summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/except.c
blob: cc6fc29134507a61e04d2b753ed1497aa1022ac1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
/* Implements exception handling.
   Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
   Contributed by Mike Stump <mrs@cygnus.com>.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* An exception is an event that can be signaled from within a
   function. This event can then be "caught" or "trapped" by the
   callers of this function. This potentially allows program flow to
   be transferred to any arbitrary code associated with a function call
   several levels up the stack.

   The intended use for this mechanism is for signaling "exceptional
   events" in an out-of-band fashion, hence its name. The C++ language
   (and many other OO-styled or functional languages) practically
   requires such a mechanism, as otherwise it becomes very difficult
   or even impossible to signal failure conditions in complex
   situations.  The traditional C++ example is when an error occurs in
   the process of constructing an object; without such a mechanism, it
   is impossible to signal that the error occurs without adding global
   state variables and error checks around every object construction.

   The act of causing this event to occur is referred to as "throwing
   an exception". (Alternate terms include "raising an exception" or
   "signaling an exception".) The term "throw" is used because control
   is returned to the callers of the function that is signaling the
   exception, and thus there is the concept of "throwing" the
   exception up the call stack.

   There are two major codegen options for exception handling.  The
   flag -fsjlj-exceptions can be used to select the setjmp/longjmp
   approach, which is the default.  -fno-sjlj-exceptions can be used to
   get the PC range table approach.  While this is a compile time
   flag, an entire application must be compiled with the same codegen
   option.  The first is a PC range table approach, the second is a
   setjmp/longjmp based scheme.  We will first discuss the PC range
   table approach, after that, we will discuss the setjmp/longjmp
   based approach.

   It is appropriate to speak of the "context of a throw". This
   context refers to the address where the exception is thrown from,
   and is used to determine which exception region will handle the
   exception.

   Regions of code within a function can be marked such that if it
   contains the context of a throw, control will be passed to a
   designated "exception handler". These areas are known as "exception
   regions".  Exception regions cannot overlap, but they can be nested
   to any arbitrary depth. Also, exception regions cannot cross
   function boundaries.

   Exception handlers can either be specified by the user (which we
   will call a "user-defined handler") or generated by the compiler
   (which we will designate as a "cleanup"). Cleanups are used to
   perform tasks such as destruction of objects allocated on the
   stack.

   In the current implementation, cleanups are handled by allocating an
   exception region for the area that the cleanup is designated for,
   and the handler for the region performs the cleanup and then
   rethrows the exception to the outer exception region. From the
   standpoint of the current implementation, there is little
   distinction made between a cleanup and a user-defined handler, and
   the phrase "exception handler" can be used to refer to either one
   equally well. (The section "Future Directions" below discusses how
   this will change).

   Each object file that is compiled with exception handling contains
   a static array of exception handlers named __EXCEPTION_TABLE__.
   Each entry contains the starting and ending addresses of the
   exception region, and the address of the handler designated for
   that region.

   If the target does not use the DWARF 2 frame unwind information, at
   program startup each object file invokes a function named
   __register_exceptions with the address of its local
   __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
   is responsible for recording all of the exception regions into one list
   (which is kept in a static variable named exception_table_list).

   On targets that support crtstuff.c, the unwind information
   is stored in a section named .eh_frame and the information for the
   entire shared object or program is registered with a call to
   __register_frame_info.  On other targets, the information for each
   translation unit is registered from the file generated by collect2.
   __register_frame_info is defined in frame.c, and is responsible for
   recording all of the unwind regions into one list (which is kept in a
   static variable named unwind_table_list).

   The function __throw is actually responsible for doing the
   throw. On machines that have unwind info support, __throw is generated
   by code in libgcc2.c, otherwise __throw is generated on a
   per-object-file basis for each source file compiled with
   -fexceptions by the C++ frontend.  Before __throw is invoked,
   the current context of the throw needs to be placed in the global
   variable __eh_pc.

   __throw attempts to find the appropriate exception handler for the 
   PC value stored in __eh_pc by calling __find_first_exception_table_match
   (which is defined in libgcc2.c). If __find_first_exception_table_match
   finds a relevant handler, __throw transfers control directly to it.

   If a handler for the context being thrown from can't be found, __throw
   walks (see Walking the stack below) the stack up the dynamic call chain to
   continue searching for an appropriate exception handler based upon the
   caller of the function it last sought a exception handler for.  It stops
   then either an exception handler is found, or when the top of the
   call chain is reached.

   If no handler is found, an external library function named
   __terminate is called.  If a handler is found, then we restart
   our search for a handler at the end of the call chain, and repeat
   the search process, but instead of just walking up the call chain,
   we unwind the call chain as we walk up it.

   Internal implementation details:

   To associate a user-defined handler with a block of statements, the
   function expand_start_try_stmts is used to mark the start of the
   block of statements with which the handler is to be associated
   (which is known as a "try block"). All statements that appear
   afterwards will be associated with the try block.

   A call to expand_start_all_catch marks the end of the try block,
   and also marks the start of the "catch block" (the user-defined
   handler) associated with the try block.

   This user-defined handler will be invoked for *every* exception
   thrown with the context of the try block. It is up to the handler
   to decide whether or not it wishes to handle any given exception,
   as there is currently no mechanism in this implementation for doing
   this. (There are plans for conditionally processing an exception
   based on its "type", which will provide a language-independent
   mechanism).

   If the handler chooses not to process the exception (perhaps by
   looking at an "exception type" or some other additional data
   supplied with the exception), it can fall through to the end of the
   handler. expand_end_all_catch and expand_leftover_cleanups
   add additional code to the end of each handler to take care of
   rethrowing to the outer exception handler.

   The handler also has the option to continue with "normal flow of
   code", or in other words to resume executing at the statement
   immediately after the end of the exception region. The variable
   caught_return_label_stack contains a stack of labels, and jumping
   to the topmost entry's label via expand_goto will resume normal
   flow to the statement immediately after the end of the exception
   region. If the handler falls through to the end, the exception will
   be rethrown to the outer exception region.

   The instructions for the catch block are kept as a separate
   sequence, and will be emitted at the end of the function along with
   the handlers specified via expand_eh_region_end. The end of the
   catch block is marked with expand_end_all_catch.

   Any data associated with the exception must currently be handled by
   some external mechanism maintained in the frontend.  For example,
   the C++ exception mechanism passes an arbitrary value along with
   the exception, and this is handled in the C++ frontend by using a
   global variable to hold the value. (This will be changing in the
   future.)

   The mechanism in C++ for handling data associated with the
   exception is clearly not thread-safe. For a thread-based
   environment, another mechanism must be used (possibly using a
   per-thread allocation mechanism if the size of the area that needs
   to be allocated isn't known at compile time.)

   Internally-generated exception regions (cleanups) are marked by
   calling expand_eh_region_start to mark the start of the region,
   and expand_eh_region_end (handler) is used to both designate the
   end of the region and to associate a specified handler/cleanup with
   the region. The rtl code in HANDLER will be invoked whenever an
   exception occurs in the region between the calls to
   expand_eh_region_start and expand_eh_region_end. After HANDLER is
   executed, additional code is emitted to handle rethrowing the
   exception to the outer exception handler. The code for HANDLER will
   be emitted at the end of the function.

   TARGET_EXPRs can also be used to designate exception regions. A
   TARGET_EXPR gives an unwind-protect style interface commonly used
   in functional languages such as LISP. The associated expression is
   evaluated, and whether or not it (or any of the functions that it
   calls) throws an exception, the protect expression is always
   invoked. This implementation takes care of the details of
   associating an exception table entry with the expression and
   generating the necessary code (it actually emits the protect
   expression twice, once for normal flow and once for the exception
   case). As for the other handlers, the code for the exception case
   will be emitted at the end of the function.

   Cleanups can also be specified by using add_partial_entry (handler)
   and end_protect_partials. add_partial_entry creates the start of
   a new exception region; HANDLER will be invoked if an exception is
   thrown with the context of the region between the calls to
   add_partial_entry and end_protect_partials. end_protect_partials is
   used to mark the end of these regions. add_partial_entry can be
   called as many times as needed before calling end_protect_partials.
   However, end_protect_partials should only be invoked once for each
   group of calls to add_partial_entry as the entries are queued
   and all of the outstanding entries are processed simultaneously
   when end_protect_partials is invoked. Similarly to the other
   handlers, the code for HANDLER will be emitted at the end of the
   function.

   The generated RTL for an exception region includes
   NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
   the start and end of the exception region. A unique label is also
   generated at the start of the exception region, which is available
   by looking at the ehstack variable. The topmost entry corresponds
   to the current region.

   In the current implementation, an exception can only be thrown from
   a function call (since the mechanism used to actually throw an
   exception involves calling __throw).  If an exception region is
   created but no function calls occur within that region, the region
   can be safely optimized away (along with its exception handlers)
   since no exceptions can ever be caught in that region.  This
   optimization is performed unless -fasynchronous-exceptions is
   given.  If the user wishes to throw from a signal handler, or other
   asynchronous place, -fasynchronous-exceptions should be used when
   compiling for maximally correct code, at the cost of additional
   exception regions.  Using -fasynchronous-exceptions only produces
   code that is reasonably safe in such situations, but a correct
   program cannot rely upon this working.  It can be used in failsafe
   code, where trying to continue on, and proceeding with potentially
   incorrect results is better than halting the program.


   Walking the stack:

   The stack is walked by starting with a pointer to the current
   frame, and finding the pointer to the callers frame.  The unwind info
   tells __throw how to find it.

   Unwinding the stack:

   When we use the term unwinding the stack, we mean undoing the
   effects of the function prologue in a controlled fashion so that we
   still have the flow of control.  Otherwise, we could just return
   (jump to the normal end of function epilogue).

   This is done in __throw in libgcc2.c when we know that a handler exists
   in a frame higher up the call stack than its immediate caller.

   To unwind, we find the unwind data associated with the frame, if any.
   If we don't find any, we call the library routine __terminate.  If we do
   find it, we use the information to copy the saved register values from
   that frame into the register save area in the frame for __throw, return
   into a stub which updates the stack pointer, and jump to the handler.
   The normal function epilogue for __throw handles restoring the saved
   values into registers.

