_next_use);
free (pbi);
}
/* Compute the registers live at the beginning of a basic block BB from
those live at the end.
When called, REG_LIVE contains those live at the end. On return, it
contains those live at the beginning.
LOCAL_SET, if non-null, will be set with all registers killed
unconditionally by this basic block.
Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
killed conditionally by this basic block. If there is any unconditional
set of a register, then the corresponding bit will be set in LOCAL_SET
and cleared in COND_LOCAL_SET.
It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
case, the resulting set will be equal to the union of the two sets that
would otherwise be computed.
Return nonzero if an INSN is deleted (i.e. by dead code removal). */
int
propagate_block (bb, live, local_set, cond_local_set, flags)
basic_block bb;
regset live;
regset local_set;
regset cond_local_set;
int flags;
{
struct propagate_block_info *pbi;
rtx insn, prev;
int changed;
pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
if (flags & PROP_REG_INFO)
{
int i;
/* Process the regs live at the end of the block.
Mark them as not local to any one basic block. */
EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
{ REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
}
/* Scan the block an insn at a time from end to beginning. */
changed = 0;
for (insn = bb->end;; insn = prev)
{
/* If this is a call to `setjmp' et al, warn if any
non-volatile datum is live. */
if ((flags & PROP_REG_INFO)
&& GET_CODE (insn) == CALL_INSN
&& find_reg_note (insn, REG_SETJMP, NULL))
IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
prev = propagate_one_insn (pbi, insn);
changed |= NEXT_INSN (prev) != insn;
if (insn == bb->head)
break;
}
free_propagate_block_info (pbi);
return changed;
}
/* Return 1 if X (the body of an insn, or part of it) is just dead stores
(SET expressions whose destinations are registers dead after the insn).
NEEDED is the regset that says which regs are alive after the insn.
Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
If X is the entire body of an insn, NOTES contains the reg notes
pertaining to the insn. */
static int
insn_dead_p (pbi, x, call_ok, notes)
struct propagate_block_info *pbi;
rtx x;
int call_ok;
rtx notes ATTRIBUTE_UNUSED;
{
enum rtx_code code = GET_CODE (x);
/* Don't eliminate insns that may trap. */
if (flag_non_call_exceptions && may_trap_p (x))
return 0;
#ifdef AUTO_INC_DEC
/* As flow is invoked after combine, we must take existing AUTO_INC
expressions into account. */
for (; notes; notes = XEXP (notes, 1))
{
if (REG_NOTE_KIND (notes) == REG_INC)
{
int regno = REGNO (XEXP (notes, 0));
/* Don't delete insns to set global regs. */
if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|| REGNO_REG_SET_P (pbi->reg_live, regno))
return 0;
}
}
#endif
/* If setting something that's a reg or part of one,
see if that register's altered value will be live. */
if (code == SET)
{
rtx r = SET_DEST (x);
#ifdef HAVE_cc0
if (GET_CODE (r) == CC0)
return ! pbi->cc0_live;
#endif
/* A SET that is a subroutine call cannot be dead. */
if (GET_CODE (SET_SRC (x)) == CALL)
{
if (! call_ok)
return 0;
}
/* Don't eliminate loads from volatile memory or volatile asms. */
else if (volatile_refs_p (SET_SRC (x)))
return 0;
if (GET_CODE (r) == MEM)
{
rtx temp, canon_r;
if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
return 0;
canon_r = canon_rtx (r);
/* Walk the set of memory locations we are currently tracking
and see if one is an identical match to this memory location.
If so, this memory write is dead (remember, we're walking
backwards from the end of the block to the start). Since
rtx_equal_p does not check the alias set or flags, we also
must have the potential for them to conflict (anti_dependence). */
for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
if (anti_dependence (r, XEXP (temp, 0)))
{
rtx mem = XEXP (temp, 0);
if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
&& (GET_MODE_SIZE (GET_MODE (canon_r))
<= GET_MODE_SIZE (GET_MODE (mem))))
return 1;
#ifdef AUTO_INC_DEC
/* Check if memory reference matches an auto increment. Only
post increment/decrement or modify are valid. */
if (GET_MODE (mem) == GET_MODE (r)
&& (GET_CODE (XEXP (mem, 0)) == POST_DEC
|| GET_CODE (XEXP (mem, 0)) == POST_INC
|| GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
&& GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
&& rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
return 1;
#endif
}
}
else
{
while (GET_CODE (r) == SUBREG
|| GET_CODE (r) == STRICT_LOW_PART
|| GET_CODE (r) == ZERO_EXTRACT)
r = XEXP (r, 0);
if (GET_CODE (r) == REG)
{
int regno = REGNO (r);
/* Obvious. */
if (REGNO_REG_SET_P (pbi->reg_live, regno))
return 0;
/* If this is a hard register, verify that subsequent
words are not needed. */
if (regno < FIRST_PSEUDO_REGISTER)
{
int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
while (--n > 0)
if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
return 0;
}
/* Don't delete insns to set global regs. */
if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
return 0;
/* Make sure insns to set the stack pointer aren't deleted. */
if (regno == STACK_POINTER_REGNUM)
return 0;
/* ??? These bits might be redundant with the force live bits
in calculate_global_regs_live. We would delete from
sequential sets; whether this actually affects real code
for anything but the stack pointer I don't know. */
/* Make sure insns to set the frame pointer aren't deleted. */
if (regno == FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
return 0;
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
if (regno == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
return 0;
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
/* Make sure insns to set arg pointer are never deleted
(if the arg pointer isn't fixed, there will be a USE
for it, so we can treat it normally). */
if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
return 0;
#endif
/* Otherwise, the set is dead. */
return 1;
}
}
}
/* If performing several activities, insn is dead if each activity
is individually dead. Also, CLOBBERs and USEs can be ignored; a
CLOBBER or USE that's inside a PARALLEL doesn't make the insn
worth keeping. */
else if (code == PARALLEL)
{
int i = XVECLEN (x, 0);
for (i--; i >= 0; i--)
if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
&& GET_CODE (XVECEXP (x, 0, i)) != USE
&& ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
return 0;
return 1;
}
/* A CLOBBER of a pseudo-register that is dead serves no purpose. That
is not necessarily true for hard registers. */
else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
&& ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
return 1;
/* We do not check other CLOBBER or USE here. An insn consisting of just
a CLOBBER or just a USE should not be deleted. */
return 0;
}
/* If INSN is the last insn in a libcall, and assuming INSN is dead,
return 1 if the entire library call is dead.
This is true if INSN copies a register (hard or pseudo)
and if the hard return reg of the call insn is dead.
(The caller should have tested the destination of the SET inside
INSN already for death.)
If this insn doesn't just copy a register, then we don't
have an ordinary libcall. In that case, cse could not have
managed to substitute the source for the dest later on,
so we can assume the libcall is dead.
PBI is the block info giving pseudoregs live before this insn.
