summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/dwarf2out.c
blob: 3300bdecbe2bbbccbc9d02cc9c8794fb901ed752 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
/* Output Dwarf2 format symbol table information from GCC.
   Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
   2003, 2004, 2005, 2006 Free Software Foundation, Inc.
   Contributed by Gary Funck (gary@intrepid.com).
   Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
   Extensively modified by Jason Merrill (jason@cygnus.com).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

/* TODO: Emit .debug_line header even when there are no functions, since
	   the file numbers are used by .debug_info.  Alternately, leave
	   out locations for types and decls.
	 Avoid talking about ctors and op= for PODs.
	 Factor out common prologue sequences into multiple CIEs.  */

/* The first part of this file deals with the DWARF 2 frame unwind
   information, which is also used by the GCC efficient exception handling
   mechanism.  The second part, controlled only by an #ifdef
   DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
   information.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "version.h"
#include "flags.h"
#include "real.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "insn-config.h"
#include "reload.h"
#include "function.h"
#include "output.h"
#include "expr.h"
#include "libfuncs.h"
#include "except.h"
#include "dwarf2.h"
#include "dwarf2out.h"
#include "dwarf2asm.h"
#include "toplev.h"
#include "varray.h"
#include "ggc.h"
#include "md5.h"
#include "tm_p.h"
#include "diagnostic.h"
#include "debug.h"
#include "target.h"
#include "langhooks.h"
#include "hashtab.h"
#include "cgraph.h"
#include "input.h"

#ifdef DWARF2_DEBUGGING_INFO
static void dwarf2out_source_line (unsigned int, const char *);
#endif

/* DWARF2 Abbreviation Glossary:
   CFA = Canonical Frame Address
	   a fixed address on the stack which identifies a call frame.
	   We define it to be the value of SP just before the call insn.
	   The CFA register and offset, which may change during the course
	   of the function, are used to calculate its value at runtime.
   CFI = Call Frame Instruction
	   an instruction for the DWARF2 abstract machine
   CIE = Common Information Entry
	   information describing information common to one or more FDEs
   DIE = Debugging Information Entry
   FDE = Frame Description Entry
	   information describing the stack call frame, in particular,
	   how to restore registers

   DW_CFA_... = DWARF2 CFA call frame instruction
   DW_TAG_... = DWARF2 DIE tag */

#ifndef DWARF2_FRAME_INFO
# ifdef DWARF2_DEBUGGING_INFO
#  define DWARF2_FRAME_INFO \
  (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
# else
#  define DWARF2_FRAME_INFO 0
# endif
#endif

/* Map register numbers held in the call frame info that gcc has
   collected using DWARF_FRAME_REGNUM to those that should be output in
   .debug_frame and .eh_frame.  */
#ifndef DWARF2_FRAME_REG_OUT
#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
#endif

/* Decide whether we want to emit frame unwind information for the current
   translation unit.  */

int
dwarf2out_do_frame (void)
{
  /* We want to emit correct CFA location expressions or lists, so we
     have to return true if we're going to output debug info, even if
     we're not going to output frame or unwind info.  */
  return (write_symbols == DWARF2_DEBUG
	  || write_symbols == VMS_AND_DWARF2_DEBUG
	  || DWARF2_FRAME_INFO
#ifdef DWARF2_UNWIND_INFO
	  || (DWARF2_UNWIND_INFO
	      && (flag_unwind_tables
		  || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
#endif
	  );
}

/* The size of the target's pointer type.  */
#ifndef PTR_SIZE
#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
#endif

/* Array of RTXes referenced by the debugging information, which therefore
   must be kept around forever.  */
static GTY(()) VEC(rtx,gc) *used_rtx_array;

/* A pointer to the base of a list of incomplete types which might be
   completed at some later time.  incomplete_types_list needs to be a
   VEC(tree,gc) because we want to tell the garbage collector about
   it.  */
static GTY(()) VEC(tree,gc) *incomplete_types;

/* A pointer to the base of a table of references to declaration
   scopes.  This table is a display which tracks the nesting
   of declaration scopes at the current scope and containing
   scopes.  This table is used to find the proper place to
   define type declaration DIE's.  */
static GTY(()) VEC(tree,gc) *decl_scope_table;

/* Pointers to various DWARF2 sections.  */
static GTY(()) section *debug_info_section;
static GTY(()) section *debug_abbrev_section;
static GTY(()) section *debug_aranges_section;
static GTY(()) section *debug_macinfo_section;
static GTY(()) section *debug_line_section;
static GTY(()) section *debug_loc_section;
static GTY(()) section *debug_pubnames_section;
static GTY(()) section *debug_pubtypes_section;
static GTY(()) section *debug_str_section;
static GTY(()) section *debug_ranges_section;
static GTY(()) section *debug_frame_section;

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

typedef struct dw_cfi_struct *dw_cfi_ref;
typedef struct dw_fde_struct *dw_fde_ref;
typedef union  dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;

/* Call frames are described using a sequence of Call Frame
   Information instructions.  The register number, offset
   and address fields are provided as possible operands;
   their use is selected by the opcode field.  */

enum dw_cfi_oprnd_type {
  dw_cfi_oprnd_unused,
  dw_cfi_oprnd_reg_num,
  dw_cfi_oprnd_offset,
  dw_cfi_oprnd_addr,
  dw_cfi_oprnd_loc
};

typedef union dw_cfi_oprnd_struct GTY(())
{
  unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
  HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
  const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
  struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
}
dw_cfi_oprnd;

typedef struct dw_cfi_struct GTY(())
{
  dw_cfi_ref dw_cfi_next;
  enum dwarf_call_frame_info dw_cfi_opc;
  dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
    dw_cfi_oprnd1;
  dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
    dw_cfi_oprnd2;
}
dw_cfi_node;

/* This is how we define the location of the CFA. We use to handle it
   as REG + OFFSET all the time,  but now it can be more complex.
   It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
   Instead of passing around REG and OFFSET, we pass a copy
   of this structure.  */
typedef struct cfa_loc GTY(())
{
  HOST_WIDE_INT offset;
  HOST_WIDE_INT base_offset;
  unsigned int reg;
  int indirect;            /* 1 if CFA is accessed via a dereference.  */
} dw_cfa_location;

/* All call frame descriptions (FDE's) in the GCC generated DWARF
   refer to a single Common Information Entry (CIE), defined at
   the beginning of the .debug_frame section.  This use of a single
   CIE obviates the need to keep track of multiple CIE's
   in the DWARF generation routines below.  */

typedef struct dw_fde_struct GTY(())
{
  tree decl;
  const char *dw_fde_begin;
  const char *dw_fde_current_label;
  const char *dw_fde_end;
  const char *dw_fde_hot_section_label;
  const char *dw_fde_hot_section_end_label;
  const char *dw_fde_unlikely_section_label;
  const char *dw_fde_unlikely_section_end_label;
  bool dw_fde_switched_sections;
  dw_cfi_ref dw_fde_cfi;
  unsigned funcdef_number;
  unsigned all_throwers_are_sibcalls : 1;
  unsigned nothrow : 1;
  unsigned uses_eh_lsda : 1;
}
dw_fde_node;

/* Maximum size (in bytes) of an artificially generated label.  */
#define MAX_ARTIFICIAL_LABEL_BYTES	30

/* The size of addresses as they appear in the Dwarf 2 data.
   Some architectures use word addresses to refer to code locations,
   but Dwarf 2 info always uses byte addresses.  On such machines,
   Dwarf 2 addresses need to be larger than the architecture's
   pointers.  */
#ifndef DWARF2_ADDR_SIZE
#define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
#endif

/* The size in bytes of a DWARF field indicating an offset or length
   relative to a debug info section, specified to be 4 bytes in the
   DWARF-2 specification.  The SGI/MIPS ABI defines it to be the same
   as PTR_SIZE.  */

#ifndef DWARF_OFFSET_SIZE
#define DWARF_OFFSET_SIZE 4
#endif

/* According to the (draft) DWARF 3 specification, the initial length
   should either be 4 or 12 bytes.  When it's 12 bytes, the first 4
   bytes are 0xffffffff, followed by the length stored in the next 8
   bytes.

   However, the SGI/MIPS ABI uses an initial length which is equal to
   DWARF_OFFSET_SIZE.  It is defined (elsewhere) accordingly.  */

#ifndef DWARF_INITIAL_LENGTH_SIZE
#define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
#endif

#define DWARF_VERSION 2

/* Round SIZE up to the nearest BOUNDARY.  */
#define DWARF_ROUND(SIZE,BOUNDARY) \
  ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))

/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
#ifndef DWARF_CIE_DATA_ALIGNMENT
#ifdef STACK_GROWS_DOWNWARD
#define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
#else
#define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
#endif
#endif

/* CIE identifier.  */
#if HOST_BITS_PER_WIDE_INT >= 64
#define DWARF_CIE_ID \
  (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
#else
#define DWARF_CIE_ID DW_CIE_ID
#endif

/* A pointer to the base of a table that contains frame description
   information for each routine.  */
static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;

/* Number of elements currently allocated for fde_table.  */
static GTY(()) unsigned fde_table_allocated;

/* Number of elements in fde_table currently in use.  */
static GTY(()) unsigned fde_table_in_use;

/* Size (in elements) of increments by which we may expand the
   fde_table.  */
#define FDE_TABLE_INCREMENT 256

/* A list of call frame insns for the CIE.  */
static GTY(()) dw_cfi_ref cie_cfi_head;

#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
/* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
   attribute that accelerates the lookup of the FDE associated
   with the subprogram.  This variable holds the table index of the FDE
   associated with the current function (body) definition.  */
static unsigned current_funcdef_fde;
#endif

struct indirect_string_node GTY(())
{
  const char *str;
  unsigned int refcount;
  unsigned int form;
  char *label;
};

static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;

static GTY(()) int dw2_string_counter;
static GTY(()) unsigned long dwarf2out_cfi_label_num;

#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)

/* Forward declarations for functions defined in this file.  */

static char *stripattributes (const char *);
static const char *dwarf_cfi_name (unsigned);
static dw_cfi_ref new_cfi (void);
static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
static void add_fde_cfi (const char *, dw_cfi_ref);
static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
static void lookup_cfa (dw_cfa_location *);
static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
static void initial_return_save (rtx);
static HOST_WIDE_INT stack_adjust_offset (rtx);
static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
static void output_call_frame_info (int);
static void dwarf2out_stack_adjust (rtx, bool);
static void flush_queued_reg_saves (void);
static bool clobbers_queued_reg_save (rtx);
static void dwarf2out_frame_debug_expr (rtx, const char *);

/* Support for complex CFA locations.  */
static void output_cfa_loc (dw_cfi_ref);
static void get_cfa_from_loc_descr (dw_cfa_location *,
				    struct dw_loc_descr_struct *);
static struct dw_loc_descr_struct *build_cfa_loc
  (dw_cfa_location *, HOST_WIDE_INT);
static void def_cfa_1 (const char *, dw_cfa_location *);

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

/* Data and reference forms for relocatable data.  */
#define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
#define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)

#ifndef DEBUG_FRAME_SECTION
#define DEBUG_FRAME_SECTION	".debug_frame"
#endif

#ifndef FUNC_BEGIN_LABEL
#define FUNC_BEGIN_LABEL	"LFB"
#endif

#ifndef FUNC_END_LABEL
#define FUNC_END_LABEL		"LFE"
#endif

#ifndef FRAME_BEGIN_LABEL
#define FRAME_BEGIN_LABEL	"Lframe"
#endif
#define CIE_AFTER_SIZE_LABEL	"LSCIE"
#define CIE_END_LABEL		"LECIE"
#define FDE_LABEL		"LSFDE"
#define FDE_AFTER_SIZE_LABEL	"LASFDE"
#define FDE_END_LABEL		"LEFDE"
#define LINE_NUMBER_BEGIN_LABEL	"LSLT"
#define LINE_NUMBER_END_LABEL	"LELT"
#define LN_PROLOG_AS_LABEL	"LASLTP"
#define LN_PROLOG_END_LABEL	"LELTP"
#define DIE_LABEL_PREFIX	"DW"

/* The DWARF 2 CFA column which tracks the return address.  Normally this
   is the column for PC, or the first column after all of the hard
   registers.  */
#ifndef DWARF_FRAME_RETURN_COLUMN
#ifdef PC_REGNUM
#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (PC_REGNUM)
#else
#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGISTERS
#endif
#endif

/* The mapping from gcc register number to DWARF 2 CFA column number.  By
   default, we just provide columns for all registers.  */
#ifndef DWARF_FRAME_REGNUM
#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
#endif

/* Hook used by __throw.  */

rtx
expand_builtin_dwarf_sp_column (void)
{
  unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
  return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
}

/* Return a pointer to a copy of the section string name S with all
   attributes stripped off, and an asterisk prepended (for assemble_name).  */

static inline char *
stripattributes (const char *s)
{
  char *stripped = XNEWVEC (char, strlen (s) + 2);
  char *p = stripped;

  *p++ = '*';

  while (*s && *s != ',')
    *p++ = *s++;

  *p = '\0';
  return stripped;
}

/* Generate code to initialize the register size table.  */

void
expand_builtin_init_dwarf_reg_sizes (tree address)
{
  unsigned int i;
  enum machine_mode mode = TYPE_MODE (char_type_node);
  rtx addr = expand_normal (address);
  rtx mem = gen_rtx_MEM (BLKmode, addr);
  bool wrote_return_column = false;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
      
      if (rnum < DWARF_FRAME_REGISTERS)
	{
	  HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
	  enum machine_mode save_mode = reg_raw_mode[i];
	  HOST_WIDE_INT size;
	  
	  if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
	    save_mode = choose_hard_reg_mode (i, 1, true);
	  if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
	    {
	      if (save_mode == VOIDmode)
		continue;
	      wrote_return_column = true;
	    }
	  size = GET_MODE_SIZE (save_mode);
	  if (offset < 0)
	    continue;
	  
	  emit_move_insn (adjust_address (mem, mode, offset),
			  gen_int_mode (size, mode));
	}
    }

#ifdef DWARF_ALT_FRAME_RETURN_COLUMN
  gcc_assert (wrote_return_column);
  i = DWARF_ALT_FRAME_RETURN_COLUMN;
  wrote_return_column = false;
#else
  i = DWARF_FRAME_RETURN_COLUMN;
#endif

  if (! wrote_return_column)
    {
      enum machine_mode save_mode = Pmode;
      HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
      HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
      emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
    }
}

/* Convert a DWARF call frame info. operation to its string name */

static const char *
dwarf_cfi_name (unsigned int cfi_opc)
{
  switch (cfi_opc)
    {
    case DW_CFA_advance_loc:
      return "DW_CFA_advance_loc";
    case DW_CFA_offset:
      return "DW_CFA_offset";
    case DW_CFA_restore:
      return "DW_CFA_restore";
    case DW_CFA_nop:
      return "DW_CFA_nop";
    case DW_CFA_set_loc:
      return "DW_CFA_set_loc";
    case DW_CFA_advance_loc1:
      return "DW_CFA_advance_loc1";
    case DW_CFA_advance_loc2:
      return "DW_CFA_advance_loc2";
    case DW_CFA_advance_loc4:
      return "DW_CFA_advance_loc4";
    case DW_CFA_offset_extended:
      return "DW_CFA_offset_extended";
    case DW_CFA_restore_extended:
      return "DW_CFA_restore_extended";
    case DW_CFA_undefined:
      return "DW_CFA_undefined";
    case DW_CFA_same_value:
      return "DW_CFA_same_value";
    case DW_CFA_register:
      return "DW_CFA_register";
    case DW_CFA_remember_state:
      return "DW_CFA_remember_state";
    case DW_CFA_restore_state:
      return "DW_CFA_restore_state";
    case DW_CFA_def_cfa:
      return "DW_CFA_def_cfa";
    case DW_CFA_def_cfa_register:
      return "DW_CFA_def_cfa_register";
    case DW_CFA_def_cfa_offset:
      return "DW_CFA_def_cfa_offset";

    /* DWARF 3 */
    case DW_CFA_def_cfa_expression:
      return "DW_CFA_def_cfa_expression";
    case DW_CFA_expression:
      return "DW_CFA_expression";
    case DW_CFA_offset_extended_sf:
      return "DW_CFA_offset_extended_sf";
    case DW_CFA_def_cfa_sf:
      return "DW_CFA_def_cfa_sf";
    case DW_CFA_def_cfa_offset_sf:
      return "DW_CFA_def_cfa_offset_sf";

    /* SGI/MIPS specific */
    case DW_CFA_MIPS_advance_loc8:
      return "DW_CFA_MIPS_advance_loc8";

    /* GNU extensions */
    case DW_CFA_GNU_window_save:
      return "DW_CFA_GNU_window_save";
    case DW_CFA_GNU_args_size:
      return "DW_CFA_GNU_args_size";
    case DW_CFA_GNU_negative_offset_extended:
      return "DW_CFA_GNU_negative_offset_extended";

    default:
      return "DW_CFA_<unknown>";
    }
}

/* Return a pointer to a newly allocated Call Frame Instruction.  */

static inline dw_cfi_ref
new_cfi (void)
{
  dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));

  cfi->dw_cfi_next = NULL;
  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
  cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;

  return cfi;
}

/* Add a Call Frame Instruction to list of instructions.  */

static inline void
add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
{
  dw_cfi_ref *p;

  /* Find the end of the chain.  */
  for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
    ;

  *p = cfi;
}

/* Generate a new label for the CFI info to refer to.  */

char *
dwarf2out_cfi_label (void)
{
  static char label[20];

  ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
  ASM_OUTPUT_LABEL (asm_out_file, label);
  return label;
}

/* Add CFI to the current fde at the PC value indicated by LABEL if specified,
   or to the CIE if LABEL is NULL.  */

static void
add_fde_cfi (const char *label, dw_cfi_ref cfi)
{
  if (label)
    {
      dw_fde_ref fde = &fde_table[fde_table_in_use - 1];

      if (*label == 0)
	label = dwarf2out_cfi_label ();

      if (fde->dw_fde_current_label == NULL
	  || strcmp (label, fde->dw_fde_current_label) != 0)
	{
	  dw_cfi_ref xcfi;

	  label = xstrdup (label);

	  /* Set the location counter to the new label.  */
	  xcfi = new_cfi ();
	  /* If we have a current label, advance from there, otherwise
	     set the location directly using set_loc.  */
	  xcfi->dw_cfi_opc = fde->dw_fde_current_label
			     ? DW_CFA_advance_loc4
			     : DW_CFA_set_loc;
	  xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
	  add_cfi (&fde->dw_fde_cfi, xcfi);

	  fde->dw_fde_current_label = label;
	}

      add_cfi (&fde->dw_fde_cfi, cfi);
    }

  else
    add_cfi (&cie_cfi_head, cfi);
}

/* Subroutine of lookup_cfa.  */

static void
lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
{
  switch (cfi->dw_cfi_opc)
    {
    case DW_CFA_def_cfa_offset:
      loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
      break;
    case DW_CFA_def_cfa_offset_sf:
      loc->offset
	= cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
      break;
    case DW_CFA_def_cfa_register:
      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
      break;
    case DW_CFA_def_cfa:
      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
      loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
      break;
    case DW_CFA_def_cfa_sf:
      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
      loc->offset
	= cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
      break;
    case DW_CFA_def_cfa_expression:
      get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
      break;
    default:
      break;
    }
}

/* Find the previous value for the CFA.  */

static void
lookup_cfa (dw_cfa_location *loc)
{
  dw_cfi_ref cfi;

  loc->reg = INVALID_REGNUM;
  loc->offset = 0;
  loc->indirect = 0;
  loc->base_offset = 0;

  for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
    lookup_cfa_1 (cfi, loc);

  if (fde_table_in_use)
    {
      dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
      for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
	lookup_cfa_1 (cfi, loc);
    }
}

/* The current rule for calculating the DWARF2 canonical frame address.  */
static dw_cfa_location cfa;

/* The register used for saving registers to the stack, and its offset
   from the CFA.  */
static dw_cfa_location cfa_store;

/* The running total of the size of arguments pushed onto the stack.  */
static HOST_WIDE_INT args_size;

/* The last args_size we actually output.  */
static HOST_WIDE_INT old_args_size;

/* Entry point to update the canonical frame address (CFA).
   LABEL is passed to add_fde_cfi.  The value of CFA is now to be
   calculated from REG+OFFSET.  */

void
dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
{
  dw_cfa_location loc;
  loc.indirect = 0;
  loc.base_offset = 0;
  loc.reg = reg;
  loc.offset = offset;
  def_cfa_1 (label, &loc);
}

/* Determine if two dw_cfa_location structures define the same data.  */

static bool
cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
{
  return (loc1->reg == loc2->reg
	  && loc1->offset == loc2->offset
	  && loc1->indirect == loc2->indirect
	  && (loc1->indirect == 0
	      || loc1->base_offset == loc2->base_offset));
}

/* This routine does the actual work.  The CFA is now calculated from
   the dw_cfa_location structure.  */

static void
def_cfa_1 (const char *label, dw_cfa_location *loc_p)
{
  dw_cfi_ref cfi;
  dw_cfa_location old_cfa, loc;

  cfa = *loc_p;
  loc = *loc_p;

  if (cfa_store.reg == loc.reg && loc.indirect == 0)
    cfa_store.offset = loc.offset;

  loc.reg = DWARF_FRAME_REGNUM (loc.reg);
  lookup_cfa (&old_cfa);

  /* If nothing changed, no need to issue any call frame instructions.  */
  if (cfa_equal_p (&loc, &old_cfa))
    return;

  cfi = new_cfi ();

  if (loc.reg == old_cfa.reg && !loc.indirect)
    {
      /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
	 the CFA register did not change but the offset did.  */
      if (loc.offset < 0)
	{
	  HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
	  gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);

	  cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
	  cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
	}
      else
	{
	  cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
	  cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
	}
    }

#ifndef MIPS_DEBUGGING_INFO  /* SGI dbx thinks this means no offset.  */
  else if (loc.offset == old_cfa.offset
	   && old_cfa.reg != INVALID_REGNUM
	   && !loc.indirect)
    {
      /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
	 indicating the CFA register has changed to <register> but the
	 offset has not changed.  */
      cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
      cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
    }
#endif

  else if (loc.indirect == 0)
    {
      /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
	 indicating the CFA register has changed to <register> with
	 the specified offset.  */
      if (loc.offset < 0)
	{
	  HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
	  gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);

	  cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
	  cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
	}
      else
	{
	  cfi->dw_cfi_opc = DW_CFA_def_cfa;
	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
	  cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
	}
    }
  else
    {
      /* Construct a DW_CFA_def_cfa_expression instruction to
	 calculate the CFA using a full location expression since no
	 register-offset pair is available.  */
      struct dw_loc_descr_struct *loc_list;

      cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
      loc_list = build_cfa_loc (&loc, 0);
      cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
    }

  add_fde_cfi (label, cfi);
}

/* Add the CFI for saving a register.  REG is the CFA column number.
   LABEL is passed to add_fde_cfi.
   If SREG is -1, the register is saved at OFFSET from the CFA;
   otherwise it is saved in SREG.  */

static void
reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
{
  dw_cfi_ref cfi = new_cfi ();

  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;

  if (sreg == INVALID_REGNUM)
    {
      if (reg & ~0x3f)
	/* The register number won't fit in 6 bits, so we have to use
	   the long form.  */
	cfi->dw_cfi_opc = DW_CFA_offset_extended;
      else
	cfi->dw_cfi_opc = DW_CFA_offset;

#ifdef ENABLE_CHECKING
      {
	/* If we get an offset that is not a multiple of
	   DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
	   definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
	   description.  */
	HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;

	gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
      }
#endif
      offset /= DWARF_CIE_DATA_ALIGNMENT;
      if (offset < 0)
	cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;

      cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
    }
  else if (sreg == reg)
    cfi->dw_cfi_opc = DW_CFA_same_value;
  else
    {
      cfi->dw_cfi_opc = DW_CFA_register;
      cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
    }

  add_fde_cfi (label, cfi);
}

/* Add the CFI for saving a register window.  LABEL is passed to reg_save.
   This CFI tells the unwinder that it needs to restore the window registers
   from the previous frame's window save area.

   ??? Perhaps we should note in the CIE where windows are saved (instead of
   assuming 0(cfa)) and what registers are in the window.  */

void
dwarf2out_window_save (const char *label)
{
  dw_cfi_ref cfi = new_cfi ();

  cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
  add_fde_cfi (label, cfi);
}

/* Add a CFI to update the running total of the size of arguments
   pushed onto the stack.  */

void
dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
{
  dw_cfi_ref cfi;

  if (size == old_args_size)
    return;

  old_args_size = size;

  cfi = new_cfi ();
  cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
  cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
  add_fde_cfi (label, cfi);
}

/* Entry point for saving a register to the stack.  REG is the GCC register
   number.  LABEL and OFFSET are passed to reg_save.  */

void
dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
{
  reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
}

/* Entry point for saving the return address in the stack.
   LABEL and OFFSET are passed to reg_save.  */

void
dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
{
  reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
}

/* Entry point for saving the return address in a register.
   LABEL and SREG are passed to reg_save.  */

void
dwarf2out_return_reg (const char *label, unsigned int sreg)
{
  reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
}

/* Record the initial position of the return address.  RTL is
   INCOMING_RETURN_ADDR_RTX.  */

static void
initial_return_save (rtx rtl)
{
  unsigned int reg = INVALID_REGNUM;
  HOST_WIDE_INT offset = 0;

  switch (GET_CODE (rtl))
    {
    case REG:
      /* RA is in a register.  */
      reg = DWARF_FRAME_REGNUM (REGNO (rtl));
      break;

    case MEM:
      /* RA is on the stack.  */
      rtl = XEXP (rtl, 0);
      switch (GET_CODE (rtl))
	{
	case REG:
	  gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
	  offset = 0;
	  break;

	case PLUS:
	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
	  offset = INTVAL (XEXP (rtl, 1));
	  break;

	case MINUS:
	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
	  offset = -INTVAL (XEXP (rtl, 1));
	  break;

	default:
	  gcc_unreachable ();
	}

      break;

    case PLUS:
      /* The return address is at some offset from any value we can
	 actually load.  For instance, on the SPARC it is in %i7+8. Just
	 ignore the offset for now; it doesn't matter for unwinding frames.  */
      gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
      initial_return_save (XEXP (rtl, 0));
      return;

    default:
      gcc_unreachable ();
    }

  if (reg != DWARF_FRAME_RETURN_COLUMN)
    reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
}

/* Given a SET, calculate the amount of stack adjustment it
   contains.  */

static HOST_WIDE_INT
stack_adjust_offset (rtx pattern)
{
  rtx src = SET_SRC (pattern);
  rtx dest = SET_DEST (pattern);
  HOST_WIDE_INT offset = 0;
  enum rtx_code code;

  if (dest == stack_pointer_rtx)
    {
      /* (set (reg sp) (plus (reg sp) (const_int))) */
      code = GET_CODE (src);
      if (! (code == PLUS || code == MINUS)
	  || XEXP (src, 0) != stack_pointer_rtx
	  || GET_CODE (XEXP (src, 1)) != CONST_INT)
	return 0;

      offset = INTVAL (XEXP (src, 1));
      if (code == PLUS)
	offset = -offset;
    }
  else if (MEM_P (dest))
    {
      /* (set (mem (pre_dec (reg sp))) (foo)) */
      src = XEXP (dest, 0);
      code = GET_CODE (src);

      switch (code)
	{
	case PRE_MODIFY:
	case POST_MODIFY:
	  if (XEXP (src, 0) == stack_pointer_rtx)
	    {
	      rtx val = XEXP (XEXP (src, 1), 1);
	      /* We handle only adjustments by constant amount.  */
	      gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
			  && GET_CODE (val) == CONST_INT);
	      offset = -INTVAL (val);
	      break;
	    }
	  return 0;

	case PRE_DEC:
	case POST_DEC:
	  if (XEXP (src, 0) == stack_pointer_rtx)
	    {
	      offset = GET_MODE_SIZE (GET_MODE (dest));
	      break;
	    }
	  return 0;

	case PRE_INC:
	case POST_INC:
	  if (XEXP (src, 0) == stack_pointer_rtx)
	    {
	      offset = -GET_MODE_SIZE (GET_MODE (dest));
	      break;
	    }
	  return 0;

	default:
	  return 0;
	}
    }
  else
    return 0;

  return offset;
}

/* Check INSN to see if it looks like a push or a stack adjustment, and
   make a note of it if it does.  EH uses this information to find out how
   much extra space it needs to pop off the stack.  */

static void
dwarf2out_stack_adjust (rtx insn, bool after_p)
{
  HOST_WIDE_INT offset;
  const char *label;
  int i;

  /* Don't handle epilogues at all.  Certainly it would be wrong to do so
     with this function.  Proper support would require all frame-related
     insns to be marked, and to be able to handle saving state around
     epilogues textually in the middle of the function.  */
  if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
    return;

  /* If only calls can throw, and we have a frame pointer,
     save up adjustments until we see the CALL_INSN.  */
  if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
    {
      if (CALL_P (insn) && !after_p)
	{
	  /* Extract the size of the args from the CALL rtx itself.  */
	  insn = PATTERN (insn);
	  if (GET_CODE (insn) == PARALLEL)
	    insn = XVECEXP (insn, 0, 0);
	  if (GET_CODE (insn) == SET)
	    insn = SET_SRC (insn);
	  gcc_assert (GET_CODE (insn) == CALL);
	  dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
	}
      return;
    }

  if (CALL_P (insn) && !after_p)
    {
      if (!flag_asynchronous_unwind_tables)
	dwarf2out_args_size ("", args_size);
      return;
    }
  else if (BARRIER_P (insn))
    {
      /* When we see a BARRIER, we know to reset args_size to 0.  Usually
	 the compiler will have already emitted a stack adjustment, but
	 doesn't bother for calls to noreturn functions.  */
#ifdef STACK_GROWS_DOWNWARD
      offset = -args_size;
#else
      offset = args_size;
#endif
    }
  else if (GET_CODE (PATTERN (insn)) == SET)
    offset = stack_adjust_offset (PATTERN (insn));
  else if (GET_CODE (PATTERN (insn)) == PARALLEL
	   || GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
      /* There may be stack adjustments inside compound insns.  Search
	 for them.  */
      for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
	  offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
    }
  else
    return;

  if (offset == 0)
    return;

  if (cfa.reg == STACK_POINTER_REGNUM)
    cfa.offset += offset;

#ifndef STACK_GROWS_DOWNWARD
  offset = -offset;
#endif

  args_size += offset;
  if (args_size < 0)
    args_size = 0;

  label = dwarf2out_cfi_label ();
  def_cfa_1 (label, &cfa);
  if (flag_asynchronous_unwind_tables)
    dwarf2out_args_size (label, args_size);
}

#endif

/* We delay emitting a register save until either (a) we reach the end
   of the prologue or (b) the register is clobbered.  This clusters
   register saves so that there are fewer pc advances.  */

struct queued_reg_save GTY(())
{
  struct queued_reg_save *next;
  rtx reg;
  HOST_WIDE_INT cfa_offset;
  rtx saved_reg;
};

static GTY(()) struct queued_reg_save *queued_reg_saves;

/* The caller's ORIG_REG is saved in SAVED_IN_REG.  */
struct reg_saved_in_data GTY(()) {
  rtx orig_reg;
  rtx saved_in_reg;
};

/* A list of registers saved in other registers.
   The list intentionally has a small maximum capacity of 4; if your
   port needs more than that, you might consider implementing a
   more efficient data structure.  */
static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
static GTY(()) size_t num_regs_saved_in_regs;

#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
static const char *last_reg_save_label;

/* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
   SREG, or if SREG is NULL then it is saved at OFFSET to the CFA.  */

static void
queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
{
  struct queued_reg_save *q;

  /* Duplicates waste space, but it's also necessary to remove them
     for correctness, since the queue gets output in reverse
     order.  */
  for (q = queued_reg_saves; q != NULL; q = q->next)
    if (REGNO (q->reg) == REGNO (reg))
      break;

  if (q == NULL)
    {
      q = ggc_alloc (sizeof (*q));
      q->next = queued_reg_saves;
      queued_reg_saves = q;
    }

  q->reg = reg;
  q->cfa_offset = offset;
  q->saved_reg = sreg;

  last_reg_save_label = label;
}

/* Output all the entries in QUEUED_REG_SAVES.  */

static void
flush_queued_reg_saves (void)
{
  struct queued_reg_save *q;

  for (q = queued_reg_saves; q; q = q->next)
    {
      size_t i;
      unsigned int reg, sreg;

      for (i = 0; i < num_regs_saved_in_regs; i++)
	if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
	  break;
      if (q->saved_reg && i == num_regs_saved_in_regs)
	{
	  gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
	  num_regs_saved_in_regs++;
	}
      if (i != num_regs_saved_in_regs)
	{
	  regs_saved_in_regs[i].orig_reg = q->reg;
	  regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
	}

      reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
      if (q->saved_reg)
	sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
      else
	sreg = INVALID_REGNUM;
      reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
    }

  queued_reg_saves = NULL;
  last_reg_save_label = NULL;
}

/* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
   location for?  Or, does it clobber a register which we've previously
   said that some other register is saved in, and for which we now
   have a new location for?  */

static bool
clobbers_queued_reg_save (rtx insn)
{
  struct queued_reg_save *q;

  for (q = queued_reg_saves; q; q = q->next)
    {
      size_t i;
      if (modified_in_p (q->reg, insn))
	return true;
      for (i = 0; i < num_regs_saved_in_regs; i++)
	if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
	    && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
	  return true;
    }

  return false;
}

/* Entry point for saving the first register into the second.  */

void
dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
{
  size_t i;
  unsigned int regno, sregno;

  for (i = 0; i < num_regs_saved_in_regs; i++)
    if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
      break;
  if (i == num_regs_saved_in_regs)
    {
      gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
      num_regs_saved_in_regs++;
    }
  regs_saved_in_regs[i].orig_reg = reg;
  regs_saved_in_regs[i].saved_in_reg = sreg;

  regno = DWARF_FRAME_REGNUM (REGNO (reg));
  sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
  reg_save (label, regno, sregno, 0);
}

/* What register, if any, is currently saved in REG?  */

static rtx
reg_saved_in (rtx reg)
{
  unsigned int regn = REGNO (reg);
  size_t i;
  struct queued_reg_save *q;

  for (q = queued_reg_saves; q; q = q->next)
    if (q->saved_reg && regn == REGNO (q->saved_reg))
      return q->reg;

  for (i = 0; i < num_regs_saved_in_regs; i++)
    if (regs_saved_in_regs[i].saved_in_reg
	&& regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
      return regs_saved_in_regs[i].orig_reg;

  return NULL_RTX;
}


/* A temporary register holding an integral value used in adjusting SP
   or setting up the store_reg.  The "offset" field holds the integer
   value, not an offset.  */
static dw_cfa_location cfa_temp;

/* Record call frame debugging information for an expression EXPR,
   which either sets SP or FP (adjusting how we calculate the frame
   address) or saves a register to the stack or another register.
   LABEL indicates the address of EXPR.

   This function encodes a state machine mapping rtxes to actions on
   cfa, cfa_store, and cfa_temp.reg.  We describe these rules so
   users need not read the source code.

  The High-Level Picture

  Changes in the register we use to calculate the CFA: Currently we
  assume that if you copy the CFA register into another register, we
  should take the other one as the new CFA register; this seems to
  work pretty well.  If it's wrong for some target, it's simple
  enough not to set RTX_FRAME_RELATED_P on the insn in question.

  Changes in the register we use for saving registers to the stack:
  This is usually SP, but not always.  Again, we deduce that if you
  copy SP into another register (and SP is not the CFA register),
  then the new register is the one we will be using for register
  saves.  This also seems to work.

  Register saves: There's not much guesswork about this one; if
  RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
  register save, and the register used to calculate the destination
  had better be the one we think we're using for this purpose.
  It's also assumed that a copy from a call-saved register to another
  register is saving that register if RTX_FRAME_RELATED_P is set on
  that instruction.  If the copy is from a call-saved register to
  the *same* register, that means that the register is now the same
  value as in the caller.

  Except: If the register being saved is the CFA register, and the
  offset is nonzero, we are saving the CFA, so we assume we have to
  use DW_CFA_def_cfa_expression.  If the offset is 0, we assume that
  the intent is to save the value of SP from the previous frame.

  In addition, if a register has previously been saved to a different
  register,

  Invariants / Summaries of Rules

  cfa	       current rule for calculating the CFA.  It usually
	       consists of a register and an offset.
  cfa_store    register used by prologue code to save things to the stack
	       cfa_store.offset is the offset from the value of
	       cfa_store.reg to the actual CFA
  cfa_temp     register holding an integral value.  cfa_temp.offset
	       stores the value, which will be used to adjust the
	       stack pointer.  cfa_temp is also used like cfa_store,
	       to track stores to the stack via fp or a temp reg.

  Rules  1- 4: Setting a register's value to cfa.reg or an expression
	       with cfa.reg as the first operand changes the cfa.reg and its
	       cfa.offset.  Rule 1 and 4 also set cfa_temp.reg and
	       cfa_temp.offset.

  Rules  6- 9: Set a non-cfa.reg register value to a constant or an
	       expression yielding a constant.  This sets cfa_temp.reg
	       and cfa_temp.offset.

  Rule 5:      Create a new register cfa_store used to save items to the
	       stack.

  Rules 10-14: Save a register to the stack.  Define offset as the
	       difference of the original location and cfa_store's
	       location (or cfa_temp's location if cfa_temp is used).

  The Rules

  "{a,b}" indicates a choice of a xor b.
  "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.