   When unwinding, we use this method if we know it will
   work (if DWARF2_UNWIND_INFO is defined).  Otherwise, we know that
   an inline unwinder will have been emitted for any function that
   __unwind_function cannot unwind.  The inline unwinder appears as a
   normal exception handler for the entire function, for any function
   that we know cannot be unwound by __unwind_function.  We inform the
   compiler of whether a function can be unwound with
   __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
   when the unwinder isn't needed.  __unwind_function is used as an
   action of last resort.  If no other method can be used for
   unwinding, __unwind_function is used.  If it cannot unwind, it
   should call __terminate.

   By default, if the target-specific backend doesn't supply a definition
   for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
   unwinders will be used instead. The main tradeoff here is in text space
   utilization.  Obviously, if inline unwinders have to be generated
   repeatedly, this uses much more space than if a single routine is used.

   However, it is simply not possible on some platforms to write a
   generalized routine for doing stack unwinding without having some
   form of additional data associated with each function.  The current
   implementation can encode this data in the form of additional
   machine instructions or as static data in tabular form.  The later
   is called the unwind data.

   The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
   or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
   defined and has a non-zero value, a per-function unwinder is not emitted
   for the current function.  If the static unwind data is supported, then
   a per-function unwinder is not emitted.

   On some platforms it is possible that neither __unwind_function
   nor inlined unwinders are available. For these platforms it is not
   possible to throw through a function call, and abort will be
   invoked instead of performing the throw. 

   The reason the unwind data may be needed is that on some platforms
   the order and types of data stored on the stack can vary depending
   on the type of function, its arguments and returned values, and the
   compilation options used (optimization versus non-optimization,
   -fomit-frame-pointer, processor variations, etc).

   Unfortunately, this also means that throwing through functions that
   aren't compiled with exception handling support will still not be
   possible on some platforms. This problem is currently being
   investigated, but no solutions have been found that do not imply
   some unacceptable performance penalties.

   Future directions:

   Currently __throw makes no differentiation between cleanups and
   user-defined exception regions. While this makes the implementation
   simple, it also implies that it is impossible to determine if a
   user-defined exception handler exists for a given exception without
   completely unwinding the stack in the process. This is undesirable
   from the standpoint of debugging, as ideally it would be possible
   to trap unhandled exceptions in the debugger before the process of
   unwinding has even started.

   This problem can be solved by marking user-defined handlers in a
   special way (probably by adding additional bits to exception_table_list).
   A two-pass scheme could then be used by __throw to iterate
   through the table. The first pass would search for a relevant
   user-defined handler for the current context of the throw, and if
   one is found, the second pass would then invoke all needed cleanups
   before jumping to the user-defined handler.

   Many languages (including C++ and Ada) make execution of a
   user-defined handler conditional on the "type" of the exception
   thrown. (The type of the exception is actually the type of the data
   that is thrown with the exception.) It will thus be necessary for
   __throw to be able to determine if a given user-defined
   exception handler will actually be executed, given the type of
   exception.

   One scheme is to add additional information to exception_table_list
   as to the types of exceptions accepted by each handler. __throw
   can do the type comparisons and then determine if the handler is
   actually going to be executed.

   There is currently no significant level of debugging support
   available, other than to place a breakpoint on __throw. While
   this is sufficient in most cases, it would be helpful to be able to
   know where a given exception was going to be thrown to before it is
   actually thrown, and to be able to choose between stopping before
   every exception region (including cleanups), or just user-defined
   exception regions. This should be possible to do in the two-pass
   scheme by adding additional labels to __throw for appropriate
   breakpoints, and additional debugger commands could be added to
   query various state variables to determine what actions are to be
   performed next.

   Another major problem that is being worked on is the issue with stack
   unwinding on various platforms. Currently the only platforms that have
   support for the generation of a generic unwinder are the SPARC and MIPS.
   All other ports require per-function unwinders, which produce large
   amounts of code bloat.

   For setjmp/longjmp based exception handling, some of the details
   are as above, but there are some additional details.  This section
   discusses the details.

   We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs.  We don't
   optimize EH regions yet.  We don't have to worry about machine
   specific issues with unwinding the stack, as we rely upon longjmp
   for all the machine specific details.  There is no variable context
   of a throw, just the one implied by the dynamic handler stack
   pointed to by the dynamic handler chain.  There is no exception
   table, and no calls to __register_exceptions.  __sjthrow is used
   instead of __throw, and it works by using the dynamic handler
   chain, and longjmp.  -fasynchronous-exceptions has no effect, as
   the elimination of trivial exception regions is not yet performed.

   A frontend can set protect_cleanup_actions_with_terminate when all
   the cleanup actions should be protected with an EH region that
   calls terminate when an unhandled exception is throw.  C++ does
   this, Ada does not.  */


#include "config.h"
#include "defaults.h"
#include "eh-common.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "insn-flags.h"
#include "expr.h"
#include "insn-codes.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "toplev.h"
#include "intl.h"
#include "obstack.h"

/* One to use setjmp/longjmp method of generating code for exception
   handling.  */

int exceptions_via_longjmp = 2;

/* One to enable asynchronous exception support.  */

int asynchronous_exceptions = 0;

/* One to protect cleanup actions with a handler that calls
   __terminate, zero otherwise.  */

int protect_cleanup_actions_with_terminate;

/* A list of labels used for exception handlers.  Created by
   find_exception_handler_labels for the optimization passes.  */

rtx exception_handler_labels;

/* The EH context.  Nonzero if the function has already
   fetched a pointer to the EH context  for exception handling.  */

rtx current_function_ehc;

/* A stack used for keeping track of the currently active exception
   handling region.  As each exception region is started, an entry
   describing the region is pushed onto this stack.  The current
   region can be found by looking at the top of the stack, and as we
   exit regions, the corresponding entries are popped. 

   Entries cannot overlap; they can be nested. So there is only one
   entry at most that corresponds to the current instruction, and that
   is the entry on the top of the stack.  */

static struct eh_stack ehstack;


/* This stack is used to represent what the current eh region is
   for the catch blocks beings processed */

static struct eh_stack catchstack;

/* A queue used for tracking which exception regions have closed but
   whose handlers have not yet been expanded. Regions are emitted in
   groups in an attempt to improve paging performance.

   As we exit a region, we enqueue a new entry. The entries are then
   dequeued during expand_leftover_cleanups and expand_start_all_catch,

   We should redo things so that we either take RTL for the handler,
   or we expand the handler expressed as a tree immediately at region
   end time.  */

static struct eh_queue ehqueue;

/* Insns for all of the exception handlers for the current function.
   They are currently emitted by the frontend code.  */

rtx catch_clauses;

/* A TREE_CHAINed list of handlers for regions that are not yet
   closed. The TREE_VALUE of each entry contains the handler for the
   corresponding entry on the ehstack.  */

static tree protect_list;

/* Stacks to keep track of various labels.  */

/* Keeps track of the label to resume to should one want to resume
   normal control flow out of a handler (instead of, say, returning to
   the caller of the current function or exiting the program).  */

struct label_node *caught_return_label_stack = NULL;

/* Keeps track of the label used as the context of a throw to rethrow an
   exception to the outer exception region.  */

struct label_node *outer_context_label_stack = NULL;

/* A random data area for the front end's own use.  */

struct label_node *false_label_stack = NULL;

/* Pseudos used to hold exception return data in the interim between
   __builtin_eh_return and the end of the function.  */

static rtx eh_return_context;
static rtx eh_return_stack_adjust;
static rtx eh_return_handler;

/* Used to mark the eh return stub for flow, so that the Right Thing
   happens with the values for the hardregs therin.  */

rtx eh_return_stub_label;

/* This is used for targets which can call rethrow with an offset instead
   of an address. This is subtracted from the rethrow label we are
   interested in. */

static rtx first_rethrow_symbol = NULL_RTX;
static rtx final_rethrow = NULL_RTX;
static rtx last_rethrow_symbol = NULL_RTX;


/* Prototypes for local functions.  */

static void push_eh_entry	PROTO((struct eh_stack *));
static struct eh_entry * pop_eh_entry		PROTO((struct eh_stack *));
static void enqueue_eh_entry	PROTO((struct eh_queue *, struct eh_entry *));
static struct eh_entry * dequeue_eh_entry	PROTO((struct eh_queue *));
static rtx call_get_eh_context	PROTO((void));
static void start_dynamic_cleanup		PROTO((tree, tree));
static void start_dynamic_handler		PROTO((void));
static void expand_rethrow	PROTO((rtx));
static void output_exception_table_entry	PROTO((FILE *, int));
static int can_throw		PROTO((rtx));
static rtx scan_region		PROTO((rtx, int, int *));
static void eh_regs		PROTO((rtx *, rtx *, rtx *, int));
static void set_insn_eh_region	PROTO((rtx *, int));
#ifdef DONT_USE_BUILTIN_SETJMP
static void jumpif_rtx		PROTO((rtx, rtx));
#endif

rtx expand_builtin_return_addr	PROTO((enum built_in_function, int, rtx));

/* Various support routines to manipulate the various data structures
   used by the exception handling code.  */

extern struct obstack permanent_obstack;

/* Generate a SYMBOL_REF for rethrow to use */
static rtx
create_rethrow_ref (region_num)
     int region_num;
{
  rtx def;
  char *ptr;
  char buf[60];

  push_obstacks_nochange ();
  end_temporary_allocation ();

  ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
  ptr = (char *) obstack_copy0 (&permanent_obstack, buf, strlen (buf));
  def = gen_rtx_SYMBOL_REF (Pmode, ptr);
  SYMBOL_REF_NEED_ADJUST (def) = 1;

  pop_obstacks ();
  return def;
}

/* Push a label entry onto the given STACK.  */

void
push_label_entry (stack, rlabel, tlabel)
     struct label_node **stack;
     rtx rlabel;
     tree tlabel;
{
  struct label_node *newnode
    = (struct label_node *) xmalloc (sizeof (struct label_node));

  if (rlabel)
    newnode->u.rlabel = rlabel;
  else
    newnode->u.tlabel = tlabel;
  newnode->chain = *stack;
  *stack = newnode;
}