NOTE is the REG_RETVAL note of the insn. */
static int
libcall_dead_p (pbi, note, insn)
struct propagate_block_info *pbi;
rtx note;
rtx insn;
{
rtx x = single_set (insn);
if (x)
{
rtx r = SET_SRC (x);
if (GET_CODE (r) == REG)
{
rtx call = XEXP (note, 0);
rtx call_pat;
int i;
/* Find the call insn. */
while (call != insn && GET_CODE (call) != CALL_INSN)
call = NEXT_INSN (call);
/* If there is none, do nothing special,
since ordinary death handling can understand these insns. */
if (call == insn)
return 0;
/* See if the hard reg holding the value is dead.
If this is a PARALLEL, find the call within it. */
call_pat = PATTERN (call);
if (GET_CODE (call_pat) == PARALLEL)
{
for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
&& GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
break;
/* This may be a library call that is returning a value
via invisible pointer. Do nothing special, since
ordinary death handling can understand these insns. */
if (i < 0)
return 0;
call_pat = XVECEXP (call_pat, 0, i);
}
return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
}
}
return 1;
}
/* Return 1 if register REGNO was used before it was set, i.e. if it is
live at function entry. Don't count global register variables, variables
in registers that can be used for function arg passing, or variables in
fixed hard registers. */
int
regno_uninitialized (regno)
unsigned int regno;
{
if (n_basic_blocks == 0
|| (regno < FIRST_PSEUDO_REGISTER
&& (global_regs[regno]
|| fixed_regs[regno]
|| FUNCTION_ARG_REGNO_P (regno))))
return 0;
return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
}
/* 1 if register REGNO was alive at a place where `setjmp' was called
and was set more than once or is an argument.
Such regs may be clobbered by `longjmp'. */
int
regno_clobbered_at_setjmp (regno)
int regno;
{
if (n_basic_blocks == 0)
return 0;
return ((REG_N_SETS (regno) > 1
|| REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
&& REGNO_REG_SET_P (regs_live_at_setjmp, regno));
}
/* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
maximal list size; look for overlaps in mode and select the largest. */
static void
add_to_mem_set_list (pbi, mem)
struct propagate_block_info *pbi;
rtx mem;
{
rtx i;
/* We don't know how large a BLKmode store is, so we must not
take them into consideration. */
if (GET_MODE (mem) == BLKmode)
return;
for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
{
rtx e = XEXP (i, 0);
if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
{
if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
{
#ifdef AUTO_INC_DEC
/* If we must store a copy of the mem, we can just modify
the mode of the stored copy. */
if (pbi->flags & PROP_AUTOINC)
PUT_MODE (e, GET_MODE (mem));
else
#endif
XEXP (i, 0) = mem;
}
return;
}
}
if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
{
#ifdef AUTO_INC_DEC
/* Store a copy of mem, otherwise the address may be
scrogged by find_auto_inc. */
if (pbi->flags & PROP_AUTOINC)
mem = shallow_copy_rtx (mem);
#endif
pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
pbi->mem_set_list_len++;
}
}
/* INSN references memory, possibly using autoincrement addressing modes.
Find any entries on the mem_set_list that need to be invalidated due
to an address change. */
static int
invalidate_mems_from_autoinc (px, data)
rtx *px;
void *data;
{
rtx x = *px;
struct propagate_block_info *pbi = data;
if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
{
invalidate_mems_from_set (pbi, XEXP (x, 0));
return -1;
}
return 0;
}
/* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
static void
invalidate_mems_from_set (pbi, exp)
struct propagate_block_info *pbi;
rtx exp;
{
rtx temp = pbi->mem_set_list;
rtx prev = NULL_RTX;
rtx next;
while (temp)
{
next = XEXP (temp, 1);
if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
{
/* Splice this entry out of the list. */
if (prev)
XEXP (prev, 1) = next;
else
pbi->mem_set_list = next;
free_EXPR_LIST_node (temp);
pbi->mem_set_list_len--;
}
else
prev = temp;
temp = next;
}
}
/* Process the registers that are set within X. Their bits are set to
1 in the regset DEAD, because they are dead prior to this insn.
If INSN is nonzero, it is the insn being processed.
FLAGS is the set of operations to perform. */
static void
mark_set_regs (pbi, x, insn)
struct propagate_block_info *pbi;
rtx x, insn;
{
rtx cond = NULL_RTX;
rtx link;
enum rtx_code code;
if (insn)
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
{
if (REG_NOTE_KIND (link) == REG_INC)
mark_set_1 (pbi, SET, XEXP (link, 0),
(GET_CODE (x) == COND_EXEC
? COND_EXEC_TEST (x) : NULL_RTX),
insn, pbi->flags);
}
retry:
switch (code = GET_CODE (x))
{
case SET:
case CLOBBER:
mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
return;
case COND_EXEC:
cond = COND_EXEC_TEST (x);
x = COND_EXEC_CODE (x);
goto retry;
case PARALLEL:
{
int i;
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
{
rtx sub = XVECEXP (x, 0, i);
switch (code = GET_CODE (sub))
{
case COND_EXEC:
if (cond != NULL_RTX)
abort ();
cond = COND_EXEC_TEST (sub);
sub = COND_EXEC_CODE (sub);
if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
break;
/* Fall through. */
case SET:
case CLOBBER:
mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
break;
default:
break;
}
}
break;
}
default:
break;
}
}
/* Process a single set, which appears in INSN. REG (which may not
actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
If the set is conditional (because it appear in a COND_EXEC), COND
will be the condition. */
static void
mark_set_1 (pbi, code, reg, cond, insn, flags)
struct propagate_block_info *pbi;
enum rtx_code code;
rtx reg, cond, insn;
int flags;
{
int regno_first = -1, regno_last = -1;
unsigned long not_dead = 0;
int i;
/* Modifying just one hardware register of a multi-reg value or just a
byte field of a register does not mean the value from before this insn
is now dead. Of course, if it was dead after it's unused now. */
switch (GET_CODE (reg))
{
case PARALLEL:
/* Some targets place small structures in registers for return values of
functions. We have to detect this case specially here to get correct
flow information. */
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
flags);
return;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case STRICT_LOW_PART:
/* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
do
reg = XEXP (reg, 0);
while (GET_CODE (reg) == SUBREG
|| GET_CODE (reg) == ZERO_EXTRACT
|| GET_CODE (reg) == SIGN_EXTRACT
|| GET_CODE (reg) == STRICT_LOW_PART);
if (GET_CODE (reg) == MEM)
break;
not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
/* Fall through. */
case REG:
regno_last = regno_first = REGNO (reg);
if (regno_first < FIRST_PSEUDO_REGISTER)
regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
break;
case SUBREG:
if (GET_CODE (SUBREG_REG (reg)) == REG)
{
enum machine_mode outer_mode = GET_MODE (reg);
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
/* Identify the range of registers affected. This is moderately
tricky for hard registers. See alter_subreg. */
regno_last = regno_first = REGNO (SUBREG_REG (reg));
if (regno_first < FIRST_PSEUDO_REGISTER)
{
regno_first += subreg_regno_offset (regno_first, inner_mode,
SUBREG_BYTE (reg),
outer_mode);
regno_last = (regno_first
+ HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
/* Since we've just adjusted the register number ranges, make
sure REG matches. Otherwise some_was_live will be clear
when it shouldn't have been, and we'll create incorrect
REG_UNUSED notes. */
reg = gen_rtx_REG (outer_mode, regno_first);
}
else
{
/* If the number of words in the subreg is less than the number
of words in the full register, we have a well-defined partial
set. Otherwise the high bits are undefined.