  Rule 1:
  (set <reg1> <reg2>:cfa.reg)
  effects: cfa.reg = <reg1>
	   cfa.offset unchanged
	   cfa_temp.reg = <reg1>
	   cfa_temp.offset = cfa.offset

  Rule 2:
  (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
			      {<const_int>,<reg>:cfa_temp.reg}))
  effects: cfa.reg = sp if fp used
	   cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
	   cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
	     if cfa_store.reg==sp

  Rule 3:
  (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
  effects: cfa.reg = fp
	   cfa_offset += +/- <const_int>

  Rule 4:
  (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
  constraints: <reg1> != fp
	       <reg1> != sp
  effects: cfa.reg = <reg1>
	   cfa_temp.reg = <reg1>
	   cfa_temp.offset = cfa.offset

  Rule 5:
  (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
  constraints: <reg1> != fp
	       <reg1> != sp
  effects: cfa_store.reg = <reg1>
	   cfa_store.offset = cfa.offset - cfa_temp.offset

  Rule 6:
  (set <reg> <const_int>)
  effects: cfa_temp.reg = <reg>
	   cfa_temp.offset = <const_int>

  Rule 7:
  (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
  effects: cfa_temp.reg = <reg1>
	   cfa_temp.offset |= <const_int>

  Rule 8:
  (set <reg> (high <exp>))
  effects: none

  Rule 9:
  (set <reg> (lo_sum <exp> <const_int>))
  effects: cfa_temp.reg = <reg>
	   cfa_temp.offset = <const_int>

  Rule 10:
  (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
  effects: cfa_store.offset -= <const_int>
	   cfa.offset = cfa_store.offset if cfa.reg == sp
	   cfa.reg = sp
	   cfa.base_offset = -cfa_store.offset

  Rule 11:
  (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
  effects: cfa_store.offset += -/+ mode_size(mem)
	   cfa.offset = cfa_store.offset if cfa.reg == sp
	   cfa.reg = sp
	   cfa.base_offset = -cfa_store.offset

  Rule 12:
  (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))

       <reg2>)
  effects: cfa.reg = <reg1>
	   cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset

  Rule 13:
  (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
  effects: cfa.reg = <reg1>
	   cfa.base_offset = -{cfa_store,cfa_temp}.offset

  Rule 14:
  (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
  effects: cfa.reg = <reg1>
	   cfa.base_offset = -cfa_temp.offset
	   cfa_temp.offset -= mode_size(mem)

  Rule 15:
  (set <reg> {unspec, unspec_volatile})
  effects: target-dependent  */

static void
dwarf2out_frame_debug_expr (rtx expr, const char *label)
{
  rtx src, dest;
  HOST_WIDE_INT offset;

  /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
     the PARALLEL independently. The first element is always processed if
     it is a SET. This is for backward compatibility.   Other elements
     are processed only if they are SETs and the RTX_FRAME_RELATED_P
     flag is set in them.  */
  if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
    {
      int par_index;
      int limit = XVECLEN (expr, 0);

      for (par_index = 0; par_index < limit; par_index++)
	if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
	    && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
		|| par_index == 0))
	  dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);

      return;
    }

  gcc_assert (GET_CODE (expr) == SET);

  src = SET_SRC (expr);
  dest = SET_DEST (expr);

  if (REG_P (src))
    {
      rtx rsi = reg_saved_in (src);
      if (rsi)
	src = rsi;
    }

  switch (GET_CODE (dest))
    {
    case REG:
      switch (GET_CODE (src))
	{
	  /* Setting FP from SP.  */
	case REG:
	  if (cfa.reg == (unsigned) REGNO (src))
	    {
	      /* Rule 1 */
	      /* Update the CFA rule wrt SP or FP.  Make sure src is
		 relative to the current CFA register.

		 We used to require that dest be either SP or FP, but the
		 ARM copies SP to a temporary register, and from there to
		 FP.  So we just rely on the backends to only set
		 RTX_FRAME_RELATED_P on appropriate insns.  */
	      cfa.reg = REGNO (dest);
	      cfa_temp.reg = cfa.reg;
	      cfa_temp.offset = cfa.offset;
	    }
	  else
	    {
	      /* Saving a register in a register.  */
	      gcc_assert (!fixed_regs [REGNO (dest)]
			  /* For the SPARC and its register window.  */
			  || (DWARF_FRAME_REGNUM (REGNO (src))
			      == DWARF_FRAME_RETURN_COLUMN));
	      queue_reg_save (label, src, dest, 0);
	    }
	  break;

	case PLUS:
	case MINUS:
	case LO_SUM:
	  if (dest == stack_pointer_rtx)
	    {
	      /* Rule 2 */
	      /* Adjusting SP.  */
	      switch (GET_CODE (XEXP (src, 1)))
		{
		case CONST_INT:
		  offset = INTVAL (XEXP (src, 1));
		  break;
		case REG:
		  gcc_assert ((unsigned) REGNO (XEXP (src, 1))
			      == cfa_temp.reg);
		  offset = cfa_temp.offset;
		  break;
		default:
		  gcc_unreachable ();
		}

	      if (XEXP (src, 0) == hard_frame_pointer_rtx)
		{
		  /* Restoring SP from FP in the epilogue.  */
		  gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
		  cfa.reg = STACK_POINTER_REGNUM;
		}
	      else if (GET_CODE (src) == LO_SUM)
		/* Assume we've set the source reg of the LO_SUM from sp.  */
		;
	      else
		gcc_assert (XEXP (src, 0) == stack_pointer_rtx);

	      if (GET_CODE (src) != MINUS)
		offset = -offset;
	      if (cfa.reg == STACK_POINTER_REGNUM)
		cfa.offset += offset;
	      if (cfa_store.reg == STACK_POINTER_REGNUM)
		cfa_store.offset += offset;
	    }
	  else if (dest == hard_frame_pointer_rtx)
	    {
	      /* Rule 3 */
	      /* Either setting the FP from an offset of the SP,
		 or adjusting the FP */
	      gcc_assert (frame_pointer_needed);

	      gcc_assert (REG_P (XEXP (src, 0))
			  && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
			  && GET_CODE (XEXP (src, 1)) == CONST_INT);
	      offset = INTVAL (XEXP (src, 1));
	      if (GET_CODE (src) != MINUS)
		offset = -offset;
	      cfa.offset += offset;
	      cfa.reg = HARD_FRAME_POINTER_REGNUM;
	    }
	  else
	    {
	      gcc_assert (GET_CODE (src) != MINUS);

	      /* Rule 4 */
	      if (REG_P (XEXP (src, 0))
		  && REGNO (XEXP (src, 0)) == cfa.reg
		  && GET_CODE (XEXP (src, 1)) == CONST_INT)
		{
		  /* Setting a temporary CFA register that will be copied
		     into the FP later on.  */
		  offset = - INTVAL (XEXP (src, 1));
		  cfa.offset += offset;
		  cfa.reg = REGNO (dest);
		  /* Or used to save regs to the stack.  */
		  cfa_temp.reg = cfa.reg;
		  cfa_temp.offset = cfa.offset;
		}

	      /* Rule 5 */
	      else if (REG_P (XEXP (src, 0))
		       && REGNO (XEXP (src, 0)) == cfa_temp.reg
		       && XEXP (src, 1) == stack_pointer_rtx)
		{
		  /* Setting a scratch register that we will use instead
		     of SP for saving registers to the stack.  */
		  gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
		  cfa_store.reg = REGNO (dest);
		  cfa_store.offset = cfa.offset - cfa_temp.offset;
		}

	      /* Rule 9 */
	      else if (GET_CODE (src) == LO_SUM
		       && GET_CODE (XEXP (src, 1)) == CONST_INT)
		{
		  cfa_temp.reg = REGNO (dest);
		  cfa_temp.offset = INTVAL (XEXP (src, 1));
		}
	      else
		gcc_unreachable ();
	    }
	  break;

	  /* Rule 6 */
	case CONST_INT:
	  cfa_temp.reg = REGNO (dest);
	  cfa_temp.offset = INTVAL (src);
	  break;

	  /* Rule 7 */
	case IOR:
	  gcc_assert (REG_P (XEXP (src, 0))
		      && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
		      && GET_CODE (XEXP (src, 1)) == CONST_INT);

	  if ((unsigned) REGNO (dest) != cfa_temp.reg)
	    cfa_temp.reg = REGNO (dest);
	  cfa_temp.offset |= INTVAL (XEXP (src, 1));
	  break;

	  /* Skip over HIGH, assuming it will be followed by a LO_SUM,
	     which will fill in all of the bits.  */
	  /* Rule 8 */
	case HIGH:
	  break;

	  /* Rule 15 */
	case UNSPEC:
	case UNSPEC_VOLATILE:
	  gcc_assert (targetm.dwarf_handle_frame_unspec);
	  targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
	  return;

	default:
	  gcc_unreachable ();
	}

      def_cfa_1 (label, &cfa);
      break;

    case MEM:
      gcc_assert (REG_P (src));

      /* Saving a register to the stack.  Make sure dest is relative to the
	 CFA register.  */
      switch (GET_CODE (XEXP (dest, 0)))
	{
	  /* Rule 10 */
	  /* With a push.  */
	case PRE_MODIFY:
	  /* We can't handle variable size modifications.  */
	  gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
		      == CONST_INT);
	  offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));

	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
		      && cfa_store.reg == STACK_POINTER_REGNUM);

	  cfa_store.offset += offset;
	  if (cfa.reg == STACK_POINTER_REGNUM)
	    cfa.offset = cfa_store.offset;

	  offset = -cfa_store.offset;
	  break;

	  /* Rule 11 */
	case PRE_INC:
	case PRE_DEC:
	  offset = GET_MODE_SIZE (GET_MODE (dest));
	  if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
	    offset = -offset;

	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
		      && cfa_store.reg == STACK_POINTER_REGNUM);

	  cfa_store.offset += offset;
	  if (cfa.reg == STACK_POINTER_REGNUM)
	    cfa.offset = cfa_store.offset;

	  offset = -cfa_store.offset;
	  break;

	  /* Rule 12 */
	  /* With an offset.  */
	case PLUS:
	case MINUS:
	case LO_SUM:
	  {
	    int regno;

	    gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
			&& REG_P (XEXP (XEXP (dest, 0), 0)));
	    offset = INTVAL (XEXP (XEXP (dest, 0), 1));
	    if (GET_CODE (XEXP (dest, 0)) == MINUS)
	      offset = -offset;

	    regno = REGNO (XEXP (XEXP (dest, 0), 0));

	    if (cfa_store.reg == (unsigned) regno)
	      offset -= cfa_store.offset;
	    else
	      {
		gcc_assert (cfa_temp.reg == (unsigned) regno);
		offset -= cfa_temp.offset;
	      }
	  }
	  break;

	  /* Rule 13 */
	  /* Without an offset.  */
	case REG:
	  {
	    int regno = REGNO (XEXP (dest, 0));

	    if (cfa_store.reg == (unsigned) regno)
	      offset = -cfa_store.offset;
	    else
	      {
		gcc_assert (cfa_temp.reg == (unsigned) regno);
		offset = -cfa_temp.offset;
	      }
	  }
	  break;

	  /* Rule 14 */
	case POST_INC:
	  gcc_assert (cfa_temp.reg
		      == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
	  offset = -cfa_temp.offset;
	  cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
	  break;

	default:
	  gcc_unreachable ();
	}

      if (REGNO (src) != STACK_POINTER_REGNUM
	  && REGNO (src) != HARD_FRAME_POINTER_REGNUM
	  && (unsigned) REGNO (src) == cfa.reg)
	{
	  /* We're storing the current CFA reg into the stack.  */

	  if (cfa.offset == 0)
	    {
	      /* If the source register is exactly the CFA, assume
		 we're saving SP like any other register; this happens
		 on the ARM.  */
	      def_cfa_1 (label, &cfa);
	      queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
	      break;
	    }
	  else
	    {
	      /* Otherwise, we'll need to look in the stack to
		 calculate the CFA.  */
	      rtx x = XEXP (dest, 0);

	      if (!REG_P (x))
		x = XEXP (x, 0);
	      gcc_assert (REG_P (x));

	      cfa.reg = REGNO (x);
	      cfa.base_offset = offset;
	      cfa.indirect = 1;
	      def_cfa_1 (label, &cfa);
	      break;
	    }
	}

      def_cfa_1 (label, &cfa);
      queue_reg_save (label, src, NULL_RTX, offset);
      break;

    default:
      gcc_unreachable ();
    }
}

/* Record call frame debugging information for INSN, which either
   sets SP or FP (adjusting how we calculate the frame address) or saves a
   register to the stack.  If INSN is NULL_RTX, initialize our state.

   If AFTER_P is false, we're being called before the insn is emitted,
   otherwise after.  Call instructions get invoked twice.  */

void
dwarf2out_frame_debug (rtx insn, bool after_p)
{
  const char *label;
  rtx src;

  if (insn == NULL_RTX)
    {
      size_t i;

      /* Flush any queued register saves.  */
      flush_queued_reg_saves ();

      /* Set up state for generating call frame debug info.  */
      lookup_cfa (&cfa);
      gcc_assert (cfa.reg
		  == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));

      cfa.reg = STACK_POINTER_REGNUM;
      cfa_store = cfa;
      cfa_temp.reg = -1;
      cfa_temp.offset = 0;

      for (i = 0; i < num_regs_saved_in_regs; i++)
	{
	  regs_saved_in_regs[i].orig_reg = NULL_RTX;
	  regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
	}
      num_regs_saved_in_regs = 0;
      return;
    }

  if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
    flush_queued_reg_saves ();

  if (! RTX_FRAME_RELATED_P (insn))
    {
      if (!ACCUMULATE_OUTGOING_ARGS)
	dwarf2out_stack_adjust (insn, after_p);
      return;
    }

  label = dwarf2out_cfi_label ();
  src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
  if (src)
    insn = XEXP (src, 0);
  else
    insn = PATTERN (insn);

  dwarf2out_frame_debug_expr (insn, label);
}

#endif

/* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used.  */
static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
 (enum dwarf_call_frame_info cfi);

static enum dw_cfi_oprnd_type
dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
{
  switch (cfi)
    {
    case DW_CFA_nop:
    case DW_CFA_GNU_window_save:
      return dw_cfi_oprnd_unused;

    case DW_CFA_set_loc:
    case DW_CFA_advance_loc1:
    case DW_CFA_advance_loc2:
    case DW_CFA_advance_loc4:
    case DW_CFA_MIPS_advance_loc8:
      return dw_cfi_oprnd_addr;

    case DW_CFA_offset:
    case DW_CFA_offset_extended:
    case DW_CFA_def_cfa:
    case DW_CFA_offset_extended_sf:
    case DW_CFA_def_cfa_sf:
    case DW_CFA_restore_extended:
    case DW_CFA_undefined:
    case DW_CFA_same_value:
    case DW_CFA_def_cfa_register:
    case DW_CFA_register:
      return dw_cfi_oprnd_reg_num;

    case DW_CFA_def_cfa_offset:
    case DW_CFA_GNU_args_size:
    case DW_CFA_def_cfa_offset_sf:
      return dw_cfi_oprnd_offset;

    case DW_CFA_def_cfa_expression:
    case DW_CFA_expression:
      return dw_cfi_oprnd_loc;

    default:
      gcc_unreachable ();
    }
}

/* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used.  */
static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
 (enum dwarf_call_frame_info cfi);

static enum dw_cfi_oprnd_type
dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
{
  switch (cfi)
    {
    case DW_CFA_def_cfa:
    case DW_CFA_def_cfa_sf:
    case DW_CFA_offset:
    case DW_CFA_offset_extended_sf:
    case DW_CFA_offset_extended:
      return dw_cfi_oprnd_offset;

    case DW_CFA_register:
      return dw_cfi_oprnd_reg_num;

    default:
      return dw_cfi_oprnd_unused;
    }
}

#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)

/* Switch to eh_frame_section.  If we don't have an eh_frame_section,
   switch to the data section instead, and write out a synthetic label
   for collect2.  */

static void
switch_to_eh_frame_section (void)
{
  tree label;

#ifdef EH_FRAME_SECTION_NAME
  if (eh_frame_section == 0)
    {
      int flags;

      if (EH_TABLES_CAN_BE_READ_ONLY)
	{
	  int fde_encoding;
	  int per_encoding;
	  int lsda_encoding;

	  fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
						       /*global=*/0);
	  per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
						       /*global=*/1);
	  lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
							/*global=*/0);
	  flags = ((! flag_pic
		    || ((fde_encoding & 0x70) != DW_EH_PE_absptr
			&& (fde_encoding & 0x70) != DW_EH_PE_aligned
			&& (per_encoding & 0x70) != DW_EH_PE_absptr
			&& (per_encoding & 0x70) != DW_EH_PE_aligned
			&& (lsda_encoding & 0x70) != DW_EH_PE_absptr
			&& (lsda_encoding & 0x70) != DW_EH_PE_aligned))
		   ? 0 : SECTION_WRITE);
	}
      else
	flags = SECTION_WRITE;
      eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
    }
#endif

  if (eh_frame_section)
    switch_to_section (eh_frame_section);
  else
    {
      /* We have no special eh_frame section.  Put the information in
	 the data section and emit special labels to guide collect2.  */
      switch_to_section (data_section);
      label = get_file_function_name ("F");
      ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
      targetm.asm_out.globalize_label (asm_out_file,
				       IDENTIFIER_POINTER (label));
      ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
    }
}

/* Output a Call Frame Information opcode and its operand(s).  */

static void
output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
{
  unsigned long r;
  if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
    dw2_asm_output_data (1, (cfi->dw_cfi_opc
			     | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
			 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
			 cfi->dw_cfi_oprnd1.dw_cfi_offset);
  else if (cfi->dw_cfi_opc == DW_CFA_offset)
    {
      r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
      dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
			   "DW_CFA_offset, column 0x%lx", r);
      dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
    }
  else if (cfi->dw_cfi_opc == DW_CFA_restore)
    {
      r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
      dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
			   "DW_CFA_restore, column 0x%lx", r);
    }
  else
    {
      dw2_asm_output_data (1, cfi->dw_cfi_opc,
			   "%s", dwarf_cfi_name (cfi->dw_cfi_opc));

      switch (cfi->dw_cfi_opc)
	{
	case DW_CFA_set_loc:
	  if (for_eh)
	    dw2_asm_output_encoded_addr_rtx (
		ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
		gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
		false, NULL);
	  else
	    dw2_asm_output_addr (DWARF2_ADDR_SIZE,
				 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;

	case DW_CFA_advance_loc1:
	  dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
				fde->dw_fde_current_label, NULL);
	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;

	case DW_CFA_advance_loc2:
	  dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
				fde->dw_fde_current_label, NULL);
	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;

	case DW_CFA_advance_loc4:
	  dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
				fde->dw_fde_current_label, NULL);
	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;

	case DW_CFA_MIPS_advance_loc8:
	  dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
				fde->dw_fde_current_label, NULL);
	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;

	case DW_CFA_offset_extended:
	case DW_CFA_def_cfa:
	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
	  dw2_asm_output_data_uleb128 (r, NULL);
	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
	  break;

	case DW_CFA_offset_extended_sf:
	case DW_CFA_def_cfa_sf:
	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
	  dw2_asm_output_data_uleb128 (r, NULL);
	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
	  break;

	case DW_CFA_restore_extended:
	case DW_CFA_undefined:
	case DW_CFA_same_value:
	case DW_CFA_def_cfa_register:
	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
	  dw2_asm_output_data_uleb128 (r, NULL);
	  break;

	case DW_CFA_register:
	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
	  dw2_asm_output_data_uleb128 (r, NULL);
	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
	  dw2_asm_output_data_uleb128 (r, NULL);
	  break;

	case DW_CFA_def_cfa_offset:
	case DW_CFA_GNU_args_size:
	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
	  break;

	case DW_CFA_def_cfa_offset_sf:
	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
	  break;

	case DW_CFA_GNU_window_save:
	  break;

	case DW_CFA_def_cfa_expression:
	case DW_CFA_expression:
	  output_cfa_loc (cfi);
	  break;

	case DW_CFA_GNU_negative_offset_extended:
	  /* Obsoleted by DW_CFA_offset_extended_sf.  */
	  gcc_unreachable ();

	default:
	  break;
	}
    }
}

/* Output the call frame information used to record information
   that relates to calculating the frame pointer, and records the
   location of saved registers.  */

static void
output_call_frame_info (int for_eh)
{
  unsigned int i;
  dw_fde_ref fde;
  dw_cfi_ref cfi;
  char l1[20], l2[20], section_start_label[20];
  bool any_lsda_needed = false;
  char augmentation[6];
  int augmentation_size;
  int fde_encoding = DW_EH_PE_absptr;
  int per_encoding = DW_EH_PE_absptr;
  int lsda_encoding = DW_EH_PE_absptr;
  int return_reg;

  /* Don't emit a CIE if there won't be any FDEs.  */
  if (fde_table_in_use == 0)
    return;

  /* If we make FDEs linkonce, we may have to emit an empty label for
     an FDE that wouldn't otherwise be emitted.  We want to avoid
     having an FDE kept around when the function it refers to is
     discarded.  Example where this matters: a primary function
     template in C++ requires EH information, but an explicit
     specialization doesn't.  */
  if (TARGET_USES_WEAK_UNWIND_INFO
      && ! flag_asynchronous_unwind_tables
/* APPLE LOCAL begin for-fsf-4_4 5480287 */ \
      && flag_exceptions
/* APPLE LOCAL end for-fsf-4_4 5480287 */ \
      && for_eh)
    for (i = 0; i < fde_table_in_use; i++)
      if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
          && !fde_table[i].uses_eh_lsda
	  && ! DECL_WEAK (fde_table[i].decl))
	targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
				      for_eh, /* empty */ 1);

  /* If we don't have any functions we'll want to unwind out of, don't
     emit any EH unwind information.  Note that if exceptions aren't
     enabled, we won't have collected nothrow information, and if we
     asked for asynchronous tables, we always want this info.  */
  if (for_eh)
    {
      bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;

      for (i = 0; i < fde_table_in_use; i++)
	if (fde_table[i].uses_eh_lsda)
	  any_eh_needed = any_lsda_needed = true;
        else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
	  any_eh_needed = true;
	else if (! fde_table[i].nothrow
		 && ! fde_table[i].all_throwers_are_sibcalls)
	  any_eh_needed = true;

      if (! any_eh_needed)
	return;
    }

  /* We're going to be generating comments, so turn on app.  */
  if (flag_debug_asm)
    app_enable ();

  if (for_eh)
    switch_to_eh_frame_section ();
  else
    {
      if (!debug_frame_section)
	debug_frame_section = get_section (DEBUG_FRAME_SECTION,
					   SECTION_DEBUG, NULL);
      switch_to_section (debug_frame_section);
    }

  ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
  ASM_OUTPUT_LABEL (asm_out_file, section_start_label);

  /* Output the CIE.  */
  ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
  ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
    dw2_asm_output_data (4, 0xffffffff,
      "Initial length escape value indicating 64-bit DWARF extension");
  dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
			"Length of Common Information Entry");
  ASM_OUTPUT_LABEL (asm_out_file, l1);

  /* Now that the CIE pointer is PC-relative for EH,
     use 0 to identify the CIE.  */
  dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
		       (for_eh ? 0 : DWARF_CIE_ID),
		       "CIE Identifier Tag");

  dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");

  augmentation[0] = 0;
  augmentation_size = 0;
  if (for_eh)
    {
      char *p;

      /* Augmentation:
	 z	Indicates that a uleb128 is present to size the
		augmentation section.
	 L	Indicates the encoding (and thus presence) of
		an LSDA pointer in the FDE augmentation.
	 R	Indicates a non-default pointer encoding for
		FDE code pointers.
	 P	Indicates the presence of an encoding + language
		personality routine in the CIE augmentation.  */

      fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
      per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
      lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);

      p = augmentation + 1;
      if (eh_personality_libfunc)
	{
	  *p++ = 'P';
	  augmentation_size += 1 + size_of_encoded_value (per_encoding);
	}
      if (any_lsda_needed)
	{
	  *p++ = 'L';
	  augmentation_size += 1;
	}
      if (fde_encoding != DW_EH_PE_absptr)
	{
	  *p++ = 'R';
	  augmentation_size += 1;
	}
      if (p > augmentation + 1)
	{
	  augmentation[0] = 'z';
	  *p = '\0';
	}

      /* Ug.  Some platforms can't do unaligned dynamic relocations at all.  */
      if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
	{
	  int offset = (  4		/* Length */
			+ 4		/* CIE Id */
			+ 1		/* CIE version */
			+ strlen (augmentation) + 1	/* Augmentation */
			+ size_of_uleb128 (1)		/* Code alignment */
			+ size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
			+ 1		/* RA column */
			+ 1		/* Augmentation size */
			+ 1		/* Personality encoding */ );
	  int pad = -offset & (PTR_SIZE - 1);

	  augmentation_size += pad;

	  /* Augmentations should be small, so there's scarce need to
	     iterate for a solution.  Die if we exceed one uleb128 byte.  */
	  gcc_assert (size_of_uleb128 (augmentation_size) == 1);
	}
    }

  dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
  dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
  dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
			       "CIE Data Alignment Factor");

  return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
  if (DW_CIE_VERSION == 1)
    dw2_asm_output_data (1, return_reg, "CIE RA Column");
  else
    dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");

  if (augmentation[0])
    {
      dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
      if (eh_personality_libfunc)
	{
	  dw2_asm_output_data (1, per_encoding, "Personality (%s)",
			       eh_data_format_name (per_encoding));
	  dw2_asm_output_encoded_addr_rtx (per_encoding,
					   eh_personality_libfunc,
					   true, NULL);
	}

      if (any_lsda_needed)
	dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
			     eh_data_format_name (lsda_encoding));

      if (fde_encoding != DW_EH_PE_absptr)
	dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
			     eh_data_format_name (fde_encoding));
    }

  for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
    output_cfi (cfi, NULL, for_eh);

  /* Pad the CIE out to an address sized boundary.  */
  ASM_OUTPUT_ALIGN (asm_out_file,
		    floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
  ASM_OUTPUT_LABEL (asm_out_file, l2);

  /* Loop through all of the FDE's.  */
  for (i = 0; i < fde_table_in_use; i++)
    {
      fde = &fde_table[i];

      /* Don't emit EH unwind info for leaf functions that don't need it.  */
      if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
	  && (fde->nothrow || fde->all_throwers_are_sibcalls)
	  && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
	  && !fde->uses_eh_lsda)
	continue;

      targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
      targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
      ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
      ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
      if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
	dw2_asm_output_data (4, 0xffffffff,
			     "Initial length escape value indicating 64-bit DWARF extension");
      dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
			    "FDE Length");
      ASM_OUTPUT_LABEL (asm_out_file, l1);

      if (for_eh)
	dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
      else
	dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
			       debug_frame_section, "FDE CIE offset");

      if (for_eh)
	{
	  rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
	  SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
	  dw2_asm_output_encoded_addr_rtx (fde_encoding,
					   sym_ref,
					   false,
					   "FDE initial location");
	  if (fde->dw_fde_switched_sections)
	    {
	      rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode, 
				      fde->dw_fde_unlikely_section_label);
	      rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode, 
				      fde->dw_fde_hot_section_label);
	      SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
	      SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
	      dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
					       "FDE initial location");
	      dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
				    fde->dw_fde_hot_section_end_label,
				    fde->dw_fde_hot_section_label,
				    "FDE address range");
	      dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
					       "FDE initial location");
	      dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
				    fde->dw_fde_unlikely_section_end_label,
				    fde->dw_fde_unlikely_section_label,
				    "FDE address range");
	    }
	  else
	    dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
				  fde->dw_fde_end, fde->dw_fde_begin,
				  "FDE address range");
	}
      else
	{
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
			       "FDE initial location");
	  if (fde->dw_fde_switched_sections)
	    {
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
				   fde->dw_fde_hot_section_label,
				   "FDE initial location");
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE,
				    fde->dw_fde_hot_section_end_label,
				    fde->dw_fde_hot_section_label,
				    "FDE address range");
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
				   fde->dw_fde_unlikely_section_label,
				   "FDE initial location");
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, 
				    fde->dw_fde_unlikely_section_end_label,
				    fde->dw_fde_unlikely_section_label,
				    "FDE address range");
	    }
	  else
	    dw2_asm_output_delta (DWARF2_ADDR_SIZE,
				  fde->dw_fde_end, fde->dw_fde_begin,
				  "FDE address range");
	}

      if (augmentation[0])
	{
	  if (any_lsda_needed)
	    {
	      int size = size_of_encoded_value (lsda_encoding);

	      if (lsda_encoding == DW_EH_PE_aligned)
		{
		  int offset = (  4		/* Length */
				+ 4		/* CIE offset */
				+ 2 * size_of_encoded_value (fde_encoding)
				+ 1		/* Augmentation size */ );
		  int pad = -offset & (PTR_SIZE - 1);

		  size += pad;
		  gcc_assert (size_of_uleb128 (size) == 1);
		}

	      dw2_asm_output_data_uleb128 (size, "Augmentation size");

	      if (fde->uses_eh_lsda)
		{
		  ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
					       fde->funcdef_number);
		  dw2_asm_output_encoded_addr_rtx (
			lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
			false, "Language Specific Data Area");
		}
	      else
		{
		  if (lsda_encoding == DW_EH_PE_aligned)
		    ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
		  dw2_asm_output_data
		    (size_of_encoded_value (lsda_encoding), 0,
		     "Language Specific Data Area (none)");
		}
	    }
	  else
	    dw2_asm_output_data_uleb128 (0, "Augmentation size");
	}

      /* Loop through the Call Frame Instructions associated with
	 this FDE.  */
      fde->dw_fde_current_label = fde->dw_fde_begin;
      for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
	output_cfi (cfi, fde, for_eh);

      /* Pad the FDE out to an address sized boundary.  */
      ASM_OUTPUT_ALIGN (asm_out_file,
			floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
      ASM_OUTPUT_LABEL (asm_out_file, l2);
    }

  if (for_eh && targetm.terminate_dw2_eh_frame_info)
    dw2_asm_output_data (4, 0, "End of Table");
#ifdef MIPS_DEBUGGING_INFO
  /* Work around Irix 6 assembler bug whereby labels at the end of a section
     get a value of 0.  Putting .align 0 after the label fixes it.  */
  ASM_OUTPUT_ALIGN (asm_out_file, 0);
#endif

  /* Turn off app to make assembly quicker.  */
  if (flag_debug_asm)
    app_disable ();
}

/* Output a marker (i.e. a label) for the beginning of a function, before
   the prologue.  */

void
dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
			  const char *file ATTRIBUTE_UNUSED)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  char * dup_label;
  dw_fde_ref fde;

  current_function_func_begin_label = NULL;

#ifdef TARGET_UNWIND_INFO
  /* ??? current_function_func_begin_label is also used by except.c
     for call-site information.  We must emit this label if it might
     be used.  */
  if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
      && ! dwarf2out_do_frame ())
    return;
#else
  if (! dwarf2out_do_frame ())
    return;
#endif

  switch_to_section (function_section (current_function_decl));
  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
			       current_function_funcdef_no);
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
			  current_function_funcdef_no);
  dup_label = xstrdup (label);
  current_function_func_begin_label = dup_label;

#ifdef TARGET_UNWIND_INFO
  /* We can elide the fde allocation if we're not emitting debug info.  */
  if (! dwarf2out_do_frame ())
    return;
#endif

  /* Expand the fde table if necessary.  */
  if (fde_table_in_use == fde_table_allocated)
    {
      fde_table_allocated += FDE_TABLE_INCREMENT;
      fde_table = ggc_realloc (fde_table,
			       fde_table_allocated * sizeof (dw_fde_node));
      memset (fde_table + fde_table_in_use, 0,
	      FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
    }

  /* Record the FDE associated with this function.  */
  current_funcdef_fde = fde_table_in_use;

  /* Add the new FDE at the end of the fde_table.  */
  fde = &fde_table[fde_table_in_use++];
  fde->decl = current_function_decl;
  fde->dw_fde_begin = dup_label;
  fde->dw_fde_current_label = dup_label;
  fde->dw_fde_hot_section_label = NULL;
  fde->dw_fde_hot_section_end_label = NULL;
  fde->dw_fde_unlikely_section_label = NULL;
  fde->dw_fde_unlikely_section_end_label = NULL;
  fde->dw_fde_switched_sections = false;
  fde->dw_fde_end = NULL;
  fde->dw_fde_cfi = NULL;
  fde->funcdef_number = current_function_funcdef_no;
  fde->nothrow = TREE_NOTHROW (current_function_decl);
  fde->uses_eh_lsda = cfun->uses_eh_lsda;
  fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;

  args_size = old_args_size = 0;

  /* We only want to output line number information for the genuine dwarf2
     prologue case, not the eh frame case.  */
#ifdef DWARF2_DEBUGGING_INFO
  if (file)
    dwarf2out_source_line (line, file);
#endif
}

/* Output a marker (i.e. a label) for the absolute end of the generated code
   for a function definition.  This gets called *after* the epilogue code has
   been generated.  */

void
dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
			const char *file ATTRIBUTE_UNUSED)
{
  dw_fde_ref fde;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  /* Output a label to mark the endpoint of the code generated for this
     function.  */
  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
			       current_function_funcdef_no);
  ASM_OUTPUT_LABEL (asm_out_file, label);
  fde = &fde_table[fde_table_in_use - 1];
  fde->dw_fde_end = xstrdup (label);
}

void
dwarf2out_frame_init (void)
{
  /* Allocate the initial hunk of the fde_table.  */
  fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
  fde_table_allocated = FDE_TABLE_INCREMENT;
  fde_table_in_use = 0;

  /* Generate the CFA instructions common to all FDE's.  Do it now for the
     sake of lookup_cfa.  */

  /* On entry, the Canonical Frame Address is at SP.  */
  dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);

#ifdef DWARF2_UNWIND_INFO
  if (DWARF2_UNWIND_INFO)
    initial_return_save (INCOMING_RETURN_ADDR_RTX);
#endif
}

void
dwarf2out_frame_finish (void)
{
  /* Output call frame information.  */
  if (DWARF2_FRAME_INFO)
    output_call_frame_info (0);

#ifndef TARGET_UNWIND_INFO
  /* Output another copy for the unwinder.  */
  if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
    output_call_frame_info (1);
#endif
}
#endif

/* And now, the subset of the debugging information support code necessary
   for emitting location expressions.  */

/* Data about a single source file.  */
struct dwarf_file_data GTY(())
{
  const char * filename;
  int emitted_number;
};

/* We need some way to distinguish DW_OP_addr with a direct symbol
   relocation from DW_OP_addr with a dtp-relative symbol relocation.  */
#define INTERNAL_DW_OP_tls_addr		(0x100 + DW_OP_addr)


typedef struct dw_val_struct *dw_val_ref;
typedef struct die_struct *dw_die_ref;
typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
typedef struct dw_loc_list_struct *dw_loc_list_ref;

/* Each DIE may have a series of attribute/value pairs.  Values
   can take on several forms.  The forms that are used in this
   implementation are listed below.  */

enum dw_val_class
{
  dw_val_class_addr,
  dw_val_class_offset,
  dw_val_class_loc,
  dw_val_class_loc_list,
  dw_val_class_range_list,
  dw_val_class_const,
  dw_val_class_unsigned_const,
  dw_val_class_long_long,
  dw_val_class_vec,
  dw_val_class_flag,
  dw_val_class_die_ref,
  dw_val_class_fde_ref,
  dw_val_class_lbl_id,
  dw_val_class_lineptr,
  dw_val_class_str,
  dw_val_class_macptr,
  dw_val_class_file
};

/* Describe a double word constant value.  */
/* ??? Every instance of long_long in the code really means CONST_DOUBLE.  */

typedef struct dw_long_long_struct GTY(())
{
  unsigned long hi;
  unsigned long low;
}
dw_long_long_const;

/* Describe a floating point constant value, or a vector constant value.  */

typedef struct dw_vec_struct GTY(())
{
  unsigned char * GTY((length ("%h.length"))) array;
  unsigned length;
  unsigned elt_size;
}
dw_vec_const;

/* The dw_val_node describes an attribute's value, as it is
   represented internally.  */

typedef struct dw_val_struct GTY(())
{
  enum dw_val_class val_class;
  union dw_val_struct_union
    {
      rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
      unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
      dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
      dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
      HOST_WIDE_INT GTY ((default)) val_int;
      unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
      dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
      dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
      struct dw_val_die_union
	{
	  dw_die_ref die;
	  int external;
	} GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
      unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
      struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
      char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
      unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
      struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
    }
  GTY ((desc ("%1.val_class"))) v;
}
dw_val_node;

/* Locations in memory are described using a sequence of stack machine
   operations.  */

typedef struct dw_loc_descr_struct GTY(())
{
  dw_loc_descr_ref dw_loc_next;
  enum dwarf_location_atom dw_loc_opc;
  dw_val_node dw_loc_oprnd1;
  dw_val_node dw_loc_oprnd2;
  int dw_loc_addr;
}
dw_loc_descr_node;

/* Location lists are ranges + location descriptions for that range,
   so you can track variables that are in different places over
   their entire life.  */
typedef struct dw_loc_list_struct GTY(())
{
  dw_loc_list_ref dw_loc_next;
  const char *begin; /* Label for begin address of range */
  const char *end;  /* Label for end address of range */
  char *ll_symbol; /* Label for beginning of location list.
		      Only on head of list */
  const char *section; /* Section this loclist is relative to */
  dw_loc_descr_ref expr;
} dw_loc_list_node;

#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)

static const char *dwarf_stack_op_name (unsigned);
static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
				       unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
static unsigned long size_of_loc_descr (dw_loc_descr_ref);
static unsigned long size_of_locs (dw_loc_descr_ref);
static void output_loc_operands (dw_loc_descr_ref);
static void output_loc_sequence (dw_loc_descr_ref);