/* Pop a label entry from the given STACK.  */

rtx
pop_label_entry (stack)
     struct label_node **stack;
{
  rtx label;
  struct label_node *tempnode;

  if (! *stack)
    return NULL_RTX;

  tempnode = *stack;
  label = tempnode->u.rlabel;
  *stack = (*stack)->chain;
  free (tempnode);

  return label;
}

/* Return the top element of the given STACK.  */

tree
top_label_entry (stack)
     struct label_node **stack;
{
  if (! *stack)
    return NULL_TREE;

  return (*stack)->u.tlabel;
}

/* get an exception label. These must be on the permanent obstack */

rtx
gen_exception_label ()
{
  rtx lab;
  lab = gen_label_rtx ();
  return lab;
}

/* Push a new eh_node entry onto STACK.  */

static void
push_eh_entry (stack)
     struct eh_stack *stack;
{
  struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
  struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));

  rtx rlab = gen_exception_label ();
  entry->finalization = NULL_TREE;
  entry->label_used = 0;
  entry->exception_handler_label = rlab;
  entry->false_label = NULL_RTX;
  if (! flag_new_exceptions)
    entry->outer_context = gen_label_rtx ();
  else
    entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
  entry->rethrow_label = entry->outer_context;

  node->entry = entry;
  node->chain = stack->top;
  stack->top = node;
}

/* push an existing entry onto a stack. */
static void
push_entry (stack, entry)
     struct eh_stack *stack;
     struct eh_entry *entry;
{
  struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
  node->entry = entry;
  node->chain = stack->top;
  stack->top = node;
}

/* Pop an entry from the given STACK.  */

static struct eh_entry *
pop_eh_entry (stack)
     struct eh_stack *stack;
{
  struct eh_node *tempnode;
  struct eh_entry *tempentry;
  
  tempnode = stack->top;
  tempentry = tempnode->entry;
  stack->top = stack->top->chain;
  free (tempnode);

  return tempentry;
}

/* Enqueue an ENTRY onto the given QUEUE.  */

static void
enqueue_eh_entry (queue, entry)
     struct eh_queue *queue;
     struct eh_entry *entry;
{
  struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));

  node->entry = entry;
  node->chain = NULL;

  if (queue->head == NULL)
    {
      queue->head = node;
    }
  else
    {
      queue->tail->chain = node;
    }
  queue->tail = node;
}

/* Dequeue an entry from the given QUEUE.  */

static struct eh_entry *
dequeue_eh_entry (queue)
     struct eh_queue *queue;
{
  struct eh_node *tempnode;
  struct eh_entry *tempentry;

  if (queue->head == NULL)
    return NULL;

  tempnode = queue->head;
  queue->head = queue->head->chain;

  tempentry = tempnode->entry;
  free (tempnode);

  return tempentry;
}

static void
receive_exception_label (handler_label)
     rtx handler_label;
{
  rtx around_label = NULL_RTX;

  if (! flag_new_exceptions || exceptions_via_longjmp)
    {
      around_label = gen_label_rtx ();
      emit_jump (around_label);
      emit_barrier ();
    }

  emit_label (handler_label);
  
  if (! exceptions_via_longjmp)
    {
#ifdef HAVE_exception_receiver
      if (HAVE_exception_receiver)
       emit_insn (gen_exception_receiver ());
      else
#endif
#ifdef HAVE_nonlocal_goto_receiver
      if (HAVE_nonlocal_goto_receiver)
       emit_insn (gen_nonlocal_goto_receiver ());
      else
#endif
       { /* Nothing */ }
    }
  else
    {
#ifndef DONT_USE_BUILTIN_SETJMP
      expand_builtin_setjmp_receiver (handler_label);
#endif
    }

  if (around_label)
    emit_label (around_label);
}

struct func_eh_entry 
{
  int range_number;   /* EH region number from EH NOTE insn's */
  rtx rethrow_label;  /* Label for rethrow */
  struct handler_info *handlers;
};


/* table of function eh regions */
static struct func_eh_entry *function_eh_regions = NULL;
static int num_func_eh_entries = 0;
static int current_func_eh_entry = 0;

#define SIZE_FUNC_EH(X)   (sizeof (struct func_eh_entry) * X)

/* Add a new eh_entry for this function, and base it off of the information
   in the EH_ENTRY parameter. A NULL parameter is invalid. 
   OUTER_CONTEXT is a label which is used for rethrowing. The number
   returned is an number which uniquely identifies this exception range. */

static int 
new_eh_region_entry (note_eh_region, rethrow) 
     int note_eh_region;
     rtx rethrow;
{
  if (current_func_eh_entry == num_func_eh_entries) 
    {
      if (num_func_eh_entries == 0)
        {
          function_eh_regions = 
                        (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
          num_func_eh_entries = 50;
        }
      else
        {
          num_func_eh_entries  = num_func_eh_entries * 3 / 2;
          function_eh_regions = (struct func_eh_entry *) 
            realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
        }
    }
  function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
  if (rethrow == NULL_RTX)
    function_eh_regions[current_func_eh_entry].rethrow_label = 
                                          create_rethrow_ref (note_eh_region);
  else
    function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
  function_eh_regions[current_func_eh_entry].handlers = NULL;

  return current_func_eh_entry++;
}

/* Add new handler information to an exception range. The  first parameter
   specifies the range number (returned from new_eh_entry()). The second
   parameter specifies the handler.  By default the handler is inserted at
   the end of the list. A handler list may contain only ONE NULL_TREE
   typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
   is always output as the LAST handler in the exception table for a region. */

void 
add_new_handler (region, newhandler)
     int region;
     struct handler_info *newhandler;
{
  struct handler_info *last;

  newhandler->next = NULL;
  last = function_eh_regions[region].handlers;
  if (last == NULL)
    function_eh_regions[region].handlers = newhandler;
  else 
    {
      for ( ; ; last = last->next)
	{
	  if (last->type_info == CATCH_ALL_TYPE)
	    pedwarn ("additional handler after ...");
	  if (last->next == NULL)
	    break;
	}
      last->next = newhandler;
    }
}

/* Remove a handler label. The handler label is being deleted, so all
   regions which reference this handler should have it removed from their
   list of possible handlers. Any region which has the final handler
   removed can be deleted. */

void remove_handler (removing_label)
     rtx removing_label;
{
  struct handler_info *handler, *last;
  int x;
  for (x = 0 ; x < current_func_eh_entry; ++x)
    {
      last = NULL;
      handler = function_eh_regions[x].handlers;
      for ( ; handler; last = handler, handler = handler->next)
        if (handler->handler_label == removing_label)
          {
            if (last)
              {
                last->next = handler->next;
                handler = last;
              }
            else
              function_eh_regions[x].handlers = handler->next;
          }
    }
}

/* This function will return a malloc'd pointer to an array of 
   void pointer representing the runtime match values that 
   currently exist in all regions. */

int 
find_all_handler_type_matches (array)
  void ***array;
{
  struct handler_info *handler, *last;
  int x,y;
  void *val;
  void **ptr;
  int max_ptr;
  int n_ptr = 0;

  *array = NULL;

  if (!doing_eh (0) || ! flag_new_exceptions)
    return 0;

  max_ptr = 100;
  ptr = (void **)malloc (max_ptr * sizeof (void *));

  if (ptr == NULL)
    return 0;

  for (x = 0 ; x < current_func_eh_entry; x++)
    {
      last = NULL;
      handler = function_eh_regions[x].handlers;
      for ( ; handler; last = handler, handler = handler->next)
        {
          val = handler->type_info;
          if (val != NULL && val != CATCH_ALL_TYPE)
            {
              /* See if this match value has already been found. */
              for (y = 0; y < n_ptr; y++)
                if (ptr[y] == val)
                  break;

              /* If we break early, we already found this value. */
              if (y < n_ptr)
                continue;

              /* Do we need to allocate more space? */
              if (n_ptr >= max_ptr) 
                {
                  max_ptr += max_ptr / 2;
                  ptr = (void **)realloc (ptr, max_ptr * sizeof (void *));
                  if (ptr == NULL)
                    return 0;
                }
              ptr[n_ptr] = val;
              n_ptr++;
            }
        }
    }
  *array = ptr;
  return n_ptr;
}

/* Create a new handler structure initialized with the handler label and
   typeinfo fields passed in. */

struct handler_info *
get_new_handler (handler, typeinfo)
     rtx handler;
     void *typeinfo;
{
  struct handler_info* ptr;
  ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
  ptr->handler_label = handler;
  ptr->handler_number = CODE_LABEL_NUMBER (handler);
  ptr->type_info = typeinfo;
  ptr->next = NULL;

  return ptr;
}



/* Find the index in function_eh_regions associated with a NOTE region. If
   the region cannot be found, a -1 is returned. This should never happen! */

int 
find_func_region (insn_region)
     int insn_region;
{
  int x;
  for (x = 0; x < current_func_eh_entry; x++)
    if (function_eh_regions[x].range_number == insn_region)
      return x;

  return -1;
}

/* Get a pointer to the first handler in an exception region's list. */

struct handler_info *
get_first_handler (region)
     int region;
{
  return function_eh_regions[find_func_region (region)].handlers;
}

/* Clean out the function_eh_region table and free all memory */

static void
clear_function_eh_region ()
{
  int x;
  struct handler_info *ptr, *next;
  for (x = 0; x < current_func_eh_entry; x++)
    for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
      {
        next = ptr->next;
        free (ptr);
      }
  free (function_eh_regions);
  num_func_eh_entries  = 0;
  current_func_eh_entry = 0;
}

/* Make a duplicate of an exception region by copying all the handlers
   for an exception region. Return the new handler index. The final
   parameter is a routine which maps old labels to new ones. */

int 
duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
     int old_note_eh_region, new_note_eh_region;
     rtx (*map) PARAMS ((rtx));
{
  struct handler_info *ptr, *new_ptr;
  int new_region, region;

  region = find_func_region (old_note_eh_region);
  if (region == -1)
    fatal ("Cannot duplicate non-existant exception region.");

  /* duplicate_eh_handlers may have been called during a symbol remap. */
  new_region = find_func_region (new_note_eh_region);
  if (new_region != -1)
    return (new_region);

  new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);

  ptr = function_eh_regions[region].handlers;

  for ( ; ptr; ptr = ptr->next) 
    {
      new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
      add_new_handler (new_region, new_ptr);
    }

  return new_region;
}


/* Given a rethrow symbol, find the EH region number this is for. */
int 
eh_region_from_symbol (sym)
     rtx sym;
{
  int x;
  if (sym == last_rethrow_symbol)
    return 1;
  for (x = 0; x < current_func_eh_entry; x++)
    if (function_eh_regions[x].rethrow_label == sym)
      return function_eh_regions[x].range_number;
  return -1;
}