This is only really applicable to pseudos, since we just took
care of multi-word hard registers. */
if (((GET_MODE_SIZE (outer_mode)
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
< ((GET_MODE_SIZE (inner_mode)
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
regno_first);
reg = SUBREG_REG (reg);
}
}
else
reg = SUBREG_REG (reg);
break;
default:
break;
}
/* If this set is a MEM, then it kills any aliased writes.
If this set is a REG, then it kills any MEMs which use the reg. */
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
{
if (GET_CODE (reg) == REG)
invalidate_mems_from_set (pbi, reg);
/* If the memory reference had embedded side effects (autoincrement
address modes. Then we may need to kill some entries on the
memory set list. */
if (insn && GET_CODE (reg) == MEM)
for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
/* ??? With more effort we could track conditional memory life. */
&& ! cond)
add_to_mem_set_list (pbi, canon_rtx (reg));
}
if (GET_CODE (reg) == REG
&& ! (regno_first == FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
&& ! (regno_first == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
#endif
)
{
int some_was_live = 0, some_was_dead = 0;
for (i = regno_first; i <= regno_last; ++i)
{
int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
if (pbi->local_set)
{
/* Order of the set operation matters here since both
sets may be the same. */
CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
if (cond != NULL_RTX
&& ! REGNO_REG_SET_P (pbi->local_set, i))
SET_REGNO_REG_SET (pbi->cond_local_set, i);
else
SET_REGNO_REG_SET (pbi->local_set, i);
}
if (code != CLOBBER)
SET_REGNO_REG_SET (pbi->new_set, i);
some_was_live |= needed_regno;
some_was_dead |= ! needed_regno;
}
#ifdef HAVE_conditional_execution
/* Consider conditional death in deciding that the register needs
a death note. */
if (some_was_live && ! not_dead
/* The stack pointer is never dead. Well, not strictly true,
but it's very difficult to tell from here. Hopefully
combine_stack_adjustments will fix up the most egregious
errors. */
&& regno_first != STACK_POINTER_REGNUM)
{
for (i = regno_first; i <= regno_last; ++i)
if (! mark_regno_cond_dead (pbi, i, cond))
not_dead |= ((unsigned long) 1) << (i - regno_first);
}
#endif
/* Additional data to record if this is the final pass. */
if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
| PROP_DEATH_NOTES | PROP_AUTOINC))
{
rtx y;
int blocknum = pbi->bb->index;
y = NULL_RTX;
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
{
y = pbi->reg_next_use[regno_first];
/* The next use is no longer next, since a store intervenes. */
for (i = regno_first; i <= regno_last; ++i)
pbi->reg_next_use[i] = 0;
}
if (flags & PROP_REG_INFO)
{
for (i = regno_first; i <= regno_last; ++i)
{
/* Count (weighted) references, stores, etc. This counts a
register twice if it is modified, but that is correct. */
REG_N_SETS (i) += 1;
REG_N_REFS (i) += 1;
REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
/* The insns where a reg is live are normally counted
elsewhere, but we want the count to include the insn
where the reg is set, and the normal counting mechanism
would not count it. */
REG_LIVE_LENGTH (i) += 1;
}
/* If this is a hard reg, record this function uses the reg. */
if (regno_first < FIRST_PSEUDO_REGISTER)
{
for (i = regno_first; i <= regno_last; i++)
regs_ever_live[i] = 1;
}
else
{
/* Keep track of which basic blocks each reg appears in. */
if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
REG_BASIC_BLOCK (regno_first) = blocknum;
else if (REG_BASIC_BLOCK (regno_first) != blocknum)
REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
}
}
if (! some_was_dead)
{
if (flags & PROP_LOG_LINKS)
{
/* Make a logical link from the next following insn
that uses this register, back to this insn.
The following insns have already been processed.
We don't build a LOG_LINK for hard registers containing
in ASM_OPERANDs. If these registers get replaced,
we might wind up changing the semantics of the insn,
even if reload can make what appear to be valid
assignments later. */
if (y && (BLOCK_NUM (y) == blocknum)
&& (regno_first >= FIRST_PSEUDO_REGISTER
|| asm_noperands (PATTERN (y)) < 0))
LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
}
}
else if (not_dead)
;
else if (! some_was_live)
{
if (flags & PROP_REG_INFO)
REG_N_DEATHS (regno_first) += 1;
if (flags & PROP_DEATH_NOTES)
{
/* Note that dead stores have already been deleted
when possible. If we get here, we have found a
dead store that cannot be eliminated (because the
same insn does something useful). Indicate this
by marking the reg being set as dying here. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
}
}
else
{
if (flags & PROP_DEATH_NOTES)
{
/* This is a case where we have a multi-word hard register
and some, but not all, of the words of the register are
needed in subsequent insns. Write REG_UNUSED notes
for those parts that were not needed. This case should
be rare. */
for (i = regno_first; i <= regno_last; ++i)
if (! REGNO_REG_SET_P (pbi->reg_live, i))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_UNUSED,
regno_reg_rtx[i],
REG_NOTES (insn));
}
}
}
/* Mark the register as being dead. */
if (some_was_live
/* The stack pointer is never dead. Well, not strictly true,
but it's very difficult to tell from here. Hopefully
combine_stack_adjustments will fix up the most egregious
errors. */
&& regno_first != STACK_POINTER_REGNUM)
{
for (i = regno_first; i <= regno_last; ++i)
if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
CLEAR_REGNO_REG_SET (pbi->reg_live, i);
}
}
else if (GET_CODE (reg) == REG)
{
if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
pbi->reg_next_use[regno_first] = 0;
}
/* If this is the last pass and this is a SCRATCH, show it will be dying
here and count it. */
else if (GET_CODE (reg) == SCRATCH)
{
if (flags & PROP_DEATH_NOTES)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
}
}
#ifdef HAVE_conditional_execution
/* Mark REGNO conditionally dead.
Return true if the register is now unconditionally dead. */
static int
mark_regno_cond_dead (pbi, regno, cond)
struct propagate_block_info *pbi;
int regno;
rtx cond;
{
/* If this is a store to a predicate register, the value of the
predicate is changing, we don't know that the predicate as seen
before is the same as that seen after. Flush all dependent
conditions from reg_cond_dead. This will make all such
conditionally live registers unconditionally live. */
if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
flush_reg_cond_reg (pbi, regno);
/* If this is an unconditional store, remove any conditional
life that may have existed. */
if (cond == NULL_RTX)
splay_tree_remove (pbi->reg_cond_dead, regno);
else
{
splay_tree_node node;
struct reg_cond_life_info *rcli;
rtx ncond;
/* Otherwise this is a conditional set. Record that fact.
It may have been conditionally used, or there may be a
subsequent set with a complimentary condition. */
node = splay_tree_lookup (pbi->reg_cond_dead, regno);
if (node == NULL)
{
/* The register was unconditionally live previously.