/* Convert a DWARF stack opcode into its string name.  */

static const char *
dwarf_stack_op_name (unsigned int op)
{
  switch (op)
    {
    case DW_OP_addr:
    case INTERNAL_DW_OP_tls_addr:
      return "DW_OP_addr";
    case DW_OP_deref:
      return "DW_OP_deref";
    case DW_OP_const1u:
      return "DW_OP_const1u";
    case DW_OP_const1s:
      return "DW_OP_const1s";
    case DW_OP_const2u:
      return "DW_OP_const2u";
    case DW_OP_const2s:
      return "DW_OP_const2s";
    case DW_OP_const4u:
      return "DW_OP_const4u";
    case DW_OP_const4s:
      return "DW_OP_const4s";
    case DW_OP_const8u:
      return "DW_OP_const8u";
    case DW_OP_const8s:
      return "DW_OP_const8s";
    case DW_OP_constu:
      return "DW_OP_constu";
    case DW_OP_consts:
      return "DW_OP_consts";
    case DW_OP_dup:
      return "DW_OP_dup";
    case DW_OP_drop:
      return "DW_OP_drop";
    case DW_OP_over:
      return "DW_OP_over";
    case DW_OP_pick:
      return "DW_OP_pick";
    case DW_OP_swap:
      return "DW_OP_swap";
    case DW_OP_rot:
      return "DW_OP_rot";
    case DW_OP_xderef:
      return "DW_OP_xderef";
    case DW_OP_abs:
      return "DW_OP_abs";
    case DW_OP_and:
      return "DW_OP_and";
    case DW_OP_div:
      return "DW_OP_div";
    case DW_OP_minus:
      return "DW_OP_minus";
    case DW_OP_mod:
      return "DW_OP_mod";
    case DW_OP_mul:
      return "DW_OP_mul";
    case DW_OP_neg:
      return "DW_OP_neg";
    case DW_OP_not:
      return "DW_OP_not";
    case DW_OP_or:
      return "DW_OP_or";
    case DW_OP_plus:
      return "DW_OP_plus";
    case DW_OP_plus_uconst:
      return "DW_OP_plus_uconst";
    case DW_OP_shl:
      return "DW_OP_shl";
    case DW_OP_shr:
      return "DW_OP_shr";
    case DW_OP_shra:
      return "DW_OP_shra";
    case DW_OP_xor:
      return "DW_OP_xor";
    case DW_OP_bra:
      return "DW_OP_bra";
    case DW_OP_eq:
      return "DW_OP_eq";
    case DW_OP_ge:
      return "DW_OP_ge";
    case DW_OP_gt:
      return "DW_OP_gt";
    case DW_OP_le:
      return "DW_OP_le";
    case DW_OP_lt:
      return "DW_OP_lt";
    case DW_OP_ne:
      return "DW_OP_ne";
    case DW_OP_skip:
      return "DW_OP_skip";
    case DW_OP_lit0:
      return "DW_OP_lit0";
    case DW_OP_lit1:
      return "DW_OP_lit1";
    case DW_OP_lit2:
      return "DW_OP_lit2";
    case DW_OP_lit3:
      return "DW_OP_lit3";
    case DW_OP_lit4:
      return "DW_OP_lit4";
    case DW_OP_lit5:
      return "DW_OP_lit5";
    case DW_OP_lit6:
      return "DW_OP_lit6";
    case DW_OP_lit7:
      return "DW_OP_lit7";
    case DW_OP_lit8:
      return "DW_OP_lit8";
    case DW_OP_lit9:
      return "DW_OP_lit9";
    case DW_OP_lit10:
      return "DW_OP_lit10";
    case DW_OP_lit11:
      return "DW_OP_lit11";
    case DW_OP_lit12:
      return "DW_OP_lit12";
    case DW_OP_lit13:
      return "DW_OP_lit13";
    case DW_OP_lit14:
      return "DW_OP_lit14";
    case DW_OP_lit15:
      return "DW_OP_lit15";
    case DW_OP_lit16:
      return "DW_OP_lit16";
    case DW_OP_lit17:
      return "DW_OP_lit17";
    case DW_OP_lit18:
      return "DW_OP_lit18";
    case DW_OP_lit19:
      return "DW_OP_lit19";
    case DW_OP_lit20:
      return "DW_OP_lit20";
    case DW_OP_lit21:
      return "DW_OP_lit21";
    case DW_OP_lit22:
      return "DW_OP_lit22";
    case DW_OP_lit23:
      return "DW_OP_lit23";
    case DW_OP_lit24:
      return "DW_OP_lit24";
    case DW_OP_lit25:
      return "DW_OP_lit25";
    case DW_OP_lit26:
      return "DW_OP_lit26";
    case DW_OP_lit27:
      return "DW_OP_lit27";
    case DW_OP_lit28:
      return "DW_OP_lit28";
    case DW_OP_lit29:
      return "DW_OP_lit29";
    case DW_OP_lit30:
      return "DW_OP_lit30";
    case DW_OP_lit31:
      return "DW_OP_lit31";
    case DW_OP_reg0:
      return "DW_OP_reg0";
    case DW_OP_reg1:
      return "DW_OP_reg1";
    case DW_OP_reg2:
      return "DW_OP_reg2";
    case DW_OP_reg3:
      return "DW_OP_reg3";
    case DW_OP_reg4:
      return "DW_OP_reg4";
    case DW_OP_reg5:
      return "DW_OP_reg5";
    case DW_OP_reg6:
      return "DW_OP_reg6";
    case DW_OP_reg7:
      return "DW_OP_reg7";
    case DW_OP_reg8:
      return "DW_OP_reg8";
    case DW_OP_reg9:
      return "DW_OP_reg9";
    case DW_OP_reg10:
      return "DW_OP_reg10";
    case DW_OP_reg11:
      return "DW_OP_reg11";
    case DW_OP_reg12:
      return "DW_OP_reg12";
    case DW_OP_reg13:
      return "DW_OP_reg13";
    case DW_OP_reg14:
      return "DW_OP_reg14";
    case DW_OP_reg15:
      return "DW_OP_reg15";
    case DW_OP_reg16:
      return "DW_OP_reg16";
    case DW_OP_reg17:
      return "DW_OP_reg17";
    case DW_OP_reg18:
      return "DW_OP_reg18";
    case DW_OP_reg19:
      return "DW_OP_reg19";
    case DW_OP_reg20:
      return "DW_OP_reg20";
    case DW_OP_reg21:
      return "DW_OP_reg21";
    case DW_OP_reg22:
      return "DW_OP_reg22";
    case DW_OP_reg23:
      return "DW_OP_reg23";
    case DW_OP_reg24:
      return "DW_OP_reg24";
    case DW_OP_reg25:
      return "DW_OP_reg25";
    case DW_OP_reg26:
      return "DW_OP_reg26";
    case DW_OP_reg27:
      return "DW_OP_reg27";
    case DW_OP_reg28:
      return "DW_OP_reg28";
    case DW_OP_reg29:
      return "DW_OP_reg29";
    case DW_OP_reg30:
      return "DW_OP_reg30";
    case DW_OP_reg31:
      return "DW_OP_reg31";
    case DW_OP_breg0:
      return "DW_OP_breg0";
    case DW_OP_breg1:
      return "DW_OP_breg1";
    case DW_OP_breg2:
      return "DW_OP_breg2";
    case DW_OP_breg3:
      return "DW_OP_breg3";
    case DW_OP_breg4:
      return "DW_OP_breg4";
    case DW_OP_breg5:
      return "DW_OP_breg5";
    case DW_OP_breg6:
      return "DW_OP_breg6";
    case DW_OP_breg7:
      return "DW_OP_breg7";
    case DW_OP_breg8:
      return "DW_OP_breg8";
    case DW_OP_breg9:
      return "DW_OP_breg9";
    case DW_OP_breg10:
      return "DW_OP_breg10";
    case DW_OP_breg11:
      return "DW_OP_breg11";
    case DW_OP_breg12:
      return "DW_OP_breg12";
    case DW_OP_breg13:
      return "DW_OP_breg13";
    case DW_OP_breg14:
      return "DW_OP_breg14";
    case DW_OP_breg15:
      return "DW_OP_breg15";
    case DW_OP_breg16:
      return "DW_OP_breg16";
    case DW_OP_breg17:
      return "DW_OP_breg17";
    case DW_OP_breg18:
      return "DW_OP_breg18";
    case DW_OP_breg19:
      return "DW_OP_breg19";
    case DW_OP_breg20:
      return "DW_OP_breg20";
    case DW_OP_breg21:
      return "DW_OP_breg21";
    case DW_OP_breg22:
      return "DW_OP_breg22";
    case DW_OP_breg23:
      return "DW_OP_breg23";
    case DW_OP_breg24:
      return "DW_OP_breg24";
    case DW_OP_breg25:
      return "DW_OP_breg25";
    case DW_OP_breg26:
      return "DW_OP_breg26";
    case DW_OP_breg27:
      return "DW_OP_breg27";
    case DW_OP_breg28:
      return "DW_OP_breg28";
    case DW_OP_breg29:
      return "DW_OP_breg29";
    case DW_OP_breg30:
      return "DW_OP_breg30";
    case DW_OP_breg31:
      return "DW_OP_breg31";
    case DW_OP_regx:
      return "DW_OP_regx";
    case DW_OP_fbreg:
      return "DW_OP_fbreg";
    case DW_OP_bregx:
      return "DW_OP_bregx";
    case DW_OP_piece:
      return "DW_OP_piece";
    case DW_OP_deref_size:
      return "DW_OP_deref_size";
    case DW_OP_xderef_size:
      return "DW_OP_xderef_size";
    case DW_OP_nop:
      return "DW_OP_nop";
    case DW_OP_push_object_address:
      return "DW_OP_push_object_address";
    case DW_OP_call2:
      return "DW_OP_call2";
    case DW_OP_call4:
      return "DW_OP_call4";
    case DW_OP_call_ref:
      return "DW_OP_call_ref";
    case DW_OP_GNU_push_tls_address:
      return "DW_OP_GNU_push_tls_address";
    default:
      return "OP_<unknown>";
    }
}

/* Return a pointer to a newly allocated location description.  Location
   descriptions are simple expression terms that can be strung
   together to form more complicated location (address) descriptions.  */

static inline dw_loc_descr_ref
new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
	       unsigned HOST_WIDE_INT oprnd2)
{
  dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));

  descr->dw_loc_opc = op;
  descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
  descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
  descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
  descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;

  return descr;
}

/* Add a location description term to a location description expression.  */

static inline void
add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
{
  dw_loc_descr_ref *d;

  /* Find the end of the chain.  */
  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
    ;

  *d = descr;
}

/* Return the size of a location descriptor.  */

static unsigned long
size_of_loc_descr (dw_loc_descr_ref loc)
{
  unsigned long size = 1;

  switch (loc->dw_loc_opc)
    {
    case DW_OP_addr:
    case INTERNAL_DW_OP_tls_addr:
      size += DWARF2_ADDR_SIZE;
      break;
    case DW_OP_const1u:
    case DW_OP_const1s:
      size += 1;
      break;
    case DW_OP_const2u:
    case DW_OP_const2s:
      size += 2;
      break;
    case DW_OP_const4u:
    case DW_OP_const4s:
      size += 4;
      break;
    case DW_OP_const8u:
    case DW_OP_const8s:
      size += 8;
      break;
    case DW_OP_constu:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_consts:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_pick:
      size += 1;
      break;
    case DW_OP_plus_uconst:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_skip:
    case DW_OP_bra:
      size += 2;
      break;
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_regx:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_fbreg:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_bregx:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
      break;
    case DW_OP_piece:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_deref_size:
    case DW_OP_xderef_size:
      size += 1;
      break;
    case DW_OP_call2:
      size += 2;
      break;
    case DW_OP_call4:
      size += 4;
      break;
    case DW_OP_call_ref:
      size += DWARF2_ADDR_SIZE;
      break;
    default:
      break;
    }

  return size;
}

/* Return the size of a series of location descriptors.  */

static unsigned long
size_of_locs (dw_loc_descr_ref loc)
{
  dw_loc_descr_ref l;
  unsigned long size;

  /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
     field, to avoid writing to a PCH file.  */
  for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
    {
      if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
	break;
      size += size_of_loc_descr (l);
    }
  if (! l)
    return size;

  for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
    {
      l->dw_loc_addr = size;
      size += size_of_loc_descr (l);
    }

  return size;
}

/* Output location description stack opcode's operands (if any).  */

static void
output_loc_operands (dw_loc_descr_ref loc)
{
  dw_val_ref val1 = &loc->dw_loc_oprnd1;
  dw_val_ref val2 = &loc->dw_loc_oprnd2;

  switch (loc->dw_loc_opc)
    {
#ifdef DWARF2_DEBUGGING_INFO
    case DW_OP_addr:
      dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
      break;
    case DW_OP_const2u:
    case DW_OP_const2s:
      dw2_asm_output_data (2, val1->v.val_int, NULL);
      break;
    case DW_OP_const4u:
    case DW_OP_const4s:
      dw2_asm_output_data (4, val1->v.val_int, NULL);
      break;
    case DW_OP_const8u:
    case DW_OP_const8s:
      gcc_assert (HOST_BITS_PER_LONG >= 64);
      dw2_asm_output_data (8, val1->v.val_int, NULL);
      break;
    case DW_OP_skip:
    case DW_OP_bra:
      {
	int offset;

	gcc_assert (val1->val_class == dw_val_class_loc);
	offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);

	dw2_asm_output_data (2, offset, NULL);
      }
      break;
#else
    case DW_OP_addr:
    case DW_OP_const2u:
    case DW_OP_const2s:
    case DW_OP_const4u:
    case DW_OP_const4s:
    case DW_OP_const8u:
    case DW_OP_const8s:
    case DW_OP_skip:
    case DW_OP_bra:
      /* We currently don't make any attempt to make sure these are
	 aligned properly like we do for the main unwind info, so
	 don't support emitting things larger than a byte if we're
	 only doing unwinding.  */
      gcc_unreachable ();
#endif
    case DW_OP_const1u:
    case DW_OP_const1s:
      dw2_asm_output_data (1, val1->v.val_int, NULL);
      break;
    case DW_OP_constu:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      break;
    case DW_OP_consts:
      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
      break;
    case DW_OP_pick:
      dw2_asm_output_data (1, val1->v.val_int, NULL);
      break;
    case DW_OP_plus_uconst:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      break;
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
      break;
    case DW_OP_regx:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      break;
    case DW_OP_fbreg:
      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
      break;
    case DW_OP_bregx:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
      break;
    case DW_OP_piece:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      break;
    case DW_OP_deref_size:
    case DW_OP_xderef_size:
      dw2_asm_output_data (1, val1->v.val_int, NULL);
      break;

    case INTERNAL_DW_OP_tls_addr:
      if (targetm.asm_out.output_dwarf_dtprel)
	{
	  targetm.asm_out.output_dwarf_dtprel (asm_out_file,
					       DWARF2_ADDR_SIZE,
					       val1->v.val_addr);
	  fputc ('\n', asm_out_file);
	}
      else
	gcc_unreachable ();
      break;

    default:
      /* Other codes have no operands.  */
      break;
    }
}

/* Output a sequence of location operations.  */

static void
output_loc_sequence (dw_loc_descr_ref loc)
{
  for (; loc != NULL; loc = loc->dw_loc_next)
    {
      /* Output the opcode.  */
      dw2_asm_output_data (1, loc->dw_loc_opc,
			   "%s", dwarf_stack_op_name (loc->dw_loc_opc));

      /* Output the operand(s) (if any).  */
      output_loc_operands (loc);
    }
}

/* This routine will generate the correct assembly data for a location
   description based on a cfi entry with a complex address.  */

static void
output_cfa_loc (dw_cfi_ref cfi)
{
  dw_loc_descr_ref loc;
  unsigned long size;

  /* Output the size of the block.  */
  loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
  size = size_of_locs (loc);
  dw2_asm_output_data_uleb128 (size, NULL);

  /* Now output the operations themselves.  */
  output_loc_sequence (loc);
}

/* This function builds a dwarf location descriptor sequence from a
   dw_cfa_location, adding the given OFFSET to the result of the
   expression.  */

static struct dw_loc_descr_struct *
build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
{
  struct dw_loc_descr_struct *head, *tmp;

  offset += cfa->offset;

  if (cfa->indirect)
    {
      if (cfa->base_offset)
	{
	  if (cfa->reg <= 31)
	    head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
	  else
	    head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
	}
      else if (cfa->reg <= 31)
	head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
      else
	head = new_loc_descr (DW_OP_regx, cfa->reg, 0);

      head->dw_loc_oprnd1.val_class = dw_val_class_const;
      tmp = new_loc_descr (DW_OP_deref, 0, 0);
      add_loc_descr (&head, tmp);
      if (offset != 0)
	{
	  tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
	  add_loc_descr (&head, tmp);
	}
    }
  else
    {
      if (offset == 0)
	if (cfa->reg <= 31)
	  head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
	else
	  head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
      else if (cfa->reg <= 31)
	head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
      else
	head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
    }

  return head;
}

/* This function fills in aa dw_cfa_location structure from a dwarf location
   descriptor sequence.  */

static void
get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
{
  struct dw_loc_descr_struct *ptr;
  cfa->offset = 0;
  cfa->base_offset = 0;
  cfa->indirect = 0;
  cfa->reg = -1;

  for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
    {
      enum dwarf_location_atom op = ptr->dw_loc_opc;

      switch (op)
	{
	case DW_OP_reg0:
	case DW_OP_reg1:
	case DW_OP_reg2:
	case DW_OP_reg3:
	case DW_OP_reg4:
	case DW_OP_reg5:
	case DW_OP_reg6:
	case DW_OP_reg7:
	case DW_OP_reg8:
	case DW_OP_reg9:
	case DW_OP_reg10:
	case DW_OP_reg11:
	case DW_OP_reg12:
	case DW_OP_reg13:
	case DW_OP_reg14:
	case DW_OP_reg15:
	case DW_OP_reg16:
	case DW_OP_reg17:
	case DW_OP_reg18:
	case DW_OP_reg19:
	case DW_OP_reg20:
	case DW_OP_reg21:
	case DW_OP_reg22:
	case DW_OP_reg23:
	case DW_OP_reg24:
	case DW_OP_reg25:
	case DW_OP_reg26:
	case DW_OP_reg27:
	case DW_OP_reg28:
	case DW_OP_reg29:
	case DW_OP_reg30:
	case DW_OP_reg31:
	  cfa->reg = op - DW_OP_reg0;
	  break;
	case DW_OP_regx:
	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
	  break;
	case DW_OP_breg0:
	case DW_OP_breg1:
	case DW_OP_breg2:
	case DW_OP_breg3:
	case DW_OP_breg4:
	case DW_OP_breg5:
	case DW_OP_breg6:
	case DW_OP_breg7:
	case DW_OP_breg8:
	case DW_OP_breg9:
	case DW_OP_breg10:
	case DW_OP_breg11:
	case DW_OP_breg12:
	case DW_OP_breg13:
	case DW_OP_breg14:
	case DW_OP_breg15:
	case DW_OP_breg16:
	case DW_OP_breg17:
	case DW_OP_breg18:
	case DW_OP_breg19:
	case DW_OP_breg20:
	case DW_OP_breg21:
	case DW_OP_breg22:
	case DW_OP_breg23:
	case DW_OP_breg24:
	case DW_OP_breg25:
	case DW_OP_breg26:
	case DW_OP_breg27:
	case DW_OP_breg28:
	case DW_OP_breg29:
	case DW_OP_breg30:
	case DW_OP_breg31:
	  cfa->reg = op - DW_OP_breg0;
	  cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
	  break;
	case DW_OP_bregx:
	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
	  cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
	  break;
	case DW_OP_deref:
	  cfa->indirect = 1;
	  break;
	case DW_OP_plus_uconst:
	  cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
	  break;
	default:
	  internal_error ("DW_LOC_OP %s not implemented",
			  dwarf_stack_op_name (ptr->dw_loc_opc));
	}
    }
}
#endif /* .debug_frame support */

/* And now, the support for symbolic debugging information.  */
#ifdef DWARF2_DEBUGGING_INFO

/* .debug_str support.  */
static int output_indirect_string (void **, void *);

static void dwarf2out_init (const char *);
static void dwarf2out_finish (const char *);
static void dwarf2out_define (unsigned int, const char *);
static void dwarf2out_undef (unsigned int, const char *);
static void dwarf2out_start_source_file (unsigned, const char *);
static void dwarf2out_end_source_file (unsigned);
static void dwarf2out_begin_block (unsigned, unsigned);
static void dwarf2out_end_block (unsigned, unsigned);
static bool dwarf2out_ignore_block (tree);
static void dwarf2out_global_decl (tree);
static void dwarf2out_type_decl (tree, int);
static void dwarf2out_imported_module_or_decl (tree, tree);
static void dwarf2out_abstract_function (tree);
static void dwarf2out_var_location (rtx);
static void dwarf2out_begin_function (tree);
static void dwarf2out_switch_text_section (void);

/* The debug hooks structure.  */

const struct gcc_debug_hooks dwarf2_debug_hooks =
{
  dwarf2out_init,
  dwarf2out_finish,
  dwarf2out_define,
  dwarf2out_undef,
  dwarf2out_start_source_file,
  dwarf2out_end_source_file,
  dwarf2out_begin_block,
  dwarf2out_end_block,
  dwarf2out_ignore_block,
  dwarf2out_source_line,
  dwarf2out_begin_prologue,
  debug_nothing_int_charstar,	/* end_prologue */
  dwarf2out_end_epilogue,
  dwarf2out_begin_function,
  debug_nothing_int,		/* end_function */
  dwarf2out_decl,		/* function_decl */
  dwarf2out_global_decl,
  dwarf2out_type_decl,		/* type_decl */
  dwarf2out_imported_module_or_decl,
  debug_nothing_tree,		/* deferred_inline_function */
  /* The DWARF 2 backend tries to reduce debugging bloat by not
     emitting the abstract description of inline functions until
     something tries to reference them.  */
  dwarf2out_abstract_function,	/* outlining_inline_function */
  debug_nothing_rtx,		/* label */
  debug_nothing_int,		/* handle_pch */
  dwarf2out_var_location,
  dwarf2out_switch_text_section,
  1                             /* start_end_main_source_file */
};
#endif

/* NOTE: In the comments in this file, many references are made to
   "Debugging Information Entries".  This term is abbreviated as `DIE'
   throughout the remainder of this file.  */

/* An internal representation of the DWARF output is built, and then
   walked to generate the DWARF debugging info.  The walk of the internal
   representation is done after the entire program has been compiled.
   The types below are used to describe the internal representation.  */

/* Various DIE's use offsets relative to the beginning of the
   .debug_info section to refer to each other.  */

typedef long int dw_offset;

/* Define typedefs here to avoid circular dependencies.  */

typedef struct dw_attr_struct *dw_attr_ref;
typedef struct dw_line_info_struct *dw_line_info_ref;
typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
typedef struct pubname_struct *pubname_ref;
typedef struct dw_ranges_struct *dw_ranges_ref;

/* Each entry in the line_info_table maintains the file and
   line number associated with the label generated for that
   entry.  The label gives the PC value associated with
   the line number entry.  */

typedef struct dw_line_info_struct GTY(())
{
  unsigned long dw_file_num;
  unsigned long dw_line_num;
}
dw_line_info_entry;

/* Line information for functions in separate sections; each one gets its
   own sequence.  */
typedef struct dw_separate_line_info_struct GTY(())
{
  unsigned long dw_file_num;
  unsigned long dw_line_num;
  unsigned long function;
}
dw_separate_line_info_entry;

/* Each DIE attribute has a field specifying the attribute kind,
   a link to the next attribute in the chain, and an attribute value.
   Attributes are typically linked below the DIE they modify.  */

typedef struct dw_attr_struct GTY(())
{
  enum dwarf_attribute dw_attr;
  dw_val_node dw_attr_val;
}
dw_attr_node;

DEF_VEC_O(dw_attr_node);
DEF_VEC_ALLOC_O(dw_attr_node,gc);

/* The Debugging Information Entry (DIE) structure.  DIEs form a tree.
   The children of each node form a circular list linked by
   die_sib.  die_child points to the node *before* the "first" child node.  */

typedef struct die_struct GTY(())
{
  enum dwarf_tag die_tag;
  char *die_symbol;
  VEC(dw_attr_node,gc) * die_attr;
  dw_die_ref die_parent;
  dw_die_ref die_child;
  dw_die_ref die_sib;
  dw_die_ref die_definition; /* ref from a specification to its definition */
  dw_offset die_offset;
  unsigned long die_abbrev;
  int die_mark;
  /* Die is used and must not be pruned as unused.  */
  int die_perennial_p;
  unsigned int decl_id;
}
die_node;

/* Evaluate 'expr' while 'c' is set to each child of DIE in order.  */
#define FOR_EACH_CHILD(die, c, expr) do {	\
  c = die->die_child;				\
  if (c) do {					\
    c = c->die_sib;				\
    expr;					\
  } while (c != die->die_child);		\
} while (0)

/* The pubname structure */

typedef struct pubname_struct GTY(())
{
  dw_die_ref die;
  char *name;
}
pubname_entry;

DEF_VEC_O(pubname_entry);
DEF_VEC_ALLOC_O(pubname_entry, gc);

struct dw_ranges_struct GTY(())
{
  int block_num;
};

/* The limbo die list structure.  */
typedef struct limbo_die_struct GTY(())
{
  dw_die_ref die;
  tree created_for;
  struct limbo_die_struct *next;
}
limbo_die_node;

/* How to start an assembler comment.  */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif

/* Define a macro which returns nonzero for a TYPE_DECL which was
   implicitly generated for a tagged type.

   Note that unlike the gcc front end (which generates a NULL named
   TYPE_DECL node for each complete tagged type, each array type, and
   each function type node created) the g++ front end generates a
   _named_ TYPE_DECL node for each tagged type node created.
   These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
   generate a DW_TAG_typedef DIE for them.  */

#define TYPE_DECL_IS_STUB(decl)				\
  (DECL_NAME (decl) == NULL_TREE			\
   || (DECL_ARTIFICIAL (decl)				\
       && is_tagged_type (TREE_TYPE (decl))		\
       && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl)))	\
	   /* This is necessary for stub decls that	\
	      appear in nested inline functions.  */	\
	   || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE	\
	       && (decl_ultimate_origin (decl)		\
		   == TYPE_STUB_DECL (TREE_TYPE (decl)))))))

/* Information concerning the compilation unit's programming
   language, and compiler version.  */

/* Fixed size portion of the DWARF compilation unit header.  */
#define DWARF_COMPILE_UNIT_HEADER_SIZE \
  (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)

/* Fixed size portion of public names info.  */
#define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)

/* Fixed size portion of the address range info.  */
#define DWARF_ARANGES_HEADER_SIZE					\
  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4,	\
                DWARF2_ADDR_SIZE * 2)					\
   - DWARF_INITIAL_LENGTH_SIZE)

/* Size of padding portion in the address range info.  It must be
   aligned to twice the pointer size.  */
#define DWARF_ARANGES_PAD_SIZE \
  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
                DWARF2_ADDR_SIZE * 2) \
   - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))

/* Use assembler line directives if available.  */
#ifndef DWARF2_ASM_LINE_DEBUG_INFO
#ifdef HAVE_AS_DWARF2_DEBUG_LINE
#define DWARF2_ASM_LINE_DEBUG_INFO 1
#else
#define DWARF2_ASM_LINE_DEBUG_INFO 0
#endif
#endif

/* Minimum line offset in a special line info. opcode.
   This value was chosen to give a reasonable range of values.  */
#define DWARF_LINE_BASE  -10

/* First special line opcode - leave room for the standard opcodes.  */
#define DWARF_LINE_OPCODE_BASE  10

/* Range of line offsets in a special line info. opcode.  */
#define DWARF_LINE_RANGE  (254-DWARF_LINE_OPCODE_BASE+1)

/* Flag that indicates the initial value of the is_stmt_start flag.
   In the present implementation, we do not mark any lines as
   the beginning of a source statement, because that information
   is not made available by the GCC front-end.  */
#define	DWARF_LINE_DEFAULT_IS_STMT_START 1

#ifdef DWARF2_DEBUGGING_INFO
/* This location is used by calc_die_sizes() to keep track
   the offset of each DIE within the .debug_info section.  */
static unsigned long next_die_offset;
#endif

/* Record the root of the DIE's built for the current compilation unit.  */
static GTY(()) dw_die_ref comp_unit_die;

/* A list of DIEs with a NULL parent waiting to be relocated.  */
static GTY(()) limbo_die_node *limbo_die_list;

/* Filenames referenced by this compilation unit.  */
static GTY((param_is (struct dwarf_file_data))) htab_t file_table;

/* A hash table of references to DIE's that describe declarations.
   The key is a DECL_UID() which is a unique number identifying each decl.  */
static GTY ((param_is (struct die_struct))) htab_t decl_die_table;

/* Node of the variable location list.  */
struct var_loc_node GTY ((chain_next ("%h.next")))
{
  rtx GTY (()) var_loc_note;
  const char * GTY (()) label;
  const char * GTY (()) section_label;
  struct var_loc_node * GTY (()) next;
};

/* Variable location list.  */
struct var_loc_list_def GTY (())
{
  struct var_loc_node * GTY (()) first;

  /* Do not mark the last element of the chained list because
     it is marked through the chain.  */
  struct var_loc_node * GTY ((skip ("%h"))) last;

  /* DECL_UID of the variable decl.  */
  unsigned int decl_id;
};
typedef struct var_loc_list_def var_loc_list;


/* Table of decl location linked lists.  */
static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;

/* A pointer to the base of a list of references to DIE's that
   are uniquely identified by their tag, presence/absence of
   children DIE's, and list of attribute/value pairs.  */
static GTY((length ("abbrev_die_table_allocated")))
  dw_die_ref *abbrev_die_table;

/* Number of elements currently allocated for abbrev_die_table.  */
static GTY(()) unsigned abbrev_die_table_allocated;

/* Number of elements in type_die_table currently in use.  */
static GTY(()) unsigned abbrev_die_table_in_use;

/* Size (in elements) of increments by which we may expand the
   abbrev_die_table.  */
#define ABBREV_DIE_TABLE_INCREMENT 256

/* A pointer to the base of a table that contains line information
   for each source code line in .text in the compilation unit.  */
static GTY((length ("line_info_table_allocated")))
     dw_line_info_ref line_info_table;

/* Number of elements currently allocated for line_info_table.  */
static GTY(()) unsigned line_info_table_allocated;

/* Number of elements in line_info_table currently in use.  */
static GTY(()) unsigned line_info_table_in_use;

/* True if the compilation unit places functions in more than one section.  */
static GTY(()) bool have_multiple_function_sections = false;

/* A pointer to the base of a table that contains line information
   for each source code line outside of .text in the compilation unit.  */
static GTY ((length ("separate_line_info_table_allocated")))
     dw_separate_line_info_ref separate_line_info_table;

/* Number of elements currently allocated for separate_line_info_table.  */
static GTY(()) unsigned separate_line_info_table_allocated;

/* Number of elements in separate_line_info_table currently in use.  */
static GTY(()) unsigned separate_line_info_table_in_use;

/* Size (in elements) of increments by which we may expand the
   line_info_table.  */
#define LINE_INFO_TABLE_INCREMENT 1024

/* A pointer to the base of a table that contains a list of publicly
   accessible names.  */
static GTY (()) VEC (pubname_entry, gc) *  pubname_table;

/* A pointer to the base of a table that contains a list of publicly
   accessible types.  */
static GTY (()) VEC (pubname_entry, gc) * pubtype_table;

/* Array of dies for which we should generate .debug_arange info.  */
static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;

/* Number of elements currently allocated for arange_table.  */
static GTY(()) unsigned arange_table_allocated;

/* Number of elements in arange_table currently in use.  */
static GTY(()) unsigned arange_table_in_use;

/* Size (in elements) of increments by which we may expand the
   arange_table.  */
#define ARANGE_TABLE_INCREMENT 64

/* Array of dies for which we should generate .debug_ranges info.  */
static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;

/* Number of elements currently allocated for ranges_table.  */
static GTY(()) unsigned ranges_table_allocated;

/* Number of elements in ranges_table currently in use.  */
static GTY(()) unsigned ranges_table_in_use;

/* Size (in elements) of increments by which we may expand the
   ranges_table.  */
#define RANGES_TABLE_INCREMENT 64

/* Whether we have location lists that need outputting */
static GTY(()) bool have_location_lists;

/* Unique label counter.  */
static GTY(()) unsigned int loclabel_num;

#ifdef DWARF2_DEBUGGING_INFO
/* Record whether the function being analyzed contains inlined functions.  */
static int current_function_has_inlines;
#endif
#if 0 && defined (MIPS_DEBUGGING_INFO)
static int comp_unit_has_inlines;
#endif

/* The last file entry emitted by maybe_emit_file().  */
static GTY(()) struct dwarf_file_data * last_emitted_file;

/* Number of internal labels generated by gen_internal_sym().  */
static GTY(()) int label_num;

/* Cached result of previous call to lookup_filename.  */
static GTY(()) struct dwarf_file_data * file_table_last_lookup;

#ifdef DWARF2_DEBUGGING_INFO

/* Offset from the "steady-state frame pointer" to the frame base,
   within the current function.  */
static HOST_WIDE_INT frame_pointer_fb_offset;