/* When inlining/unrolling, we have to map the symbols passed to
   __rethrow as well. This performs the remap. If a symbol isn't foiund,
   the original one is returned. This is not an efficient routine,
   so don't call it on everything!! */
rtx 
rethrow_symbol_map (sym, map)
     rtx sym;
     rtx (*map) PARAMS ((rtx));
{
  int x, y;
  for (x = 0; x < current_func_eh_entry; x++)
    if (function_eh_regions[x].rethrow_label == sym)
      {
        /* We've found the original region, now lets determine which region
           this now maps to. */
        rtx l1 = function_eh_regions[x].handlers->handler_label;
        rtx l2 = map (l1);
        y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
        x = find_func_region (y);  /* Get the new permanent region */
        if (x == -1)  /* Hmm, Doesn't exist yet */
          {
            x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
            /* Since we're mapping it, it must be used. */
            SYMBOL_REF_USED (function_eh_regions[x].rethrow_label) = 1;
          }
        return function_eh_regions[x].rethrow_label;
      }
  return sym;
}

int 
rethrow_used (region)
     int region;
{
  if (flag_new_exceptions)
    {
      rtx lab = function_eh_regions[find_func_region (region)].rethrow_label;
      return (SYMBOL_REF_USED (lab));
    }
  return 0;
}


/* Routine to see if exception handling is turned on.
   DO_WARN is non-zero if we want to inform the user that exception
   handling is turned off. 

   This is used to ensure that -fexceptions has been specified if the
   compiler tries to use any exception-specific functions.  */

int
doing_eh (do_warn)
     int do_warn;
{
  if (! flag_exceptions)
    {
      static int warned = 0;
      if (! warned && do_warn)
	{
	  error ("exception handling disabled, use -fexceptions to enable");
	  warned = 1;
	}
      return 0;
    }
  return 1;
}

/* Given a return address in ADDR, determine the address we should use
   to find the corresponding EH region.  */

rtx
eh_outer_context (addr)
     rtx addr;
{
  /* First mask out any unwanted bits.  */
#ifdef MASK_RETURN_ADDR
  expand_and (addr, MASK_RETURN_ADDR, addr);
#endif

  /* Then adjust to find the real return address.  */
#if defined (RETURN_ADDR_OFFSET)
  addr = plus_constant (addr, RETURN_ADDR_OFFSET);
#endif

  return addr;
}

/* Start a new exception region for a region of code that has a
   cleanup action and push the HANDLER for the region onto
   protect_list. All of the regions created with add_partial_entry
   will be ended when end_protect_partials is invoked.  */

void
add_partial_entry (handler)
     tree handler;
{
  expand_eh_region_start ();

  /* Make sure the entry is on the correct obstack.  */
  push_obstacks_nochange ();
  resume_temporary_allocation ();

  /* Because this is a cleanup action, we may have to protect the handler
     with __terminate.  */
  handler = protect_with_terminate (handler);

  protect_list = tree_cons (NULL_TREE, handler, protect_list);
  pop_obstacks ();
}

/* Emit code to get EH context to current function.  */

static rtx
call_get_eh_context ()
{
  static tree fn;
  tree expr;

  if (fn == NULL_TREE)
    {
      tree fntype;
      fn = get_identifier ("__get_eh_context");
      push_obstacks_nochange ();
      end_temporary_allocation ();
      fntype = build_pointer_type (build_pointer_type
				   (build_pointer_type (void_type_node)));
      fntype = build_function_type (fntype, NULL_TREE);
      fn = build_decl (FUNCTION_DECL, fn, fntype);
      DECL_EXTERNAL (fn) = 1;
      TREE_PUBLIC (fn) = 1;
      DECL_ARTIFICIAL (fn) = 1;
      TREE_READONLY (fn) = 1;
      make_decl_rtl (fn, NULL_PTR, 1);
      assemble_external (fn);
      pop_obstacks ();
    }

  expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
  expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
		expr, NULL_TREE, NULL_TREE);
  TREE_SIDE_EFFECTS (expr) = 1;

  return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
}

/* Get a reference to the EH context.
   We will only generate a register for the current function EH context here,
   and emit a USE insn to mark that this is a EH context register.

   Later, emit_eh_context will emit needed call to __get_eh_context
   in libgcc2, and copy the value to the register we have generated. */

rtx
get_eh_context ()
{
  if (current_function_ehc == 0)
    {
      rtx insn;

      current_function_ehc = gen_reg_rtx (Pmode);
      
      insn = gen_rtx_USE (GET_MODE (current_function_ehc),
			  current_function_ehc);
      insn = emit_insn_before (insn, get_first_nonparm_insn ());

      REG_NOTES (insn)
	= gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
			     REG_NOTES (insn));
    }
  return current_function_ehc;
}
     
/* Get a reference to the dynamic handler chain.  It points to the
   pointer to the next element in the dynamic handler chain.  It ends
   when there are no more elements in the dynamic handler chain, when
   the value is &top_elt from libgcc2.c.  Immediately after the
   pointer, is an area suitable for setjmp/longjmp when
   DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
   __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
   isn't defined. */

rtx
get_dynamic_handler_chain ()
{
  rtx ehc, dhc, result;

  ehc = get_eh_context ();

  /* This is the offset of dynamic_handler_chain in the eh_context struct
     declared in eh-common.h. If its location is change, change this offset */
  dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);

  result = copy_to_reg (dhc);

  /* We don't want a copy of the dcc, but rather, the single dcc.  */
  return gen_rtx_MEM (Pmode, result);
}

/* Get a reference to the dynamic cleanup chain.  It points to the
   pointer to the next element in the dynamic cleanup chain.
   Immediately after the pointer, are two Pmode variables, one for a
   pointer to a function that performs the cleanup action, and the
   second, the argument to pass to that function.  */

rtx
get_dynamic_cleanup_chain ()
{
  rtx dhc, dcc, result;

  dhc = get_dynamic_handler_chain ();
  dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);

  result = copy_to_reg (dcc);

  /* We don't want a copy of the dcc, but rather, the single dcc.  */
  return gen_rtx_MEM (Pmode, result);
}

#ifdef DONT_USE_BUILTIN_SETJMP
/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
   LABEL is an rtx of code CODE_LABEL, in this function.  */

static void
jumpif_rtx (x, label)
     rtx x;
     rtx label;
{
  jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
}
#endif

/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
   We just need to create an element for the cleanup list, and push it
   into the chain.

   A dynamic cleanup is a cleanup action implied by the presence of an
   element on the EH runtime dynamic cleanup stack that is to be
   performed when an exception is thrown.  The cleanup action is
   performed by __sjthrow when an exception is thrown.  Only certain
   actions can be optimized into dynamic cleanup actions.  For the
   restrictions on what actions can be performed using this routine,
   see expand_eh_region_start_tree.  */

static void
start_dynamic_cleanup (func, arg)
     tree func;
     tree arg;
{
  rtx dcc;
  rtx new_func, new_arg;
  rtx x, buf;
  int size;

  /* We allocate enough room for a pointer to the function, and
     one argument.  */
  size = 2;

  /* XXX, FIXME: The stack space allocated this way is too long lived,
     but there is no allocation routine that allocates at the level of
     the last binding contour.  */
  buf = assign_stack_local (BLKmode,
			    GET_MODE_SIZE (Pmode)*(size+1),
			    0);

  buf = change_address (buf, Pmode, NULL_RTX);

  /* Store dcc into the first word of the newly allocated buffer.  */

  dcc = get_dynamic_cleanup_chain ();
  emit_move_insn (buf, dcc);

  /* Store func and arg into the cleanup list element.  */

  new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
						GET_MODE_SIZE (Pmode)));
  new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
					       GET_MODE_SIZE (Pmode)*2));
  x = expand_expr (func, new_func, Pmode, 0);
  if (x != new_func)
    emit_move_insn (new_func, x);

  x = expand_expr (arg, new_arg, Pmode, 0);
  if (x != new_arg)
    emit_move_insn (new_arg, x);

  /* Update the cleanup chain.  */

  emit_move_insn (dcc, XEXP (buf, 0));
}

/* Emit RTL to start a dynamic handler on the EH runtime dynamic
   handler stack.  This should only be used by expand_eh_region_start
   or expand_eh_region_start_tree.  */

static void
start_dynamic_handler ()
{
  rtx dhc, dcc;
  rtx arg, buf;
  int size;

#ifndef DONT_USE_BUILTIN_SETJMP
  /* The number of Pmode words for the setjmp buffer, when using the
     builtin setjmp/longjmp, see expand_builtin, case
     BUILT_IN_LONGJMP.  */
  size = 5;
#else
#ifdef JMP_BUF_SIZE
  size = JMP_BUF_SIZE;
#else
  /* Should be large enough for most systems, if it is not,
     JMP_BUF_SIZE should be defined with the proper value.  It will
     also tend to be larger than necessary for most systems, a more
     optimal port will define JMP_BUF_SIZE.  */
  size = FIRST_PSEUDO_REGISTER+2;
#endif
#endif
  /* XXX, FIXME: The stack space allocated this way is too long lived,
     but there is no allocation routine that allocates at the level of
     the last binding contour.  */
  arg = assign_stack_local (BLKmode,
			    GET_MODE_SIZE (Pmode)*(size+1),
			    0);

  arg = change_address (arg, Pmode, NULL_RTX);

  /* Store dhc into the first word of the newly allocated buffer.  */

  dhc = get_dynamic_handler_chain ();
  dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
					   GET_MODE_SIZE (Pmode)));
  emit_move_insn (arg, dhc);

  /* Zero out the start of the cleanup chain.  */
  emit_move_insn (dcc, const0_rtx);

  /* The jmpbuf starts two words into the area allocated.  */
  buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);

#ifdef DONT_USE_BUILTIN_SETJMP
  {
    rtx x;
    x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_CONST,
                                TYPE_MODE (integer_type_node), 1,
                                buf, Pmode);
    /* If we come back here for a catch, transfer control to the handler.  */
    jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
  }
#else
  expand_builtin_setjmp_setup (buf,
                              ehstack.top->entry->exception_handler_label);
#endif

  /* We are committed to this, so update the handler chain.  */

  emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
}

/* Start an exception handling region for the given cleanup action.
   All instructions emitted after this point are considered to be part
   of the region until expand_eh_region_end is invoked.  CLEANUP is
   the cleanup action to perform.  The return value is true if the
   exception region was optimized away.  If that case,
   expand_eh_region_end does not need to be called for this cleanup,
   nor should it be.