Record the current condition as the condition under
which it is dead. */
rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
rcli->condition = cond;
rcli->stores = cond;
rcli->orig_condition = const0_rtx;
splay_tree_insert (pbi->reg_cond_dead, regno,
(splay_tree_value) rcli);
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
/* Not unconditionally dead. */
return 0;
}
else
{
/* The register was conditionally live previously.
Add the new condition to the old. */
rcli = (struct reg_cond_life_info *) node->value;
ncond = rcli->condition;
ncond = ior_reg_cond (ncond, cond, 1);
if (rcli->stores == const0_rtx)
rcli->stores = cond;
else if (rcli->stores != const1_rtx)
rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
/* If the register is now unconditionally dead, remove the entry
in the splay_tree. A register is unconditionally dead if the
dead condition ncond is true. A register is also unconditionally
dead if the sum of all conditional stores is an unconditional
store (stores is true), and the dead condition is identically the
same as the original dead condition initialized at the end of
the block. This is a pointer compare, not an rtx_equal_p
compare. */
if (ncond == const1_rtx
|| (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
splay_tree_remove (pbi->reg_cond_dead, regno);
else
{
rcli->condition = ncond;
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
/* Not unconditionally dead. */
return 0;
}
}
}
return 1;
}
/* Called from splay_tree_delete for pbi->reg_cond_life. */
static void
free_reg_cond_life_info (value)
splay_tree_value value;
{
struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
free (rcli);
}
/* Helper function for flush_reg_cond_reg. */
static int
flush_reg_cond_reg_1 (node, data)
splay_tree_node node;
void *data;
{
struct reg_cond_life_info *rcli;
int *xdata = (int *) data;
unsigned int regno = xdata[0];
/* Don't need to search if last flushed value was farther on in
the in-order traversal. */
if (xdata[1] >= (int) node->key)
return 0;
/* Splice out portions of the expression that refer to regno. */
rcli = (struct reg_cond_life_info *) node->value;
rcli->condition = elim_reg_cond (rcli->condition, regno);
if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
rcli->stores = elim_reg_cond (rcli->stores, regno);
/* If the entire condition is now false, signal the node to be removed. */
if (rcli->condition == const0_rtx)
{
xdata[1] = node->key;
return -1;
}
else if (rcli->condition == const1_rtx)
abort ();
return 0;
}
/* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
static void
flush_reg_cond_reg (pbi, regno)
struct propagate_block_info *pbi;
int regno;
{
int pair[2];
pair[0] = regno;
pair[1] = -1;
while (splay_tree_foreach (pbi->reg_cond_dead,
flush_reg_cond_reg_1, pair) == -1)
splay_tree_remove (pbi->reg_cond_dead, pair[1]);
CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
}
/* Logical arithmetic on predicate conditions. IOR, NOT and AND.
For ior/and, the ADD flag determines whether we want to add the new
condition X to the old one unconditionally. If it is zero, we will
only return a new expression if X allows us to simplify part of
OLD, otherwise we return NULL to the caller.
If ADD is nonzero, we will return a new condition in all cases. The
toplevel caller of one of these functions should always pass 1 for
ADD. */
static rtx
ior_reg_cond (old, x, add)
rtx old, x;
int add;
{
rtx op0, op1;
if (GET_RTX_CLASS (GET_CODE (old)) == '<')
{
if (GET_RTX_CLASS (GET_CODE (x)) == '<'
&& REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return const1_rtx;
if (GET_CODE (x) == GET_CODE (old)
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return old;
if (! add)
return NULL;
return gen_rtx_IOR (0, old, x);
}
switch (GET_CODE (old))
{
case IOR:
op0 = ior_reg_cond (XEXP (old, 0), x, 0);
op1 = ior_reg_cond (XEXP (old, 1), x, 0);
if (op0 != NULL || op1 != NULL)
{
if (op0 == const0_rtx)
return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
if (op1 == const0_rtx)
return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
if (op0 == const1_rtx || op1 == const1_rtx)
return const1_rtx;
if (op0 == NULL)
op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
else if (rtx_equal_p (x, op0))
/* (x | A) | x ~ (x | A). */
return old;
if (op1 == NULL)
op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
else if (rtx_equal_p (x, op1))
/* (A | x) | x ~ (A | x). */
return old;
return gen_rtx_IOR (0, op0, op1);
}
if (! add)
return NULL;
return gen_rtx_IOR (0, old, x);
case AND:
op0 = ior_reg_cond (XEXP (old, 0), x, 0);
op1 = ior_reg_cond (XEXP (old, 1), x, 0);
if (op0 != NULL || op1 != NULL)
{
if (op0 == const1_rtx)
return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
if (op1 == const1_rtx)
return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
if (op0 == const0_rtx || op1 == const0_rtx)
return const0_rtx;
if (op0 == NULL)
op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
else if (rtx_equal_p (x, op0))
/* (x & A) | x ~ x. */
return op0;
if (op1 == NULL)
op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
else if (rtx_equal_p (x, op1))
/* (A & x) | x ~ x. */
return op1;
return gen_rtx_AND (0, op0, op1);
}
if (! add)
return NULL;
return gen_rtx_IOR (0, old, x);
case NOT:
op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
if (op0 != NULL)
return not_reg_cond (op0);
if (! add)
return NULL;
return gen_rtx_IOR (0, old, x);
default:
abort ();
}
}
static rtx
not_reg_cond (x)
rtx x;
{
enum rtx_code x_code;
if (x == const0_rtx)
return const1_rtx;
else if (x == const1_rtx)
return const0_rtx;
x_code = GET_CODE (x);
if (x_code == NOT)
return XEXP (x, 0);
if (GET_RTX_CLASS (x_code) == '<'
&& GET_CODE (XEXP (x, 0)) == REG)
{
if (XEXP (x, 1) != const0_rtx)
abort ();
return gen_rtx_fmt_ee (reverse_condition (x_code),
VOIDmode, XEXP (x, 0), const0_rtx);
}
return gen_rtx_NOT (0, x);
}
static rtx