/* Forward declarations for functions defined in this file.  */

static int is_pseudo_reg (rtx);
static tree type_main_variant (tree);
static int is_tagged_type (tree);
static const char *dwarf_tag_name (unsigned);
static const char *dwarf_attr_name (unsigned);
static const char *dwarf_form_name (unsigned);
static tree decl_ultimate_origin (tree);
static tree block_ultimate_origin (tree);
static tree decl_class_context (tree);
static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
static inline enum dw_val_class AT_class (dw_attr_ref);
static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
static inline unsigned AT_flag (dw_attr_ref);
static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
static inline HOST_WIDE_INT AT_int (dw_attr_ref);
static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
			      unsigned long);
static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
			       unsigned int, unsigned char *);
static hashval_t debug_str_do_hash (const void *);
static int debug_str_eq (const void *, const void *);
static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
static inline const char *AT_string (dw_attr_ref);
static int AT_string_form (dw_attr_ref);
static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
static void add_AT_specification (dw_die_ref, dw_die_ref);
static inline dw_die_ref AT_ref (dw_attr_ref);
static inline int AT_ref_external (dw_attr_ref);
static inline void set_AT_ref_external (dw_attr_ref, int);
static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
			     dw_loc_list_ref);
static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
static inline rtx AT_addr (dw_attr_ref);
static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
			   unsigned HOST_WIDE_INT);
static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
			       unsigned long);
static inline const char *AT_lbl (dw_attr_ref);
static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
static const char *get_AT_low_pc (dw_die_ref);
static const char *get_AT_hi_pc (dw_die_ref);
static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
static bool is_c_family (void);
static bool is_cxx (void);
static bool is_java (void);
static bool is_fortran (void);
static bool is_ada (void);
static void remove_AT (dw_die_ref, enum dwarf_attribute);
static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
static void add_child_die (dw_die_ref, dw_die_ref);
static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
static dw_die_ref lookup_type_die (tree);
static void equate_type_number_to_die (tree, dw_die_ref);
static hashval_t decl_die_table_hash (const void *);
static int decl_die_table_eq (const void *, const void *);
static dw_die_ref lookup_decl_die (tree);
static hashval_t decl_loc_table_hash (const void *);
static int decl_loc_table_eq (const void *, const void *);
static var_loc_list *lookup_decl_loc (tree);
static void equate_decl_number_to_die (tree, dw_die_ref);
static void add_var_loc_to_decl (tree, struct var_loc_node *);
static void print_spaces (FILE *);
static void print_die (dw_die_ref, FILE *);
static void print_dwarf_line_table (FILE *);
static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
static dw_die_ref pop_compile_unit (dw_die_ref);
static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
static int same_die_p (dw_die_ref, dw_die_ref, int *);
static int same_die_p_wrap (dw_die_ref, dw_die_ref);
static void compute_section_prefix (dw_die_ref);
static int is_type_die (dw_die_ref);
static int is_comdat_die (dw_die_ref);
static int is_symbol_die (dw_die_ref);
static void assign_symbol_names (dw_die_ref);
static void break_out_includes (dw_die_ref);
static hashval_t htab_cu_hash (const void *);
static int htab_cu_eq (const void *, const void *);
static void htab_cu_del (void *);
static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
static void add_sibling_attributes (dw_die_ref);
static void build_abbrev_table (dw_die_ref);
static void output_location_lists (dw_die_ref);
static int constant_size (long unsigned);
static unsigned long size_of_die (dw_die_ref);
static void calc_die_sizes (dw_die_ref);
static void mark_dies (dw_die_ref);
static void unmark_dies (dw_die_ref);
static void unmark_all_dies (dw_die_ref);
static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
static unsigned long size_of_aranges (void);
static enum dwarf_form value_format (dw_attr_ref);
static void output_value_format (dw_attr_ref);
static void output_abbrev_section (void);
static void output_die_symbol (dw_die_ref);
static void output_die (dw_die_ref);
static void output_compilation_unit_header (void);
static void output_comp_unit (dw_die_ref, int);
static const char *dwarf2_name (tree, int);
static void add_pubname (tree, dw_die_ref);
static void add_pubtype (tree, dw_die_ref);
static void output_pubnames (VEC (pubname_entry,gc) *);
static void add_arange (tree, dw_die_ref);
static void output_aranges (void);
static unsigned int add_ranges (tree);
static void output_ranges (void);
static void output_line_info (void);
static void output_file_names (void);
static dw_die_ref base_type_die (tree);
static tree root_type (tree);
static int is_base_type (tree);
static bool is_subrange_type (tree);
static dw_die_ref subrange_type_die (tree, dw_die_ref);
static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
static int type_is_enum (tree);
static unsigned int dbx_reg_number (rtx);
static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
static dw_loc_descr_ref reg_loc_descriptor (rtx);
static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
static int is_based_loc (rtx);
static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
static dw_loc_descr_ref loc_descriptor (rtx);
static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
static dw_loc_descr_ref loc_descriptor_from_tree (tree);
static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
static tree field_type (tree);
static unsigned int simple_type_align_in_bits (tree);
static unsigned int simple_decl_align_in_bits (tree);
static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
static HOST_WIDE_INT field_byte_offset (tree);
static void add_AT_location_description	(dw_die_ref, enum dwarf_attribute,
					 dw_loc_descr_ref);
static void add_data_member_location_attribute (dw_die_ref, tree);
static void add_const_value_attribute (dw_die_ref, rtx);
static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
static void insert_float (rtx, unsigned char *);
static rtx rtl_for_decl_location (tree);
static void add_location_or_const_value_attribute (dw_die_ref, tree,
						   enum dwarf_attribute);
static void tree_add_const_value_attribute (dw_die_ref, tree);
static void add_name_attribute (dw_die_ref, const char *);
static void add_comp_dir_attribute (dw_die_ref);
static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
static void add_subscript_info (dw_die_ref, tree);
static void add_byte_size_attribute (dw_die_ref, tree);
static void add_bit_offset_attribute (dw_die_ref, tree);
static void add_bit_size_attribute (dw_die_ref, tree);
static void add_prototyped_attribute (dw_die_ref, tree);
static void add_abstract_origin_attribute (dw_die_ref, tree);
static void add_pure_or_virtual_attribute (dw_die_ref, tree);
static void add_src_coords_attributes (dw_die_ref, tree);
static void add_name_and_src_coords_attributes (dw_die_ref, tree);
static void push_decl_scope (tree);
static void pop_decl_scope (void);
static dw_die_ref scope_die_for (tree, dw_die_ref);
static inline int local_scope_p (dw_die_ref);
static inline int class_or_namespace_scope_p (dw_die_ref);
static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
static void add_calling_convention_attribute (dw_die_ref, tree);
static const char *type_tag (tree);
static tree member_declared_type (tree);
#if 0
static const char *decl_start_label (tree);
#endif
static void gen_array_type_die (tree, dw_die_ref);
#if 0
static void gen_entry_point_die (tree, dw_die_ref);
#endif
static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
static void gen_inlined_structure_type_die (tree, dw_die_ref);
static void gen_inlined_union_type_die (tree, dw_die_ref);
static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
static void gen_unspecified_parameters_die (tree, dw_die_ref);
static void gen_formal_types_die (tree, dw_die_ref);
static void gen_subprogram_die (tree, dw_die_ref);
static void gen_variable_die (tree, dw_die_ref);
static void gen_label_die (tree, dw_die_ref);
static void gen_lexical_block_die (tree, dw_die_ref, int);
static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
static void gen_field_die (tree, dw_die_ref);
static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
static dw_die_ref gen_compile_unit_die (const char *);
static void gen_inheritance_die (tree, tree, dw_die_ref);
static void gen_member_die (tree, dw_die_ref);
static void gen_struct_or_union_type_die (tree, dw_die_ref,
						enum debug_info_usage);
static void gen_subroutine_type_die (tree, dw_die_ref);
static void gen_typedef_die (tree, dw_die_ref);
static void gen_type_die (tree, dw_die_ref);
static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
static void gen_block_die (tree, dw_die_ref, int);
static void decls_for_scope (tree, dw_die_ref, int);
static int is_redundant_typedef (tree);
static void gen_namespace_die (tree);
static void gen_decl_die (tree, dw_die_ref);
static dw_die_ref force_decl_die (tree);
static dw_die_ref force_type_die (tree);
static dw_die_ref setup_namespace_context (tree, dw_die_ref);
static void declare_in_namespace (tree, dw_die_ref);
static struct dwarf_file_data * lookup_filename (const char *);
static void retry_incomplete_types (void);
static void gen_type_die_for_member (tree, tree, dw_die_ref);
static void splice_child_die (dw_die_ref, dw_die_ref);
static int file_info_cmp (const void *, const void *);
static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
				     const char *, const char *, unsigned);
static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
				       const char *, const char *,
				       const char *);
static void output_loc_list (dw_loc_list_ref);
static char *gen_internal_sym (const char *);

static void prune_unmark_dies (dw_die_ref);
static void prune_unused_types_mark (dw_die_ref, int);
static void prune_unused_types_walk (dw_die_ref);
static void prune_unused_types_walk_attribs (dw_die_ref);
static void prune_unused_types_prune (dw_die_ref);
static void prune_unused_types (void);
static int maybe_emit_file (struct dwarf_file_data *fd);

/* Section names used to hold DWARF debugging information.  */
#ifndef DEBUG_INFO_SECTION
#define DEBUG_INFO_SECTION	".debug_info"
#endif
#ifndef DEBUG_ABBREV_SECTION
#define DEBUG_ABBREV_SECTION	".debug_abbrev"
#endif
#ifndef DEBUG_ARANGES_SECTION
#define DEBUG_ARANGES_SECTION	".debug_aranges"
#endif
#ifndef DEBUG_MACINFO_SECTION
#define DEBUG_MACINFO_SECTION	".debug_macinfo"
#endif
#ifndef DEBUG_LINE_SECTION
#define DEBUG_LINE_SECTION	".debug_line"
#endif
#ifndef DEBUG_LOC_SECTION
#define DEBUG_LOC_SECTION	".debug_loc"
#endif
#ifndef DEBUG_PUBNAMES_SECTION
#define DEBUG_PUBNAMES_SECTION	".debug_pubnames"
#endif
#ifndef DEBUG_STR_SECTION
#define DEBUG_STR_SECTION	".debug_str"
#endif
#ifndef DEBUG_RANGES_SECTION
#define DEBUG_RANGES_SECTION	".debug_ranges"
#endif

/* Standard ELF section names for compiled code and data.  */
#ifndef TEXT_SECTION_NAME
#define TEXT_SECTION_NAME	".text"
#endif

/* Section flags for .debug_str section.  */
#define DEBUG_STR_SECTION_FLAGS \
  (HAVE_GAS_SHF_MERGE && flag_merge_constants			\
   ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1	\
   : SECTION_DEBUG)

/* Labels we insert at beginning sections we can reference instead of
   the section names themselves.  */

#ifndef TEXT_SECTION_LABEL
#define TEXT_SECTION_LABEL		"Ltext"
#endif
#ifndef COLD_TEXT_SECTION_LABEL
#define COLD_TEXT_SECTION_LABEL         "Ltext_cold"
#endif
#ifndef DEBUG_LINE_SECTION_LABEL
#define DEBUG_LINE_SECTION_LABEL	"Ldebug_line"
#endif
#ifndef DEBUG_INFO_SECTION_LABEL
#define DEBUG_INFO_SECTION_LABEL	"Ldebug_info"
#endif
#ifndef DEBUG_ABBREV_SECTION_LABEL
#define DEBUG_ABBREV_SECTION_LABEL	"Ldebug_abbrev"
#endif
#ifndef DEBUG_LOC_SECTION_LABEL
#define DEBUG_LOC_SECTION_LABEL		"Ldebug_loc"
#endif
#ifndef DEBUG_RANGES_SECTION_LABEL
#define DEBUG_RANGES_SECTION_LABEL	"Ldebug_ranges"
#endif
#ifndef DEBUG_MACINFO_SECTION_LABEL
#define DEBUG_MACINFO_SECTION_LABEL     "Ldebug_macinfo"
#endif

/* Definitions of defaults for formats and names of various special
   (artificial) labels which may be generated within this file (when the -g
   options is used and DWARF2_DEBUGGING_INFO is in effect.
   If necessary, these may be overridden from within the tm.h file, but
   typically, overriding these defaults is unnecessary.  */

static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES]; 
static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];

#ifndef TEXT_END_LABEL
#define TEXT_END_LABEL		"Letext"
#endif
#ifndef COLD_END_LABEL
#define COLD_END_LABEL          "Letext_cold"
#endif
#ifndef BLOCK_BEGIN_LABEL
#define BLOCK_BEGIN_LABEL	"LBB"
#endif
#ifndef BLOCK_END_LABEL
#define BLOCK_END_LABEL		"LBE"
#endif
#ifndef LINE_CODE_LABEL
#define LINE_CODE_LABEL		"LM"
#endif
#ifndef SEPARATE_LINE_CODE_LABEL
#define SEPARATE_LINE_CODE_LABEL	"LSM"
#endif

/* We allow a language front-end to designate a function that is to be
   called to "demangle" any name before it is put into a DIE.  */

static const char *(*demangle_name_func) (const char *);

void
dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
{
  demangle_name_func = func;
}

/* Test if rtl node points to a pseudo register.  */

static inline int
is_pseudo_reg (rtx rtl)
{
  return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
	  || (GET_CODE (rtl) == SUBREG
	      && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
}

/* Return a reference to a type, with its const and volatile qualifiers
   removed.  */

static inline tree
type_main_variant (tree type)
{
  type = TYPE_MAIN_VARIANT (type);

  /* ??? There really should be only one main variant among any group of
     variants of a given type (and all of the MAIN_VARIANT values for all
     members of the group should point to that one type) but sometimes the C
     front-end messes this up for array types, so we work around that bug
     here.  */
  if (TREE_CODE (type) == ARRAY_TYPE)
    while (type != TYPE_MAIN_VARIANT (type))
      type = TYPE_MAIN_VARIANT (type);

  return type;
}

/* Return nonzero if the given type node represents a tagged type.  */

static inline int
is_tagged_type (tree type)
{
  enum tree_code code = TREE_CODE (type);

  return (code == RECORD_TYPE || code == UNION_TYPE
	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
}

/* Convert a DIE tag into its string name.  */

static const char *
dwarf_tag_name (unsigned int tag)
{
  switch (tag)
    {
    case DW_TAG_padding:
      return "DW_TAG_padding";
    case DW_TAG_array_type:
      return "DW_TAG_array_type";
    case DW_TAG_class_type:
      return "DW_TAG_class_type";
    case DW_TAG_entry_point:
      return "DW_TAG_entry_point";
    case DW_TAG_enumeration_type:
      return "DW_TAG_enumeration_type";
    case DW_TAG_formal_parameter:
      return "DW_TAG_formal_parameter";
    case DW_TAG_imported_declaration:
      return "DW_TAG_imported_declaration";
    case DW_TAG_label:
      return "DW_TAG_label";
    case DW_TAG_lexical_block:
      return "DW_TAG_lexical_block";
    case DW_TAG_member:
      return "DW_TAG_member";
    case DW_TAG_pointer_type:
      return "DW_TAG_pointer_type";
    case DW_TAG_reference_type:
      return "DW_TAG_reference_type";
    case DW_TAG_compile_unit:
      return "DW_TAG_compile_unit";
    case DW_TAG_string_type:
      return "DW_TAG_string_type";
    case DW_TAG_structure_type:
      return "DW_TAG_structure_type";
    case DW_TAG_subroutine_type:
      return "DW_TAG_subroutine_type";
    case DW_TAG_typedef:
      return "DW_TAG_typedef";
    case DW_TAG_union_type:
      return "DW_TAG_union_type";
    case DW_TAG_unspecified_parameters:
      return "DW_TAG_unspecified_parameters";
    case DW_TAG_variant:
      return "DW_TAG_variant";
    case DW_TAG_common_block:
      return "DW_TAG_common_block";
    case DW_TAG_common_inclusion:
      return "DW_TAG_common_inclusion";
    case DW_TAG_inheritance:
      return "DW_TAG_inheritance";
    case DW_TAG_inlined_subroutine:
      return "DW_TAG_inlined_subroutine";
    case DW_TAG_module:
      return "DW_TAG_module";
    case DW_TAG_ptr_to_member_type:
      return "DW_TAG_ptr_to_member_type";
    case DW_TAG_set_type:
      return "DW_TAG_set_type";
    case DW_TAG_subrange_type:
      return "DW_TAG_subrange_type";
    case DW_TAG_with_stmt:
      return "DW_TAG_with_stmt";
    case DW_TAG_access_declaration:
      return "DW_TAG_access_declaration";
    case DW_TAG_base_type:
      return "DW_TAG_base_type";
    case DW_TAG_catch_block:
      return "DW_TAG_catch_block";
    case DW_TAG_const_type:
      return "DW_TAG_const_type";
    case DW_TAG_constant:
      return "DW_TAG_constant";
    case DW_TAG_enumerator:
      return "DW_TAG_enumerator";
    case DW_TAG_file_type:
      return "DW_TAG_file_type";
    case DW_TAG_friend:
      return "DW_TAG_friend";
    case DW_TAG_namelist:
      return "DW_TAG_namelist";
    case DW_TAG_namelist_item:
      return "DW_TAG_namelist_item";
    case DW_TAG_namespace:
      return "DW_TAG_namespace";
    case DW_TAG_packed_type:
      return "DW_TAG_packed_type";
    case DW_TAG_subprogram:
      return "DW_TAG_subprogram";
    case DW_TAG_template_type_param:
      return "DW_TAG_template_type_param";
    case DW_TAG_template_value_param:
      return "DW_TAG_template_value_param";
    case DW_TAG_thrown_type:
      return "DW_TAG_thrown_type";
    case DW_TAG_try_block:
      return "DW_TAG_try_block";
    case DW_TAG_variant_part:
      return "DW_TAG_variant_part";
    case DW_TAG_variable:
      return "DW_TAG_variable";
    case DW_TAG_volatile_type:
      return "DW_TAG_volatile_type";
    case DW_TAG_imported_module:
      return "DW_TAG_imported_module";
    case DW_TAG_MIPS_loop:
      return "DW_TAG_MIPS_loop";
    case DW_TAG_format_label:
      return "DW_TAG_format_label";
    case DW_TAG_function_template:
      return "DW_TAG_function_template";
    case DW_TAG_class_template:
      return "DW_TAG_class_template";
    case DW_TAG_GNU_BINCL:
      return "DW_TAG_GNU_BINCL";
    case DW_TAG_GNU_EINCL:
      return "DW_TAG_GNU_EINCL";
    default:
      return "DW_TAG_<unknown>";
    }
}

/* Convert a DWARF attribute code into its string name.  */

static const char *
dwarf_attr_name (unsigned int attr)
{
  switch (attr)
    {
    case DW_AT_sibling:
      return "DW_AT_sibling";
    case DW_AT_location:
      return "DW_AT_location";
    case DW_AT_name:
      return "DW_AT_name";
    case DW_AT_ordering:
      return "DW_AT_ordering";
    case DW_AT_subscr_data:
      return "DW_AT_subscr_data";
    case DW_AT_byte_size:
      return "DW_AT_byte_size";
    case DW_AT_bit_offset:
      return "DW_AT_bit_offset";
    case DW_AT_bit_size:
      return "DW_AT_bit_size";
    case DW_AT_element_list:
      return "DW_AT_element_list";
    case DW_AT_stmt_list:
      return "DW_AT_stmt_list";
    case DW_AT_low_pc:
      return "DW_AT_low_pc";
    case DW_AT_high_pc:
      return "DW_AT_high_pc";
    case DW_AT_language:
      return "DW_AT_language";
    case DW_AT_member:
      return "DW_AT_member";
    case DW_AT_discr:
      return "DW_AT_discr";
    case DW_AT_discr_value:
      return "DW_AT_discr_value";
    case DW_AT_visibility:
      return "DW_AT_visibility";
    case DW_AT_import:
      return "DW_AT_import";
    case DW_AT_string_length:
      return "DW_AT_string_length";
    case DW_AT_common_reference:
      return "DW_AT_common_reference";
    case DW_AT_comp_dir:
      return "DW_AT_comp_dir";
    case DW_AT_const_value:
      return "DW_AT_const_value";
    case DW_AT_containing_type:
      return "DW_AT_containing_type";
    case DW_AT_default_value:
      return "DW_AT_default_value";
    case DW_AT_inline:
      return "DW_AT_inline";
    case DW_AT_is_optional:
      return "DW_AT_is_optional";
    case DW_AT_lower_bound:
      return "DW_AT_lower_bound";
    case DW_AT_producer:
      return "DW_AT_producer";
    case DW_AT_prototyped:
      return "DW_AT_prototyped";
    case DW_AT_return_addr:
      return "DW_AT_return_addr";
    case DW_AT_start_scope:
      return "DW_AT_start_scope";
    case DW_AT_stride_size:
      return "DW_AT_stride_size";
    case DW_AT_upper_bound:
      return "DW_AT_upper_bound";
    case DW_AT_abstract_origin:
      return "DW_AT_abstract_origin";
    case DW_AT_accessibility:
      return "DW_AT_accessibility";
    case DW_AT_address_class:
      return "DW_AT_address_class";
    case DW_AT_artificial:
      return "DW_AT_artificial";
    case DW_AT_base_types:
      return "DW_AT_base_types";
    case DW_AT_calling_convention:
      return "DW_AT_calling_convention";
    case DW_AT_count:
      return "DW_AT_count";
    case DW_AT_data_member_location:
      return "DW_AT_data_member_location";
    case DW_AT_decl_column:
      return "DW_AT_decl_column";
    case DW_AT_decl_file:
      return "DW_AT_decl_file";
    case DW_AT_decl_line:
      return "DW_AT_decl_line";
    case DW_AT_declaration:
      return "DW_AT_declaration";
    case DW_AT_discr_list:
      return "DW_AT_discr_list";
    case DW_AT_encoding:
      return "DW_AT_encoding";
    case DW_AT_external:
      return "DW_AT_external";
    case DW_AT_frame_base:
      return "DW_AT_frame_base";
    case DW_AT_friend:
      return "DW_AT_friend";
    case DW_AT_identifier_case:
      return "DW_AT_identifier_case";
    case DW_AT_macro_info:
      return "DW_AT_macro_info";
    case DW_AT_namelist_items:
      return "DW_AT_namelist_items";
    case DW_AT_priority:
      return "DW_AT_priority";
    case DW_AT_segment:
      return "DW_AT_segment";
    case DW_AT_specification:
      return "DW_AT_specification";
    case DW_AT_static_link:
      return "DW_AT_static_link";
    case DW_AT_type:
      return "DW_AT_type";
    case DW_AT_use_location:
      return "DW_AT_use_location";
    case DW_AT_variable_parameter:
      return "DW_AT_variable_parameter";
    case DW_AT_virtuality:
      return "DW_AT_virtuality";
    case DW_AT_vtable_elem_location:
      return "DW_AT_vtable_elem_location";

    case DW_AT_allocated:
      return "DW_AT_allocated";
    case DW_AT_associated:
      return "DW_AT_associated";
    case DW_AT_data_location:
      return "DW_AT_data_location";
    case DW_AT_stride:
      return "DW_AT_stride";
    case DW_AT_entry_pc:
      return "DW_AT_entry_pc";
    case DW_AT_use_UTF8:
      return "DW_AT_use_UTF8";
    case DW_AT_extension:
      return "DW_AT_extension";
    case DW_AT_ranges:
      return "DW_AT_ranges";
    case DW_AT_trampoline:
      return "DW_AT_trampoline";
    case DW_AT_call_column:
      return "DW_AT_call_column";
    case DW_AT_call_file:
      return "DW_AT_call_file";
    case DW_AT_call_line:
      return "DW_AT_call_line";

    case DW_AT_MIPS_fde:
      return "DW_AT_MIPS_fde";
    case DW_AT_MIPS_loop_begin:
      return "DW_AT_MIPS_loop_begin";
    case DW_AT_MIPS_tail_loop_begin:
      return "DW_AT_MIPS_tail_loop_begin";
    case DW_AT_MIPS_epilog_begin:
      return "DW_AT_MIPS_epilog_begin";
    case DW_AT_MIPS_loop_unroll_factor:
      return "DW_AT_MIPS_loop_unroll_factor";
    case DW_AT_MIPS_software_pipeline_depth:
      return "DW_AT_MIPS_software_pipeline_depth";
    case DW_AT_MIPS_linkage_name:
      return "DW_AT_MIPS_linkage_name";
    case DW_AT_MIPS_stride:
      return "DW_AT_MIPS_stride";
    case DW_AT_MIPS_abstract_name:
      return "DW_AT_MIPS_abstract_name";
    case DW_AT_MIPS_clone_origin:
      return "DW_AT_MIPS_clone_origin";
    case DW_AT_MIPS_has_inlines:
      return "DW_AT_MIPS_has_inlines";

    case DW_AT_sf_names:
      return "DW_AT_sf_names";
    case DW_AT_src_info:
      return "DW_AT_src_info";
    case DW_AT_mac_info:
      return "DW_AT_mac_info";
    case DW_AT_src_coords:
      return "DW_AT_src_coords";
    case DW_AT_body_begin:
      return "DW_AT_body_begin";
    case DW_AT_body_end:
      return "DW_AT_body_end";
    case DW_AT_GNU_vector:
      return "DW_AT_GNU_vector";

    case DW_AT_VMS_rtnbeg_pd_address:
      return "DW_AT_VMS_rtnbeg_pd_address";

    /* APPLE LOCAL begin radar 5811943 - Fix type of pointers to Blocks  */
    case DW_AT_APPLE_block:
      return "DW_AT_APPLE_block";
    /* APPLE LOCAL end radar 5811943 - Fix type of pointers to Blocks  */

    default:
      return "DW_AT_<unknown>";
    }
}

/* Convert a DWARF value form code into its string name.  */

static const char *
dwarf_form_name (unsigned int form)
{
  switch (form)
    {
    case DW_FORM_addr:
      return "DW_FORM_addr";
    case DW_FORM_block2:
      return "DW_FORM_block2";
    case DW_FORM_block4:
      return "DW_FORM_block4";
    case DW_FORM_data2:
      return "DW_FORM_data2";
    case DW_FORM_data4:
      return "DW_FORM_data4";
    case DW_FORM_data8:
      return "DW_FORM_data8";
    case DW_FORM_string:
      return "DW_FORM_string";
    case DW_FORM_block:
      return "DW_FORM_block";
    case DW_FORM_block1:
      return "DW_FORM_block1";
    case DW_FORM_data1:
      return "DW_FORM_data1";
    case DW_FORM_flag:
      return "DW_FORM_flag";
    case DW_FORM_sdata:
      return "DW_FORM_sdata";
    case DW_FORM_strp:
      return "DW_FORM_strp";
    case DW_FORM_udata:
      return "DW_FORM_udata";
    case DW_FORM_ref_addr:
      return "DW_FORM_ref_addr";
    case DW_FORM_ref1:
      return "DW_FORM_ref1";
    case DW_FORM_ref2:
      return "DW_FORM_ref2";
    case DW_FORM_ref4:
      return "DW_FORM_ref4";
    case DW_FORM_ref8:
      return "DW_FORM_ref8";
    case DW_FORM_ref_udata:
      return "DW_FORM_ref_udata";
    case DW_FORM_indirect:
      return "DW_FORM_indirect";
    default:
      return "DW_FORM_<unknown>";
    }
}

/* Determine the "ultimate origin" of a decl.  The decl may be an inlined
   instance of an inlined instance of a decl which is local to an inline
   function, so we have to trace all of the way back through the origin chain
   to find out what sort of node actually served as the original seed for the
   given block.  */

static tree
decl_ultimate_origin (tree decl)
{
  if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
    return NULL_TREE;

  /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
     nodes in the function to point to themselves; ignore that if
     we're trying to output the abstract instance of this function.  */
  if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
    return NULL_TREE;

  /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
     most distant ancestor, this should never happen.  */
  gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));

  return DECL_ABSTRACT_ORIGIN (decl);
}

/* Determine the "ultimate origin" of a block.  The block may be an inlined
   instance of an inlined instance of a block which is local to an inline
   function, so we have to trace all of the way back through the origin chain
   to find out what sort of node actually served as the original seed for the
   given block.  */

static tree
block_ultimate_origin (tree block)
{
  tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);

  /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
     nodes in the function to point to themselves; ignore that if
     we're trying to output the abstract instance of this function.  */
  if (BLOCK_ABSTRACT (block) && immediate_origin == block)
    return NULL_TREE;

  if (immediate_origin == NULL_TREE)
    return NULL_TREE;
  else
    {
      tree ret_val;
      tree lookahead = immediate_origin;

      do
	{
	  ret_val = lookahead;
	  lookahead = (TREE_CODE (ret_val) == BLOCK
		       ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
	}
      while (lookahead != NULL && lookahead != ret_val);
      
      /* The block's abstract origin chain may not be the *ultimate* origin of
	 the block. It could lead to a DECL that has an abstract origin set.
	 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
	 will give us if it has one).  Note that DECL's abstract origins are
	 supposed to be the most distant ancestor (or so decl_ultimate_origin
	 claims), so we don't need to loop following the DECL origins.  */
      if (DECL_P (ret_val))
	return DECL_ORIGIN (ret_val);

      return ret_val;
    }
}

/* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
   of a virtual function may refer to a base class, so we check the 'this'
   parameter.  */

static tree
decl_class_context (tree decl)
{
  tree context = NULL_TREE;

  if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
    context = DECL_CONTEXT (decl);
  else
    context = TYPE_MAIN_VARIANT
      (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));

  if (context && !TYPE_P (context))
    context = NULL_TREE;

  return context;
}

/* Add an attribute/value pair to a DIE.  */

static inline void
add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
{
  /* Maybe this should be an assert?  */
  if (die == NULL)
    return;
  
  if (die->die_attr == NULL)
    die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
  VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
}

static inline enum dw_val_class
AT_class (dw_attr_ref a)
{
  return a->dw_attr_val.val_class;
}

/* Add a flag value attribute to a DIE.  */

static inline void
add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_flag;
  attr.dw_attr_val.v.val_flag = flag;
  add_dwarf_attr (die, &attr);
}

static inline unsigned
AT_flag (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_flag);
  return a->dw_attr_val.v.val_flag;
}

/* Add a signed integer attribute value to a DIE.  */

static inline void
add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_const;
  attr.dw_attr_val.v.val_int = int_val;
  add_dwarf_attr (die, &attr);
}

static inline HOST_WIDE_INT
AT_int (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_const);
  return a->dw_attr_val.v.val_int;
}

/* Add an unsigned integer attribute value to a DIE.  */

static inline void
add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
		 unsigned HOST_WIDE_INT unsigned_val)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
  attr.dw_attr_val.v.val_unsigned = unsigned_val;
  add_dwarf_attr (die, &attr);
}

static inline unsigned HOST_WIDE_INT
AT_unsigned (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
  return a->dw_attr_val.v.val_unsigned;
}

/* Add an unsigned double integer attribute value to a DIE.  */

static inline void
add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
		  long unsigned int val_hi, long unsigned int val_low)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_long_long;
  attr.dw_attr_val.v.val_long_long.hi = val_hi;
  attr.dw_attr_val.v.val_long_long.low = val_low;
  add_dwarf_attr (die, &attr);
}

/* Add a floating point attribute value to a DIE and return it.  */

static inline void
add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
	    unsigned int length, unsigned int elt_size, unsigned char *array)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_vec;
  attr.dw_attr_val.v.val_vec.length = length;
  attr.dw_attr_val.v.val_vec.elt_size = elt_size;
  attr.dw_attr_val.v.val_vec.array = array;
  add_dwarf_attr (die, &attr);
}

/* Hash and equality functions for debug_str_hash.  */

static hashval_t
debug_str_do_hash (const void *x)
{
  return htab_hash_string (((const struct indirect_string_node *)x)->str);
}

static int
debug_str_eq (const void *x1, const void *x2)
{
  return strcmp ((((const struct indirect_string_node *)x1)->str),
		 (const char *)x2) == 0;
}

/* Add a string attribute value to a DIE.  */

static inline void
add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
{
  dw_attr_node attr;
  struct indirect_string_node *node;
  void **slot;

  if (! debug_str_hash)
    debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
				      debug_str_eq, NULL);

  slot = htab_find_slot_with_hash (debug_str_hash, str,
				   htab_hash_string (str), INSERT);
  if (*slot == NULL)
    *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
  node = (struct indirect_string_node *) *slot;
  node->str = ggc_strdup (str);
  node->refcount++;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_str;
  attr.dw_attr_val.v.val_str = node;
  add_dwarf_attr (die, &attr);
}

static inline const char *
AT_string (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_str);
  return a->dw_attr_val.v.val_str->str;
}

/* Find out whether a string should be output inline in DIE
   or out-of-line in .debug_str section.  */

static int
AT_string_form (dw_attr_ref a)
{
  struct indirect_string_node *node;
  unsigned int len;
  char label[32];

  gcc_assert (a && AT_class (a) == dw_val_class_str);

  node = a->dw_attr_val.v.val_str;
  if (node->form)
    return node->form;

  len = strlen (node->str) + 1;

  /* If the string is shorter or equal to the size of the reference, it is
     always better to put it inline.  */
  if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
    return node->form = DW_FORM_string;

  /* If we cannot expect the linker to merge strings in .debug_str
     section, only put it into .debug_str if it is worth even in this
     single module.  */
  if ((debug_str_section->common.flags & SECTION_MERGE) == 0
      && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
    return node->form = DW_FORM_string;

  ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
  ++dw2_string_counter;
  node->label = xstrdup (label);

  return node->form = DW_FORM_strp;
}

/* Add a DIE reference attribute value to a DIE.  */

static inline void
add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_die_ref;
  attr.dw_attr_val.v.val_die_ref.die = targ_die;
  attr.dw_attr_val.v.val_die_ref.external = 0;
  add_dwarf_attr (die, &attr);
}

/* Add an AT_specification attribute to a DIE, and also make the back
   pointer from the specification to the definition.  */

static inline void
add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
{
  add_AT_die_ref (die, DW_AT_specification, targ_die);
  gcc_assert (!targ_die->die_definition);
  targ_die->die_definition = die;
}

static inline dw_die_ref
AT_ref (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
  return a->dw_attr_val.v.val_die_ref.die;
}

static inline int
AT_ref_external (dw_attr_ref a)
{
  if (a && AT_class (a) == dw_val_class_die_ref)
    return a->dw_attr_val.v.val_die_ref.external;

  return 0;
}

static inline void
set_AT_ref_external (dw_attr_ref a, int i)
{
  gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
  a->dw_attr_val.v.val_die_ref.external = i;
}

/* Add an FDE reference attribute value to a DIE.  */

static inline void
add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_fde_ref;
  attr.dw_attr_val.v.val_fde_index = targ_fde;
  add_dwarf_attr (die, &attr);
}

/* Add a location description attribute value to a DIE.  */

static inline void
add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_loc;
  attr.dw_attr_val.v.val_loc = loc;
  add_dwarf_attr (die, &attr);
}

static inline dw_loc_descr_ref
AT_loc (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_loc);
  return a->dw_attr_val.v.val_loc;
}

static inline void
add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_loc_list;
  attr.dw_attr_val.v.val_loc_list = loc_list;
  add_dwarf_attr (die, &attr);
  have_location_lists = true;
}

static inline dw_loc_list_ref
AT_loc_list (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
  return a->dw_attr_val.v.val_loc_list;
}

/* Add an address constant attribute value to a DIE.  */

static inline void
add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_addr;
  attr.dw_attr_val.v.val_addr = addr;
  add_dwarf_attr (die, &attr);
}

/* Get the RTX from to an address DIE attribute.  */

static inline rtx
AT_addr (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_addr);
  return a->dw_attr_val.v.val_addr;
}

/* Add a file attribute value to a DIE.  */

static inline void
add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
	     struct dwarf_file_data *fd)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_file;
  attr.dw_attr_val.v.val_file = fd;
  add_dwarf_attr (die, &attr);
}

/* Get the dwarf_file_data from a file DIE attribute.  */

static inline struct dwarf_file_data *
AT_file (dw_attr_ref a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_file);
  return a->dw_attr_val.v.val_file;
}

/* Add a label identifier attribute value to a DIE.  */

static inline void
add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_lbl_id;
  attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
  add_dwarf_attr (die, &attr);
}

/* Add a section offset attribute value to a DIE, an offset into the
   debug_line section.  */

static inline void
add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
		const char *label)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_lineptr;
  attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
  add_dwarf_attr (die, &attr);
}

/* Add a section offset attribute value to a DIE, an offset into the
   debug_macinfo section.  */

static inline void
add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
	       const char *label)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_macptr;
  attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
  add_dwarf_attr (die, &attr);
}

/* Add an offset attribute value to a DIE.  */

static inline void
add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
	       unsigned HOST_WIDE_INT offset)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_offset;
  attr.dw_attr_val.v.val_offset = offset;
  add_dwarf_attr (die, &attr);
}

/* Add an range_list attribute value to a DIE.  */

static void
add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
		   long unsigned int offset)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_range_list;
  attr.dw_attr_val.v.val_offset = offset;
  add_dwarf_attr (die, &attr);
}

static inline const char *
AT_lbl (dw_attr_ref a)
{
  gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
		    || AT_class (a) == dw_val_class_lineptr
		    || AT_class (a) == dw_val_class_macptr));
  return a->dw_attr_val.v.val_lbl_id;
}

/* Get the attribute of type attr_kind.  */

static dw_attr_ref
get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_ref a;
  unsigned ix;
  dw_die_ref spec = NULL;

  if (! die)
    return NULL;

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    if (a->dw_attr == attr_kind)
      return a;
    else if (a->dw_attr == DW_AT_specification
	     || a->dw_attr == DW_AT_abstract_origin)
      spec = AT_ref (a);
  
  if (spec)
    return get_AT (spec, attr_kind);

  return NULL;
}

/* Return the "low pc" attribute value, typically associated with a subprogram
   DIE.  Return null if the "low pc" attribute is either not present, or if it
   cannot be represented as an assembler label identifier.  */

static inline const char *
get_AT_low_pc (dw_die_ref die)
{
  dw_attr_ref a = get_AT (die, DW_AT_low_pc);

  return a ? AT_lbl (a) : NULL;
}

/* Return the "high pc" attribute value, typically associated with a subprogram
   DIE.  Return null if the "high pc" attribute is either not present, or if it
   cannot be represented as an assembler label identifier.  */

static inline const char *
get_AT_hi_pc (dw_die_ref die)
{
  dw_attr_ref a = get_AT (die, DW_AT_high_pc);

  return a ? AT_lbl (a) : NULL;
}

/* Return the value of the string attribute designated by ATTR_KIND, or
   NULL if it is not present.  */

static inline const char *
get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_ref a = get_AT (die, attr_kind);

  return a ? AT_string (a) : NULL;
}

/* Return the value of the flag attribute designated by ATTR_KIND, or -1
   if it is not present.  */

static inline int
get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_ref a = get_AT (die, attr_kind);

  return a ? AT_flag (a) : 0;
}

/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
   if it is not present.  */

static inline unsigned
get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_ref a = get_AT (die, attr_kind);

  return a ? AT_unsigned (a) : 0;
}

static inline dw_die_ref
get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_ref a = get_AT (die, attr_kind);

  return a ? AT_ref (a) : NULL;
}

static inline struct dwarf_file_data *
get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_ref a = get_AT (die, attr_kind);

  return a ? AT_file (a) : NULL;
}

/* Return TRUE if the language is C or C++.  */

static inline bool
is_c_family (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);

  return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
	  || lang == DW_LANG_C99
	  || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
}

/* Return TRUE if the language is C++.  */

static inline bool
is_cxx (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
  
  return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
}

/* Return TRUE if the language is Fortran.  */

static inline bool
is_fortran (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);

  return (lang == DW_LANG_Fortran77
	  || lang == DW_LANG_Fortran90
	  || lang == DW_LANG_Fortran95);
}

/* Return TRUE if the language is Java.  */

static inline bool
is_java (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);

  return lang == DW_LANG_Java;
}

/* Return TRUE if the language is Ada.  */

static inline bool
is_ada (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);

  return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
}

/* Remove the specified attribute if present.  */

static void
remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_ref a;
  unsigned ix;

  if (! die)
    return;

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    if (a->dw_attr == attr_kind)
      {
	if (AT_class (a) == dw_val_class_str)
	  if (a->dw_attr_val.v.val_str->refcount)
	    a->dw_attr_val.v.val_str->refcount--;

	/* VEC_ordered_remove should help reduce the number of abbrevs
	   that are needed.  */
	VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
	return;
      }
}

/* Remove CHILD from its parent.  PREV must have the property that
   PREV->DIE_SIB == CHILD.  Does not alter CHILD.  */

static void
remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
{
  gcc_assert (child->die_parent == prev->die_parent);
  gcc_assert (prev->die_sib == child);
  if (prev == child)
    {
      gcc_assert (child->die_parent->die_child == child);
      prev = NULL;
    }
  else
    prev->die_sib = child->die_sib;
  if (child->die_parent->die_child == child)
    child->die_parent->die_child = prev;
}

/* Remove child DIE whose die_tag is TAG.  Do nothing if no child
   matches TAG.  */

static void
remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
{
  dw_die_ref c;
  
  c = die->die_child;
  if (c) do {
    dw_die_ref prev = c;
    c = c->die_sib;
    while (c->die_tag == tag)
      {
	remove_child_with_prev (c, prev);
	/* Might have removed every child.  */
	if (c == c->die_sib)
	  return;
	c = c->die_sib;
      }
  } while (c != die->die_child);
}

/* Add a CHILD_DIE as the last child of DIE.  */

static void
add_child_die (dw_die_ref die, dw_die_ref child_die)
{
  /* FIXME this should probably be an assert.  */
  if (! die || ! child_die)
    return;
  gcc_assert (die != child_die);

  child_die->die_parent = die;
  if (die->die_child)
    {
      child_die->die_sib = die->die_child->die_sib;
      die->die_child->die_sib = child_die;
    }
  else
    child_die->die_sib = child_die;
  die->die_child = child_die;
}

/* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
   is the specification, to the end of PARENT's list of children.  
   This is done by removing and re-adding it.  */

static void
splice_child_die (dw_die_ref parent, dw_die_ref child)
{
  dw_die_ref p;

  /* We want the declaration DIE from inside the class, not the
     specification DIE at toplevel.  */
  if (child->die_parent != parent)
    {
      dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);

      if (tmp)
	child = tmp;
    }

  gcc_assert (child->die_parent == parent
	      || (child->die_parent
		  == get_AT_ref (parent, DW_AT_specification)));
  
  for (p = child->die_parent->die_child; ; p = p->die_sib)
    if (p->die_sib == child)
      {
	remove_child_with_prev (child, p);
	break;
      }

  add_child_die (parent, child);
}

/* Return a pointer to a newly created DIE node.  */

static inline dw_die_ref
new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
{
  dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));

  die->die_tag = tag_value;

  if (parent_die != NULL)
    add_child_die (parent_die, die);
  else
    {
      limbo_die_node *limbo_node;

      limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
      limbo_node->die = die;
      limbo_node->created_for = t;
      limbo_node->next = limbo_die_list;
      limbo_die_list = limbo_node;
    }

  return die;
}

/* Return the DIE associated with the given type specifier.  */

static inline dw_die_ref
lookup_type_die (tree type)
{
  return TYPE_SYMTAB_DIE (type);
}

/* Equate a DIE to a given type specifier.  */

static inline void
equate_type_number_to_die (tree type, dw_die_ref type_die)
{
  TYPE_SYMTAB_DIE (type) = type_die;
}

/* Returns a hash value for X (which really is a die_struct).  */

static hashval_t
decl_die_table_hash (const void *x)
{
  return (hashval_t) ((const dw_die_ref) x)->decl_id;
}

/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y.  */

static int
decl_die_table_eq (const void *x, const void *y)
{
  return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
}

/* Return the DIE associated with a given declaration.  */

static inline dw_die_ref
lookup_decl_die (tree decl)
{
  return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
}

/* Returns a hash value for X (which really is a var_loc_list).  */

static hashval_t
decl_loc_table_hash (const void *x)
{
  return (hashval_t) ((const var_loc_list *) x)->decl_id;
}

/* Return nonzero if decl_id of var_loc_list X is the same as
   UID of decl *Y.  */

static int
decl_loc_table_eq (const void *x, const void *y)
{
  return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
}

/* Return the var_loc list associated with a given declaration.  */

static inline var_loc_list *
lookup_decl_loc (tree decl)
{
  return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
}

/* Equate a DIE to a particular declaration.  */

static void
equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
{
  unsigned int decl_id = DECL_UID (decl);
  void **slot;

  slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
  *slot = decl_die;
  decl_die->decl_id = decl_id;
}

/* Add a variable location node to the linked list for DECL.  */

static void
add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
{
  unsigned int decl_id = DECL_UID (decl);
  var_loc_list *temp;
  void **slot;

  slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
  if (*slot == NULL)
    {
      temp = ggc_alloc_cleared (sizeof (var_loc_list));
      temp->decl_id = decl_id;
      *slot = temp;
    }
  else
    temp = *slot;

  if (temp->last)
    {
      /* If the current location is the same as the end of the list,
	 we have nothing to do.  */
      if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
			NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
	{
	  /* Add LOC to the end of list and update LAST.  */
	  temp->last->next = loc;
	  temp->last = loc;
	}
    }
  /* Do not add empty location to the beginning of the list.  */
  else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
    {
      temp->first = loc;
      temp->last = loc;
    }
}

/* Keep track of the number of spaces used to indent the
   output of the debugging routines that print the structure of
   the DIE internal representation.  */
static int print_indent;

/* Indent the line the number of spaces given by print_indent.  */

static inline void
print_spaces (FILE *outfile)
{
  fprintf (outfile, "%*s", print_indent, "");
}

/* Print the information associated with a given DIE, and its children.
   This routine is a debugging aid only.  */

static void
print_die (dw_die_ref die, FILE *outfile)
{
  dw_attr_ref a;
  dw_die_ref c;
  unsigned ix;

  print_spaces (outfile);
  fprintf (outfile, "DIE %4ld: %s\n",
	   die->die_offset, dwarf_tag_name (die->die_tag));
  print_spaces (outfile);
  fprintf (outfile, "  abbrev id: %lu", die->die_abbrev);
  fprintf (outfile, " offset: %ld\n", die->die_offset);

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    {
      print_spaces (outfile);
      fprintf (outfile, "  %s: ", dwarf_attr_name (a->dw_attr));

      switch (AT_class (a))
	{
	case dw_val_class_addr:
	  fprintf (outfile, "address");
	  break;
	case dw_val_class_offset:
	  fprintf (outfile, "offset");
	  break;
	case dw_val_class_loc:
	  fprintf (outfile, "location descriptor");
	  break;
	case dw_val_class_loc_list:
	  fprintf (outfile, "location list -> label:%s",
		   AT_loc_list (a)->ll_symbol);
	  break;
	case dw_val_class_range_list:
	  fprintf (outfile, "range list");
	  break;
	case dw_val_class_const:
	  fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
	  break;
	case dw_val_class_unsigned_const:
	  fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
	  break;
	case dw_val_class_long_long:
	  fprintf (outfile, "constant (%lu,%lu)",
		   a->dw_attr_val.v.val_long_long.hi,
		   a->dw_attr_val.v.val_long_long.low);
	  break;
	case dw_val_class_vec:
	  fprintf (outfile, "floating-point or vector constant");
	  break;
	case dw_val_class_flag:
	  fprintf (outfile, "%u", AT_flag (a));
	  break;
	case dw_val_class_die_ref:
	  if (AT_ref (a) != NULL)
	    {
	      if (AT_ref (a)->die_symbol)
		fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
	      else
		fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
	    }
	  else
	    fprintf (outfile, "die -> <null>");
	  break;
	case dw_val_class_lbl_id:
	case dw_val_class_lineptr:
	case dw_val_class_macptr:
	  fprintf (outfile, "label: %s", AT_lbl (a));
	  break;
	case dw_val_class_str:
	  if (AT_string (a) != NULL)
	    fprintf (outfile, "\"%s\"", AT_string (a));
	  else
	    fprintf (outfile, "<null>");
	  break;
	case dw_val_class_file:
	  fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
		   AT_file (a)->emitted_number);
	  break;
	default:
	  break;
	}

      fprintf (outfile, "\n");
    }

  if (die->die_child != NULL)
    {
      print_indent += 4;
      FOR_EACH_CHILD (die, c, print_die (c, outfile));
      print_indent -= 4;
    }
  if (print_indent == 0)
    fprintf (outfile, "\n");
}

/* Print the contents of the source code line number correspondence table.
   This routine is a debugging aid only.  */

static void
print_dwarf_line_table (FILE *outfile)
{
  unsigned i;
  dw_line_info_ref line_info;

  fprintf (outfile, "\n\nDWARF source line information\n");
  for (i = 1; i < line_info_table_in_use; i++)
    {
      line_info = &line_info_table[i];
      fprintf (outfile, "%5d: %4ld %6ld\n", i,
	       line_info->dw_file_num,
	       line_info->dw_line_num);
    }

  fprintf (outfile, "\n\n");
}

/* Print the information collected for a given DIE.  */

void
debug_dwarf_die (dw_die_ref die)
{
  print_die (die, stderr);
}

/* Print all DWARF information collected for the compilation unit.
   This routine is a debugging aid only.  */

void
debug_dwarf (void)
{
  print_indent = 0;
  print_die (comp_unit_die, stderr);
  if (! DWARF2_ASM_LINE_DEBUG_INFO)
    print_dwarf_line_table (stderr);
}

/* Start a new compilation unit DIE for an include file.  OLD_UNIT is the CU
   for the enclosing include file, if any.  BINCL_DIE is the DW_TAG_GNU_BINCL
   DIE that marks the start of the DIEs for this include file.  */

static dw_die_ref
push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
{
  const char *filename = get_AT_string (bincl_die, DW_AT_name);
  dw_die_ref new_unit = gen_compile_unit_die (filename);

  new_unit->die_sib = old_unit;
  return new_unit;
}

/* Close an include-file CU and reopen the enclosing one.  */

static dw_die_ref
pop_compile_unit (dw_die_ref old_unit)
{
  dw_die_ref new_unit = old_unit->die_sib;

  old_unit->die_sib = NULL;
  return new_unit;
}

#define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
#define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)

/* Calculate the checksum of a location expression.  */

static inline void
loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
{
  CHECKSUM (loc->dw_loc_opc);
  CHECKSUM (loc->dw_loc_oprnd1);
  CHECKSUM (loc->dw_loc_oprnd2);
}

/* Calculate the checksum of an attribute.  */

static void
attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
{
  dw_loc_descr_ref loc;
  rtx r;

  CHECKSUM (at->dw_attr);

  /* We don't care that this was compiled with a different compiler
     snapshot; if the output is the same, that's what matters.  */
  if (at->dw_attr == DW_AT_producer)
    return;

  switch (AT_class (at))
    {
    case dw_val_class_const:
      CHECKSUM (at->dw_attr_val.v.val_int);
      break;
    case dw_val_class_unsigned_const:
      CHECKSUM (at->dw_attr_val.v.val_unsigned);
      break;
    case dw_val_class_long_long:
      CHECKSUM (at->dw_attr_val.v.val_long_long);
      break;
    case dw_val_class_vec:
      CHECKSUM (at->dw_attr_val.v.val_vec);
      break;
    case dw_val_class_flag:
      CHECKSUM (at->dw_attr_val.v.val_flag);
      break;
    case dw_val_class_str:
      CHECKSUM_STRING (AT_string (at));
      break;

    case dw_val_class_addr:
      r = AT_addr (at);
      gcc_assert (GET_CODE (r) == SYMBOL_REF);
      CHECKSUM_STRING (XSTR (r, 0));
      break;

    case dw_val_class_offset:
      CHECKSUM (at->dw_attr_val.v.val_offset);
      break;

    case dw_val_class_loc:
      for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
	loc_checksum (loc, ctx);
      break;

    case dw_val_class_die_ref:
      die_checksum (AT_ref (at), ctx, mark);
      break;

    case dw_val_class_fde_ref:
    case dw_val_class_lbl_id:
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
      break;

    case dw_val_class_file:
      CHECKSUM_STRING (AT_file (at)->filename);
      break;

    default:
      break;
    }
}

/* Calculate the checksum of a DIE.  */

static void
die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
{
  dw_die_ref c;
  dw_attr_ref a;
  unsigned ix;

  /* To avoid infinite recursion.  */
  if (die->die_mark)
    {
      CHECKSUM (die->die_mark);
      return;
    }
  die->die_mark = ++(*mark);

  CHECKSUM (die->die_tag);

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    attr_checksum (a, ctx, mark);

  FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
}

#undef CHECKSUM
#undef CHECKSUM_STRING

/* Do the location expressions look same?  */
static inline int
same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
{
  return loc1->dw_loc_opc == loc2->dw_loc_opc
	 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
	 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
}

/* Do the values look the same?  */
static int
same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
{
  dw_loc_descr_ref loc1, loc2;
  rtx r1, r2;

  if (v1->val_class != v2->val_class)
    return 0;

  switch (v1->val_class)
    {
    case dw_val_class_const:
      return v1->v.val_int == v2->v.val_int;
    case dw_val_class_unsigned_const:
      return v1->v.val_unsigned == v2->v.val_unsigned;
    case dw_val_class_long_long:
      return v1->v.val_long_long.hi == v2->v.val_long_long.hi
	     && v1->v.val_long_long.low == v2->v.val_long_long.low;
    case dw_val_class_vec:
      if (v1->v.val_vec.length != v2->v.val_vec.length
	  || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
	return 0;
      if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
		  v1->v.val_vec.length * v1->v.val_vec.elt_size))
	return 0;
      return 1;
    case dw_val_class_flag:
      return v1->v.val_flag == v2->v.val_flag;
    case dw_val_class_str:
      return !strcmp(v1->v.val_str->str, v2->v.val_str->str);

    case dw_val_class_addr:
      r1 = v1->v.val_addr;
      r2 = v2->v.val_addr;
      if (GET_CODE (r1) != GET_CODE (r2))
	return 0;
      gcc_assert (GET_CODE (r1) == SYMBOL_REF);
      return !strcmp (XSTR (r1, 0), XSTR (r2, 0));

    case dw_val_class_offset:
      return v1->v.val_offset == v2->v.val_offset;

    case dw_val_class_loc:
      for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
	   loc1 && loc2;
	   loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
	if (!same_loc_p (loc1, loc2, mark))
	  return 0;
      return !loc1 && !loc2;

    case dw_val_class_die_ref:
      return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);

    case dw_val_class_fde_ref:
    case dw_val_class_lbl_id:
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
      return 1;

    case dw_val_class_file:
      return v1->v.val_file == v2->v.val_file;

    default:
      return 1;
    }
}

/* Do the attributes look the same?  */

static int
same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
{
  if (at1->dw_attr != at2->dw_attr)
    return 0;

  /* We don't care that this was compiled with a different compiler
     snapshot; if the output is the same, that's what matters. */
  if (at1->dw_attr == DW_AT_producer)
    return 1;

  return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
}

/* Do the dies look the same?  */

static int
same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
{
  dw_die_ref c1, c2;
  dw_attr_ref a1;
  unsigned ix;

  /* To avoid infinite recursion.  */
  if (die1->die_mark)
    return die1->die_mark == die2->die_mark;
  die1->die_mark = die2->die_mark = ++(*mark);

  if (die1->die_tag != die2->die_tag)
    return 0;

  if (VEC_length (dw_attr_node, die1->die_attr)
      != VEC_length (dw_attr_node, die2->die_attr))
    return 0;
  
  for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
    if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
      return 0;

  c1 = die1->die_child;
  c2 = die2->die_child;
  if (! c1)
    {
      if (c2)
	return 0;
    }
  else
    for (;;)
      {
	if (!same_die_p (c1, c2, mark))
	  return 0;
	c1 = c1->die_sib;
	c2 = c2->die_sib;
	if (c1 == die1->die_child)
	  {
	    if (c2 == die2->die_child)
	      break;
	    else
	      return 0;
	  }
    }

  return 1;
}

/* Do the dies look the same?  Wrapper around same_die_p.  */

static int
same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
{
  int mark = 0;
  int ret = same_die_p (die1, die2, &mark);

  unmark_all_dies (die1);
  unmark_all_dies (die2);

  return ret;
}

/* The prefix to attach to symbols on DIEs in the current comdat debug
   info section.  */
static char *comdat_symbol_id;

/* The index of the current symbol within the current comdat CU.  */
static unsigned int comdat_symbol_number;

/* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
   children, and set comdat_symbol_id accordingly.  */

static void
compute_section_prefix (dw_die_ref unit_die)
{
  const char *die_name = get_AT_string (unit_die, DW_AT_name);
  const char *base = die_name ? lbasename (die_name) : "anonymous";
  char *name = alloca (strlen (base) + 64);
  char *p;
  int i, mark;
  unsigned char checksum[16];
  struct md5_ctx ctx;

  /* Compute the checksum of the DIE, then append part of it as hex digits to
     the name filename of the unit.  */

  md5_init_ctx (&ctx);
  mark = 0;
  die_checksum (unit_die, &ctx, &mark);
  unmark_all_dies (unit_die);
  md5_finish_ctx (&ctx, checksum);

  sprintf (name, "%s.", base);
  clean_symbol_name (name);

  p = name + strlen (name);
  for (i = 0; i < 4; i++)
    {
      sprintf (p, "%.2x", checksum[i]);
      p += 2;
    }

  comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
  comdat_symbol_number = 0;
}

/* Returns nonzero if DIE represents a type, in the sense of TYPE_P.  */

static int
is_type_die (dw_die_ref die)
{
  switch (die->die_tag)
    {
    case DW_TAG_array_type:
    case DW_TAG_class_type:
    case DW_TAG_enumeration_type:
    case DW_TAG_pointer_type:
    case DW_TAG_reference_type:
    case DW_TAG_string_type:
    case DW_TAG_structure_type:
    case DW_TAG_subroutine_type:
    case DW_TAG_union_type:
    case DW_TAG_ptr_to_member_type:
    case DW_TAG_set_type:
    case DW_TAG_subrange_type:
    case DW_TAG_base_type:
    case DW_TAG_const_type:
    case DW_TAG_file_type:
    case DW_TAG_packed_type:
    case DW_TAG_volatile_type:
    case DW_TAG_typedef:
      return 1;
    default:
      return 0;
    }
}

/* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
   Basically, we want to choose the bits that are likely to be shared between
   compilations (types) and leave out the bits that are specific to individual
   compilations (functions).  */

static int
is_comdat_die (dw_die_ref c)
{
  /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
     we do for stabs.  The advantage is a greater likelihood of sharing between
     objects that don't include headers in the same order (and therefore would
     put the base types in a different comdat).  jason 8/28/00 */

  if (c->die_tag == DW_TAG_base_type)
    return 0;

  if (c->die_tag == DW_TAG_pointer_type
      || c->die_tag == DW_TAG_reference_type
      || c->die_tag == DW_TAG_const_type
      || c->die_tag == DW_TAG_volatile_type)
    {
      dw_die_ref t = get_AT_ref (c, DW_AT_type);

      return t ? is_comdat_die (t) : 0;
    }

  return is_type_die (c);
}

/* Returns 1 iff C is the sort of DIE that might be referred to from another
   compilation unit.  */

static int
is_symbol_die (dw_die_ref c)
{
  return (is_type_die (c)
	  || (get_AT (c, DW_AT_declaration)
	      && !get_AT (c, DW_AT_specification))
	  || c->die_tag == DW_TAG_namespace);
}

static char *
gen_internal_sym (const char *prefix)
{
  char buf[256];

  ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
  return xstrdup (buf);
}

/* Assign symbols to all worthy DIEs under DIE.  */

static void
assign_symbol_names (dw_die_ref die)
{
  dw_die_ref c;

  if (is_symbol_die (die))
    {
      if (comdat_symbol_id)
	{
	  char *p = alloca (strlen (comdat_symbol_id) + 64);

	  sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
		   comdat_symbol_id, comdat_symbol_number++);
	  die->die_symbol = xstrdup (p);
	}
      else
	die->die_symbol = gen_internal_sym ("LDIE");
    }

  FOR_EACH_CHILD (die, c, assign_symbol_names (c));
}

struct cu_hash_table_entry
{
  dw_die_ref cu;
  unsigned min_comdat_num, max_comdat_num;
  struct cu_hash_table_entry *next;
};

/* Routines to manipulate hash table of CUs.  */
static hashval_t
htab_cu_hash (const void *of)
{
  const struct cu_hash_table_entry *entry = of;

  return htab_hash_string (entry->cu->die_symbol);
}

static int
htab_cu_eq (const void *of1, const void *of2)
{
  const struct cu_hash_table_entry *entry1 = of1;
  const struct die_struct *entry2 = of2;

  return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
}

static void
htab_cu_del (void *what)
{
  struct cu_hash_table_entry *next, *entry = what;

  while (entry)
    {
      next = entry->next;
      free (entry);
      entry = next;
    }
}

/* Check whether we have already seen this CU and set up SYM_NUM
   accordingly.  */
static int
check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
{
  struct cu_hash_table_entry dummy;
  struct cu_hash_table_entry **slot, *entry, *last = &dummy;

  dummy.max_comdat_num = 0;

  slot = (struct cu_hash_table_entry **)
    htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
	INSERT);
  entry = *slot;

  for (; entry; last = entry, entry = entry->next)
    {
      if (same_die_p_wrap (cu, entry->cu))
	break;
    }

  if (entry)
    {
      *sym_num = entry->min_comdat_num;
      return 1;
    }

  entry = XCNEW (struct cu_hash_table_entry);
  entry->cu = cu;
  entry->min_comdat_num = *sym_num = last->max_comdat_num;
  entry->next = *slot;
  *slot = entry;

  return 0;
}

/* Record SYM_NUM to record of CU in HTABLE.  */
static void
record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
{
  struct cu_hash_table_entry **slot, *entry;

  slot = (struct cu_hash_table_entry **)
    htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
	NO_INSERT);
  entry = *slot;

  entry->max_comdat_num = sym_num;
}

/* Traverse the DIE (which is always comp_unit_die), and set up
   additional compilation units for each of the include files we see
   bracketed by BINCL/EINCL.  */

static void
break_out_includes (dw_die_ref die)
{
  dw_die_ref c;
  dw_die_ref unit = NULL;
  limbo_die_node *node, **pnode;
  htab_t cu_hash_table;

  c = die->die_child;
  if (c) do {
    dw_die_ref prev = c;
    c = c->die_sib;
    while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
	   || (unit && is_comdat_die (c)))
      {
	dw_die_ref next = c->die_sib;

	/* This DIE is for a secondary CU; remove it from the main one.  */
	remove_child_with_prev (c, prev);
	
	if (c->die_tag == DW_TAG_GNU_BINCL)
	  unit = push_new_compile_unit (unit, c);
	else if (c->die_tag == DW_TAG_GNU_EINCL)
	  unit = pop_compile_unit (unit);
	else
	  add_child_die (unit, c);
	c = next;
	if (c == die->die_child)
	  break;
      }
  } while (c != die->die_child);

#if 0
  /* We can only use this in debugging, since the frontend doesn't check
     to make sure that we leave every include file we enter.  */
  gcc_assert (!unit);
#endif

  assign_symbol_names (die);
  cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
  for (node = limbo_die_list, pnode = &limbo_die_list;
       node;
       node = node->next)
    {
      int is_dupl;

      compute_section_prefix (node->die);
      is_dupl = check_duplicate_cu (node->die, cu_hash_table,
			&comdat_symbol_number);
      assign_symbol_names (node->die);
      if (is_dupl)
	*pnode = node->next;
      else
	{
	  pnode = &node->next;
	  record_comdat_symbol_number (node->die, cu_hash_table,
		comdat_symbol_number);
	}
    }
  htab_delete (cu_hash_table);
}

/* Traverse the DIE and add a sibling attribute if it may have the
   effect of speeding up access to siblings.  To save some space,
   avoid generating sibling attributes for DIE's without children.  */

static void
add_sibling_attributes (dw_die_ref die)
{
  dw_die_ref c;

  if (! die->die_child)
    return;

  if (die->die_parent && die != die->die_parent->die_child)
    add_AT_die_ref (die, DW_AT_sibling, die->die_sib);

  FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
}

/* Output all location lists for the DIE and its children.  */

static void
output_location_lists (dw_die_ref die)
{
  dw_die_ref c;
  dw_attr_ref a;
  unsigned ix;

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    if (AT_class (a) == dw_val_class_loc_list)
      output_loc_list (AT_loc_list (a));

  FOR_EACH_CHILD (die, c, output_location_lists (c));
}

/* The format of each DIE (and its attribute value pairs) is encoded in an
   abbreviation table.  This routine builds the abbreviation table and assigns
   a unique abbreviation id for each abbreviation entry.  The children of each
   die are visited recursively.  */

static void
build_abbrev_table (dw_die_ref die)
{
  unsigned long abbrev_id;
  unsigned int n_alloc;
  dw_die_ref c;
  dw_attr_ref a;
  unsigned ix;

  /* Scan the DIE references, and mark as external any that refer to
     DIEs from other CUs (i.e. those which are not marked).  */
  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    if (AT_class (a) == dw_val_class_die_ref
	&& AT_ref (a)->die_mark == 0)
      {
	gcc_assert (AT_ref (a)->die_symbol);

	set_AT_ref_external (a, 1);
      }

  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
    {
      dw_die_ref abbrev = abbrev_die_table[abbrev_id];
      dw_attr_ref die_a, abbrev_a;
      unsigned ix;
      bool ok = true;
      
      if (abbrev->die_tag != die->die_tag)
	continue;
      if ((abbrev->die_child != NULL) != (die->die_child != NULL))
	continue;
      
      if (VEC_length (dw_attr_node, abbrev->die_attr)
	  != VEC_length (dw_attr_node, die->die_attr))
	continue;
  
      for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
	{
	  abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
	  if ((abbrev_a->dw_attr != die_a->dw_attr)
	      || (value_format (abbrev_a) != value_format (die_a)))
	    {
	      ok = false;
	      break;
	    }
	}
      if (ok)
	break;
    }

  if (abbrev_id >= abbrev_die_table_in_use)
    {
      if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
	{
	  n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
	  abbrev_die_table = ggc_realloc (abbrev_die_table,
					  sizeof (dw_die_ref) * n_alloc);

	  memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
		 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
	  abbrev_die_table_allocated = n_alloc;
	}

      ++abbrev_die_table_in_use;
      abbrev_die_table[abbrev_id] = die;
    }

  die->die_abbrev = abbrev_id;
  FOR_EACH_CHILD (die, c, build_abbrev_table (c));
}

/* Return the power-of-two number of bytes necessary to represent VALUE.  */

static int
constant_size (long unsigned int value)
{
  int log;

  if (value == 0)
    log = 0;
  else
    log = floor_log2 (value);

  log = log / 8;
  log = 1 << (floor_log2 (log) + 1);

  return log;
}

/* Return the size of a DIE as it is represented in the
   .debug_info section.  */

static unsigned long
size_of_die (dw_die_ref die)
{
  unsigned long size = 0;
  dw_attr_ref a;
  unsigned ix;

  size += size_of_uleb128 (die->die_abbrev);
  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    {
      switch (AT_class (a))
	{
	case dw_val_class_addr:
	  size += DWARF2_ADDR_SIZE;
	  break;
	case dw_val_class_offset:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_loc:
	  {
	    unsigned long lsize = size_of_locs (AT_loc (a));

	    /* Block length.  */
	    size += constant_size (lsize);
	    size += lsize;
	  }
	  break;
	case dw_val_class_loc_list:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_range_list:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_const:
	  size += size_of_sleb128 (AT_int (a));
	  break;
	case dw_val_class_unsigned_const:
	  size += constant_size (AT_unsigned (a));
	  break;
	case dw_val_class_long_long:
	  size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
	  break;
	case dw_val_class_vec:
	  size += 1 + (a->dw_attr_val.v.val_vec.length
		       * a->dw_attr_val.v.val_vec.elt_size); /* block */
	  break;
	case dw_val_class_flag:
	  size += 1;
	  break;
	case dw_val_class_die_ref:
	  if (AT_ref_external (a))
	    size += DWARF2_ADDR_SIZE;
	  else
	    size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_fde_ref:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_lbl_id:
	  size += DWARF2_ADDR_SIZE;
	  break;
	case dw_val_class_lineptr:
	case dw_val_class_macptr:
	  size += DWARF_OFFSET_SIZE;
	  break;
	case dw_val_class_str:
	  if (AT_string_form (a) == DW_FORM_strp)
	    size += DWARF_OFFSET_SIZE;
	  else
	    size += strlen (a->dw_attr_val.v.val_str->str) + 1;
	  break;
	case dw_val_class_file:
	  size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
	  break;
	default:
	  gcc_unreachable ();
	}
    }

  return size;
}

/* Size the debugging information associated with a given DIE.  Visits the
   DIE's children recursively.  Updates the global variable next_die_offset, on
   each time through.  Uses the current value of next_die_offset to update the
   die_offset field in each DIE.  */

static void
calc_die_sizes (dw_die_ref die)
{
  dw_die_ref c;

  die->die_offset = next_die_offset;
  next_die_offset += size_of_die (die);

  FOR_EACH_CHILD (die, c, calc_die_sizes (c));

  if (die->die_child != NULL)
    /* Count the null byte used to terminate sibling lists.  */
    next_die_offset += 1;
}

/* Set the marks for a die and its children.  We do this so
   that we know whether or not a reference needs to use FORM_ref_addr; only
   DIEs in the same CU will be marked.  We used to clear out the offset
   and use that as the flag, but ran into ordering problems.  */

static void
mark_dies (dw_die_ref die)
{
  dw_die_ref c;

  gcc_assert (!die->die_mark);

  die->die_mark = 1;
  FOR_EACH_CHILD (die, c, mark_dies (c));
}

/* Clear the marks for a die and its children.  */

static void
unmark_dies (dw_die_ref die)
{
  dw_die_ref c;

  gcc_assert (die->die_mark);

  die->die_mark = 0;
  FOR_EACH_CHILD (die, c, unmark_dies (c));
}

/* Clear the marks for a die, its children and referred dies.  */

static void
unmark_all_dies (dw_die_ref die)
{
  dw_die_ref c;
  dw_attr_ref a;
  unsigned ix;

  if (!die->die_mark)
    return;
  die->die_mark = 0;

  FOR_EACH_CHILD (die, c, unmark_all_dies (c));

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    if (AT_class (a) == dw_val_class_die_ref)
      unmark_all_dies (AT_ref (a));
}

/* Return the size of the .debug_pubnames or .debug_pubtypes table  
   generated for the compilation unit.  */

static unsigned long
size_of_pubnames (VEC (pubname_entry, gc) * names)
{
  unsigned long size;
  unsigned i;
  pubname_ref p;

  size = DWARF_PUBNAMES_HEADER_SIZE;
  for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
    if (names != pubtype_table
	|| p->die->die_offset != 0
	|| !flag_eliminate_unused_debug_types)
      size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;

  size += DWARF_OFFSET_SIZE;
  return size;
}

/* Return the size of the information in the .debug_aranges section.  */

static unsigned long
size_of_aranges (void)
{
  unsigned long size;

  size = DWARF_ARANGES_HEADER_SIZE;

  /* Count the address/length pair for this compilation unit.  */
  size += 2 * DWARF2_ADDR_SIZE;
  size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;

  /* Count the two zero words used to terminated the address range table.  */
  size += 2 * DWARF2_ADDR_SIZE;
  return size;
}

/* Select the encoding of an attribute value.  */

static enum dwarf_form
value_format (dw_attr_ref a)
{
  switch (a->dw_attr_val.val_class)
    {
    case dw_val_class_addr:
      return DW_FORM_addr;
    case dw_val_class_range_list:
    case dw_val_class_offset:
    case dw_val_class_loc_list:
      switch (DWARF_OFFSET_SIZE)
	{
	case 4:
	  return DW_FORM_data4;
	case 8:
	  return DW_FORM_data8;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_loc:
      switch (constant_size (size_of_locs (AT_loc (a))))
	{
	case 1:
	  return DW_FORM_block1;
	case 2:
	  return DW_FORM_block2;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_const:
      return DW_FORM_sdata;
    case dw_val_class_unsigned_const:
      switch (constant_size (AT_unsigned (a)))
	{
	case 1:
	  return DW_FORM_data1;
	case 2:
	  return DW_FORM_data2;
	case 4:
	  return DW_FORM_data4;
	case 8:
	  return DW_FORM_data8;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_long_long:
      return DW_FORM_block1;
    case dw_val_class_vec:
      return DW_FORM_block1;
    case dw_val_class_flag:
      return DW_FORM_flag;
    case dw_val_class_die_ref:
      if (AT_ref_external (a))
	return DW_FORM_ref_addr;
      else
	return DW_FORM_ref;
    case dw_val_class_fde_ref:
      return DW_FORM_data;
    case dw_val_class_lbl_id:
      return DW_FORM_addr;
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
      return DW_FORM_data;
    case dw_val_class_str:
      return AT_string_form (a);
    case dw_val_class_file:
      switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
	{
	case 1:
	  return DW_FORM_data1;
	case 2:
	  return DW_FORM_data2;
	case 4:
	  return DW_FORM_data4;
	default:
	  gcc_unreachable ();
	}

    default:
      gcc_unreachable ();
    }
}

/* Output the encoding of an attribute value.  */

static void
output_value_format (dw_attr_ref a)
{
  enum dwarf_form form = value_format (a);

  dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
}

/* Output the .debug_abbrev section which defines the DIE abbreviation
   table.  */

static void
output_abbrev_section (void)
{
  unsigned long abbrev_id;

  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
    {
      dw_die_ref abbrev = abbrev_die_table[abbrev_id];
      unsigned ix;
      dw_attr_ref a_attr;

      dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
      dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
				   dwarf_tag_name (abbrev->die_tag));

      if (abbrev->die_child != NULL)
	dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
      else
	dw2_asm_output_data (1, DW_children_no, "DW_children_no");

      for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
	   ix++)
	{
	  dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
				       dwarf_attr_name (a_attr->dw_attr));
	  output_value_format (a_attr);
	}

      dw2_asm_output_data (1, 0, NULL);
      dw2_asm_output_data (1, 0, NULL);
    }

  /* Terminate the table.  */
  dw2_asm_output_data (1, 0, NULL);
}

/* Output a symbol we can use to refer to this DIE from another CU.  */

static inline void
output_die_symbol (dw_die_ref die)
{
  char *sym = die->die_symbol;

  if (sym == 0)
    return;

  if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
    /* We make these global, not weak; if the target doesn't support
       .linkonce, it doesn't support combining the sections, so debugging
       will break.  */
    targetm.asm_out.globalize_label (asm_out_file, sym);

  ASM_OUTPUT_LABEL (asm_out_file, sym);
}

/* Return a new location list, given the begin and end range, and the
   expression. gensym tells us whether to generate a new internal symbol for
   this location list node, which is done for the head of the list only.  */

static inline dw_loc_list_ref
new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
	      const char *section, unsigned int gensym)
{
  dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));

  retlist->begin = begin;
  retlist->end = end;
  retlist->expr = expr;
  retlist->section = section;
  if (gensym)
    retlist->ll_symbol = gen_internal_sym ("LLST");

  return retlist;
}

/* Add a location description expression to a location list.  */

static inline void
add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
			   const char *begin, const char *end,
			   const char *section)
{
  dw_loc_list_ref *d;

  /* Find the end of the chain.  */
  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
    ;

  /* Add a new location list node to the list.  */
  *d = new_loc_list (descr, begin, end, section, 0);
}

static void
dwarf2out_switch_text_section (void)
{
  dw_fde_ref fde;

  gcc_assert (cfun);

  fde = &fde_table[fde_table_in_use - 1];
  fde->dw_fde_switched_sections = true;
  fde->dw_fde_hot_section_label = cfun->hot_section_label;
  fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
  fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
  fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
  have_multiple_function_sections = true;

  /* Reset the current label on switching text sections, so that we
     don't attempt to advance_loc4 between labels in different sections.  */
  fde->dw_fde_current_label = NULL;
}

/* Output the location list given to us.  */

static void
output_loc_list (dw_loc_list_ref list_head)
{
  dw_loc_list_ref curr = list_head;

  ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);

  /* Walk the location list, and output each range + expression.  */
  for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
    {
      unsigned long size;
      if (!have_multiple_function_sections)
	{
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
				"Location list begin address (%s)",
				list_head->ll_symbol);
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
				"Location list end address (%s)",
				list_head->ll_symbol);
	}
      else
	{
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
			       "Location list begin address (%s)",
			       list_head->ll_symbol);
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
			       "Location list end address (%s)",
			       list_head->ll_symbol);
	}
      size = size_of_locs (curr->expr);

      /* Output the block length for this list of location operations.  */
      gcc_assert (size <= 0xffff);
      dw2_asm_output_data (2, size, "%s", "Location expression size");

      output_loc_sequence (curr->expr);
    }

  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
		       "Location list terminator begin (%s)",
		       list_head->ll_symbol);
  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
		       "Location list terminator end (%s)",
		       list_head->ll_symbol);
}

/* Output the DIE and its attributes.  Called recursively to generate
   the definitions of each child DIE.  */

static void
output_die (dw_die_ref die)
{
  dw_attr_ref a;
  dw_die_ref c;
  unsigned long size;
  unsigned ix;

  /* If someone in another CU might refer to us, set up a symbol for
     them to point to.  */
  if (die->die_symbol)
    output_die_symbol (die);

  dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
			       (unsigned long)die->die_offset,
			       dwarf_tag_name (die->die_tag));

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    {
      const char *name = dwarf_attr_name (a->dw_attr);

      switch (AT_class (a))
	{
	case dw_val_class_addr:
	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
	  break;

	case dw_val_class_offset:
	  dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
			       "%s", name);
	  break;

	case dw_val_class_range_list:
	  {
	    char *p = strchr (ranges_section_label, '\0');

	    sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
		     a->dw_attr_val.v.val_offset);
	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
				   debug_ranges_section, "%s", name);
	    *p = '\0';
	  }
	  break;

	case dw_val_class_loc:
	  size = size_of_locs (AT_loc (a));

	  /* Output the block length for this list of location operations.  */
	  dw2_asm_output_data (constant_size (size), size, "%s", name);

	  output_loc_sequence (AT_loc (a));
	  break;

	case dw_val_class_const:
	  /* ??? It would be slightly more efficient to use a scheme like is
	     used for unsigned constants below, but gdb 4.x does not sign
	     extend.  Gdb 5.x does sign extend.  */
	  dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
	  break;

	case dw_val_class_unsigned_const:
	  dw2_asm_output_data (constant_size (AT_unsigned (a)),
			       AT_unsigned (a), "%s", name);
	  break;

	case dw_val_class_long_long:
	  {
	    unsigned HOST_WIDE_INT first, second;

	    dw2_asm_output_data (1,
				 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
				 "%s", name);

	    if (WORDS_BIG_ENDIAN)
	      {
		first = a->dw_attr_val.v.val_long_long.hi;
		second = a->dw_attr_val.v.val_long_long.low;
	      }
	    else
	      {
		first = a->dw_attr_val.v.val_long_long.low;
		second = a->dw_attr_val.v.val_long_long.hi;
	      }