   This routine notices one particular common case in C++ code
   generation, and optimizes it so as to not need the exception
   region.  It works by creating a dynamic cleanup action, instead of
   a using an exception region.  */

int
expand_eh_region_start_tree (decl, cleanup)
     tree decl;
     tree cleanup;
{
  /* This is the old code.  */
  if (! doing_eh (0))
    return 0;

  /* The optimization only applies to actions protected with
     terminate, and only applies if we are using the setjmp/longjmp
     codegen method.  */
  if (exceptions_via_longjmp
      && protect_cleanup_actions_with_terminate)
    {
      tree func, arg;
      tree args;

      /* Ignore any UNSAVE_EXPR.  */
      if (TREE_CODE (cleanup) == UNSAVE_EXPR)
	cleanup = TREE_OPERAND (cleanup, 0);
      
      /* Further, it only applies if the action is a call, if there
	 are 2 arguments, and if the second argument is 2.  */

      if (TREE_CODE (cleanup) == CALL_EXPR
	  && (args = TREE_OPERAND (cleanup, 1))
	  && (func = TREE_OPERAND (cleanup, 0))
	  && (arg = TREE_VALUE (args))
	  && (args = TREE_CHAIN (args))

	  /* is the second argument 2?  */
	  && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
	  && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
	  && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0

	  /* Make sure there are no other arguments.  */
	  && TREE_CHAIN (args) == NULL_TREE)
	{
	  /* Arrange for returns and gotos to pop the entry we make on the
	     dynamic cleanup stack.  */
	  expand_dcc_cleanup (decl);
	  start_dynamic_cleanup (func, arg);
	  return 1;
	}
    }

  expand_eh_region_start_for_decl (decl);
  ehstack.top->entry->finalization = cleanup;

  return 0;
}

/* Just like expand_eh_region_start, except if a cleanup action is
   entered on the cleanup chain, the TREE_PURPOSE of the element put
   on the chain is DECL.  DECL should be the associated VAR_DECL, if
   any, otherwise it should be NULL_TREE.  */

void
expand_eh_region_start_for_decl (decl)
     tree decl;
{
  rtx note;

  /* This is the old code.  */
  if (! doing_eh (0))
    return;

  if (exceptions_via_longjmp)
    {
      /* We need a new block to record the start and end of the
	 dynamic handler chain.  We could always do this, but we
	 really want to permit jumping into such a block, and we want
	 to avoid any errors or performance impact in the SJ EH code
	 for now.  */
      expand_start_bindings (0);

      /* But we don't need or want a new temporary level.  */
      pop_temp_slots ();

      /* Mark this block as created by expand_eh_region_start.  This
	 is so that we can pop the block with expand_end_bindings
	 automatically.  */
      mark_block_as_eh_region ();

      /* Arrange for returns and gotos to pop the entry we make on the
	 dynamic handler stack.  */
      expand_dhc_cleanup (decl);
    }

  push_eh_entry (&ehstack);
  note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
  NOTE_BLOCK_NUMBER (note)
    = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
  if (exceptions_via_longjmp)
    start_dynamic_handler ();
}

/* Start an exception handling region.  All instructions emitted after
   this point are considered to be part of the region until
   expand_eh_region_end is invoked.  */

void
expand_eh_region_start ()
{
  expand_eh_region_start_for_decl (NULL_TREE);
}

/* End an exception handling region.  The information about the region
   is found on the top of ehstack.

   HANDLER is either the cleanup for the exception region, or if we're
   marking the end of a try block, HANDLER is integer_zero_node.

   HANDLER will be transformed to rtl when expand_leftover_cleanups
   is invoked.  */

void
expand_eh_region_end (handler)
     tree handler;
{
  struct eh_entry *entry;
  rtx note;
  int ret, r;

  if (! doing_eh (0))
    return;

  entry = pop_eh_entry (&ehstack);

  note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
  ret = NOTE_BLOCK_NUMBER (note)
    = CODE_LABEL_NUMBER (entry->exception_handler_label);
  if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
      /* We share outer_context between regions; only emit it once.  */
      && INSN_UID (entry->outer_context) == 0)
    {
      rtx label;

      label = gen_label_rtx ();
      emit_jump (label);

      /* Emit a label marking the end of this exception region that
	 is used for rethrowing into the outer context.  */
      emit_label (entry->outer_context);
      expand_internal_throw ();

      emit_label (label);
    }

  entry->finalization = handler;

  /* create region entry in final exception table */
  r = new_eh_region_entry (NOTE_BLOCK_NUMBER (note), entry->rethrow_label);

  enqueue_eh_entry (&ehqueue, entry);

  /* If we have already started ending the bindings, don't recurse.
     This only happens when exceptions_via_longjmp is true.  */
  if (is_eh_region ())
    {
      /* Because we don't need or want a new temporary level and
	 because we didn't create one in expand_eh_region_start,
	 create a fake one now to avoid removing one in
	 expand_end_bindings.  */
      push_temp_slots ();

      mark_block_as_not_eh_region ();

      /* Maybe do this to prevent jumping in and so on...  */
      expand_end_bindings (NULL_TREE, 0, 0);
    }
}

/* End the EH region for a goto fixup.  We only need them in the region-based
   EH scheme.  */

void
expand_fixup_region_start ()
{
  if (! doing_eh (0) || exceptions_via_longjmp)
    return;

  expand_eh_region_start ();
}

/* End the EH region for a goto fixup.  CLEANUP is the cleanup we just
   expanded; to avoid running it twice if it throws, we look through the
   ehqueue for a matching region and rethrow from its outer_context.  */

void
expand_fixup_region_end (cleanup)
     tree cleanup;
{
  struct eh_node *node;
  int dont_issue;

  if (! doing_eh (0) || exceptions_via_longjmp)
    return;

  for (node = ehstack.top; node && node->entry->finalization != cleanup; )
    node = node->chain;
  if (node == 0)
    for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
      node = node->chain;
  if (node == 0)
    abort ();

  /* If the outer context label has not been issued yet, we don't want
     to issue it as a part of this region, unless this is the
     correct region for the outer context. If we did, then the label for
     the outer context will be WITHIN the begin/end labels, 
     and we could get an infinte loop when it tried to rethrow, or just
     generally incorrect execution following a throw. */

  dont_issue = ((INSN_UID (node->entry->outer_context) == 0) 
            && (ehstack.top->entry != node->entry));

  ehstack.top->entry->outer_context = node->entry->outer_context;

  /* Since we are rethrowing to the OUTER region, we know we don't need
     a jump around sequence for this region, so we'll pretend the outer 
     context label has been issued by setting INSN_UID to 1, then clearing
     it again afterwards. */

  if (dont_issue)
    INSN_UID (node->entry->outer_context) = 1;

  /* Just rethrow.  size_zero_node is just a NOP.  */
  expand_eh_region_end (size_zero_node);

  if (dont_issue)
    INSN_UID (node->entry->outer_context) = 0;
}

/* If we are using the setjmp/longjmp EH codegen method, we emit a
   call to __sjthrow.

   Otherwise, we emit a call to __throw and note that we threw
   something, so we know we need to generate the necessary code for
   __throw.

   Before invoking throw, the __eh_pc variable must have been set up
   to contain the PC being thrown from. This address is used by
   __throw to determine which exception region (if any) is
   responsible for handling the exception.  */

void
emit_throw ()
{
  if (exceptions_via_longjmp)
    {
      emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
    }
  else
    {
#ifdef JUMP_TO_THROW
      emit_indirect_jump (throw_libfunc);
#else
      emit_library_call (throw_libfunc, 0, VOIDmode, 0);
#endif
    }
  emit_barrier ();
}

/* Throw the current exception.  If appropriate, this is done by jumping
   to the next handler.  */

void
expand_internal_throw ()
{
  emit_throw ();
}

/* Called from expand_exception_blocks and expand_end_catch_block to
   emit any pending handlers/cleanups queued from expand_eh_region_end.  */

void
expand_leftover_cleanups ()
{
  struct eh_entry *entry;

  while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
    {
      rtx prev;

      /* A leftover try block. Shouldn't be one here.  */
      if (entry->finalization == integer_zero_node)
	abort ();

      /* Output the label for the start of the exception handler.  */

      receive_exception_label (entry->exception_handler_label);

      /* register a handler for this cleanup region */
      add_new_handler (
        find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)), 
        get_new_handler (entry->exception_handler_label, NULL));

      /* And now generate the insns for the handler.  */
      expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);

      prev = get_last_insn ();
      if (prev == NULL || GET_CODE (prev) != BARRIER)
	/* Emit code to throw to the outer context if we fall off
	   the end of the handler.  */
	expand_rethrow (entry->outer_context);

      do_pending_stack_adjust ();
      free (entry);
    }
}

/* Called at the start of a block of try statements.  */
void
expand_start_try_stmts ()
{
  if (! doing_eh (1))
    return;

  expand_eh_region_start ();
}

/* Called to begin a catch clause. The parameter is the object which
   will be passed to the runtime type check routine. */
void 
start_catch_handler (rtime)
     tree rtime;
{
  rtx handler_label;
  int insn_region_num;
  int eh_region_entry;

  if (! doing_eh (1))
    return;

  handler_label = catchstack.top->entry->exception_handler_label;
  insn_region_num = CODE_LABEL_NUMBER (handler_label);
  eh_region_entry = find_func_region (insn_region_num);

  /* If we've already issued this label, pick a new one */
  if (catchstack.top->entry->label_used)
    handler_label = gen_exception_label ();
  else
    catchstack.top->entry->label_used = 1;

  receive_exception_label (handler_label);

  add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));

  if (flag_new_exceptions && ! exceptions_via_longjmp)
    return;

  /* Under the old mechanism, as well as setjmp/longjmp, we need to
     issue code to compare 'rtime' to the value in eh_info, via the
     matching function in eh_info. If its is false, we branch around
     the handler we are about to issue. */

  if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
    {
      rtx call_rtx, rtime_address;

      if (catchstack.top->entry->false_label != NULL_RTX)
        fatal ("Compiler Bug: Never issued previous false_label");
      catchstack.top->entry->false_label = gen_exception_label ();

      rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
#ifdef POINTERS_EXTEND_UNSIGNED
      rtime_address = convert_memory_address (Pmode, rtime_address);
#endif
      rtime_address = force_reg (Pmode, rtime_address);

      /* Now issue the call, and branch around handler if needed */
      call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX, 
                                          0, SImode, 1, rtime_address, Pmode);

      /* Did the function return true? */
      emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
                               GET_MODE (call_rtx), 0, 0,
			       catchstack.top->entry->false_label);
    }
}

/* Called to end a catch clause. If we aren't using the new exception
   model tabel mechanism, we need to issue the branch-around label
   for the end of the catch block. */

void 
end_catch_handler ()
{
  if (! doing_eh (1))
    return;

  if (flag_new_exceptions && ! exceptions_via_longjmp) 
    {
      emit_barrier ();
      return;
    }
  
  /* A NULL label implies the catch clause was a catch all or cleanup */
  if (catchstack.top->entry->false_label == NULL_RTX)
    return;

  emit_label (catchstack.top->entry->false_label);
  catchstack.top->entry->false_label = NULL_RTX;
}

/* Generate RTL for the start of a group of catch clauses. 