and_reg_cond (old, x, add)
rtx old, x;
int add;
{
rtx op0, op1;
if (GET_RTX_CLASS (GET_CODE (old)) == '<')
{
if (GET_RTX_CLASS (GET_CODE (x)) == '<'
&& GET_CODE (x) == reverse_condition (GET_CODE (old))
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return const0_rtx;
if (GET_CODE (x) == GET_CODE (old)
&& REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
return old;
if (! add)
return NULL;
return gen_rtx_AND (0, old, x);
}
switch (GET_CODE (old))
{
case IOR:
op0 = and_reg_cond (XEXP (old, 0), x, 0);
op1 = and_reg_cond (XEXP (old, 1), x, 0);
if (op0 != NULL || op1 != NULL)
{
if (op0 == const0_rtx)
return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
if (op1 == const0_rtx)
return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
if (op0 == const1_rtx || op1 == const1_rtx)
return const1_rtx;
if (op0 == NULL)
op0 = gen_rtx_AND (0, XEXP (old, 0), x);
else if (rtx_equal_p (x, op0))
/* (x | A) & x ~ x. */
return op0;
if (op1 == NULL)
op1 = gen_rtx_AND (0, XEXP (old, 1), x);
else if (rtx_equal_p (x, op1))
/* (A | x) & x ~ x. */
return op1;
return gen_rtx_IOR (0, op0, op1);
}
if (! add)
return NULL;
return gen_rtx_AND (0, old, x);
case AND:
op0 = and_reg_cond (XEXP (old, 0), x, 0);
op1 = and_reg_cond (XEXP (old, 1), x, 0);
if (op0 != NULL || op1 != NULL)
{
if (op0 == const1_rtx)
return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
if (op1 == const1_rtx)
return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
if (op0 == const0_rtx || op1 == const0_rtx)
return const0_rtx;
if (op0 == NULL)
op0 = gen_rtx_AND (0, XEXP (old, 0), x);
else if (rtx_equal_p (x, op0))
/* (x & A) & x ~ (x & A). */
return old;
if (op1 == NULL)
op1 = gen_rtx_AND (0, XEXP (old, 1), x);
else if (rtx_equal_p (x, op1))
/* (A & x) & x ~ (A & x). */
return old;
return gen_rtx_AND (0, op0, op1);
}
if (! add)
return NULL;
return gen_rtx_AND (0, old, x);
case NOT:
op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
if (op0 != NULL)
return not_reg_cond (op0);
if (! add)
return NULL;
return gen_rtx_AND (0, old, x);
default:
abort ();
}
}
/* Given a condition X, remove references to reg REGNO and return the
new condition. The removal will be done so that all conditions
involving REGNO are considered to evaluate to false. This function
is used when the value of REGNO changes. */
static rtx
elim_reg_cond (x, regno)
rtx x;
unsigned int regno;
{
rtx op0, op1;
if (GET_RTX_CLASS (GET_CODE (x)) == '<')
{
if (REGNO (XEXP (x, 0)) == regno)
return const0_rtx;
return x;
}
switch (GET_CODE (x))
{
case AND:
op0 = elim_reg_cond (XEXP (x, 0), regno);
op1 = elim_reg_cond (XEXP (x, 1), regno);
if (op0 == const0_rtx || op1 == const0_rtx)
return const0_rtx;
if (op0 == const1_rtx)
return op1;
if (op1 == const1_rtx)
return op0;
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return gen_rtx_AND (0, op0, op1);
case IOR:
op0 = elim_reg_cond (XEXP (x, 0), regno);
op1 = elim_reg_cond (XEXP (x, 1), regno);
if (op0 == const1_rtx || op1 == const1_rtx)
return const1_rtx;
if (op0 == const0_rtx)
return op1;
if (op1 == const0_rtx)
return op0;
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return gen_rtx_IOR (0, op0, op1);
case NOT:
op0 = elim_reg_cond (XEXP (x, 0), regno);
if (op0 == const0_rtx)
return const1_rtx;
if (op0 == const1_rtx)
return const0_rtx;
if (op0 != XEXP (x, 0))
return not_reg_cond (op0);
return x;
default:
abort ();
}
}
#endif /* HAVE_conditional_execution */
#ifdef AUTO_INC_DEC
/* Try to substitute the auto-inc expression INC as the address inside
MEM which occurs in INSN. Currently, the address of MEM is an expression
involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
that has a single set whose source is a PLUS of INCR_REG and something
else. */
static void
attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
struct propagate_block_info *pbi;
rtx inc, insn, mem, incr, incr_reg;
{
int regno = REGNO (incr_reg);
rtx set = single_set (incr);
rtx q = SET_DEST (set);
rtx y = SET_SRC (set);
int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
/* Make sure this reg appears only once in this insn. */
if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
return;
if (dead_or_set_p (incr, incr_reg)
/* Mustn't autoinc an eliminable register. */
&& (regno >= FIRST_PSEUDO_REGISTER
|| ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
{
/* This is the simple case. Try to make the auto-inc. If
we can't, we are done. Otherwise, we will do any
needed updates below. */
if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
return;
}
else if (GET_CODE (q) == REG
/* PREV_INSN used here to check the semi-open interval
[insn,incr). */
&& ! reg_used_between_p (q, PREV_INSN (insn), incr)
/* We must also check for sets of q as q may be
a call clobbered hard register and there may
be a call between PREV_INSN (insn) and incr. */
&& ! reg_set_between_p (q, PREV_INSN (insn), incr))
{
/* We have *p followed sometime later by q = p+size.
Both p and q must be live afterward,
and q is not used between INSN and its assignment.
Change it to q = p, ...*q..., q = q+size.
Then fall into the usual case. */
rtx insns, temp;
start_sequence ();
emit_move_insn (q, incr_reg);
insns = get_insns ();
end_sequence ();
/* If we can't make the auto-inc, or can't make the
replacement into Y, exit. There's no point in making
the change below if we can't do the auto-inc and doing
so is not correct in the pre-inc case. */
XEXP (inc, 0) = q;
validate_change (insn, &XEXP (mem, 0), inc, 1);
validate_change (incr, &XEXP (y, opnum), q, 1);
if (! apply_change_group ())
return;
/* We now know we'll be doing this change, so emit the
new insn(s) and do the updates. */
emit_insn_before (insns, insn);
if (pbi->bb->head == insn)
pbi->bb->head = insns;
/* INCR will become a NOTE and INSN won't contain a
use of INCR_REG. If a use of INCR_REG was just placed in
the insn before INSN, make that the next use.