	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
				 first, "long long constant");
	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
				 second, NULL);
	  }
	  break;

	case dw_val_class_vec:
	  {
	    unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
	    unsigned int len = a->dw_attr_val.v.val_vec.length;
	    unsigned int i;
	    unsigned char *p;

	    dw2_asm_output_data (1, len * elt_size, "%s", name);
	    if (elt_size > sizeof (HOST_WIDE_INT))
	      {
		elt_size /= 2;
		len *= 2;
	      }
	    for (i = 0, p = a->dw_attr_val.v.val_vec.array;
		 i < len;
		 i++, p += elt_size)
	      dw2_asm_output_data (elt_size, extract_int (p, elt_size),
				   "fp or vector constant word %u", i);
	    break;
	  }

	case dw_val_class_flag:
	  dw2_asm_output_data (1, AT_flag (a), "%s", name);
	  break;

	case dw_val_class_loc_list:
	  {
	    char *sym = AT_loc_list (a)->ll_symbol;

	    gcc_assert (sym);
	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
				   "%s", name);
	  }
	  break;

	case dw_val_class_die_ref:
	  if (AT_ref_external (a))
	    {
	      char *sym = AT_ref (a)->die_symbol;

	      gcc_assert (sym);
	      dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
				     "%s", name);
	    }
	  else
	    {
	      gcc_assert (AT_ref (a)->die_offset);
	      dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
				   "%s", name);
	    }
	  break;

	case dw_val_class_fde_ref:
	  {
	    char l1[20];

	    ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
					 a->dw_attr_val.v.val_fde_index * 2);
	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
				   "%s", name);
	  }
	  break;

	case dw_val_class_lbl_id:
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
	  break;

	case dw_val_class_lineptr:
	  dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
				 debug_line_section, "%s", name);
	  break;

	case dw_val_class_macptr:
	  dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
				 debug_macinfo_section, "%s", name);
	  break;

	case dw_val_class_str:
	  if (AT_string_form (a) == DW_FORM_strp)
	    dw2_asm_output_offset (DWARF_OFFSET_SIZE,
				   a->dw_attr_val.v.val_str->label,
				   debug_str_section,
				   "%s: \"%s\"", name, AT_string (a));
	  else
	    dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
	  break;

	case dw_val_class_file:
	  {
	    int f = maybe_emit_file (a->dw_attr_val.v.val_file);
	    
	    dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
				 a->dw_attr_val.v.val_file->filename);
	    break;
	  }

	default:
	  gcc_unreachable ();
	}
    }

  FOR_EACH_CHILD (die, c, output_die (c));

  /* Add null byte to terminate sibling list.  */
  if (die->die_child != NULL)
    dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
			 (unsigned long) die->die_offset);
}

/* Output the compilation unit that appears at the beginning of the
   .debug_info section, and precedes the DIE descriptions.  */

static void
output_compilation_unit_header (void)
{
  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
    dw2_asm_output_data (4, 0xffffffff,
      "Initial length escape value indicating 64-bit DWARF extension");
  dw2_asm_output_data (DWARF_OFFSET_SIZE,
                       next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
		       "Length of Compilation Unit Info");
  dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
  dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
			 debug_abbrev_section,
			 "Offset Into Abbrev. Section");
  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
}

/* Output the compilation unit DIE and its children.  */

static void
output_comp_unit (dw_die_ref die, int output_if_empty)
{
  const char *secname;
  char *oldsym, *tmp;

  /* Unless we are outputting main CU, we may throw away empty ones.  */
  if (!output_if_empty && die->die_child == NULL)
    return;

  /* Even if there are no children of this DIE, we must output the information
     about the compilation unit.  Otherwise, on an empty translation unit, we
     will generate a present, but empty, .debug_info section.  IRIX 6.5 `nm'
     will then complain when examining the file.  First mark all the DIEs in
     this CU so we know which get local refs.  */
  mark_dies (die);

  build_abbrev_table (die);

  /* Initialize the beginning DIE offset - and calculate sizes/offsets.  */
  next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
  calc_die_sizes (die);

  oldsym = die->die_symbol;
  if (oldsym)
    {
      tmp = alloca (strlen (oldsym) + 24);

      sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
      secname = tmp;
      die->die_symbol = NULL;
      switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
    }
  else
    switch_to_section (debug_info_section);

  /* Output debugging information.  */
  output_compilation_unit_header ();
  output_die (die);

  /* Leave the marks on the main CU, so we can check them in
     output_pubnames.  */
  if (oldsym)
    {
      unmark_dies (die);
      die->die_symbol = oldsym;
    }
}

/* Return the DWARF2/3 pubname associated with a decl.  */

static const char *
dwarf2_name (tree decl, int scope)
{
  return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
}

/* Add a new entry to .debug_pubnames if appropriate.  */

static void
add_pubname (tree decl, dw_die_ref die)
{
  pubname_entry e;

  if (! TREE_PUBLIC (decl))
    return;

  e.die = die;
  e.name = xstrdup (dwarf2_name (decl, 1));
  VEC_safe_push (pubname_entry, gc, pubname_table, &e);
}

/* Add a new entry to .debug_pubtypes if appropriate.  */

static void
add_pubtype (tree decl, dw_die_ref die)
{
  pubname_entry e;

  e.name = NULL;
  if ((TREE_PUBLIC (decl)
       || die->die_parent == comp_unit_die)
      && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
    {
      e.die = die;
      if (TYPE_P (decl))
	{
	  if (TYPE_NAME (decl))
	    {
	      if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
		e.name = xstrdup ((const char *) IDENTIFIER_POINTER 
				                              (TYPE_NAME (decl)));
	      else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
		       && DECL_NAME (TYPE_NAME (decl)))
		e.name = xstrdup ((const char *) IDENTIFIER_POINTER 
				                  (DECL_NAME (TYPE_NAME (decl))));
             else
	       e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
	    }
	}
      else 
	e.name = xstrdup (dwarf2_name (decl, 1));

      /* If we don't have a name for the type, there's no point in adding
	 it to the table.  */
      if (e.name && e.name[0] != '\0')
	VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
    }
}

/* Output the public names table used to speed up access to externally
   visible names; or the public types table used to find type definitions.  */

static void
output_pubnames (VEC (pubname_entry, gc) * names)
{
  unsigned i;
  unsigned long pubnames_length = size_of_pubnames (names);
  pubname_ref pub;

  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
    dw2_asm_output_data (4, 0xffffffff,
      "Initial length escape value indicating 64-bit DWARF extension");
  if (names == pubname_table)
    dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
			 "Length of Public Names Info");
  else
    dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
			 "Length of Public Type Names Info");
  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
  dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
			 debug_info_section,
			 "Offset of Compilation Unit Info");
  dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
		       "Compilation Unit Length");

  for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
    {
      /* We shouldn't see pubnames for DIEs outside of the main CU.  */      
      if (names == pubname_table)
	gcc_assert (pub->die->die_mark);

      if (names != pubtype_table
	  || pub->die->die_offset != 0
	  || !flag_eliminate_unused_debug_types)
	{
	  dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
			       "DIE offset");

	  dw2_asm_output_nstring (pub->name, -1, "external name");
	}
    }

  dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
}

/* Add a new entry to .debug_aranges if appropriate.  */

static void
add_arange (tree decl, dw_die_ref die)
{
  if (! DECL_SECTION_NAME (decl))
    return;

  if (arange_table_in_use == arange_table_allocated)
    {
      arange_table_allocated += ARANGE_TABLE_INCREMENT;
      arange_table = ggc_realloc (arange_table,
				  (arange_table_allocated
				   * sizeof (dw_die_ref)));
      memset (arange_table + arange_table_in_use, 0,
	      ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
    }

  arange_table[arange_table_in_use++] = die;
}

/* Output the information that goes into the .debug_aranges table.
   Namely, define the beginning and ending address range of the
   text section generated for this compilation unit.  */

static void
output_aranges (void)
{
  unsigned i;
  unsigned long aranges_length = size_of_aranges ();

  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
    dw2_asm_output_data (4, 0xffffffff,
      "Initial length escape value indicating 64-bit DWARF extension");
  dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
		       "Length of Address Ranges Info");
  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
  dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
			 debug_info_section,
			 "Offset of Compilation Unit Info");
  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
  dw2_asm_output_data (1, 0, "Size of Segment Descriptor");

  /* We need to align to twice the pointer size here.  */
  if (DWARF_ARANGES_PAD_SIZE)
    {
      /* Pad using a 2 byte words so that padding is correct for any
	 pointer size.  */
      dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
			   2 * DWARF2_ADDR_SIZE);
      for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
	dw2_asm_output_data (2, 0, NULL);
    }

  dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
  dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
			text_section_label, "Length");
  if (flag_reorder_blocks_and_partition)
    {
      dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label, 
			   "Address");
      dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
			    cold_text_section_label, "Length");
    }

  for (i = 0; i < arange_table_in_use; i++)
    {
      dw_die_ref die = arange_table[i];

      /* We shouldn't see aranges for DIEs outside of the main CU.  */
      gcc_assert (die->die_mark);

      if (die->die_tag == DW_TAG_subprogram)
	{
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
			       "Address");
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
				get_AT_low_pc (die), "Length");
	}
      else
	{
	  /* A static variable; extract the symbol from DW_AT_location.
	     Note that this code isn't currently hit, as we only emit
	     aranges for functions (jason 9/23/99).  */
	  dw_attr_ref a = get_AT (die, DW_AT_location);
	  dw_loc_descr_ref loc;

	  gcc_assert (a && AT_class (a) == dw_val_class_loc);

	  loc = AT_loc (a);
	  gcc_assert (loc->dw_loc_opc == DW_OP_addr);

	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
				   loc->dw_loc_oprnd1.v.val_addr, "Address");
	  dw2_asm_output_data (DWARF2_ADDR_SIZE,
			       get_AT_unsigned (die, DW_AT_byte_size),
			       "Length");
	}
    }

  /* Output the terminator words.  */
  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
}

/* Add a new entry to .debug_ranges.  Return the offset at which it
   was placed.  */

static unsigned int
add_ranges (tree block)
{
  unsigned int in_use = ranges_table_in_use;

  if (in_use == ranges_table_allocated)
    {
      ranges_table_allocated += RANGES_TABLE_INCREMENT;
      ranges_table
	= ggc_realloc (ranges_table, (ranges_table_allocated
				      * sizeof (struct dw_ranges_struct)));
      memset (ranges_table + ranges_table_in_use, 0,
	      RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
    }

  ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
  ranges_table_in_use = in_use + 1;

  return in_use * 2 * DWARF2_ADDR_SIZE;
}

static void
output_ranges (void)
{
  unsigned i;
  static const char *const start_fmt = "Offset 0x%x";
  const char *fmt = start_fmt;

  for (i = 0; i < ranges_table_in_use; i++)
    {
      int block_num = ranges_table[i].block_num;

      if (block_num)
	{
	  char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
	  char elabel[MAX_ARTIFICIAL_LABEL_BYTES];

	  ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
	  ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);

	  /* If all code is in the text section, then the compilation
	     unit base address defaults to DW_AT_low_pc, which is the
	     base of the text section.  */
	  if (!have_multiple_function_sections)
	    {
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
				    text_section_label,
				    fmt, i * 2 * DWARF2_ADDR_SIZE);
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
				    text_section_label, NULL);
	    }

	  /* Otherwise, we add a DW_AT_entry_pc attribute to force the
	     compilation unit base address to zero, which allows us to
	     use absolute addresses, and not worry about whether the
	     target supports cross-section arithmetic.  */
	  else
	    {
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
				   fmt, i * 2 * DWARF2_ADDR_SIZE);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
	    }

	  fmt = NULL;
	}
      else
	{
	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
	  fmt = start_fmt;
	}
    }
}

/* Data structure containing information about input files.  */
struct file_info
{
  const char *path;	/* Complete file name.  */
  const char *fname;	/* File name part.  */
  int length;		/* Length of entire string.  */
  struct dwarf_file_data * file_idx;	/* Index in input file table.  */
  int dir_idx;		/* Index in directory table.  */
};

/* Data structure containing information about directories with source
   files.  */
struct dir_info
{
  const char *path;	/* Path including directory name.  */
  int length;		/* Path length.  */
  int prefix;		/* Index of directory entry which is a prefix.  */
  int count;		/* Number of files in this directory.  */
  int dir_idx;		/* Index of directory used as base.  */
};

/* Callback function for file_info comparison.  We sort by looking at
   the directories in the path.  */

static int
file_info_cmp (const void *p1, const void *p2)
{
  const struct file_info *s1 = p1;
  const struct file_info *s2 = p2;
  unsigned char *cp1;
  unsigned char *cp2;

  /* Take care of file names without directories.  We need to make sure that
     we return consistent values to qsort since some will get confused if
     we return the same value when identical operands are passed in opposite
     orders.  So if neither has a directory, return 0 and otherwise return
     1 or -1 depending on which one has the directory.  */
  if ((s1->path == s1->fname || s2->path == s2->fname))
    return (s2->path == s2->fname) - (s1->path == s1->fname);

  cp1 = (unsigned char *) s1->path;
  cp2 = (unsigned char *) s2->path;

  while (1)
    {
      ++cp1;
      ++cp2;
      /* Reached the end of the first path?  If so, handle like above.  */
      if ((cp1 == (unsigned char *) s1->fname)
	  || (cp2 == (unsigned char *) s2->fname))
	return ((cp2 == (unsigned char *) s2->fname)
		- (cp1 == (unsigned char *) s1->fname));

      /* Character of current path component the same?  */
      else if (*cp1 != *cp2)
	return *cp1 - *cp2;
    }
}

struct file_name_acquire_data 
{
  struct file_info *files;
  int used_files;
  int max_files;
};

/* Traversal function for the hash table.  */

static int
file_name_acquire (void ** slot, void *data)
{
  struct file_name_acquire_data *fnad = data;
  struct dwarf_file_data *d = *slot;
  struct file_info *fi;
  const char *f;

  gcc_assert (fnad->max_files >= d->emitted_number);

  if (! d->emitted_number)
    return 1;

  gcc_assert (fnad->max_files != fnad->used_files);

  fi = fnad->files + fnad->used_files++;

  /* Skip all leading "./".  */
  f = d->filename;
  while (f[0] == '.' && f[1] == '/')
    f += 2;
  
  /* Create a new array entry.  */
  fi->path = f;
  fi->length = strlen (f);
  fi->file_idx = d;
  
  /* Search for the file name part.  */
  f = strrchr (f, '/');
  fi->fname = f == NULL ? fi->path : f + 1;
  return 1;
}

/* Output the directory table and the file name table.  We try to minimize
   the total amount of memory needed.  A heuristic is used to avoid large
   slowdowns with many input files.  */

static void
output_file_names (void)
{
  struct file_name_acquire_data fnad;
  int numfiles;
  struct file_info *files;
  struct dir_info *dirs;
  int *saved;
  int *savehere;
  int *backmap;
  int ndirs;
  int idx_offset;
  int i;
  int idx;

  if (!last_emitted_file)
    {
      dw2_asm_output_data (1, 0, "End directory table");
      dw2_asm_output_data (1, 0, "End file name table");
      return;
    }

  numfiles = last_emitted_file->emitted_number;

  /* Allocate the various arrays we need.  */
  files = alloca (numfiles * sizeof (struct file_info));
  dirs = alloca (numfiles * sizeof (struct dir_info));

  fnad.files = files;
  fnad.used_files = 0;
  fnad.max_files = numfiles;
  htab_traverse (file_table, file_name_acquire, &fnad);
  gcc_assert (fnad.used_files == fnad.max_files);

  qsort (files, numfiles, sizeof (files[0]), file_info_cmp);

  /* Find all the different directories used.  */
  dirs[0].path = files[0].path;
  dirs[0].length = files[0].fname - files[0].path;
  dirs[0].prefix = -1;
  dirs[0].count = 1;
  dirs[0].dir_idx = 0;
  files[0].dir_idx = 0;
  ndirs = 1;

  for (i = 1; i < numfiles; i++)
    if (files[i].fname - files[i].path == dirs[ndirs - 1].length
	&& memcmp (dirs[ndirs - 1].path, files[i].path,
		   dirs[ndirs - 1].length) == 0)
      {
	/* Same directory as last entry.  */
	files[i].dir_idx = ndirs - 1;
	++dirs[ndirs - 1].count;
      }
    else
      {
	int j;

	/* This is a new directory.  */
	dirs[ndirs].path = files[i].path;
	dirs[ndirs].length = files[i].fname - files[i].path;
	dirs[ndirs].count = 1;
	dirs[ndirs].dir_idx = ndirs;
	files[i].dir_idx = ndirs;

	/* Search for a prefix.  */
	dirs[ndirs].prefix = -1;
	for (j = 0; j < ndirs; j++)
	  if (dirs[j].length < dirs[ndirs].length
	      && dirs[j].length > 1
	      && (dirs[ndirs].prefix == -1
		  || dirs[j].length > dirs[dirs[ndirs].prefix].length)
	      && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
	    dirs[ndirs].prefix = j;

	++ndirs;
      }

  /* Now to the actual work.  We have to find a subset of the directories which
     allow expressing the file name using references to the directory table
     with the least amount of characters.  We do not do an exhaustive search
     where we would have to check out every combination of every single
     possible prefix.  Instead we use a heuristic which provides nearly optimal
     results in most cases and never is much off.  */
  saved = alloca (ndirs * sizeof (int));
  savehere = alloca (ndirs * sizeof (int));

  memset (saved, '\0', ndirs * sizeof (saved[0]));
  for (i = 0; i < ndirs; i++)
    {
      int j;
      int total;

      /* We can always save some space for the current directory.  But this
	 does not mean it will be enough to justify adding the directory.  */
      savehere[i] = dirs[i].length;
      total = (savehere[i] - saved[i]) * dirs[i].count;

      for (j = i + 1; j < ndirs; j++)
	{
	  savehere[j] = 0;
	  if (saved[j] < dirs[i].length)
	    {
	      /* Determine whether the dirs[i] path is a prefix of the
		 dirs[j] path.  */
	      int k;

	      k = dirs[j].prefix;
	      while (k != -1 && k != (int) i)
		k = dirs[k].prefix;

	      if (k == (int) i)
		{
		  /* Yes it is.  We can possibly save some memory by
		     writing the filenames in dirs[j] relative to
		     dirs[i].  */
		  savehere[j] = dirs[i].length;
		  total += (savehere[j] - saved[j]) * dirs[j].count;
		}
	    }
	}

      /* Check whether we can save enough to justify adding the dirs[i]
	 directory.  */
      if (total > dirs[i].length + 1)
	{
	  /* It's worthwhile adding.  */
	  for (j = i; j < ndirs; j++)
	    if (savehere[j] > 0)
	      {
		/* Remember how much we saved for this directory so far.  */
		saved[j] = savehere[j];

		/* Remember the prefix directory.  */
		dirs[j].dir_idx = i;
	      }
	}
    }

  /* Emit the directory name table.  */
  idx = 1;
  idx_offset = dirs[0].length > 0 ? 1 : 0;
  for (i = 1 - idx_offset; i < ndirs; i++)
    dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
			    "Directory Entry: 0x%x", i + idx_offset);

  dw2_asm_output_data (1, 0, "End directory table");

  /* We have to emit them in the order of emitted_number since that's
     used in the debug info generation.  To do this efficiently we
     generate a back-mapping of the indices first.  */
  backmap = alloca (numfiles * sizeof (int));
  for (i = 0; i < numfiles; i++)
    backmap[files[i].file_idx->emitted_number - 1] = i;

  /* Now write all the file names.  */
  for (i = 0; i < numfiles; i++)
    {
      int file_idx = backmap[i];
      int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;

      dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
			      "File Entry: 0x%x", (unsigned) i + 1);

      /* Include directory index.  */
      dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);

      /* Modification time.  */
      dw2_asm_output_data_uleb128 (0, NULL);

      /* File length in bytes.  */
      dw2_asm_output_data_uleb128 (0, NULL);
    }

  dw2_asm_output_data (1, 0, "End file name table");
}


/* Output the source line number correspondence information.  This
   information goes into the .debug_line section.  */

static void
output_line_info (void)
{
  char l1[20], l2[20], p1[20], p2[20];
  char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
  char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
  unsigned opc;
  unsigned n_op_args;
  unsigned long lt_index;
  unsigned long current_line;
  long line_offset;
  long line_delta;
  unsigned long current_file;
  unsigned long function;

  ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);

  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
    dw2_asm_output_data (4, 0xffffffff,
      "Initial length escape value indicating 64-bit DWARF extension");
  dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
			"Length of Source Line Info");
  ASM_OUTPUT_LABEL (asm_out_file, l1);

  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
  dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
  ASM_OUTPUT_LABEL (asm_out_file, p1);

  /* Define the architecture-dependent minimum instruction length (in
   bytes).  In this implementation of DWARF, this field is used for
   information purposes only.  Since GCC generates assembly language,
   we have no a priori knowledge of how many instruction bytes are
   generated for each source line, and therefore can use only the
   DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
   commands.  Accordingly, we fix this as `1', which is "correct
   enough" for all architectures, and don't let the target override.  */
  dw2_asm_output_data (1, 1,
		       "Minimum Instruction Length");

  dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
		       "Default is_stmt_start flag");
  dw2_asm_output_data (1, DWARF_LINE_BASE,
		       "Line Base Value (Special Opcodes)");
  dw2_asm_output_data (1, DWARF_LINE_RANGE,
		       "Line Range Value (Special Opcodes)");
  dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
		       "Special Opcode Base");

  for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
    {
      switch (opc)
	{
	case DW_LNS_advance_pc:
	case DW_LNS_advance_line:
	case DW_LNS_set_file:
	case DW_LNS_set_column:
	case DW_LNS_fixed_advance_pc:
	  n_op_args = 1;
	  break;
	default:
	  n_op_args = 0;
	  break;
	}

      dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
			   opc, n_op_args);
    }

  /* Write out the information about the files we use.  */
  output_file_names ();
  ASM_OUTPUT_LABEL (asm_out_file, p2);

  /* We used to set the address register to the first location in the text
     section here, but that didn't accomplish anything since we already
     have a line note for the opening brace of the first function.  */

  /* Generate the line number to PC correspondence table, encoded as
     a series of state machine operations.  */
  current_file = 1;
  current_line = 1;

  if (cfun && in_cold_section_p)
    strcpy (prev_line_label, cfun->cold_section_label);
  else
    strcpy (prev_line_label, text_section_label);
  for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
    {
      dw_line_info_ref line_info = &line_info_table[lt_index];

#if 0
      /* Disable this optimization for now; GDB wants to see two line notes
	 at the beginning of a function so it can find the end of the
	 prologue.  */

      /* Don't emit anything for redundant notes.  Just updating the
	 address doesn't accomplish anything, because we already assume
	 that anything after the last address is this line.  */
      if (line_info->dw_line_num == current_line
	  && line_info->dw_file_num == current_file)
	continue;
#endif

      /* Emit debug info for the address of the current line.

	 Unfortunately, we have little choice here currently, and must always
	 use the most general form.  GCC does not know the address delta
	 itself, so we can't use DW_LNS_advance_pc.  Many ports do have length
	 attributes which will give an upper bound on the address range.  We
	 could perhaps use length attributes to determine when it is safe to
	 use DW_LNS_fixed_advance_pc.  */

      ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
      if (0)
	{
	  /* This can handle deltas up to 0xffff.  This takes 3 bytes.  */
	  dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
			       "DW_LNS_fixed_advance_pc");
	  dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
	}
      else
	{
	  /* This can handle any delta.  This takes
	     4+DWARF2_ADDR_SIZE bytes.  */
	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
	}

      strcpy (prev_line_label, line_label);

      /* Emit debug info for the source file of the current line, if
	 different from the previous line.  */
      if (line_info->dw_file_num != current_file)
	{
	  current_file = line_info->dw_file_num;
	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
	  dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
	}

      /* Emit debug info for the current line number, choosing the encoding
	 that uses the least amount of space.  */
      if (line_info->dw_line_num != current_line)
	{
	  line_offset = line_info->dw_line_num - current_line;
	  line_delta = line_offset - DWARF_LINE_BASE;
	  current_line = line_info->dw_line_num;
	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
	    /* This can handle deltas from -10 to 234, using the current
	       definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.  This
	       takes 1 byte.  */
	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
				 "line %lu", current_line);
	  else
	    {
	      /* This can handle any delta.  This takes at least 4 bytes,
		 depending on the value being encoded.  */
	      dw2_asm_output_data (1, DW_LNS_advance_line,
				   "advance to line %lu", current_line);
	      dw2_asm_output_data_sleb128 (line_offset, NULL);
	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
	    }
	}
      else
	/* We still need to start a new row, so output a copy insn.  */
	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
    }

  /* Emit debug info for the address of the end of the function.  */
  if (0)
    {
      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
			   "DW_LNS_fixed_advance_pc");
      dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
    }
  else
    {
      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
      dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
    }

  dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
  dw2_asm_output_data_uleb128 (1, NULL);
  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);

  function = 0;
  current_file = 1;
  current_line = 1;
  for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
    {
      dw_separate_line_info_ref line_info
	= &separate_line_info_table[lt_index];

#if 0
      /* Don't emit anything for redundant notes.  */
      if (line_info->dw_line_num == current_line
	  && line_info->dw_file_num == current_file
	  && line_info->function == function)
	goto cont;
#endif

      /* Emit debug info for the address of the current line.  If this is
	 a new function, or the first line of a function, then we need
	 to handle it differently.  */
      ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
				   lt_index);
      if (function != line_info->function)
	{
	  function = line_info->function;

	  /* Set the address register to the first line in the function.  */
	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
	}
      else
	{
	  /* ??? See the DW_LNS_advance_pc comment above.  */
	  if (0)
	    {
	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
				   "DW_LNS_fixed_advance_pc");
	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
	    }
	  else
	    {
	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
	    }
	}

      strcpy (prev_line_label, line_label);

      /* Emit debug info for the source file of the current line, if
	 different from the previous line.  */
      if (line_info->dw_file_num != current_file)
	{
	  current_file = line_info->dw_file_num;
	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
	  dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
	}

      /* Emit debug info for the current line number, choosing the encoding
	 that uses the least amount of space.  */
      if (line_info->dw_line_num != current_line)
	{
	  line_offset = line_info->dw_line_num - current_line;
	  line_delta = line_offset - DWARF_LINE_BASE;
	  current_line = line_info->dw_line_num;
	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
				 "line %lu", current_line);
	  else
	    {
	      dw2_asm_output_data (1, DW_LNS_advance_line,
				   "advance to line %lu", current_line);
	      dw2_asm_output_data_sleb128 (line_offset, NULL);
	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
	    }
	}
      else
	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");

#if 0
    cont:
#endif

      lt_index++;

      /* If we're done with a function, end its sequence.  */
      if (lt_index == separate_line_info_table_in_use
	  || separate_line_info_table[lt_index].function != function)
	{
	  current_file = 1;
	  current_line = 1;

	  /* Emit debug info for the address of the end of the function.  */
	  ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
	  if (0)
	    {
	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
				   "DW_LNS_fixed_advance_pc");
	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
	    }
	  else
	    {
	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
	    }

	  /* Output the marker for the end of this sequence.  */
	  dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
	  dw2_asm_output_data_uleb128 (1, NULL);
	  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
	}
    }

  /* Output the marker for the end of the line number info.  */
  ASM_OUTPUT_LABEL (asm_out_file, l2);
}

/* Given a pointer to a tree node for some base type, return a pointer to
   a DIE that describes the given type.

   This routine must only be called for GCC type nodes that correspond to
   Dwarf base (fundamental) types.  */

static dw_die_ref
base_type_die (tree type)
{
  dw_die_ref base_type_result;
  enum dwarf_type encoding;

  if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
    return 0;

  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:
      if (TYPE_STRING_FLAG (type))
	{
	  if (TYPE_UNSIGNED (type))
	    encoding = DW_ATE_unsigned_char;
	  else
	    encoding = DW_ATE_signed_char;
	}
      else if (TYPE_UNSIGNED (type))
	encoding = DW_ATE_unsigned;
      else
	encoding = DW_ATE_signed;
      break;

    case REAL_TYPE:
      if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
	encoding = DW_ATE_decimal_float;
      else
	encoding = DW_ATE_float;
      break;

      /* Dwarf2 doesn't know anything about complex ints, so use
	 a user defined type for it.  */
    case COMPLEX_TYPE:
      if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
	encoding = DW_ATE_complex_float;
      else
	encoding = DW_ATE_lo_user;
      break;

    case BOOLEAN_TYPE:
      /* GNU FORTRAN/Ada/C++ BOOLEAN type.  */
      encoding = DW_ATE_boolean;
      break;

    default:
      /* No other TREE_CODEs are Dwarf fundamental types.  */
      gcc_unreachable ();
    }

  base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);

  /* This probably indicates a bug.  */
  if (! TYPE_NAME (type))
    add_name_attribute (base_type_result, "__unknown__");

  add_AT_unsigned (base_type_result, DW_AT_byte_size,
		   int_size_in_bytes (type));
  add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);

  return base_type_result;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
   the Dwarf "root" type for the given input type.  The Dwarf "root" type of
   a given type is generally the same as the given type, except that if the
   given type is a pointer or reference type, then the root type of the given
   type is the root type of the "basis" type for the pointer or reference
   type.  (This definition of the "root" type is recursive.) Also, the root
   type of a `const' qualified type or a `volatile' qualified type is the
   root type of the given type without the qualifiers.  */

static tree
root_type (tree type)
{
  if (TREE_CODE (type) == ERROR_MARK)
    return error_mark_node;

  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
      return error_mark_node;

    /* APPLE LOCAL radar 5732232 - blocks */
    case BLOCK_POINTER_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
      return type_main_variant (root_type (TREE_TYPE (type)));

    default:
      return type_main_variant (type);
    }
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
   given input type is a Dwarf "fundamental" type.  Otherwise return null.  */

static inline int
is_base_type (tree type)
{
  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
    case VOID_TYPE:
    case INTEGER_TYPE:
    case REAL_TYPE:
    case COMPLEX_TYPE:
    case BOOLEAN_TYPE:
      return 1;

    case ARRAY_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
    case ENUMERAL_TYPE:
    case FUNCTION_TYPE:
    case METHOD_TYPE:
	/* APPLE LOCAL radar 5732232 - blocks */
    case BLOCK_POINTER_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case OFFSET_TYPE:
    case LANG_TYPE:
    case VECTOR_TYPE:
      return 0;

    default:
      gcc_unreachable ();
    }

  return 0;
}

/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
   node, return the size in bits for the type if it is a constant, or else
   return the alignment for the type if the type's size is not constant, or
   else return BITS_PER_WORD if the type actually turns out to be an
   ERROR_MARK node.  */

static inline unsigned HOST_WIDE_INT
simple_type_size_in_bits (tree type)
{
  if (TREE_CODE (type) == ERROR_MARK)
    return BITS_PER_WORD;
  else if (TYPE_SIZE (type) == NULL_TREE)
    return 0;
  else if (host_integerp (TYPE_SIZE (type), 1))
    return tree_low_cst (TYPE_SIZE (type), 1);
  else
    return TYPE_ALIGN (type);
}

/* Return true if the debug information for the given type should be
   emitted as a subrange type.  */

static inline bool
is_subrange_type (tree type)
{
  tree subtype = TREE_TYPE (type);

  /* Subrange types are identified by the fact that they are integer
     types, and that they have a subtype which is either an integer type
     or an enumeral type.  */

  if (TREE_CODE (type) != INTEGER_TYPE
      || subtype == NULL_TREE)
    return false;

  if (TREE_CODE (subtype) != INTEGER_TYPE
      && TREE_CODE (subtype) != ENUMERAL_TYPE)
    return false;

  if (TREE_CODE (type) == TREE_CODE (subtype)
      && int_size_in_bytes (type) == int_size_in_bytes (subtype)
      && TYPE_MIN_VALUE (type) != NULL
      && TYPE_MIN_VALUE (subtype) != NULL
      && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
      && TYPE_MAX_VALUE (type) != NULL
      && TYPE_MAX_VALUE (subtype) != NULL
      && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
    {
      /* The type and its subtype have the same representation.  If in
         addition the two types also have the same name, then the given
         type is not a subrange type, but rather a plain base type.  */
      /* FIXME: brobecker/2004-03-22:
         Sizetype INTEGER_CSTs nodes are canonicalized.  It should
         therefore be sufficient to check the TYPE_SIZE node pointers
         rather than checking the actual size.  Unfortunately, we have
         found some cases, such as in the Ada "integer" type, where
         this is not the case.  Until this problem is solved, we need to
         keep checking the actual size.  */
      tree type_name = TYPE_NAME (type);
      tree subtype_name = TYPE_NAME (subtype);

      if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
        type_name = DECL_NAME (type_name);

      if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
        subtype_name = DECL_NAME (subtype_name);

      if (type_name == subtype_name)
        return false;
    }

  return true;
}

/*  Given a pointer to a tree node for a subrange type, return a pointer
    to a DIE that describes the given type.  */

static dw_die_ref
subrange_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref subrange_die;
  const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);

  if (context_die == NULL)
    context_die = comp_unit_die;

  subrange_die = new_die (DW_TAG_subrange_type, context_die, type);

  if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
    {
      /* The size of the subrange type and its base type do not match,
         so we need to generate a size attribute for the subrange type.  */
      add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
    }

  if (TYPE_MIN_VALUE (type) != NULL)
    add_bound_info (subrange_die, DW_AT_lower_bound,
                    TYPE_MIN_VALUE (type));
  if (TYPE_MAX_VALUE (type) != NULL)
    add_bound_info (subrange_die, DW_AT_upper_bound,
                    TYPE_MAX_VALUE (type));

  return subrange_die;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
   entry that chains various modifiers in front of the given type.  */

static dw_die_ref
modified_type_die (tree type, int is_const_type, int is_volatile_type,
		   dw_die_ref context_die)
{
  enum tree_code code = TREE_CODE (type);
  dw_die_ref mod_type_die;
  dw_die_ref sub_die = NULL;
  tree item_type = NULL;
  tree qualified_type;
  tree name;

  if (code == ERROR_MARK)
    return NULL;

  /* See if we already have the appropriately qualified variant of
     this type.  */
  qualified_type
    = get_qualified_type (type,
			  ((is_const_type ? TYPE_QUAL_CONST : 0)
			   | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
  
  /* If we do, then we can just use its DIE, if it exists.  */
  if (qualified_type)
    {
      mod_type_die = lookup_type_die (qualified_type);
      if (mod_type_die)
	return mod_type_die;
    }
  
  name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
  
  /* Handle C typedef types.  */
  if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
    {
      tree dtype = TREE_TYPE (name);
      
      if (qualified_type == dtype)
	{
	  /* For a named type, use the typedef.  */
	  gen_type_die (qualified_type, context_die);
	  return lookup_type_die (qualified_type);
	}
      else if (is_const_type < TYPE_READONLY (dtype)
	       || is_volatile_type < TYPE_VOLATILE (dtype)
	       || (is_const_type <= TYPE_READONLY (dtype)
		   && is_volatile_type <= TYPE_VOLATILE (dtype)
		   && DECL_ORIGINAL_TYPE (name) != type))
	/* cv-unqualified version of named type.  Just use the unnamed
	   type to which it refers.  */
	return modified_type_die (DECL_ORIGINAL_TYPE (name),
				  is_const_type, is_volatile_type,
				  context_die);
      /* Else cv-qualified version of named type; fall through.  */
    }
  
  if (is_const_type)
    {
      mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
      sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
    }
  else if (is_volatile_type)
    {
      mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
      sub_die = modified_type_die (type, 0, 0, context_die);
    }
  /* APPLE LOCAL radar 5732232 - blocks */
  else if (code == POINTER_TYPE || code == BLOCK_POINTER_TYPE)
    {
      mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
      add_AT_unsigned (mod_type_die, DW_AT_byte_size,
		       simple_type_size_in_bits (type) / BITS_PER_UNIT);
      item_type = TREE_TYPE (type);
    }
  else if (code == REFERENCE_TYPE)
    {
      mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
      add_AT_unsigned (mod_type_die, DW_AT_byte_size,
		       simple_type_size_in_bits (type) / BITS_PER_UNIT);
      item_type = TREE_TYPE (type);
    }
  else if (is_subrange_type (type))
    {
      mod_type_die = subrange_type_die (type, context_die);
      item_type = TREE_TYPE (type);
    }
  else if (is_base_type (type))
    mod_type_die = base_type_die (type);
  else
    {
      gen_type_die (type, context_die);
      
      /* We have to get the type_main_variant here (and pass that to the
	 `lookup_type_die' routine) because the ..._TYPE node we have
	 might simply be a *copy* of some original type node (where the
	 copy was created to help us keep track of typedef names) and
	 that copy might have a different TYPE_UID from the original
	 ..._TYPE node.  */
      if (TREE_CODE (type) != VECTOR_TYPE)
	return lookup_type_die (type_main_variant (type));
      else
	/* Vectors have the debugging information in the type,
	   not the main variant.  */
	return lookup_type_die (type);
    }
  
  /* Builtin types don't have a DECL_ORIGINAL_TYPE.  For those,
     don't output a DW_TAG_typedef, since there isn't one in the
     user's program; just attach a DW_AT_name to the type.  */
  if (name
      && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
    {
      if (TREE_CODE (name) == TYPE_DECL)
	/* Could just call add_name_and_src_coords_attributes here,
	   but since this is a builtin type it doesn't have any
	   useful source coordinates anyway.  */
	name = DECL_NAME (name);
      add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
    }
  
  if (qualified_type)
    equate_type_number_to_die (qualified_type, mod_type_die);

  if (item_type)
    /* We must do this after the equate_type_number_to_die call, in case
       this is a recursive type.  This ensures that the modified_type_die
       recursion will terminate even if the type is recursive.  Recursive
       types are possible in Ada.  */
    sub_die = modified_type_die (item_type,
				 TYPE_READONLY (item_type),
				 TYPE_VOLATILE (item_type),
				 context_die);

  if (sub_die != NULL)
    add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);

  return mod_type_die;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
   an enumerated type.  */

static inline int
type_is_enum (tree type)
{
  return TREE_CODE (type) == ENUMERAL_TYPE;
}