   It is responsible for starting a new instruction sequence for the
   instructions in the catch block, and expanding the handlers for the
   internally-generated exception regions nested within the try block
   corresponding to this catch block.  */

void
expand_start_all_catch ()
{
  struct eh_entry *entry;
  tree label;
  rtx outer_context;

  if (! doing_eh (1))
    return;

  outer_context = ehstack.top->entry->outer_context;

  /* End the try block.  */
  expand_eh_region_end (integer_zero_node);

  emit_line_note (input_filename, lineno);
  label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);

  /* The label for the exception handling block that we will save.
     This is Lresume in the documentation.  */
  expand_label (label);
  
  /* Push the label that points to where normal flow is resumed onto
     the top of the label stack.  */
  push_label_entry (&caught_return_label_stack, NULL_RTX, label);

  /* Start a new sequence for all the catch blocks.  We will add this
     to the global sequence catch_clauses when we have completed all
     the handlers in this handler-seq.  */
  start_sequence ();

  entry = dequeue_eh_entry (&ehqueue);
  for ( ; entry->finalization != integer_zero_node;
                                 entry = dequeue_eh_entry (&ehqueue))
    {
      rtx prev;

      /* Emit the label for the cleanup handler for this region, and
	 expand the code for the handler. 

	 Note that a catch region is handled as a side-effect here;
	 for a try block, entry->finalization will contain
	 integer_zero_node, so no code will be generated in the
	 expand_expr call below. But, the label for the handler will
	 still be emitted, so any code emitted after this point will
	 end up being the handler.  */
      
      receive_exception_label (entry->exception_handler_label);

      /* register a handler for this cleanup region */
      add_new_handler (
        find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)), 
        get_new_handler (entry->exception_handler_label, NULL));

      /* And now generate the insns for the cleanup handler.  */
      expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);

      prev = get_last_insn ();
      if (prev == NULL || GET_CODE (prev) != BARRIER)
	/* Code to throw out to outer context when we fall off end
	   of the handler. We can't do this here for catch blocks,
	   so it's done in expand_end_all_catch instead.  */
	expand_rethrow (entry->outer_context);

      do_pending_stack_adjust ();
      free (entry);
    }

  /* At this point, all the cleanups are done, and the ehqueue now has
     the current exception region at its head. We dequeue it, and put it
     on the catch stack. */

    push_entry (&catchstack, entry);

  /* If we are not doing setjmp/longjmp EH, because we are reordered
     out of line, we arrange to rethrow in the outer context.  We need to
     do this because we are not physically within the region, if any, that
     logically contains this catch block.  */
  if (! exceptions_via_longjmp)
    {
      expand_eh_region_start ();
      ehstack.top->entry->outer_context = outer_context;
    }

}

/* Finish up the catch block.  At this point all the insns for the
   catch clauses have already been generated, so we only have to add
   them to the catch_clauses list. We also want to make sure that if
   we fall off the end of the catch clauses that we rethrow to the
   outer EH region.  */

void
expand_end_all_catch ()
{
  rtx new_catch_clause;
  struct eh_entry *entry;

  if (! doing_eh (1))
    return;

  /* Dequeue the current catch clause region. */
  entry = pop_eh_entry (&catchstack);
  free (entry);

  if (! exceptions_via_longjmp)
    {
      rtx outer_context = ehstack.top->entry->outer_context;

      /* Finish the rethrow region.  size_zero_node is just a NOP.  */
      expand_eh_region_end (size_zero_node);
      /* New exceptions handling models will never have a fall through
         of a catch clause */
      if (!flag_new_exceptions)
        expand_rethrow (outer_context);
    }
  else 
    expand_rethrow (NULL_RTX);

  /* Code to throw out to outer context, if we fall off end of catch
     handlers.  This is rethrow (Lresume, same id, same obj) in the
     documentation. We use Lresume because we know that it will throw
     to the correct context.

     In other words, if the catch handler doesn't exit or return, we
     do a "throw" (using the address of Lresume as the point being
     thrown from) so that the outer EH region can then try to process
     the exception.  */

  /* Now we have the complete catch sequence.  */
  new_catch_clause = get_insns ();
  end_sequence ();
  
  /* This level of catch blocks is done, so set up the successful
     catch jump label for the next layer of catch blocks.  */
  pop_label_entry (&caught_return_label_stack);
  pop_label_entry (&outer_context_label_stack);

  /* Add the new sequence of catches to the main one for this function.  */
  push_to_sequence (catch_clauses);
  emit_insns (new_catch_clause);
  catch_clauses = get_insns ();
  end_sequence ();
  
  /* Here we fall through into the continuation code.  */
}

/* Rethrow from the outer context LABEL.  */

static void
expand_rethrow (label)
     rtx label;
{
  if (exceptions_via_longjmp)
    emit_throw ();
  else
    if (flag_new_exceptions)
      {
        rtx insn, val;
        if (label == NULL_RTX)
          label = last_rethrow_symbol;
        emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
        SYMBOL_REF_USED (label) = 1;

	/* Search backwards for the actual call insn.  */
        insn = get_last_insn ();
	while (GET_CODE (insn) != CALL_INSN)
	  insn = PREV_INSN (insn);
	delete_insns_since (insn);
	
        /* Mark the label/symbol on the call. */
        val = GEN_INT (eh_region_from_symbol (label));
        REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, val,
					      REG_NOTES (insn));
        emit_barrier ();
      }
    else
      emit_jump (label);
}

/* End all the pending exception regions on protect_list. The handlers
   will be emitted when expand_leftover_cleanups is invoked.  */

void
end_protect_partials ()
{
  while (protect_list)
    {
      expand_eh_region_end (TREE_VALUE (protect_list));
      protect_list = TREE_CHAIN (protect_list);
    }
}

/* Arrange for __terminate to be called if there is an unhandled throw
   from within E.  */

tree
protect_with_terminate (e)
     tree e;
{
  /* We only need to do this when using setjmp/longjmp EH and the
     language requires it, as otherwise we protect all of the handlers
     at once, if we need to.  */
  if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
    {
      tree handler, result;

      /* All cleanups must be on the function_obstack.  */
      push_obstacks_nochange ();
      resume_temporary_allocation ();

      handler = make_node (RTL_EXPR);
      TREE_TYPE (handler) = void_type_node;
      RTL_EXPR_RTL (handler) = const0_rtx;
      TREE_SIDE_EFFECTS (handler) = 1;
      start_sequence_for_rtl_expr (handler);

      emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
      emit_barrier ();

      RTL_EXPR_SEQUENCE (handler) = get_insns ();
      end_sequence ();
	
      result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
      TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
      TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
      TREE_READONLY (result) = TREE_READONLY (e);

      pop_obstacks ();

      e = result;
    }

  return e;
}

/* The exception table that we build that is used for looking up and
   dispatching exceptions, the current number of entries, and its
   maximum size before we have to extend it. 

   The number in eh_table is the code label number of the exception
   handler for the region. This is added by add_eh_table_entry and
   used by output_exception_table_entry.  */

static int *eh_table = NULL;
static int eh_table_size = 0;
static int eh_table_max_size = 0;

/* Note the need for an exception table entry for region N.  If we
   don't need to output an explicit exception table, avoid all of the
   extra work.

   Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
   (Or NOTE_INSN_EH_REGION_END sometimes)
   N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
   label number of the exception handler for the region.  */

void
add_eh_table_entry (n)
     int n;
{
#ifndef OMIT_EH_TABLE
  if (eh_table_size >= eh_table_max_size)
    {
      if (eh_table)
	{
	  eh_table_max_size += eh_table_max_size>>1;

	  if (eh_table_max_size < 0)
	    abort ();

	  eh_table = (int *) xrealloc (eh_table,
				       eh_table_max_size * sizeof (int));
	}
      else
	{
	  eh_table_max_size = 252;
	  eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
	}
    }
  eh_table[eh_table_size++] = n;
#endif
}

/* Return a non-zero value if we need to output an exception table.

   On some platforms, we don't have to output a table explicitly.
   This routine doesn't mean we don't have one.  */

int
exception_table_p ()
{
  if (eh_table)
    return 1;

  return 0;
}

/* Output the entry of the exception table corresponding to the
   exception region numbered N to file FILE. 