Otherwise, invalidate it. */
if (GET_CODE (PREV_INSN (insn)) == INSN
&& GET_CODE (PATTERN (PREV_INSN (insn))) == SET
&& SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
pbi->reg_next_use[regno] = PREV_INSN (insn);
else
pbi->reg_next_use[regno] = 0;
incr_reg = q;
regno = REGNO (q);
/* REGNO is now used in INCR which is below INSN, but
it previously wasn't live here. If we don't mark
it as live, we'll put a REG_DEAD note for it
on this insn, which is incorrect. */
SET_REGNO_REG_SET (pbi->reg_live, regno);
/* If there are any calls between INSN and INCR, show
that REGNO now crosses them. */
for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
if (GET_CODE (temp) == CALL_INSN)
REG_N_CALLS_CROSSED (regno)++;
/* Invalidate alias info for Q since we just changed its value. */
clear_reg_alias_info (q);
}
else
return;
/* If we haven't returned, it means we were able to make the
auto-inc, so update the status. First, record that this insn
has an implicit side effect. */
REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
/* Modify the old increment-insn to simply copy
the already-incremented value of our register. */
if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
abort ();
/* If that makes it a no-op (copying the register into itself) delete
it so it won't appear to be a "use" and a "set" of this
register. */
if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
{
/* If the original source was dead, it's dead now. */
rtx note;
while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
{
remove_note (incr, note);
if (XEXP (note, 0) != incr_reg)
CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
}
PUT_CODE (incr, NOTE);
NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (incr) = 0;
}
if (regno >= FIRST_PSEUDO_REGISTER)
{
/* Count an extra reference to the reg. When a reg is
incremented, spilling it is worse, so we want to make
that less likely. */
REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
/* Count the increment as a setting of the register,
even though it isn't a SET in rtl. */
REG_N_SETS (regno)++;
}
}
/* X is a MEM found in INSN. See if we can convert it into an auto-increment
reference. */
static void
find_auto_inc (pbi, x, insn)
struct propagate_block_info *pbi;
rtx x;
rtx insn;
{
rtx addr = XEXP (x, 0);
HOST_WIDE_INT offset = 0;
rtx set, y, incr, inc_val;
int regno;
int size = GET_MODE_SIZE (GET_MODE (x));
if (GET_CODE (insn) == JUMP_INSN)
return;
/* Here we detect use of an index register which might be good for
postincrement, postdecrement, preincrement, or predecrement. */
if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
if (GET_CODE (addr) != REG)
return;
regno = REGNO (addr);
/* Is the next use an increment that might make auto-increment? */
incr = pbi->reg_next_use[regno];
if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
return;
set = single_set (incr);
if (set == 0 || GET_CODE (set) != SET)
return;
y = SET_SRC (set);
if (GET_CODE (y) != PLUS)
return;
if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
inc_val = XEXP (y, 1);
else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
inc_val = XEXP (y, 0);
else
return;
if (GET_CODE (inc_val) == CONST_INT)
{
if (HAVE_POST_INCREMENT
&& (INTVAL (inc_val) == size && offset == 0))
attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_POST_DECREMENT
&& (INTVAL (inc_val) == -size && offset == 0))
attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_PRE_INCREMENT
&& (INTVAL (inc_val) == size && offset == size))
attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_PRE_DECREMENT
&& (INTVAL (inc_val) == -size && offset == -size))
attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
incr, addr);
else if (HAVE_POST_MODIFY_DISP && offset == 0)
attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
gen_rtx_PLUS (Pmode,
addr,
inc_val)),
insn, x, incr, addr);
}
else if (GET_CODE (inc_val) == REG
&& ! reg_set_between_p (inc_val, PREV_INSN (insn),
NEXT_INSN (incr)))
{
if (HAVE_POST_MODIFY_REG && offset == 0)
attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
gen_rtx_PLUS (Pmode,
addr,
inc_val)),
insn, x, incr, addr);
}
}
#endif /* AUTO_INC_DEC */
static void
mark_used_reg (pbi, reg, cond, insn)
struct propagate_block_info *pbi;
rtx reg;
rtx cond ATTRIBUTE_UNUSED;
rtx insn;
{
unsigned int regno_first, regno_last, i;
int some_was_live, some_was_dead, some_not_set;
regno_last = regno_first = REGNO (reg);
if (regno_first < FIRST_PSEUDO_REGISTER)
regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
/* Find out if any of this register is live after this instruction. */
some_was_live = some_was_dead = 0;
for (i = regno_first; i <= regno_last; ++i)
{
int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
some_was_live |= needed_regno;
some_was_dead |= ! needed_regno;
}
/* Find out if any of the register was set this insn. */
some_not_set = 0;
for (i = regno_first; i <= regno_last; ++i)
some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
{
/* Record where each reg is used, so when the reg is set we know
the next insn that uses it. */
pbi->reg_next_use[regno_first] = insn;
}
if (pbi->flags & PROP_REG_INFO)
{
if (regno_first < FIRST_PSEUDO_REGISTER)
{
/* If this is a register we are going to try to eliminate,
don't mark it live here. If we are successful in
eliminating it, it need not be live unless it is used for
pseudos, in which case it will have been set live when it
was allocated to the pseudos. If the register will not
be eliminated, reload will set it live at that point.
Otherwise, record that this function uses this register. */
/* ??? The PPC backend tries to "eliminate" on the pic
register to itself. This should be fixed. In the mean
time, hack around it. */
if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
&& (regno_first == FRAME_POINTER_REGNUM
|| regno_first == ARG_POINTER_REGNUM)))
for (i = regno_first; i <= regno_last; ++i)
regs_ever_live[i] = 1;
}
else
{
/* Keep track of which basic block each reg appears in. */
int blocknum = pbi->bb->index;
if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
REG_BASIC_BLOCK (regno_first) = blocknum;
else if (REG_BASIC_BLOCK (regno_first) != blocknum)
REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
/* Count (weighted) number of uses of each reg. */
REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
REG_N_REFS (regno_first)++;
}
}
/* Record and count the insns in which a reg dies. If it is used in
this insn and was dead below the insn then it dies in this insn.
If it was set in this insn, we do not make a REG_DEAD note;
likewise if we already made such a note. */
if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
&& some_was_dead
&& some_not_set)
{
/* Check for the case where the register dying partially
overlaps the register set by this insn. */
if (regno_first != regno_last)
for (i = regno_first; i <= regno_last; ++i)
some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
/* If none of the words in X is needed, make a REG_DEAD note.
Otherwise, we must make partial REG_DEAD notes. */
if (! some_was_live)
{
if ((pbi->flags & PROP_DEATH_NOTES)
&& ! find_regno_note (insn, REG_DEAD, regno_first))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
if (pbi->flags & PROP_REG_INFO)
REG_N_DEATHS (regno_first)++;
}
else
{
/* Don't make a REG_DEAD note for a part of a register
that is set in the insn. */
for (i = regno_first; i <= regno_last; ++i)
if (! REGNO_REG_SET_P (pbi->reg_live, i)
&& ! dead_or_set_regno_p (insn, i))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_DEAD,
regno_reg_rtx[i],
REG_NOTES (insn));
}
}
/* Mark the register as being live. */
for (i = regno_first; i <= regno_last; ++i)
{
#ifdef HAVE_conditional_execution
int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
#endif
SET_REGNO_REG_SET (pbi->reg_live, i);
#ifdef HAVE_conditional_execution
/* If this is a conditional use, record that fact. If it is later
conditionally set, we'll know to kill the register. */
if (cond != NULL_RTX)
{
splay_tree_node node;
struct reg_cond_life_info *rcli;
rtx ncond;
if (this_was_live)
{
node = splay_tree_lookup (pbi->reg_cond_dead, i);
if (node == NULL)
{
/* The register was unconditionally live previously.
No need to do anything. */
}
else
{
/* The register was conditionally live previously.
Subtract the new life cond from the old death cond. */
rcli = (struct reg_cond_life_info *) node->value;
ncond = rcli->condition;
ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
/* If the register is now unconditionally live,
remove the entry in the splay_tree. */
if (ncond == const0_rtx)
splay_tree_remove (pbi->reg_cond_dead, i);
else
{
rcli->condition = ncond;
SET_REGNO_REG_SET (pbi->reg_cond_reg,
REGNO (XEXP (cond, 0)));
}
}
}
else
{
/* The register was not previously live at all. Record
the condition under which it is still dead. */
rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
rcli->condition = not_reg_cond (cond);
rcli->stores = const0_rtx;
rcli->orig_condition = const0_rtx;
splay_tree_insert (pbi->reg_cond_dead, i,
(splay_tree_value) rcli);
SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
}
}
else if (this_was_live)
{
/* The register may have been conditionally live previously, but
is now unconditionally live. Remove it from the conditionally
dead list, so that a conditional set won't cause us to think
it dead. */
splay_tree_remove (pbi->reg_cond_dead, i);
}
#endif
}
}
/* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
This is done assuming the registers needed from X are those that
have 1-bits in PBI->REG_LIVE.