/* Return the DBX register number described by a given RTL node.  */

static unsigned int
dbx_reg_number (rtx rtl)
{
  unsigned regno = REGNO (rtl);

  gcc_assert (regno < FIRST_PSEUDO_REGISTER);

#ifdef LEAF_REG_REMAP
  if (current_function_uses_only_leaf_regs)
    {
      int leaf_reg = LEAF_REG_REMAP (regno);
      if (leaf_reg != -1)
	regno = (unsigned) leaf_reg;
    }
#endif

  return DBX_REGISTER_NUMBER (regno);
}

/* Optionally add a DW_OP_piece term to a location description expression.
   DW_OP_piece is only added if the location description expression already
   doesn't end with DW_OP_piece.  */

static void
add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
{
  dw_loc_descr_ref loc;

  if (*list_head != NULL)
    {
      /* Find the end of the chain.  */
      for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
	;

      if (loc->dw_loc_opc != DW_OP_piece)
	loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
    }
}

/* Return a location descriptor that designates a machine register or
   zero if there is none.  */

static dw_loc_descr_ref
reg_loc_descriptor (rtx rtl)
{
  rtx regs;

  if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
    return 0;

  regs = targetm.dwarf_register_span (rtl);

  if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
    return multiple_reg_loc_descriptor (rtl, regs);
  else
    return one_reg_loc_descriptor (dbx_reg_number (rtl));
}

/* Return a location descriptor that designates a machine register for
   a given hard register number.  */

static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int regno)
{
  if (regno <= 31)
    return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
  else
    return new_loc_descr (DW_OP_regx, regno, 0);
}

/* Given an RTL of a register, return a location descriptor that
   designates a value that spans more than one register.  */

static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx rtl, rtx regs)
{
  int nregs, size, i;
  unsigned reg;
  dw_loc_descr_ref loc_result = NULL;

  reg = REGNO (rtl);
#ifdef LEAF_REG_REMAP
  if (current_function_uses_only_leaf_regs)
    {
      int leaf_reg = LEAF_REG_REMAP (reg);
      if (leaf_reg != -1)
	reg = (unsigned) leaf_reg;
    }
#endif
  gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
  nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];

  /* Simple, contiguous registers.  */
  if (regs == NULL_RTX)
    {
      size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;

      loc_result = NULL;
      while (nregs--)
	{
	  dw_loc_descr_ref t;

	  t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
	  add_loc_descr (&loc_result, t);
	  add_loc_descr_op_piece (&loc_result, size);
	  ++reg;
	}
      return loc_result;
    }

  /* Now onto stupid register sets in non contiguous locations.  */

  gcc_assert (GET_CODE (regs) == PARALLEL);

  size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
  loc_result = NULL;

  for (i = 0; i < XVECLEN (regs, 0); ++i)
    {
      dw_loc_descr_ref t;

      t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
      add_loc_descr (&loc_result, t);
      size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
      add_loc_descr_op_piece (&loc_result, size);
    }
  return loc_result;
}

/* Return a location descriptor that designates a constant.  */

static dw_loc_descr_ref
int_loc_descriptor (HOST_WIDE_INT i)
{
  enum dwarf_location_atom op;

  /* Pick the smallest representation of a constant, rather than just
     defaulting to the LEB encoding.  */
  if (i >= 0)
    {
      if (i <= 31)
	op = DW_OP_lit0 + i;
      else if (i <= 0xff)
	op = DW_OP_const1u;
      else if (i <= 0xffff)
	op = DW_OP_const2u;
      else if (HOST_BITS_PER_WIDE_INT == 32
	       || i <= 0xffffffff)
	op = DW_OP_const4u;
      else
	op = DW_OP_constu;
    }
  else
    {
      if (i >= -0x80)
	op = DW_OP_const1s;
      else if (i >= -0x8000)
	op = DW_OP_const2s;
      else if (HOST_BITS_PER_WIDE_INT == 32
	       || i >= -0x80000000)
	op = DW_OP_const4s;
      else
	op = DW_OP_consts;
    }

  return new_loc_descr (op, i, 0);
}

/* Return a location descriptor that designates a base+offset location.  */

static dw_loc_descr_ref
based_loc_descr (rtx reg, HOST_WIDE_INT offset)
{
  unsigned int regno;

  /* We only use "frame base" when we're sure we're talking about the
     post-prologue local stack frame.  We do this by *not* running
     register elimination until this point, and recognizing the special
     argument pointer and soft frame pointer rtx's.  */
  if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
    {
      rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);

      if (elim != reg)
	{
	  if (GET_CODE (elim) == PLUS)
	    {
	      offset += INTVAL (XEXP (elim, 1));
	      elim = XEXP (elim, 0);
	    }
	  gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
		      : stack_pointer_rtx));
          offset += frame_pointer_fb_offset;

          return new_loc_descr (DW_OP_fbreg, offset, 0);
	}
    }

  regno = dbx_reg_number (reg);
  if (regno <= 31)
    return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
  else
    return new_loc_descr (DW_OP_bregx, regno, offset);
}

/* Return true if this RTL expression describes a base+offset calculation.  */

static inline int
is_based_loc (rtx rtl)
{
  return (GET_CODE (rtl) == PLUS
	  && ((REG_P (XEXP (rtl, 0))
	       && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
	       && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
}

/* The following routine converts the RTL for a variable or parameter
   (resident in memory) into an equivalent Dwarf representation of a
   mechanism for getting the address of that same variable onto the top of a
   hypothetical "address evaluation" stack.

   When creating memory location descriptors, we are effectively transforming
   the RTL for a memory-resident object into its Dwarf postfix expression
   equivalent.  This routine recursively descends an RTL tree, turning
   it into Dwarf postfix code as it goes.

   MODE is the mode of the memory reference, needed to handle some
   autoincrement addressing modes.

   CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
   location list for RTL.

   Return 0 if we can't represent the location.  */

static dw_loc_descr_ref
mem_loc_descriptor (rtx rtl, enum machine_mode mode)
{
  dw_loc_descr_ref mem_loc_result = NULL;
  enum dwarf_location_atom op;

  /* Note that for a dynamically sized array, the location we will generate a
     description of here will be the lowest numbered location which is
     actually within the array.  That's *not* necessarily the same as the
     zeroth element of the array.  */

  rtl = targetm.delegitimize_address (rtl);

  switch (GET_CODE (rtl))
    {
    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
      /* POST_INC and POST_DEC can be handled just like a SUBREG.  So we
	 just fall into the SUBREG code.  */

      /* ... fall through ...  */

    case SUBREG:
      /* The case of a subreg may arise when we have a local (register)
	 variable or a formal (register) parameter which doesn't quite fill
	 up an entire register.  For now, just assume that it is
	 legitimate to make the Dwarf info refer to the whole register which
	 contains the given subreg.  */
      rtl = XEXP (rtl, 0);

      /* ... fall through ...  */

    case REG:
      /* Whenever a register number forms a part of the description of the
	 method for calculating the (dynamic) address of a memory resident
	 object, DWARF rules require the register number be referred to as
	 a "base register".  This distinction is not based in any way upon
	 what category of register the hardware believes the given register
	 belongs to.  This is strictly DWARF terminology we're dealing with
	 here. Note that in cases where the location of a memory-resident
	 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
	 OP_CONST (0)) the actual DWARF location descriptor that we generate
	 may just be OP_BASEREG (basereg).  This may look deceptively like
	 the object in question was allocated to a register (rather than in
	 memory) so DWARF consumers need to be aware of the subtle
	 distinction between OP_REG and OP_BASEREG.  */
      if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
	mem_loc_result = based_loc_descr (rtl, 0);
      break;

    case MEM:
      mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
      if (mem_loc_result != 0)
	add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
      break;

    case LO_SUM:
	 rtl = XEXP (rtl, 1);

      /* ... fall through ...  */

    case LABEL_REF:
      /* Some ports can transform a symbol ref into a label ref, because
	 the symbol ref is too far away and has to be dumped into a constant
	 pool.  */
    case CONST:
    case SYMBOL_REF:
      /* Alternatively, the symbol in the constant pool might be referenced
	 by a different symbol.  */
      if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
	{
	  bool marked;
	  rtx tmp = get_pool_constant_mark (rtl, &marked);

	  if (GET_CODE (tmp) == SYMBOL_REF)
	    {
	      rtl = tmp;
	      if (CONSTANT_POOL_ADDRESS_P (tmp))
		get_pool_constant_mark (tmp, &marked);
	      else
		marked = true;
	    }

	  /* If all references to this pool constant were optimized away,
	     it was not output and thus we can't represent it.
	     FIXME: might try to use DW_OP_const_value here, though
	     DW_OP_piece complicates it.  */
	  if (!marked)
	    return 0;
	}

      mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
      mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
      mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
      VEC_safe_push (rtx, gc, used_rtx_array, rtl);
      break;

    case PRE_MODIFY:
      /* Extract the PLUS expression nested inside and fall into
	 PLUS code below.  */
      rtl = XEXP (rtl, 1);
      goto plus;

    case PRE_INC:
    case PRE_DEC:
      /* Turn these into a PLUS expression and fall into the PLUS code
	 below.  */
      rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
			  GEN_INT (GET_CODE (rtl) == PRE_INC
				   ? GET_MODE_UNIT_SIZE (mode)
				   : -GET_MODE_UNIT_SIZE (mode)));

      /* ... fall through ...  */

    case PLUS:
    plus:
      if (is_based_loc (rtl))
	mem_loc_result = based_loc_descr (XEXP (rtl, 0),
					  INTVAL (XEXP (rtl, 1)));
      else
	{
	  mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
	  if (mem_loc_result == 0)
	    break;

	  if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
	      && INTVAL (XEXP (rtl, 1)) >= 0)
	    add_loc_descr (&mem_loc_result,
			   new_loc_descr (DW_OP_plus_uconst,
					  INTVAL (XEXP (rtl, 1)), 0));
	  else
	    {
	      add_loc_descr (&mem_loc_result,
			     mem_loc_descriptor (XEXP (rtl, 1), mode));
	      add_loc_descr (&mem_loc_result,
			     new_loc_descr (DW_OP_plus, 0, 0));
	    }
	}
      break;

    /* If a pseudo-reg is optimized away, it is possible for it to
       be replaced with a MEM containing a multiply or shift.  */
    case MULT:
      op = DW_OP_mul;
      goto do_binop;

    case ASHIFT:
      op = DW_OP_shl;
      goto do_binop;

    case ASHIFTRT:
      op = DW_OP_shra;
      goto do_binop;

    case LSHIFTRT:
      op = DW_OP_shr;
      goto do_binop;

    do_binop:
      {
	dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
	dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);

	if (op0 == 0 || op1 == 0)
	  break;

	mem_loc_result = op0;
	add_loc_descr (&mem_loc_result, op1);
	add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
	break;
      }

    case CONST_INT:
      mem_loc_result = int_loc_descriptor (INTVAL (rtl));
      break;

    default:
      gcc_unreachable ();
    }

  return mem_loc_result;
}

/* Return a descriptor that describes the concatenation of two locations.
   This is typically a complex variable.  */

static dw_loc_descr_ref
concat_loc_descriptor (rtx x0, rtx x1)
{
  dw_loc_descr_ref cc_loc_result = NULL;
  dw_loc_descr_ref x0_ref = loc_descriptor (x0);
  dw_loc_descr_ref x1_ref = loc_descriptor (x1);

  if (x0_ref == 0 || x1_ref == 0)
    return 0;

  cc_loc_result = x0_ref;
  add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));

  add_loc_descr (&cc_loc_result, x1_ref);
  add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));

  return cc_loc_result;
}

/* Output a proper Dwarf location descriptor for a variable or parameter
   which is either allocated in a register or in a memory location.  For a
   register, we just generate an OP_REG and the register number.  For a
   memory location we provide a Dwarf postfix expression describing how to
   generate the (dynamic) address of the object onto the address stack.

   If we don't know how to describe it, return 0.  */

static dw_loc_descr_ref
loc_descriptor (rtx rtl)
{
  dw_loc_descr_ref loc_result = NULL;

  switch (GET_CODE (rtl))
    {
    case SUBREG:
      /* The case of a subreg may arise when we have a local (register)
	 variable or a formal (register) parameter which doesn't quite fill
	 up an entire register.  For now, just assume that it is
	 legitimate to make the Dwarf info refer to the whole register which
	 contains the given subreg.  */
      rtl = SUBREG_REG (rtl);

      /* ... fall through ...  */

    case REG:
      loc_result = reg_loc_descriptor (rtl);
      break;

    case MEM:
      loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
      break;

    case CONCAT:
      loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
      break;

    case VAR_LOCATION:
      /* Single part.  */
      if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
	{
	  loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
	  break;
	}

      rtl = XEXP (rtl, 1);
      /* FALLTHRU */

    case PARALLEL:
      {
	rtvec par_elems = XVEC (rtl, 0);
	int num_elem = GET_NUM_ELEM (par_elems);
	enum machine_mode mode;
	int i;

	/* Create the first one, so we have something to add to.  */
	loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
	mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
	add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
	for (i = 1; i < num_elem; i++)
	  {
	    dw_loc_descr_ref temp;

	    temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
	    add_loc_descr (&loc_result, temp);
	    mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
	    add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
	  }
      }
      break;

    default:
      gcc_unreachable ();
    }

  return loc_result;
}

/* Similar, but generate the descriptor from trees instead of rtl.  This comes
   up particularly with variable length arrays.  WANT_ADDRESS is 2 if this is
   a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
   top-level invocation, and we require the address of LOC; is 0 if we require
   the value of LOC.  */

static dw_loc_descr_ref
loc_descriptor_from_tree_1 (tree loc, int want_address)
{
  dw_loc_descr_ref ret, ret1;
  int have_address = 0;
  enum dwarf_location_atom op;

  /* ??? Most of the time we do not take proper care for sign/zero
     extending the values properly.  Hopefully this won't be a real
     problem...  */

  switch (TREE_CODE (loc))
    {
    case ERROR_MARK:
      return 0;

    case PLACEHOLDER_EXPR:
      /* This case involves extracting fields from an object to determine the
	 position of other fields.  We don't try to encode this here.  The
	 only user of this is Ada, which encodes the needed information using
	 the names of types.  */
      return 0;

    case CALL_EXPR:
      return 0;

    case PREINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      /* There are no opcodes for these operations.  */
      return 0;

    case ADDR_EXPR:
      /* If we already want an address, there's nothing we can do.  */
      if (want_address)
	return 0;

      /* Otherwise, process the argument and look for the address.  */
      return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);

    case VAR_DECL:
      if (DECL_THREAD_LOCAL_P (loc))
	{
	  rtx rtl;

	  /* If this is not defined, we have no way to emit the data.  */
	  if (!targetm.asm_out.output_dwarf_dtprel)
	    return 0;

	  /* The way DW_OP_GNU_push_tls_address is specified, we can only
	     look up addresses of objects in the current module.  */
	  if (DECL_EXTERNAL (loc))
	    return 0;

	  rtl = rtl_for_decl_location (loc);
	  if (rtl == NULL_RTX)
	    return 0;

	  if (!MEM_P (rtl))
	    return 0;
	  rtl = XEXP (rtl, 0);
	  if (! CONSTANT_P (rtl))
	    return 0;

	  ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
	  ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
	  ret->dw_loc_oprnd1.v.val_addr = rtl;

	  ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
	  add_loc_descr (&ret, ret1);

	  have_address = 1;
	  break;
	}
      /* FALLTHRU */

    case PARM_DECL:
      if (DECL_HAS_VALUE_EXPR_P (loc))
	return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
					   want_address);
      /* FALLTHRU */

    case RESULT_DECL:
    case FUNCTION_DECL:
      {
	rtx rtl = rtl_for_decl_location (loc);

	if (rtl == NULL_RTX)
	  return 0;
        else if (GET_CODE (rtl) == CONST_INT)
	  {
	    HOST_WIDE_INT val = INTVAL (rtl);
	    if (TYPE_UNSIGNED (TREE_TYPE (loc)))
	      val &= GET_MODE_MASK (DECL_MODE (loc));
	    ret = int_loc_descriptor (val);
	  }
	else if (GET_CODE (rtl) == CONST_STRING)
	  return 0;
	else if (CONSTANT_P (rtl))
	  {
	    ret = new_loc_descr (DW_OP_addr, 0, 0);
	    ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
	    ret->dw_loc_oprnd1.v.val_addr = rtl;
	  }
	else
	  {
	    enum machine_mode mode;

	    /* Certain constructs can only be represented at top-level.  */
	    if (want_address == 2)
	      return loc_descriptor (rtl);

	    mode = GET_MODE (rtl);
	    if (MEM_P (rtl))
	      {
		rtl = XEXP (rtl, 0);
		have_address = 1;
	      }
	    ret = mem_loc_descriptor (rtl, mode);
	  }
      }
      break;

    case INDIRECT_REF:
      ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
      have_address = 1;
      break;

    case COMPOUND_EXPR:
      return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);

    case NOP_EXPR:
    case CONVERT_EXPR:
    case NON_LVALUE_EXPR:
    case VIEW_CONVERT_EXPR:
    case SAVE_EXPR:
    case MODIFY_EXPR:
      return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);

    case COMPONENT_REF:
    case BIT_FIELD_REF:
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      {
	tree obj, offset;
	HOST_WIDE_INT bitsize, bitpos, bytepos;
	enum machine_mode mode;
	int volatilep;
	int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));

	obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
				   &unsignedp, &volatilep, false);

	if (obj == loc)
	  return 0;

	ret = loc_descriptor_from_tree_1 (obj, 1);
	if (ret == 0
	    || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
	  return 0;

	if (offset != NULL_TREE)
	  {
	    /* Variable offset.  */
	    add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
	  }

	bytepos = bitpos / BITS_PER_UNIT;
	if (bytepos > 0)
	  add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
	else if (bytepos < 0)
	  {
	    add_loc_descr (&ret, int_loc_descriptor (bytepos));
	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
	  }

	have_address = 1;
	break;
      }

    case INTEGER_CST:
      if (host_integerp (loc, 0))
	ret = int_loc_descriptor (tree_low_cst (loc, 0));
      else
	return 0;
      break;

    case CONSTRUCTOR:
      {
	/* Get an RTL for this, if something has been emitted.  */
	rtx rtl = lookup_constant_def (loc);
	enum machine_mode mode;

	if (!rtl || !MEM_P (rtl))
	  return 0;
	mode = GET_MODE (rtl);
	rtl = XEXP (rtl, 0);
	ret = mem_loc_descriptor (rtl, mode);
	have_address = 1;
	break;
      }

    case TRUTH_AND_EXPR:
    case TRUTH_ANDIF_EXPR:
    case BIT_AND_EXPR:
      op = DW_OP_and;
      goto do_binop;

    case TRUTH_XOR_EXPR:
    case BIT_XOR_EXPR:
      op = DW_OP_xor;
      goto do_binop;

    case TRUTH_OR_EXPR:
    case TRUTH_ORIF_EXPR:
    case BIT_IOR_EXPR:
      op = DW_OP_or;
      goto do_binop;

    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case TRUNC_DIV_EXPR:
      op = DW_OP_div;
      goto do_binop;

    case MINUS_EXPR:
      op = DW_OP_minus;
      goto do_binop;

    case FLOOR_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
      op = DW_OP_mod;
      goto do_binop;

    case MULT_EXPR:
      op = DW_OP_mul;
      goto do_binop;

    case LSHIFT_EXPR:
      op = DW_OP_shl;
      goto do_binop;

    case RSHIFT_EXPR:
      op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
      goto do_binop;

    case PLUS_EXPR:
      if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
	  && host_integerp (TREE_OPERAND (loc, 1), 0))
	{
	  ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
	  if (ret == 0)
	    return 0;

	  add_loc_descr (&ret,
			 new_loc_descr (DW_OP_plus_uconst,
					tree_low_cst (TREE_OPERAND (loc, 1),
						      0),
					0));
	  break;
	}

      op = DW_OP_plus;
      goto do_binop;

    case LE_EXPR:
      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
	return 0;

      op = DW_OP_le;
      goto do_binop;

    case GE_EXPR:
      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
	return 0;

      op = DW_OP_ge;
      goto do_binop;

    case LT_EXPR:
      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
	return 0;

      op = DW_OP_lt;
      goto do_binop;

    case GT_EXPR:
      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
	return 0;

      op = DW_OP_gt;
      goto do_binop;

    case EQ_EXPR:
      op = DW_OP_eq;
      goto do_binop;

    case NE_EXPR:
      op = DW_OP_ne;
      goto do_binop;

    do_binop:
      ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
      ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
      if (ret == 0 || ret1 == 0)
	return 0;

      add_loc_descr (&ret, ret1);
      add_loc_descr (&ret, new_loc_descr (op, 0, 0));
      break;

    case TRUTH_NOT_EXPR:
    case BIT_NOT_EXPR:
      op = DW_OP_not;
      goto do_unop;

    case ABS_EXPR:
      op = DW_OP_abs;
      goto do_unop;

    case NEGATE_EXPR:
      op = DW_OP_neg;
      goto do_unop;

    do_unop:
      ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
      if (ret == 0)
	return 0;

      add_loc_descr (&ret, new_loc_descr (op, 0, 0));
      break;

    case MIN_EXPR:
    case MAX_EXPR:
      {
        const enum tree_code code =
          TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;

        loc = build3 (COND_EXPR, TREE_TYPE (loc),
		      build2 (code, integer_type_node,
			      TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
                      TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
      }

      /* ... fall through ...  */

    case COND_EXPR:
      {
	dw_loc_descr_ref lhs
	  = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
	dw_loc_descr_ref rhs
	  = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
	dw_loc_descr_ref bra_node, jump_node, tmp;

	ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
	if (ret == 0 || lhs == 0 || rhs == 0)
	  return 0;

	bra_node = new_loc_descr (DW_OP_bra, 0, 0);
	add_loc_descr (&ret, bra_node);

	add_loc_descr (&ret, rhs);
	jump_node = new_loc_descr (DW_OP_skip, 0, 0);
	add_loc_descr (&ret, jump_node);

	add_loc_descr (&ret, lhs);
	bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
	bra_node->dw_loc_oprnd1.v.val_loc = lhs;

	/* ??? Need a node to point the skip at.  Use a nop.  */
	tmp = new_loc_descr (DW_OP_nop, 0, 0);
	add_loc_descr (&ret, tmp);
	jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
	jump_node->dw_loc_oprnd1.v.val_loc = tmp;
      }
      break;

    case FIX_TRUNC_EXPR:
    case FIX_CEIL_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_ROUND_EXPR:
      return 0;

    default:
      /* Leave front-end specific codes as simply unknown.  This comes
	 up, for instance, with the C STMT_EXPR.  */
      if ((unsigned int) TREE_CODE (loc)
          >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
	return 0;

#ifdef ENABLE_CHECKING
      /* Otherwise this is a generic code; we should just lists all of
	 these explicitly.  We forgot one.  */
      gcc_unreachable ();
#else
      /* In a release build, we want to degrade gracefully: better to
	 generate incomplete debugging information than to crash.  */
      return NULL;
#endif
    }

  /* Show if we can't fill the request for an address.  */
  if (want_address && !have_address)
    return 0;

  /* If we've got an address and don't want one, dereference.  */
  if (!want_address && have_address && ret)
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));

      if (size > DWARF2_ADDR_SIZE || size == -1)
	return 0;
      else if (size == DWARF2_ADDR_SIZE)
	op = DW_OP_deref;
      else
	op = DW_OP_deref_size;

      add_loc_descr (&ret, new_loc_descr (op, size, 0));
    }

  return ret;
}

static inline dw_loc_descr_ref
loc_descriptor_from_tree (tree loc)
{
  return loc_descriptor_from_tree_1 (loc, 2);
}

/* Given a value, round it up to the lowest multiple of `boundary'
   which is not less than the value itself.  */

static inline HOST_WIDE_INT
ceiling (HOST_WIDE_INT value, unsigned int boundary)
{
  return (((value + boundary - 1) / boundary) * boundary);
}

/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
   pointer to the declared type for the relevant field variable, or return
   `integer_type_node' if the given node turns out to be an
   ERROR_MARK node.  */

static inline tree
field_type (tree decl)
{
  tree type;

  if (TREE_CODE (decl) == ERROR_MARK)
    return integer_type_node;

  type = DECL_BIT_FIELD_TYPE (decl);
  if (type == NULL_TREE)
    type = TREE_TYPE (decl);

  return type;
}

/* Given a pointer to a tree node, return the alignment in bits for
   it, or else return BITS_PER_WORD if the node actually turns out to
   be an ERROR_MARK node.  */

static inline unsigned
simple_type_align_in_bits (tree type)
{
  return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
}

static inline unsigned
simple_decl_align_in_bits (tree decl)
{
  return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
}

/* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
   lowest addressed byte of the "containing object" for the given FIELD_DECL,
   or return 0 if we are unable to determine what that offset is, either
   because the argument turns out to be a pointer to an ERROR_MARK node, or
   because the offset is actually variable.  (We can't handle the latter case
   just yet).  */

static HOST_WIDE_INT
field_byte_offset (tree decl)
{
  unsigned int type_align_in_bits;
  unsigned int decl_align_in_bits;
  unsigned HOST_WIDE_INT type_size_in_bits;
  HOST_WIDE_INT object_offset_in_bits;
  tree type;
  tree field_size_tree;
  HOST_WIDE_INT bitpos_int;
  HOST_WIDE_INT deepest_bitpos;
  unsigned HOST_WIDE_INT field_size_in_bits;

  if (TREE_CODE (decl) == ERROR_MARK)
    return 0;

  gcc_assert (TREE_CODE (decl) == FIELD_DECL);

  type = field_type (decl);
  field_size_tree = DECL_SIZE (decl);

  /* The size could be unspecified if there was an error, or for
     a flexible array member.  */
  if (! field_size_tree)
    field_size_tree = bitsize_zero_node;

  /* We cannot yet cope with fields whose positions are variable, so
     for now, when we see such things, we simply return 0.  Someday, we may
     be able to handle such cases, but it will be damn difficult.  */
  if (! host_integerp (bit_position (decl), 0))
    return 0;

  bitpos_int = int_bit_position (decl);

  /* If we don't know the size of the field, pretend it's a full word.  */
  if (host_integerp (field_size_tree, 1))
    field_size_in_bits = tree_low_cst (field_size_tree, 1);
  else
    field_size_in_bits = BITS_PER_WORD;

  type_size_in_bits = simple_type_size_in_bits (type);
  type_align_in_bits = simple_type_align_in_bits (type);
  decl_align_in_bits = simple_decl_align_in_bits (decl);

  /* The GCC front-end doesn't make any attempt to keep track of the starting
     bit offset (relative to the start of the containing structure type) of the
     hypothetical "containing object" for a bit-field.  Thus, when computing
     the byte offset value for the start of the "containing object" of a
     bit-field, we must deduce this information on our own. This can be rather
     tricky to do in some cases.  For example, handling the following structure
     type definition when compiling for an i386/i486 target (which only aligns
     long long's to 32-bit boundaries) can be very tricky:

	 struct S { int field1; long long field2:31; };

     Fortunately, there is a simple rule-of-thumb which can be used in such
     cases.  When compiling for an i386/i486, GCC will allocate 8 bytes for the
     structure shown above.  It decides to do this based upon one simple rule
     for bit-field allocation.  GCC allocates each "containing object" for each
     bit-field at the first (i.e. lowest addressed) legitimate alignment
     boundary (based upon the required minimum alignment for the declared type
     of the field) which it can possibly use, subject to the condition that
     there is still enough available space remaining in the containing object
     (when allocated at the selected point) to fully accommodate all of the
     bits of the bit-field itself.

     This simple rule makes it obvious why GCC allocates 8 bytes for each
     object of the structure type shown above.  When looking for a place to
     allocate the "containing object" for `field2', the compiler simply tries
     to allocate a 64-bit "containing object" at each successive 32-bit
     boundary (starting at zero) until it finds a place to allocate that 64-
     bit field such that at least 31 contiguous (and previously unallocated)
     bits remain within that selected 64 bit field.  (As it turns out, for the
     example above, the compiler finds it is OK to allocate the "containing
     object" 64-bit field at bit-offset zero within the structure type.)

     Here we attempt to work backwards from the limited set of facts we're
     given, and we try to deduce from those facts, where GCC must have believed
     that the containing object started (within the structure type). The value
     we deduce is then used (by the callers of this routine) to generate
     DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
     and, in the case of DW_AT_location, regular fields as well).  */

  /* Figure out the bit-distance from the start of the structure to the
     "deepest" bit of the bit-field.  */
  deepest_bitpos = bitpos_int + field_size_in_bits;

  /* This is the tricky part.  Use some fancy footwork to deduce where the
     lowest addressed bit of the containing object must be.  */
  object_offset_in_bits = deepest_bitpos - type_size_in_bits;

  /* Round up to type_align by default.  This works best for bitfields.  */
  object_offset_in_bits += type_align_in_bits - 1;
  object_offset_in_bits /= type_align_in_bits;
  object_offset_in_bits *= type_align_in_bits;

  if (object_offset_in_bits > bitpos_int)
    {
      /* Sigh, the decl must be packed.  */
      object_offset_in_bits = deepest_bitpos - type_size_in_bits;

      /* Round up to decl_align instead.  */
      object_offset_in_bits += decl_align_in_bits - 1;
      object_offset_in_bits /= decl_align_in_bits;
      object_offset_in_bits *= decl_align_in_bits;
    }

  return object_offset_in_bits / BITS_PER_UNIT;
}

/* The following routines define various Dwarf attributes and any data
   associated with them.  */

/* Add a location description attribute value to a DIE.

   This emits location attributes suitable for whole variables and
   whole parameters.  Note that the location attributes for struct fields are
   generated by the routine `data_member_location_attribute' below.  */

static inline void
add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
			     dw_loc_descr_ref descr)
{
  if (descr != 0)
    add_AT_loc (die, attr_kind, descr);
}

/* Attach the specialized form of location attribute used for data members of
   struct and union types.  In the special case of a FIELD_DECL node which
   represents a bit-field, the "offset" part of this special location
   descriptor must indicate the distance in bytes from the lowest-addressed
   byte of the containing struct or union type to the lowest-addressed byte of
   the "containing object" for the bit-field.  (See the `field_byte_offset'
   function above).

   For any given bit-field, the "containing object" is a hypothetical object
   (of some integral or enum type) within which the given bit-field lives.  The
   type of this hypothetical "containing object" is always the same as the
   declared type of the individual bit-field itself (for GCC anyway... the
   DWARF spec doesn't actually mandate this).  Note that it is the size (in
   bytes) of the hypothetical "containing object" which will be given in the
   DW_AT_byte_size attribute for this bit-field.  (See the
   `byte_size_attribute' function below.)  It is also used when calculating the
   value of the DW_AT_bit_offset attribute.  (See the `bit_offset_attribute'
   function below.)  */

static void
add_data_member_location_attribute (dw_die_ref die, tree decl)
{
  HOST_WIDE_INT offset;
  dw_loc_descr_ref loc_descr = 0;

  if (TREE_CODE (decl) == TREE_BINFO)
    {
      /* We're working on the TAG_inheritance for a base class.  */
      if (BINFO_VIRTUAL_P (decl) && is_cxx ())
	{
	  /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
	     aren't at a fixed offset from all (sub)objects of the same
	     type.  We need to extract the appropriate offset from our
	     vtable.  The following dwarf expression means

	       BaseAddr = ObAddr + *((*ObAddr) - Offset)

	     This is specific to the V3 ABI, of course.  */

	  dw_loc_descr_ref tmp;

	  /* Make a copy of the object address.  */
	  tmp = new_loc_descr (DW_OP_dup, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Extract the vtable address.  */
	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Calculate the address of the offset.  */
	  offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
	  gcc_assert (offset < 0);

	  tmp = int_loc_descriptor (-offset);
	  add_loc_descr (&loc_descr, tmp);
	  tmp = new_loc_descr (DW_OP_minus, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Extract the offset.  */
	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Add it to the object address.  */
	  tmp = new_loc_descr (DW_OP_plus, 0, 0);
	  add_loc_descr (&loc_descr, tmp);
	}
      else
	offset = tree_low_cst (BINFO_OFFSET (decl), 0);
    }
  else
    offset = field_byte_offset (decl);

  if (! loc_descr)
    {
      enum dwarf_location_atom op;

      /* The DWARF2 standard says that we should assume that the structure
	 address is already on the stack, so we can specify a structure field
	 address by using DW_OP_plus_uconst.  */

#ifdef MIPS_DEBUGGING_INFO
      /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
	 operator correctly.  It works only if we leave the offset on the
	 stack.  */
      op = DW_OP_constu;
#else
      op = DW_OP_plus_uconst;
#endif

      loc_descr = new_loc_descr (op, offset, 0);
    }

  add_AT_loc (die, DW_AT_data_member_location, loc_descr);
}

/* Writes integer values to dw_vec_const array.  */

static void
insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
{
  while (size != 0)
    {
      *dest++ = val & 0xff;
      val >>= 8;
      --size;
    }
}

/* Reads integers from dw_vec_const array.  Inverse of insert_int.  */

static HOST_WIDE_INT
extract_int (const unsigned char *src, unsigned int size)
{
  HOST_WIDE_INT val = 0;

  src += size;
  while (size != 0)
    {
      val <<= 8;
      val |= *--src & 0xff;
      --size;
    }
  return val;
}

/* Writes floating point values to dw_vec_const array.  */

static void
insert_float (rtx rtl, unsigned char *array)
{
  REAL_VALUE_TYPE rv;
  long val[4];
  int i;

  REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
  real_to_target (val, &rv, GET_MODE (rtl));

  /* real_to_target puts 32-bit pieces in each long.  Pack them.  */
  for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
    {
      insert_int (val[i], 4, array);
      array += 4;
    }
}

/* Attach a DW_AT_const_value attribute for a variable or a parameter which
   does not have a "location" either in memory or in a register.  These
   things can arise in GNU C when a constant is passed as an actual parameter
   to an inlined function.  They can also arise in C++ where declared
   constants do not necessarily get memory "homes".  */

static void
add_const_value_attribute (dw_die_ref die, rtx rtl)
{
  switch (GET_CODE (rtl))
    {
    case CONST_INT:
      {
	HOST_WIDE_INT val = INTVAL (rtl);

	if (val < 0)
	  add_AT_int (die, DW_AT_const_value, val);
	else
	  add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
      }
      break;

    case CONST_DOUBLE:
      /* Note that a CONST_DOUBLE rtx could represent either an integer or a
	 floating-point constant.  A CONST_DOUBLE is used whenever the
	 constant requires more than one word in order to be adequately
	 represented.  We output CONST_DOUBLEs as blocks.  */
      {
	enum machine_mode mode = GET_MODE (rtl);

	if (SCALAR_FLOAT_MODE_P (mode))
	  {
	    unsigned int length = GET_MODE_SIZE (mode);
	    unsigned char *array = ggc_alloc (length);

	    insert_float (rtl, array);
	    add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
	  }
	else
	  {
	    /* ??? We really should be using HOST_WIDE_INT throughout.  */
	    gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);

	    add_AT_long_long (die, DW_AT_const_value,
			      CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
	  }
      }
      break;

    case CONST_VECTOR:
      {
	enum machine_mode mode = GET_MODE (rtl);
	unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
	unsigned int length = CONST_VECTOR_NUNITS (rtl);
	unsigned char *array = ggc_alloc (length * elt_size);
	unsigned int i;
	unsigned char *p;

	switch (GET_MODE_CLASS (mode))
	  {
	  case MODE_VECTOR_INT:
	    for (i = 0, p = array; i < length; i++, p += elt_size)
	      {
		rtx elt = CONST_VECTOR_ELT (rtl, i);
		HOST_WIDE_INT lo, hi;

		switch (GET_CODE (elt))
		  {
		  case CONST_INT:
		    lo = INTVAL (elt);
		    hi = -(lo < 0);
		    break;

		  case CONST_DOUBLE:
		    lo = CONST_DOUBLE_LOW (elt);
		    hi = CONST_DOUBLE_HIGH (elt);
		    break;

		  default:
		    gcc_unreachable ();
		  }

		if (elt_size <= sizeof (HOST_WIDE_INT))
		  insert_int (lo, elt_size, p);
		else
		  {
		    unsigned char *p0 = p;
		    unsigned char *p1 = p + sizeof (HOST_WIDE_INT);

		    gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
		    if (WORDS_BIG_ENDIAN)
		      {
			p0 = p1;
			p1 = p;
		      }
		    insert_int (lo, sizeof (HOST_WIDE_INT), p0);
		    insert_int (hi, sizeof (HOST_WIDE_INT), p1);
		  }
	      }
	    break;

	  case MODE_VECTOR_FLOAT:
	    for (i = 0, p = array; i < length; i++, p += elt_size)
	      {
		rtx elt = CONST_VECTOR_ELT (rtl, i);
		insert_float (elt, p);
	      }
	    break;

	  default:
	    gcc_unreachable ();
	  }

	add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
      }
      break;

    case CONST_STRING:
      add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
      break;

    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      add_AT_addr (die, DW_AT_const_value, rtl);
      VEC_safe_push (rtx, gc, used_rtx_array, rtl);
      break;

    case PLUS:
      /* In cases where an inlined instance of an inline function is passed
	 the address of an `auto' variable (which is local to the caller) we
	 can get a situation where the DECL_RTL of the artificial local
	 variable (for the inlining) which acts as a stand-in for the
	 corresponding formal parameter (of the inline function) will look
	 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).  This is not
	 exactly a compile-time constant expression, but it isn't the address
	 of the (artificial) local variable either.  Rather, it represents the
	 *value* which the artificial local variable always has during its
	 lifetime.  We currently have no way to represent such quasi-constant
	 values in Dwarf, so for now we just punt and generate nothing.  */
      break;

    default:
      /* No other kinds of rtx should be possible here.  */
      gcc_unreachable ();
    }

}

/* Determine whether the evaluation of EXPR references any variables
   or functions which aren't otherwise used (and therefore may not be
   output).  */
static tree
reference_to_unused (tree * tp, int * walk_subtrees,
		     void * data ATTRIBUTE_UNUSED)
{
  if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
    *walk_subtrees = 0;
  
  if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
      && ! TREE_ASM_WRITTEN (*tp))
    return *tp;
  else if (!flag_unit_at_a_time)
    return NULL_TREE;
  else if (!cgraph_global_info_ready
	   && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
    return *tp;
  else if (DECL_P (*tp) && TREE_CODE (*tp) == VAR_DECL)
    {
      struct cgraph_varpool_node *node = cgraph_varpool_node (*tp);
      if (!node->needed)
	return *tp;
    }
   else if (DECL_P (*tp) && TREE_CODE (*tp) == FUNCTION_DECL
	    && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
    {
      struct cgraph_node *node = cgraph_node (*tp);
      if (!node->output)
        return *tp;
    }

  return NULL_TREE;
}

/* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
   for use in a later add_const_value_attribute call.  */

static rtx
rtl_for_decl_init (tree init, tree type)
{
  rtx rtl = NULL_RTX;

  /* If a variable is initialized with a string constant without embedded
     zeros, build CONST_STRING.  */
  if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
    {
      tree enttype = TREE_TYPE (type);
      tree domain = TYPE_DOMAIN (type);
      enum machine_mode mode = TYPE_MODE (enttype);

      if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
	  && domain
	  && integer_zerop (TYPE_MIN_VALUE (domain))
	  && compare_tree_int (TYPE_MAX_VALUE (domain),
			       TREE_STRING_LENGTH (init) - 1) == 0
	  && ((size_t) TREE_STRING_LENGTH (init)
	      == strlen (TREE_STRING_POINTER (init)) + 1))
	rtl = gen_rtx_CONST_STRING (VOIDmode,
				    ggc_strdup (TREE_STRING_POINTER (init)));
    }
  /* Other aggregates, and complex values, could be represented using
     CONCAT: FIXME!  */
  else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
    ;
  /* Vectors only work if their mode is supported by the target.  
     FIXME: generic vectors ought to work too.  */
  else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
    ;
  /* If the initializer is something that we know will expand into an
     immediate RTL constant, expand it now.  We must be careful not to
     reference variables which won't be output.  */
  else if (initializer_constant_valid_p (init, type)
	   && ! walk_tree (&init, reference_to_unused, NULL, NULL))
    {
      /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
	 possible.  */
      if (TREE_CODE (type) == VECTOR_TYPE)
	switch (TREE_CODE (init))
	  {
	  case VECTOR_CST:
	    break;
	  case CONSTRUCTOR:
	    if (TREE_CONSTANT (init))
	      {
		VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
		bool constant_p = true;
		tree value;
		unsigned HOST_WIDE_INT ix;

		/* Even when ctor is constant, it might contain non-*_CST
		   elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
		   belong into VECTOR_CST nodes.  */
		FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
		  if (!CONSTANT_CLASS_P (value))
		    {
		      constant_p = false;
		      break;
		    }

		if (constant_p)
		  {
		    init = build_vector_from_ctor (type, elts);
		    break;
		  }
	      }
	    /* FALLTHRU */

	  default:
	    return NULL;
	  }

      rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);

      /* If expand_expr returns a MEM, it wasn't immediate.  */
      gcc_assert (!rtl || !MEM_P (rtl));
    }

  return rtl;
}

/* Generate RTL for the variable DECL to represent its location.  */

static rtx
rtl_for_decl_location (tree decl)
{
  rtx rtl;

  /* Here we have to decide where we are going to say the parameter "lives"
     (as far as the debugger is concerned).  We only have a couple of
     choices.  GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.