   N is the code label number corresponding to the handler of the
   region.  */

static void
output_exception_table_entry (file, n)
     FILE *file;
     int n;
{
  char buf[256];
  rtx sym;
  struct handler_info *handler = get_first_handler (n);
  int index = find_func_region (n);
  rtx rethrow;
  
 /* form and emit the rethrow label, if needed  */
  rethrow = function_eh_regions[index].rethrow_label;
  if (rethrow != NULL_RTX && !flag_new_exceptions)
      rethrow = NULL_RTX;
  if (rethrow != NULL_RTX && handler == NULL)
    if (! SYMBOL_REF_USED (rethrow))
      rethrow = NULL_RTX;


  for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
    {
      /* rethrow label should indicate the LAST entry for a region */
      if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
        {
          ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
          assemble_label(buf);
          rethrow = NULL_RTX;
        }

      ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
      sym = gen_rtx_SYMBOL_REF (Pmode, buf);
      assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);

      ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
      sym = gen_rtx_SYMBOL_REF (Pmode, buf);
      assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
      
      if (handler == NULL)
        assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
      else
        {
          ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
          sym = gen_rtx_SYMBOL_REF (Pmode, buf);
          assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
        }

      if (flag_new_exceptions)
        {
          if (handler == NULL || handler->type_info == NULL)
            assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
          else
            if (handler->type_info == CATCH_ALL_TYPE)
              assemble_integer (GEN_INT (CATCH_ALL_TYPE), 
                                             POINTER_SIZE / BITS_PER_UNIT, 1);
            else
              output_constant ((tree)(handler->type_info), 
                                                POINTER_SIZE / BITS_PER_UNIT);
        }
      putc ('\n', file);		/* blank line */
      /* We only output the first label under the old scheme */
      if (! flag_new_exceptions || handler == NULL)
        break;
    }
}

/* Output the exception table if we have and need one.  */

static short language_code = 0;
static short version_code = 0; 

/* This routine will set the language code for exceptions. */
void
set_exception_lang_code (code)
     int code;
{
  language_code = code;
}

/* This routine will set the language version code for exceptions. */
void
set_exception_version_code (code)
     int code;
{
  version_code = code;
}


void
output_exception_table ()
{
  int i;
  char buf[256];
  extern FILE *asm_out_file;

  if (! doing_eh (0) || ! eh_table)
    return;

  exception_section ();

  /* Beginning marker for table.  */
  assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
  assemble_label ("__EXCEPTION_TABLE__");

  if (flag_new_exceptions)
    {
      assemble_integer (GEN_INT (NEW_EH_RUNTIME), 
                                        POINTER_SIZE / BITS_PER_UNIT, 1);
      assemble_integer (GEN_INT (language_code), 2 , 1); 
      assemble_integer (GEN_INT (version_code), 2 , 1);

      /* Add enough padding to make sure table aligns on a pointer boundry. */
      i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
      for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
        ;
      if (i != 0)
        assemble_integer (const0_rtx, i , 1);

      /* Generate the label for offset calculations on rethrows */
      ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
      assemble_label(buf);
    }

  for (i = 0; i < eh_table_size; ++i)
    output_exception_table_entry (asm_out_file, eh_table[i]);

  free (eh_table);
  clear_function_eh_region ();

  /* Ending marker for table.  */
  /* Generate the label for end of table. */
  ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
  assemble_label(buf);
  assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);

  /* for binary compatability, the old __throw checked the second
     position for a -1, so we should output at least 2 -1's */
  if (! flag_new_exceptions)
    assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);

  putc ('\n', asm_out_file);		/* blank line */
}

/* Emit code to get EH context.
   
   We have to scan thru the code to find possible EH context registers.
   Inlined functions may use it too, and thus we'll have to be able
   to change them too.

   This is done only if using exceptions_via_longjmp. */

void
emit_eh_context ()
{
  rtx insn;
  rtx ehc = 0;

  if (! doing_eh (0))
    return;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN
	&& GET_CODE (PATTERN (insn)) == USE)
      {
	rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
	if (reg)
	  {
	    rtx insns;
	    
	    start_sequence ();

	    /* If this is the first use insn, emit the call here.  This
	       will always be at the top of our function, because if
	       expand_inline_function notices a REG_EH_CONTEXT note, it
	       adds a use insn to this function as well.  */
	    if (ehc == 0)
	      ehc = call_get_eh_context ();

	    emit_move_insn (XEXP (reg, 0), ehc);
	    insns = get_insns ();
	    end_sequence ();

	    emit_insns_before (insns, insn);

            /* At -O0, we must make the context register stay alive so
               that the stupid.c register allocator doesn't get confused. */
            if (obey_regdecls != 0)
              {
                insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
                emit_insn_before (insns, get_last_insn ());
              }
	  }
      }
}

/* Scan the current insns and build a list of handler labels. The
   resulting list is placed in the global variable exception_handler_labels.

   It is called after the last exception handling region is added to
   the current function (when the rtl is almost all built for the
   current function) and before the jump optimization pass.  */

void
find_exception_handler_labels ()
{
  rtx insn;

  exception_handler_labels = NULL_RTX;

  /* If we aren't doing exception handling, there isn't much to check.  */
  if (! doing_eh (0))
    return;

  /* For each start of a region, add its label to the list.  */

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      struct handler_info* ptr;
      if (GET_CODE (insn) == NOTE
	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
	{
          ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
          for ( ; ptr; ptr = ptr->next) 
            {
              /* make sure label isn't in the list already */
              rtx x;
              for (x = exception_handler_labels; x; x = XEXP (x, 1))
                if (XEXP (x, 0) == ptr->handler_label)
                  break;
              if (! x)
                exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
                               ptr->handler_label, exception_handler_labels);
            }
	}
    }
}

/* Return a value of 1 if the parameter label number is an exception handler
   label. Return 0 otherwise. */

int
is_exception_handler_label (lab)
     int lab;
{
  rtx x;
  for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
    if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
      return 1;
  return 0;
}

/* Perform sanity checking on the exception_handler_labels list.

   Can be called after find_exception_handler_labels is called to
   build the list of exception handlers for the current function and
   before we finish processing the current function.  */

void
check_exception_handler_labels ()
{
  rtx insn, insn2;

  /* If we aren't doing exception handling, there isn't much to check.  */
  if (! doing_eh (0))
    return;

  /* Make sure there is no more than 1 copy of a label */
  for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
    {
      int count = 0;
      for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
        if (XEXP (insn, 0) == XEXP (insn2, 0))
          count++;
      if (count != 1)
       warning ("Counted %d copies of EH region %d in list.\n", count, 
                                        CODE_LABEL_NUMBER (insn));
    }

}

/* This group of functions initializes the exception handling data
   structures at the start of the compilation, initializes the data
   structures at the start of a function, and saves and restores the
   exception handling data structures for the start/end of a nested
   function.  */

/* Toplevel initialization for EH things.  */ 

void
init_eh ()
{
  first_rethrow_symbol = create_rethrow_ref (0);
  final_rethrow = gen_exception_label ();
  last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
}

/* Initialize the per-function EH information.  */

void
init_eh_for_function ()
{
  ehstack.top = 0;
  catchstack.top = 0;
  ehqueue.head = ehqueue.tail = 0;
  catch_clauses = NULL_RTX;
  false_label_stack = 0;
  caught_return_label_stack = 0;
  protect_list = NULL_TREE;
  current_function_ehc = NULL_RTX;
  eh_return_context = NULL_RTX;
  eh_return_stack_adjust = NULL_RTX;
  eh_return_handler = NULL_RTX;
  eh_return_stub_label = NULL_RTX;
}

/* Save some of the per-function EH info into the save area denoted by
   P. 

   This is currently called from save_stmt_status.  */

void
save_eh_status (p)
     struct function *p;
{
  if (p == NULL)
    abort ();

  p->ehstack = ehstack;
  p->catchstack = catchstack;
  p->ehqueue = ehqueue;
  p->catch_clauses = catch_clauses;
  p->false_label_stack = false_label_stack;
  p->caught_return_label_stack = caught_return_label_stack;
  p->protect_list = protect_list;
  p->ehc = current_function_ehc;
  p->eh_return_stub_label = eh_return_stub_label;

  init_eh_for_function ();
}

/* Restore the per-function EH info saved into the area denoted by P.  

   This is currently called from restore_stmt_status.  */

void
restore_eh_status (p)
     struct function *p;
{
  if (p == NULL)
    abort ();

  protect_list = p->protect_list;
  caught_return_label_stack = p->caught_return_label_stack;
  false_label_stack = p->false_label_stack;
  catch_clauses	= p->catch_clauses;
  ehqueue = p->ehqueue;
  ehstack = p->ehstack;
  catchstack = p->catchstack;
  current_function_ehc = p->ehc;
  eh_return_stub_label = p->eh_return_stub_label;
}

/* This section is for the exception handling specific optimization
   pass.  First are the internal routines, and then the main
   optimization pass.  */

/* Determine if the given INSN can throw an exception.  */

static int
can_throw (insn)
     rtx insn;
{
  /* Calls can always potentially throw exceptions.  */
  if (GET_CODE (insn) == CALL_INSN)
    return 1;

  if (asynchronous_exceptions)
    {
      /* If we wanted asynchronous exceptions, then everything but NOTEs
	 and CODE_LABELs could throw.  */
      if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
	return 1;
    }

  return 0;
}

/* Scan a exception region looking for the matching end and then
   remove it if possible. INSN is the start of the region, N is the
   region number, and DELETE_OUTER is to note if anything in this
   region can throw.

   Regions are removed if they cannot possibly catch an exception.
   This is determined by invoking can_throw on each insn within the
   region; if can_throw returns true for any of the instructions, the
   region can catch an exception, since there is an insn within the
   region that is capable of throwing an exception.

   Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
   calls abort if it can't find one.

   Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
   correspond to the region number, or if DELETE_OUTER is NULL.  */

static rtx
scan_region (insn, n, delete_outer)
     rtx insn;
     int n;
     int *delete_outer;
{
  rtx start = insn;

  /* Assume we can delete the region.  */
  int delete = 1;

  int r = find_func_region (n);
  /* Can't delete something which is rethrown to. */
  if (SYMBOL_REF_USED((function_eh_regions[r].rethrow_label)))
    delete = 0;

  if (insn == NULL_RTX
      || GET_CODE (insn) != NOTE
      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
      || NOTE_BLOCK_NUMBER (insn) != n
      || delete_outer == NULL)
    abort ();

  insn = NEXT_INSN (insn);

  /* Look for the matching end.  */
  while (! (GET_CODE (insn) == NOTE
	    && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
    {
      /* If anything can throw, we can't remove the region.  */
      if (delete && can_throw (insn))
	{
	  delete = 0;
	}

      /* Watch out for and handle nested regions.  */
      if (GET_CODE (insn) == NOTE
	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
	{
	  insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
	}

      insn = NEXT_INSN (insn);
    }

  /* The _BEG/_END NOTEs must match and nest.  */
  if (NOTE_BLOCK_NUMBER (insn) != n)
    abort ();

  /* If anything in this exception region can throw, we can throw.  */
  if (! delete)
    *delete_outer = 0;
  else
    {
      /* Delete the start and end of the region.  */
      delete_insn (start);
      delete_insn (insn);

/* We no longer removed labels here, since flow will now remove any
   handler which cannot be called any more. */
   
#if 0
      /* Only do this part if we have built the exception handler
         labels.  */
      if (exception_handler_labels)
	{
	  rtx x, *prev = &exception_handler_labels;

	  /* Find it in the list of handlers.  */
	  for (x = exception_handler_labels; x; x = XEXP (x, 1))
	    {
	      rtx label = XEXP (x, 0);
	      if (CODE_LABEL_NUMBER (label) == n)
		{
		  /* If we are the last reference to the handler,
                     delete it.  */
		  if (--LABEL_NUSES (label) == 0)
		    delete_insn (label);

		  if (optimize)
		    {
		      /* Remove it from the list of exception handler
			 labels, if we are optimizing.  If we are not, then
			 leave it in the list, as we are not really going to
			 remove the region.  */
		      *prev = XEXP (x, 1);
		      XEXP (x, 1) = 0;
		      XEXP (x, 0) = 0;
		    }

		  break;
		}
	      prev = &XEXP (x, 1);
	    }
	}
#endif
    }
  return insn;
}

/* Perform various interesting optimizations for exception handling
   code.

   We look for empty exception regions and make them go (away). The
   jump optimization code will remove the handler if nothing else uses
   it.  */

void
exception_optimize ()
{
  rtx insn;
  int n;

  /* Remove empty regions.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == NOTE
	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
	{
	  /* Since scan_region will return the NOTE_INSN_EH_REGION_END
	     insn, we will indirectly skip through all the insns
	     inbetween. We are also guaranteed that the value of insn
	     returned will be valid, as otherwise scan_region won't
	     return.  */
	  insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
	}
    }
}

/* Various hooks for the DWARF 2 __throw routine.  */

/* Do any necessary initialization to access arbitrary stack frames.
   On the SPARC, this means flushing the register windows.  */

void
expand_builtin_unwind_init ()
{
  /* Set this so all the registers get saved in our frame; we need to be
     able to copy the saved values for any registers from frames we unwind. */
  current_function_has_nonlocal_label = 1;

#ifdef SETUP_FRAME_ADDRESSES
  SETUP_FRAME_ADDRESSES ();
#endif
}

/* Given a value extracted from the return address register or stack slot,
   return the actual address encoded in that value.  */

rtx
expand_builtin_extract_return_addr (addr_tree)
     tree addr_tree;
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
  return eh_outer_context (addr);
}

/* Given an actual address in addr_tree, do any necessary encoding
   and return the value to be stored in the return address register or
   stack slot so the epilogue will return to that address.  */

rtx
expand_builtin_frob_return_addr (addr_tree)
     tree addr_tree;
{
  rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
#ifdef RETURN_ADDR_OFFSET
  addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
#endif
  return addr;
}

/* Choose three registers for communication between the main body of
   __throw and the epilogue (or eh stub) and the exception handler. 
   We must do this with hard registers because the epilogue itself
   will be generated after reload, at which point we may not reference
   pseudos at all.

   The first passes the exception context to the handler.  For this
   we use the return value register for a void*.

   The second holds the stack pointer value to be restored.  For
   this we use the static chain register if it exists and is different
   from the previous, otherwise some arbitrary call-clobbered register.

   The third holds the address of the handler itself.  Here we use
   some arbitrary call-clobbered register.  */

static void
eh_regs (pcontext, psp, pra, outgoing)
     rtx *pcontext, *psp, *pra;
     int outgoing;
{
  rtx rcontext, rsp, rra;
  int i;

#ifdef FUNCTION_OUTGOING_VALUE
  if (outgoing)
    rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
				        current_function_decl);
  else
#endif
    rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
			       current_function_decl);

#ifdef STATIC_CHAIN_REGNUM
  if (outgoing)
    rsp = static_chain_incoming_rtx;
  else
    rsp = static_chain_rtx;
  if (REGNO (rsp) == REGNO (rcontext))
#endif /* STATIC_CHAIN_REGNUM */
    rsp = NULL_RTX;

  if (rsp == NULL_RTX)
    {
      for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
	if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
	  break;
      if (i == FIRST_PSEUDO_REGISTER)
	abort();

      rsp = gen_rtx_REG (Pmode, i);
    }

  for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
    if (call_used_regs[i] && ! fixed_regs[i]
	&& i != REGNO (rcontext) && i != REGNO (rsp))
      break;
  if (i == FIRST_PSEUDO_REGISTER)
    abort();

  rra = gen_rtx_REG (Pmode, i);

  *pcontext = rcontext;
  *psp = rsp;
  *pra = rra;
}

/* Retrieve the register which contains the pointer to the eh_context
   structure set the __throw. */

rtx 
get_reg_for_handler ()
{
  rtx reg1;
  reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
			   current_function_decl);
  return reg1;
}

/* Set up the epilogue with the magic bits we'll need to return to the
   exception handler.  */

void
expand_builtin_eh_return (context, stack, handler)
    tree context, stack, handler;
{
  if (eh_return_context)
    error("Duplicate call to __builtin_eh_return");

  eh_return_context
    = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
  eh_return_stack_adjust
    = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
  eh_return_handler
    = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
}

void
expand_eh_return ()
{
  rtx reg1, reg2, reg3;
  rtx stub_start, after_stub;
  rtx ra, tmp;

  if (!eh_return_context)
    return;

  current_function_cannot_inline = N_("function uses __builtin_eh_return");

  eh_regs (&reg1, &reg2, &reg3, 1);
#ifdef POINTERS_EXTEND_UNSIGNED
  eh_return_context = convert_memory_address (Pmode, eh_return_context);
  eh_return_stack_adjust = 
      convert_memory_address (Pmode, eh_return_stack_adjust);
  eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
#endif
  emit_move_insn (reg1, eh_return_context);
  emit_move_insn (reg2, eh_return_stack_adjust);
  emit_move_insn (reg3, eh_return_handler);

  /* Talk directly to the target's epilogue code when possible.  */

#ifdef HAVE_eh_epilogue
  if (HAVE_eh_epilogue)
    {
      emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
      return;
    }
#endif

  /* Otherwise, use the same stub technique we had before.  */

  eh_return_stub_label = stub_start = gen_label_rtx ();
  after_stub = gen_label_rtx ();

  /* Set the return address to the stub label.  */

  ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
				   0, hard_frame_pointer_rtx);
  if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
    abort();

  tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start)); 
#ifdef RETURN_ADDR_OFFSET
  tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
#endif
  tmp = force_operand (tmp, ra);
  if (tmp != ra)
    emit_move_insn (ra, tmp);

  /* Indicate that the registers are in fact used.  */
  emit_insn (gen_rtx_USE (VOIDmode, reg1));
  emit_insn (gen_rtx_USE (VOIDmode, reg2));
  emit_insn (gen_rtx_USE (VOIDmode, reg3));
  if (GET_CODE (ra) == REG)
    emit_insn (gen_rtx_USE (VOIDmode, ra));

  /* Generate the stub.  */

  emit_jump (after_stub);
  emit_label (stub_start);

  eh_regs (&reg1, &reg2, &reg3, 0);
  adjust_stack (reg2);
  emit_indirect_jump (reg3);

  emit_label (after_stub);
}


/* This contains the code required to verify whether arbitrary instructions
   are in the same exception region. */

static int *insn_eh_region = (int *)0;
static int maximum_uid;

static void
set_insn_eh_region (first, region_num)
     rtx *first;
     int region_num;
{
  rtx insn;
  int rnum;

  for (insn = *first; insn; insn = NEXT_INSN (insn))
    {
      if ((GET_CODE (insn) == NOTE) && 
                        (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
        {
          rnum = NOTE_BLOCK_NUMBER (insn);
          insn_eh_region[INSN_UID (insn)] =  rnum;
          insn = NEXT_INSN (insn);
          set_insn_eh_region (&insn, rnum);
          /* Upon return, insn points to the EH_REGION_END of nested region */
          continue;
        }
      insn_eh_region[INSN_UID (insn)] = region_num;
      if ((GET_CODE (insn) == NOTE) && 
            (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
        break;
    }
  *first = insn;
}

/* Free the insn table, an make sure it cannot be used again. */

void 
free_insn_eh_region () 
{
  if (!doing_eh (0))
    return;

  if (insn_eh_region)
    {
      free (insn_eh_region);
      insn_eh_region = (int *)0;
    }
}

/* Initialize the table. max_uid must be calculated and handed into 
   this routine. If it is unavailable, passing a value of 0 will 
   cause this routine to calculate it as well. */

void 
init_insn_eh_region (first, max_uid)
     rtx first;
     int max_uid;
{
  rtx insn;

  if (!doing_eh (0))
    return;

  if (insn_eh_region)
    free_insn_eh_region();

  if (max_uid == 0) 
    for (insn = first; insn; insn = NEXT_INSN (insn))
      if (INSN_UID (insn) > max_uid)       /* find largest UID */
        max_uid = INSN_UID (insn);

  maximum_uid = max_uid;
  insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
  insn = first;
  set_insn_eh_region (&insn, 0);
}


/* Check whether 2 instructions are within the same region. */

int 
in_same_eh_region (insn1, insn2) 
     rtx insn1, insn2;
{
  int ret, uid1, uid2;

  /* If no exceptions, instructions are always in same region. */
  if (!doing_eh (0))
    return 1;

  /* If the table isn't allocated, assume the worst. */
  if (!insn_eh_region)  
    return 0;

  uid1 = INSN_UID (insn1);
  uid2 = INSN_UID (insn2);

  /* if instructions have been allocated beyond the end, either
     the table is out of date, or this is a late addition, or
     something... Assume the worst. */
  if (uid1 > maximum_uid || uid2 > maximum_uid)
    return 0;

  ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
  return ret;
}

OpenPOWER on IntegriCloud