INSN is the containing instruction. If INSN is dead, this function
is not called. */
static void
mark_used_regs (pbi, x, cond, insn)
struct propagate_block_info *pbi;
rtx x, cond, insn;
{
RTX_CODE code;
int regno;
int flags = pbi->flags;
retry:
if (!x)
return;
code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case CONST_VECTOR:
case PC:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return;
#ifdef HAVE_cc0
case CC0:
pbi->cc0_live = 1;
return;
#endif
case CLOBBER:
/* If we are clobbering a MEM, mark any registers inside the address
as being used. */
if (GET_CODE (XEXP (x, 0)) == MEM)
mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
return;
case MEM:
/* Don't bother watching stores to mems if this is not the
final pass. We'll not be deleting dead stores this round. */
if (optimize && (flags & PROP_SCAN_DEAD_STORES))
{
/* Invalidate the data for the last MEM stored, but only if MEM is
something that can be stored into. */
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
/* Needn't clear the memory set list. */
;
else
{
rtx temp = pbi->mem_set_list;
rtx prev = NULL_RTX;
rtx next;
while (temp)
{
next = XEXP (temp, 1);
if (anti_dependence (XEXP (temp, 0), x))
{
/* Splice temp out of the list. */
if (prev)
XEXP (prev, 1) = next;
else
pbi->mem_set_list = next;
free_EXPR_LIST_node (temp);
pbi->mem_set_list_len--;
}
else
prev = temp;
temp = next;
}
}
/* If the memory reference had embedded side effects (autoincrement
address modes. Then we may need to kill some entries on the
memory set list. */
if (insn)
for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
}
#ifdef AUTO_INC_DEC
if (flags & PROP_AUTOINC)
find_auto_inc (pbi, x, insn);
#endif
break;
case SUBREG:
#ifdef CANNOT_CHANGE_MODE_CLASS
if (GET_CODE (SUBREG_REG (x)) == REG
&& REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
* MAX_MACHINE_MODE
+ GET_MODE (x));
#endif
/* While we're here, optimize this case. */
x = SUBREG_REG (x);
if (GET_CODE (x) != REG)
goto retry;
/* Fall through. */
case REG:
/* See a register other than being set => mark it as needed. */
mark_used_reg (pbi, x, cond, insn);
return;
case SET:
{
rtx testreg = SET_DEST (x);
int mark_dest = 0;
/* If storing into MEM, don't show it as being used. But do
show the address as being used. */
if (GET_CODE (testreg) == MEM)
{
#ifdef AUTO_INC_DEC
if (flags & PROP_AUTOINC)
find_auto_inc (pbi, testreg, insn);
#endif
mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
mark_used_regs (pbi, SET_SRC (x), cond, insn);
return;
}
/* Storing in STRICT_LOW_PART is like storing in a reg
in that this SET might be dead, so ignore it in TESTREG.
but in some other ways it is like using the reg.
Storing in a SUBREG or a bit field is like storing the entire
register in that if the register's value is not used
then this SET is not needed. */
while (GET_CODE (testreg) == STRICT_LOW_PART
|| GET_CODE (testreg) == ZERO_EXTRACT
|| GET_CODE (testreg) == SIGN_EXTRACT
|| GET_CODE (testreg) == SUBREG)
{
#ifdef CANNOT_CHANGE_MODE_CLASS
if (GET_CODE (testreg) == SUBREG
&& GET_CODE (SUBREG_REG (testreg)) == REG
&& REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
* MAX_MACHINE_MODE
+ GET_MODE (testreg));
#endif
/* Modifying a single register in an alternate mode
does not use any of the old value. But these other
ways of storing in a register do use the old value. */
if (GET_CODE (testreg) == SUBREG
&& !((REG_BYTES (SUBREG_REG (testreg))
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD
> (REG_BYTES (testreg)
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
;
else
mark_dest = 1;
testreg = XEXP (testreg, 0);
}
/* If this is a store into a register or group of registers,
recursively scan the value being stored. */
if ((GET_CODE (testreg) == PARALLEL
&& GET_MODE (testreg) == BLKmode)
|| (GET_CODE (testreg) == REG
&& (regno = REGNO (testreg),
! (regno == FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed)))
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
&& ! (regno == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
))
{
if (mark_dest)
mark_used_regs (pbi, SET_DEST (x), cond, insn);
mark_used_regs (pbi, SET_SRC (x), cond, insn);
return;
}
}
break;
case ASM_OPERANDS:
case UNSPEC_VOLATILE:
case TRAP_IF:
case ASM_INPUT:
{
/* Traditional and volatile asm instructions must be considered to use
and clobber all hard registers, all pseudo-registers and all of
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
Consider for instance a volatile asm that changes the fpu rounding
mode. An insn should not be moved across this even if it only uses
pseudo-regs because it might give an incorrectly rounded result.
?!? Unfortunately, marking all hard registers as live causes massive
problems for the register allocator and marking all pseudos as live
creates mountains of uninitialized variable warnings.
So for now, just clear the memory set list and mark any regs
we can find in ASM_OPERANDS as used. */
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
{
free_EXPR_LIST_list (&pbi->mem_set_list);
pbi->mem_set_list_len = 0;
}
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We can not just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
if (code == ASM_OPERANDS)
{
int j;
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
}
break;
}
case COND_EXEC:
if (cond != NULL_RTX)
abort ();
mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
cond = COND_EXEC_TEST (x);
x = COND_EXEC_CODE (x);
goto retry;
case PHI:
/* We _do_not_ want to scan operands of phi nodes. Operands of
a phi function are evaluated only when control reaches this
block along a particular edge. Therefore, regs that appear
as arguments to phi should not be added to the global live at
start. */
return;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char * const fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* Tail recursive case: save a function call level. */
if (i == 0)
{
x = XEXP (x, 0);
goto retry;
}
mark_used_regs (pbi, XEXP (x, i), cond, insn);
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
}
}
}
}
#ifdef AUTO_INC_DEC
static int
try_pre_increment_1 (pbi, insn)
struct propagate_block_info *pbi;
rtx insn;
{
/* Find the next use of this reg. If in same basic block,
make it do pre-increment or pre-decrement if appropriate. */
rtx x = single_set (insn);
HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
* INTVAL (XEXP (SET_SRC (x), 1)));
int regno = REGNO (SET_DEST (x));
rtx y = pbi->reg_next_use[regno];
if (y != 0
&& SET_DEST (x) != stack_pointer_rtx
&& BLOCK_NUM (y) == BLOCK_NUM (insn)
/* Don't do this if the reg dies, or gets set in y; a standard addressing
mode would be better. */
&& ! dead_or_set_p (y, SET_DEST (x))
&& try_pre_increment (y, SET_DEST (x), amount))
{
/* We have found a suitable auto-increment and already changed
insn Y to do it. So flush this increment instruction. */
propagate_block_delete_insn (insn);
/* Count a reference to this reg for the increment insn we are
deleting. When a reg is incremented, spilling it is worse,
so we want to make that less likely. */
if (regno >= FIRST_PSEUDO_REGISTER)
{
REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
REG_N_SETS (regno)++;
}
/* Flush any remembered memories depending on the value of
the incremented register. */
invalidate_mems_from_set (pbi, SET_DEST (x));
return 1;
}
return 0;
}
/* Try to change INSN so that it does pre-increment or pre-decrement
addressing on register REG in order to add AMOUNT to REG.
AMOUNT is negative for pre-decrement.
Returns 1 if the change could be made.
This checks all about the validity of the result of modifying INSN. */
static int
try_pre_increment (insn, reg, amount)
rtx insn, reg;
HOST_WIDE_INT amount;
{
rtx use;
/* Nonzero if we can try to make a pre-increment or pre-decrement.
For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
int pre_ok = 0;
/* Nonzero if we can try to make a post-increment or post-decrement.
For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
It is possible for both PRE_OK and POST_OK to be nonzero if the machine
supports both pre-inc and post-inc, or both pre-dec and post-dec. */
int post_ok = 0;
/* Nonzero if the opportunity actually requires post-inc or post-dec. */
int do_post = 0;
/* From the sign of increment, see which possibilities are conceivable
on this target machine. */
if (HAVE_PRE_INCREMENT && amount > 0)
pre_ok = 1;
if (HAVE_POST_INCREMENT && amount > 0)
post_ok = 1;
if (HAVE_PRE_DECREMENT && amount < 0)
pre_ok = 1;
if (HAVE_POST_DECREMENT && amount < 0)
post_ok = 1;
if (! (pre_ok || post_ok))
return 0;
/* It is not safe to add a side effect to a jump insn
because if the incremented register is spilled and must be reloaded
there would be no way to store the incremented value back in memory. */
if (GET_CODE (insn) == JUMP_INSN)
return 0;
use = 0;
if (pre_ok)
use = find_use_as_address (PATTERN (insn), reg, 0);
if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
{
use = find_use_as_address (PATTERN (insn), reg, -amount);
do_post = 1;
}
if (use == 0 || use == (rtx) (size_t) 1)
return 0;
if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
return 0;
/* See if this combination of instruction and addressing mode exists. */
if (! validate_change (insn, &XEXP (use, 0),
gen_rtx_fmt_e (amount > 0
? (do_post ? POST_INC : PRE_INC)
: (do_post ? POST_DEC : PRE_DEC),
Pmode, reg), 0))
return 0;
/* Record that this insn now has an implicit side effect on X. */
REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
return 1;
}
#endif /* AUTO_INC_DEC */
/* Find the place in the rtx X where REG is used as a memory address.
Return the MEM rtx that so uses it.
If PLUSCONST is nonzero, search instead for a memory address equivalent to
(plus REG (const_int PLUSCONST)).
If such an address does not appear, return 0.
If REG appears more than once, or is used other than in such an address,
return (rtx) 1. */
rtx
find_use_as_address (x, reg, plusconst)
rtx x;
rtx reg;
HOST_WIDE_INT plusconst;
{
enum rtx_code code = GET_CODE (x);
const char * const fmt = GET_RTX_FORMAT (code);
int i;
rtx value = 0;
rtx tem;
if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
return x;
if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 0) == reg
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
return x;
if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
{
/* If REG occurs inside a MEM used in a bit-field reference,
that is unacceptable. */
if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
return (rtx) (size_t) 1;
}
if (x == reg)
return (rtx) (size_t) 1;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
tem = find_use_as_address (XEXP (x, i), reg, plusconst);
if (value == 0)
value = tem;
else if (tem != 0)
return (rtx) (size_t) 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
{
tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
if (value == 0)
value = tem;
else if (tem != 0)
return (rtx) (size_t) 1;
}
}
}
return value;
}
/* Write information about registers and basic blocks into FILE.
This is part of making a debugging dump. */
void
dump_regset (r, outf)
regset r;
FILE *outf;
{
int i;
if (r == NULL)
{
fputs (" (nil)", outf);
return;
}
EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
{
fprintf (outf, " %d", i);
if (i < FIRST_PSEUDO_REGISTER)
fprintf (outf, " [%s]",
reg_names[i]);
});
}
/* Print a human-reaable representation of R on the standard error
stream. This function is designed to be used from within the
debugger. */
void
debug_regset (r)
regset r;
{
dump_regset (r, stderr);
putc ('\n', stderr);
}
/* Recompute register set/reference counts immediately prior to register
allocation.
This avoids problems with set/reference counts changing to/from values
which have special meanings to the register allocators.
Additionally, the reference counts are the primary component used by the
register allocators to prioritize pseudos for allocation to hard regs.
More accurate reference counts generally lead to better register allocation.
F is the first insn to be scanned.
LOOP_STEP denotes how much loop_depth should be incremented per
loop nesting level in order to increase the ref count more for
references in a loop.
It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
possibly other information which is used by the register allocators. */
void
recompute_reg_usage (f, loop_step)
rtx f ATTRIBUTE_UNUSED;
int loop_step ATTRIBUTE_UNUSED;
{
allocate_reg_life_data ();
update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
}
/* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
blocks. If BLOCKS is NULL, assume the universal set. Returns a count
of the number of registers that died. */
int
count_or_remove_death_notes (blocks, kill)
sbitmap blocks;
int kill;
{
int count = 0;
basic_block bb;
FOR_EACH_BB_REVERSE (bb)
{
rtx insn;
if (blocks && ! TEST_BIT (blocks, bb->index))
continue;
for (insn = bb->head;; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
rtx *pprev = ®_NOTES (insn);
rtx link = *pprev;
while (link)
{
switch (REG_NOTE_KIND (link))
{
case REG_DEAD:
if (GET_CODE (XEXP (link, 0)) == REG)
{
rtx reg = XEXP (link, 0);
int n;
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
n = 1;
else
n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
count += n;
}
/* Fall through. */
case REG_UNUSED:
if (kill)
{
rtx next = XEXP (link, 1);
free_EXPR_LIST_node (link);
*pprev = link = next;
break;
}
/* Fall through. */
default:
pprev = &XEXP (link, 1);
link = *pprev;
break;
}
}
}
if (insn == bb->end)
break;
}
}
return count;
}
/* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
if blocks is NULL. */
static void
clear_log_links (blocks)
sbitmap blocks;
{
rtx insn;
int i;
if (!blocks)
{
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (INSN_P (insn))
free_INSN_LIST_list (&LOG_LINKS (insn));
}
else
EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
{
basic_block bb = BASIC_BLOCK (i);
for (insn = bb->head; insn != NEXT_INSN (bb->end);
insn = NEXT_INSN (insn))
if (INSN_P (insn))
free_INSN_LIST_list (&LOG_LINKS (insn));
});
}
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
correspond to the hard registers, if any, set in that map. This
could be done far more efficiently by having all sorts of special-cases
with moving single words, but probably isn't worth the trouble. */
void
reg_set_to_hard_reg_set (to, from)
HARD_REG_SET *to;
bitmap from;
{
int i;
EXECUTE_IF_SET_IN_BITMAP
(from, 0, i,
{
if (i >= FIRST_PSEUDO_REGISTER)
return;
SET_HARD_REG_BIT (*to, i);
});
}
|