     DECL_RTL normally indicates where the parameter lives during most of the
     activation of the function.  If optimization is enabled however, this
     could be either NULL or else a pseudo-reg.  Both of those cases indicate
     that the parameter doesn't really live anywhere (as far as the code
     generation parts of GCC are concerned) during most of the function's
     activation.  That will happen (for example) if the parameter is never
     referenced within the function.

     We could just generate a location descriptor here for all non-NULL
     non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
     a little nicer than that if we also consider DECL_INCOMING_RTL in cases
     where DECL_RTL is NULL or is a pseudo-reg.

     Note however that we can only get away with using DECL_INCOMING_RTL as
     a backup substitute for DECL_RTL in certain limited cases.  In cases
     where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
     we can be sure that the parameter was passed using the same type as it is
     declared to have within the function, and that its DECL_INCOMING_RTL
     points us to a place where a value of that type is passed.

     In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
     we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
     because in these cases DECL_INCOMING_RTL points us to a value of some
     type which is *different* from the type of the parameter itself.  Thus,
     if we tried to use DECL_INCOMING_RTL to generate a location attribute in
     such cases, the debugger would end up (for example) trying to fetch a
     `float' from a place which actually contains the first part of a
     `double'.  That would lead to really incorrect and confusing
     output at debug-time.

     So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
     in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl).  There
     are a couple of exceptions however.  On little-endian machines we can
     get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
     not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
     an integral type that is smaller than TREE_TYPE (decl). These cases arise
     when (on a little-endian machine) a non-prototyped function has a
     parameter declared to be of type `short' or `char'.  In such cases,
     TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
     be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
     passed `int' value.  If the debugger then uses that address to fetch
     a `short' or a `char' (on a little-endian machine) the result will be
     the correct data, so we allow for such exceptional cases below.

     Note that our goal here is to describe the place where the given formal
     parameter lives during most of the function's activation (i.e. between the
     end of the prologue and the start of the epilogue).  We'll do that as best
     as we can. Note however that if the given formal parameter is modified
     sometime during the execution of the function, then a stack backtrace (at
     debug-time) will show the function as having been called with the *new*
     value rather than the value which was originally passed in.  This happens
     rarely enough that it is not a major problem, but it *is* a problem, and
     I'd like to fix it.

     A future version of dwarf2out.c may generate two additional attributes for
     any given DW_TAG_formal_parameter DIE which will describe the "passed
     type" and the "passed location" for the given formal parameter in addition
     to the attributes we now generate to indicate the "declared type" and the
     "active location" for each parameter.  This additional set of attributes
     could be used by debuggers for stack backtraces. Separately, note that
     sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
     This happens (for example) for inlined-instances of inline function formal
     parameters which are never referenced.  This really shouldn't be
     happening.  All PARM_DECL nodes should get valid non-NULL
     DECL_INCOMING_RTL values.  FIXME.  */

  /* Use DECL_RTL as the "location" unless we find something better.  */
  rtl = DECL_RTL_IF_SET (decl);

  /* When generating abstract instances, ignore everything except
     constants, symbols living in memory, and symbols living in
     fixed registers.  */
  if (! reload_completed)
    {
      if (rtl
	  && (CONSTANT_P (rtl)
	      || (MEM_P (rtl)
	          && CONSTANT_P (XEXP (rtl, 0)))
	      || (REG_P (rtl)
	          && TREE_CODE (decl) == VAR_DECL
		  && TREE_STATIC (decl))))
	{
	  rtl = targetm.delegitimize_address (rtl);
	  return rtl;
	}
      rtl = NULL_RTX;
    }
  else if (TREE_CODE (decl) == PARM_DECL)
    {
      if (rtl == NULL_RTX || is_pseudo_reg (rtl))
	{
	  tree declared_type = TREE_TYPE (decl);
	  tree passed_type = DECL_ARG_TYPE (decl);
	  enum machine_mode dmode = TYPE_MODE (declared_type);
	  enum machine_mode pmode = TYPE_MODE (passed_type);

	  /* This decl represents a formal parameter which was optimized out.
	     Note that DECL_INCOMING_RTL may be NULL in here, but we handle
	     all cases where (rtl == NULL_RTX) just below.  */
	  if (dmode == pmode)
	    rtl = DECL_INCOMING_RTL (decl);
	  else if (SCALAR_INT_MODE_P (dmode)
		   && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
		   && DECL_INCOMING_RTL (decl))
	    {
	      rtx inc = DECL_INCOMING_RTL (decl);
	      if (REG_P (inc))
		rtl = inc;
	      else if (MEM_P (inc))
		{
		  if (BYTES_BIG_ENDIAN)
		    rtl = adjust_address_nv (inc, dmode,
					     GET_MODE_SIZE (pmode)
					     - GET_MODE_SIZE (dmode));
		  else
		    rtl = inc;
		}
	    }
	}

      /* If the parm was passed in registers, but lives on the stack, then
	 make a big endian correction if the mode of the type of the
	 parameter is not the same as the mode of the rtl.  */
      /* ??? This is the same series of checks that are made in dbxout.c before
	 we reach the big endian correction code there.  It isn't clear if all
	 of these checks are necessary here, but keeping them all is the safe
	 thing to do.  */
      else if (MEM_P (rtl)
	       && XEXP (rtl, 0) != const0_rtx
	       && ! CONSTANT_P (XEXP (rtl, 0))
	       /* Not passed in memory.  */
	       && !MEM_P (DECL_INCOMING_RTL (decl))
	       /* Not passed by invisible reference.  */
	       && (!REG_P (XEXP (rtl, 0))
		   || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
		   || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
		   || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
#endif
		     )
	       /* Big endian correction check.  */
	       && BYTES_BIG_ENDIAN
	       && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
	       && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
		   < UNITS_PER_WORD))
	{
	  int offset = (UNITS_PER_WORD
			- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));

	  rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
			     plus_constant (XEXP (rtl, 0), offset));
	}
    }
  else if (TREE_CODE (decl) == VAR_DECL
	   && rtl
	   && MEM_P (rtl)
	   && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
	   && BYTES_BIG_ENDIAN)
    {
      int rsize = GET_MODE_SIZE (GET_MODE (rtl));
      int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));

      /* If a variable is declared "register" yet is smaller than
	 a register, then if we store the variable to memory, it
	 looks like we're storing a register-sized value, when in
	 fact we are not.  We need to adjust the offset of the
	 storage location to reflect the actual value's bytes,
	 else gdb will not be able to display it.  */
      if (rsize > dsize)
	rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
			   plus_constant (XEXP (rtl, 0), rsize-dsize));
    }

  /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
     and will have been substituted directly into all expressions that use it.
     C does not have such a concept, but C++ and other languages do.  */
  if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
    rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));

  if (rtl)
    rtl = targetm.delegitimize_address (rtl);

  /* If we don't look past the constant pool, we risk emitting a
     reference to a constant pool entry that isn't referenced from
     code, and thus is not emitted.  */
  if (rtl)
    rtl = avoid_constant_pool_reference (rtl);

  return rtl;
}

/* We need to figure out what section we should use as the base for the
   address ranges where a given location is valid.
   1. If this particular DECL has a section associated with it, use that.
   2. If this function has a section associated with it, use that.
   3. Otherwise, use the text section.
   XXX: If you split a variable across multiple sections, we won't notice.  */

static const char *
secname_for_decl (tree decl)
{
  const char *secname;

  if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
    {
      tree sectree = DECL_SECTION_NAME (decl);
      secname = TREE_STRING_POINTER (sectree);
    }
  else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
    {
      tree sectree = DECL_SECTION_NAME (current_function_decl);
      secname = TREE_STRING_POINTER (sectree);
    }
  else if (cfun && in_cold_section_p)
    secname = cfun->cold_section_label;
  else
    secname = text_section_label;

  return secname;
}

/* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
   data attribute for a variable or a parameter.  We generate the
   DW_AT_const_value attribute only in those cases where the given variable
   or parameter does not have a true "location" either in memory or in a
   register.  This can happen (for example) when a constant is passed as an
   actual argument in a call to an inline function.  (It's possible that
   these things can crop up in other ways also.)  Note that one type of
   constant value which can be passed into an inlined function is a constant
   pointer.  This can happen for example if an actual argument in an inlined
   function call evaluates to a compile-time constant address.  */

static void
add_location_or_const_value_attribute (dw_die_ref die, tree decl,
				       enum dwarf_attribute attr)
{
  rtx rtl;
  dw_loc_descr_ref descr;
  var_loc_list *loc_list;
  struct var_loc_node *node;
  if (TREE_CODE (decl) == ERROR_MARK)
    return;

  gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
	      || TREE_CODE (decl) == RESULT_DECL);
	     
  /* See if we possibly have multiple locations for this variable.  */
  loc_list = lookup_decl_loc (decl);

  /* If it truly has multiple locations, the first and last node will
     differ.  */
  if (loc_list && loc_list->first != loc_list->last)
    {
      const char *endname, *secname;
      dw_loc_list_ref list;
      rtx varloc;

      /* Now that we know what section we are using for a base,
         actually construct the list of locations.
	 The first location information is what is passed to the
	 function that creates the location list, and the remaining
	 locations just get added on to that list.
	 Note that we only know the start address for a location
	 (IE location changes), so to build the range, we use
	 the range [current location start, next location start].
	 This means we have to special case the last node, and generate
	 a range of [last location start, end of function label].  */

      node = loc_list->first;
      varloc = NOTE_VAR_LOCATION (node->var_loc_note);
      secname = secname_for_decl (decl);

      list = new_loc_list (loc_descriptor (varloc),
			   node->label, node->next->label, secname, 1);
      node = node->next;

      for (; node->next; node = node->next)
	if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
	  {
	    /* The variable has a location between NODE->LABEL and
	       NODE->NEXT->LABEL.  */
	    varloc = NOTE_VAR_LOCATION (node->var_loc_note);
	    add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
				       node->label, node->next->label, secname);
	  }

      /* If the variable has a location at the last label
	 it keeps its location until the end of function.  */
      if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
	{
	  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];

	  varloc = NOTE_VAR_LOCATION (node->var_loc_note);
	  if (!current_function_decl)
	    endname = text_end_label;
	  else
	    {
	      ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
					   current_function_funcdef_no);
	      endname = ggc_strdup (label_id);
	    }
	  add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
				     node->label, endname, secname);
	}

      /* Finally, add the location list to the DIE, and we are done.  */
      add_AT_loc_list (die, attr, list);
      return;
    }

  /* Try to get some constant RTL for this decl, and use that as the value of
     the location.  */
  
  rtl = rtl_for_decl_location (decl);
  if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
    {
      add_const_value_attribute (die, rtl);
      return;
    }
  
  /* If we have tried to generate the location otherwise, and it
     didn't work out (we wouldn't be here if we did), and we have a one entry
     location list, try generating a location from that.  */
  if (loc_list && loc_list->first)
    {
      node = loc_list->first;
      descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
      if (descr)
	{
	  add_AT_location_description (die, attr, descr);
	  return;
	}
    }

  /* We couldn't get any rtl, so try directly generating the location
     description from the tree.  */
  descr = loc_descriptor_from_tree (decl);
  if (descr)
    {
      add_AT_location_description (die, attr, descr);
      return;
    }
  /* None of that worked, so it must not really have a location;
     try adding a constant value attribute from the DECL_INITIAL.  */
  tree_add_const_value_attribute (die, decl);
}

/* If we don't have a copy of this variable in memory for some reason (such
   as a C++ member constant that doesn't have an out-of-line definition),
   we should tell the debugger about the constant value.  */

static void
tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
{
  tree init = DECL_INITIAL (decl);
  tree type = TREE_TYPE (decl);
  rtx rtl;

  if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
    /* OK */;
  else
    return;

  rtl = rtl_for_decl_init (init, type);
  if (rtl)
    add_const_value_attribute (var_die, rtl);
}

/* Convert the CFI instructions for the current function into a
   location list.  This is used for DW_AT_frame_base when we targeting
   a dwarf2 consumer that does not support the dwarf3
   DW_OP_call_frame_cfa.  OFFSET is a constant to be added to all CFA
   expressions.  */

static dw_loc_list_ref
convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
{
  dw_fde_ref fde;
  dw_loc_list_ref list, *list_tail;
  dw_cfi_ref cfi;
  dw_cfa_location last_cfa, next_cfa;
  const char *start_label, *last_label, *section;

  fde = &fde_table[fde_table_in_use - 1];

  section = secname_for_decl (current_function_decl);
  list_tail = &list;
  list = NULL;

  next_cfa.reg = INVALID_REGNUM;
  next_cfa.offset = 0;
  next_cfa.indirect = 0;
  next_cfa.base_offset = 0;

  start_label = fde->dw_fde_begin;

  /* ??? Bald assumption that the CIE opcode list does not contain
     advance opcodes.  */
  for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
    lookup_cfa_1 (cfi, &next_cfa);

  last_cfa = next_cfa;
  last_label = start_label;

  for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
    switch (cfi->dw_cfi_opc)
      {
      case DW_CFA_set_loc:
      case DW_CFA_advance_loc1:
      case DW_CFA_advance_loc2:
      case DW_CFA_advance_loc4:
	if (!cfa_equal_p (&last_cfa, &next_cfa))
	  {
	    *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
				       start_label, last_label, section,
				       list == NULL);

	    list_tail = &(*list_tail)->dw_loc_next;
	    last_cfa = next_cfa;
	    start_label = last_label;
	  }
	last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	break;

      case DW_CFA_advance_loc:
	/* The encoding is complex enough that we should never emit this.  */
      case DW_CFA_remember_state:
      case DW_CFA_restore_state:
	/* We don't handle these two in this function.  It would be possible
	   if it were to be required.  */
	gcc_unreachable ();

      default:
	lookup_cfa_1 (cfi, &next_cfa);
	break;
      }

  if (!cfa_equal_p (&last_cfa, &next_cfa))
    {
      *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
				 start_label, last_label, section,
				 list == NULL);
      list_tail = &(*list_tail)->dw_loc_next;
      start_label = last_label;
    }
  *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
			     start_label, fde->dw_fde_end, section,
			     list == NULL);

  return list;
}

/* Compute a displacement from the "steady-state frame pointer" to the
   frame base (often the same as the CFA), and store it in
   frame_pointer_fb_offset.  OFFSET is added to the displacement
   before the latter is negated.  */

static void
compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
{
  rtx reg, elim;

#ifdef FRAME_POINTER_CFA_OFFSET
  reg = frame_pointer_rtx;
  offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
#else
  reg = arg_pointer_rtx;
  offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
#endif

  elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
  if (GET_CODE (elim) == PLUS)
    {
      offset += INTVAL (XEXP (elim, 1));
      elim = XEXP (elim, 0);
    }
  gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
		       : stack_pointer_rtx));

  frame_pointer_fb_offset = -offset;
}

/* Generate a DW_AT_name attribute given some string value to be included as
   the value of the attribute.  */

static void
add_name_attribute (dw_die_ref die, const char *name_string)
{
  if (name_string != NULL && *name_string != 0)
    {
      if (demangle_name_func)
	name_string = (*demangle_name_func) (name_string);

      add_AT_string (die, DW_AT_name, name_string);
    }
}

/* Generate a DW_AT_comp_dir attribute for DIE.  */

static void
add_comp_dir_attribute (dw_die_ref die)
{
  const char *wd = get_src_pwd ();
  if (wd != NULL)
    add_AT_string (die, DW_AT_comp_dir, wd);
}

/* Given a tree node describing an array bound (either lower or upper) output
   a representation for that bound.  */

static void
add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
{
  switch (TREE_CODE (bound))
    {
    case ERROR_MARK:
      return;

    /* All fixed-bounds are represented by INTEGER_CST nodes.  */
    case INTEGER_CST:
      if (! host_integerp (bound, 0)
	  || (bound_attr == DW_AT_lower_bound
	      && (((is_c_family () || is_java ()) &&  integer_zerop (bound))
		  || (is_fortran () && integer_onep (bound)))))
	/* Use the default.  */
	;
      else
	add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
      break;

    case CONVERT_EXPR:
    case NOP_EXPR:
    case NON_LVALUE_EXPR:
    case VIEW_CONVERT_EXPR:
      add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
      break;

    case SAVE_EXPR:
      break;

    case VAR_DECL:
    case PARM_DECL:
    case RESULT_DECL:
      {
	dw_die_ref decl_die = lookup_decl_die (bound);

	/* ??? Can this happen, or should the variable have been bound
	   first?  Probably it can, since I imagine that we try to create
	   the types of parameters in the order in which they exist in
	   the list, and won't have created a forward reference to a
	   later parameter.  */
	if (decl_die != NULL)
	  add_AT_die_ref (subrange_die, bound_attr, decl_die);
	break;
      }

    default:
      {
	/* Otherwise try to create a stack operation procedure to
	   evaluate the value of the array bound.  */

	dw_die_ref ctx, decl_die;
	dw_loc_descr_ref loc;

	loc = loc_descriptor_from_tree (bound);
	if (loc == NULL)
	  break;

	if (current_function_decl == 0)
	  ctx = comp_unit_die;
	else
	  ctx = lookup_decl_die (current_function_decl);

	decl_die = new_die (DW_TAG_variable, ctx, bound);
	add_AT_flag (decl_die, DW_AT_artificial, 1);
	add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
	add_AT_loc (decl_die, DW_AT_location, loc);

	add_AT_die_ref (subrange_die, bound_attr, decl_die);
	break;
      }
    }
}

/* Note that the block of subscript information for an array type also
   includes information about the element type of type given array type.  */

static void
add_subscript_info (dw_die_ref type_die, tree type)
{
#ifndef MIPS_DEBUGGING_INFO
  unsigned dimension_number;
#endif
  tree lower, upper;
  dw_die_ref subrange_die;

  /* The GNU compilers represent multidimensional array types as sequences of
     one dimensional array types whose element types are themselves array
     types.  Here we squish that down, so that each multidimensional array
     type gets only one array_type DIE in the Dwarf debugging info. The draft
     Dwarf specification say that we are allowed to do this kind of
     compression in C (because there is no difference between an array or
     arrays and a multidimensional array in C) but for other source languages
     (e.g. Ada) we probably shouldn't do this.  */

  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
     We work around this by disabling this feature.  See also
     gen_array_type_die.  */
#ifndef MIPS_DEBUGGING_INFO
  for (dimension_number = 0;
       TREE_CODE (type) == ARRAY_TYPE;
       type = TREE_TYPE (type), dimension_number++)
#endif
    {
      tree domain = TYPE_DOMAIN (type);

      /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
	 and (in GNU C only) variable bounds.  Handle all three forms
	 here.  */
      subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
      if (domain)
	{
	  /* We have an array type with specified bounds.  */
	  lower = TYPE_MIN_VALUE (domain);
	  upper = TYPE_MAX_VALUE (domain);

	  /* Define the index type.  */
	  if (TREE_TYPE (domain))
	    {
	      /* ??? This is probably an Ada unnamed subrange type.  Ignore the
		 TREE_TYPE field.  We can't emit debug info for this
		 because it is an unnamed integral type.  */
	      if (TREE_CODE (domain) == INTEGER_TYPE
		  && TYPE_NAME (domain) == NULL_TREE
		  && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
		  && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
		;
	      else
		add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
				    type_die);
	    }

	  /* ??? If upper is NULL, the array has unspecified length,
	     but it does have a lower bound.  This happens with Fortran
	       dimension arr(N:*)
	     Since the debugger is definitely going to need to know N
	     to produce useful results, go ahead and output the lower
	     bound solo, and hope the debugger can cope.  */

	  add_bound_info (subrange_die, DW_AT_lower_bound, lower);
	  if (upper)
	    add_bound_info (subrange_die, DW_AT_upper_bound, upper);
	}

      /* Otherwise we have an array type with an unspecified length.  The
	 DWARF-2 spec does not say how to handle this; let's just leave out the
	 bounds.  */
    }
}

static void
add_byte_size_attribute (dw_die_ref die, tree tree_node)
{
  unsigned size;

  switch (TREE_CODE (tree_node))
    {
    case ERROR_MARK:
      size = 0;
      break;
    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      size = int_size_in_bytes (tree_node);
      break;
    case FIELD_DECL:
      /* For a data member of a struct or union, the DW_AT_byte_size is
	 generally given as the number of bytes normally allocated for an
	 object of the *declared* type of the member itself.  This is true
	 even for bit-fields.  */
      size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
      break;
    default:
      gcc_unreachable ();
    }

  /* Note that `size' might be -1 when we get to this point.  If it is, that
     indicates that the byte size of the entity in question is variable.  We
     have no good way of expressing this fact in Dwarf at the present time.
     GCC/35998: Avoid passing negative sizes to Dtrace and gdb.  */
  add_AT_unsigned (die, DW_AT_byte_size, (size != (unsigned)-1 ? size : 0));
}

/* For a FIELD_DECL node which represents a bit-field, output an attribute
   which specifies the distance in bits from the highest order bit of the
   "containing object" for the bit-field to the highest order bit of the
   bit-field itself.

   For any given bit-field, the "containing object" is a hypothetical object
   (of some integral or enum type) within which the given bit-field lives.  The
   type of this hypothetical "containing object" is always the same as the
   declared type of the individual bit-field itself.  The determination of the
   exact location of the "containing object" for a bit-field is rather
   complicated.  It's handled by the `field_byte_offset' function (above).

   Note that it is the size (in bytes) of the hypothetical "containing object"
   which will be given in the DW_AT_byte_size attribute for this bit-field.
   (See `byte_size_attribute' above).  */

static inline void
add_bit_offset_attribute (dw_die_ref die, tree decl)
{
  HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
  tree type = DECL_BIT_FIELD_TYPE (decl);
  HOST_WIDE_INT bitpos_int;
  HOST_WIDE_INT highest_order_object_bit_offset;
  HOST_WIDE_INT highest_order_field_bit_offset;
  HOST_WIDE_INT unsigned bit_offset;

  /* Must be a field and a bit field.  */
  gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);

  /* We can't yet handle bit-fields whose offsets are variable, so if we
     encounter such things, just return without generating any attribute
     whatsoever.  Likewise for variable or too large size.  */
  if (! host_integerp (bit_position (decl), 0)
      || ! host_integerp (DECL_SIZE (decl), 1))
    return;

  bitpos_int = int_bit_position (decl);

  /* Note that the bit offset is always the distance (in bits) from the
     highest-order bit of the "containing object" to the highest-order bit of
     the bit-field itself.  Since the "high-order end" of any object or field
     is different on big-endian and little-endian machines, the computation
     below must take account of these differences.  */
  highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
  highest_order_field_bit_offset = bitpos_int;

  if (! BYTES_BIG_ENDIAN)
    {
      highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
      highest_order_object_bit_offset += simple_type_size_in_bits (type);
    }

  bit_offset
    = (! BYTES_BIG_ENDIAN
       ? highest_order_object_bit_offset - highest_order_field_bit_offset
       : highest_order_field_bit_offset - highest_order_object_bit_offset);

  add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
}

/* For a FIELD_DECL node which represents a bit field, output an attribute
   which specifies the length in bits of the given field.  */

static inline void
add_bit_size_attribute (dw_die_ref die, tree decl)
{
  /* Must be a field and a bit field.  */
  gcc_assert (TREE_CODE (decl) == FIELD_DECL
	      && DECL_BIT_FIELD_TYPE (decl));

  if (host_integerp (DECL_SIZE (decl), 1))
    add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
}

/* If the compiled language is ANSI C, then add a 'prototyped'
   attribute, if arg types are given for the parameters of a function.  */

static inline void
add_prototyped_attribute (dw_die_ref die, tree func_type)
{
  if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
      && TYPE_ARG_TYPES (func_type) != NULL)
    add_AT_flag (die, DW_AT_prototyped, 1);
}

/* Add an 'abstract_origin' attribute below a given DIE.  The DIE is found
   by looking in either the type declaration or object declaration
   equate table.  */

static inline void
add_abstract_origin_attribute (dw_die_ref die, tree origin)
{
  dw_die_ref origin_die = NULL;

  if (TREE_CODE (origin) != FUNCTION_DECL)
    {
      /* We may have gotten separated from the block for the inlined
	 function, if we're in an exception handler or some such; make
	 sure that the abstract function has been written out.

	 Doing this for nested functions is wrong, however; functions are
	 distinct units, and our context might not even be inline.  */
      tree fn = origin;

      if (TYPE_P (fn))
	fn = TYPE_STUB_DECL (fn);
      
      fn = decl_function_context (fn);
      if (fn)
	dwarf2out_abstract_function (fn);
    }

  if (DECL_P (origin))
    origin_die = lookup_decl_die (origin);
  else if (TYPE_P (origin))
    origin_die = lookup_type_die (origin);

  /* XXX: Functions that are never lowered don't always have correct block
     trees (in the case of java, they simply have no block tree, in some other
     languages).  For these functions, there is nothing we can really do to
     output correct debug info for inlined functions in all cases.  Rather
     than die, we'll just produce deficient debug info now, in that we will
     have variables without a proper abstract origin.  In the future, when all
     functions are lowered, we should re-add a gcc_assert (origin_die)
     here.  */

  if (origin_die)
      add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
}

/* We do not currently support the pure_virtual attribute.  */

static inline void
add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
{
  if (DECL_VINDEX (func_decl))
    {
      add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);

      if (host_integerp (DECL_VINDEX (func_decl), 0))
	add_AT_loc (die, DW_AT_vtable_elem_location,
		    new_loc_descr (DW_OP_constu,
				   tree_low_cst (DECL_VINDEX (func_decl), 0),
				   0));

      /* GNU extension: Record what type this method came from originally.  */
      if (debug_info_level > DINFO_LEVEL_TERSE)
	add_AT_die_ref (die, DW_AT_containing_type,
			lookup_type_die (DECL_CONTEXT (func_decl)));
    }
}

/* Add source coordinate attributes for the given decl.  */

static void
add_src_coords_attributes (dw_die_ref die, tree decl)
{
  expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));

  add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
  add_AT_unsigned (die, DW_AT_decl_line, s.line);
}

/* Add a DW_AT_name attribute and source coordinate attribute for the
   given decl, but only if it actually has a name.  */

static void
add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
{
  tree decl_name;

  decl_name = DECL_NAME (decl);
  if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
    {
      add_name_attribute (die, dwarf2_name (decl, 0));
      if (! DECL_ARTIFICIAL (decl))
	add_src_coords_attributes (die, decl);

      if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
	  && TREE_PUBLIC (decl)
	  && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
	  && !DECL_ABSTRACT (decl)
	  && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
	add_AT_string (die, DW_AT_MIPS_linkage_name,
		       IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
    }

#ifdef VMS_DEBUGGING_INFO
  /* Get the function's name, as described by its RTL.  This may be different
     from the DECL_NAME name used in the source file.  */
  if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
    {
      add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
		   XEXP (DECL_RTL (decl), 0));
      VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
    }
#endif
}

/* Push a new declaration scope.  */

static void
push_decl_scope (tree scope)
{
  VEC_safe_push (tree, gc, decl_scope_table, scope);
}

/* Pop a declaration scope.  */

static inline void
pop_decl_scope (void)
{
  VEC_pop (tree, decl_scope_table);
}

/* Return the DIE for the scope that immediately contains this type.
   Non-named types get global scope.  Named types nested in other
   types get their containing scope if it's open, or global scope
   otherwise.  All other types (i.e. function-local named types) get
   the current active scope.  */

static dw_die_ref
scope_die_for (tree t, dw_die_ref context_die)
{
  dw_die_ref scope_die = NULL;
  tree containing_scope;
  int i;

  /* Non-types always go in the current scope.  */
  gcc_assert (TYPE_P (t));

  containing_scope = TYPE_CONTEXT (t);

  /* Use the containing namespace if it was passed in (for a declaration).  */
  if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
    {
      if (context_die == lookup_decl_die (containing_scope))
	/* OK */;
      else
	containing_scope = NULL_TREE;
    }

  /* Ignore function type "scopes" from the C frontend.  They mean that
     a tagged type is local to a parmlist of a function declarator, but
     that isn't useful to DWARF.  */
  if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
    containing_scope = NULL_TREE;

  if (containing_scope == NULL_TREE)
    scope_die = comp_unit_die;
  else if (TYPE_P (containing_scope))
    {
      /* For types, we can just look up the appropriate DIE.  But
	 first we check to see if we're in the middle of emitting it
	 so we know where the new DIE should go.  */
      for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
	if (VEC_index (tree, decl_scope_table, i) == containing_scope)
	  break;

      if (i < 0)
	{
	  gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
		      || TREE_ASM_WRITTEN (containing_scope));

	  /* If none of the current dies are suitable, we get file scope.  */
	  scope_die = comp_unit_die;
	}
      else
	scope_die = lookup_type_die (containing_scope);
    }
  else
    scope_die = context_die;

  return scope_die;
}

/* Returns nonzero if CONTEXT_DIE is internal to a function.  */

static inline int
local_scope_p (dw_die_ref context_die)
{
  for (; context_die; context_die = context_die->die_parent)
    if (context_die->die_tag == DW_TAG_inlined_subroutine
	|| context_die->die_tag == DW_TAG_subprogram)
      return 1;

  return 0;
}

/* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
   whether or not to treat a DIE in this context as a declaration.  */

static inline int
class_or_namespace_scope_p (dw_die_ref context_die)
{
  return (context_die
	  && (context_die->die_tag == DW_TAG_structure_type
	      || context_die->die_tag == DW_TAG_union_type
	      || context_die->die_tag == DW_TAG_namespace));
}

/* Many forms of DIEs require a "type description" attribute.  This
   routine locates the proper "type descriptor" die for the type given
   by 'type', and adds a DW_AT_type attribute below the given die.  */

static void
add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
		    int decl_volatile, dw_die_ref context_die)
{
  enum tree_code code  = TREE_CODE (type);
  dw_die_ref type_die  = NULL;

/* APPLE LOCAL begin radar 5847213 */
  /* APPLE LOCAL begin radar 5811943 - Fix type of pointers to blocks  */
  /* APPLE LOCAL - radar 6113240 */
  /* APPLE LOCAL begin radar 6300081  */
  if (code == BLOCK_POINTER_TYPE && generic_block_literal_struct_type)
    {
      type = build_pointer_type (generic_block_literal_struct_type);
      code = TREE_CODE (type);
    }
  /* APPLE LOCAL end radar 6300081  */
  /* APPLE LOCAL end radar 5811943 - Fix type of pointers to Blocks  */
/* APPLE LOCAL end radar 5847213 */

  /* ??? If this type is an unnamed subrange type of an integral or
     floating-point type, use the inner type.  This is because we have no
     support for unnamed types in base_type_die.  This can happen if this is
     an Ada subrange type.  Correct solution is emit a subrange type die.  */
  if ((code == INTEGER_TYPE || code == REAL_TYPE)
      && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
    type = TREE_TYPE (type), code = TREE_CODE (type);

  if (code == ERROR_MARK
      /* Handle a special case.  For functions whose return type is void, we
	 generate *no* type attribute.  (Note that no object may have type
	 `void', so this only applies to function return types).  */
      || code == VOID_TYPE)
    return;

  type_die = modified_type_die (type,
				decl_const || TYPE_READONLY (type),
				decl_volatile || TYPE_VOLATILE (type),
				context_die);

  if (type_die != NULL)
    add_AT_die_ref (object_die, DW_AT_type, type_die);
}

/* Given an object die, add the calling convention attribute for the
   function call type.  */
static void
add_calling_convention_attribute (dw_die_ref subr_die, tree type)
{
  enum dwarf_calling_convention value = DW_CC_normal;

  value = targetm.dwarf_calling_convention (type);

  /* Only add the attribute if the backend requests it, and
     is not DW_CC_normal.  */
  if (value && (value != DW_CC_normal))
    add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
}

/* Given a tree pointer to a struct, class, union, or enum type node, return
   a pointer to the (string) tag name for the given type, or zero if the type
   was declared without a tag.  */

static const char *
type_tag (tree type)
{
  const char *name = 0;

  if (TYPE_NAME (type) != 0)
    {
      tree t = 0;

      /* Find the IDENTIFIER_NODE for the type name.  */
      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
	t = TYPE_NAME (type);

      /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
	 a TYPE_DECL node, regardless of whether or not a `typedef' was
	 involved.  */
      else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
	t = DECL_NAME (TYPE_NAME (type));

      /* Now get the name as a string, or invent one.  */
      if (t != 0)
	name = IDENTIFIER_POINTER (t);
    }

  return (name == 0 || *name == '\0') ? 0 : name;
}

/* Return the type associated with a data member, make a special check
   for bit field types.  */

static inline tree
member_declared_type (tree member)
{
  return (DECL_BIT_FIELD_TYPE (member)
	  ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
}

/* Get the decl's label, as described by its RTL. This may be different
   from the DECL_NAME name used in the source file.  */

#if 0
static const char *
decl_start_label (tree decl)
{
  rtx x;
  const char *fnname;

  x = DECL_RTL (decl);
  gcc_assert (MEM_P (x));

  x = XEXP (x, 0);
  gcc_assert (GET_CODE (x) == SYMBOL_REF);

  fnname = XSTR (x, 0);
  return fnname;
}
#endif

/* These routines generate the internal representation of the DIE's for
   the compilation unit.  Debugging information is collected by walking
   the declaration trees passed in from dwarf2out_decl().  */

static void
gen_array_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref scope_die = scope_die_for (type, context_die);
  dw_die_ref array_die;
  tree element_type;

  /* ??? The SGI dwarf reader fails for array of array of enum types unless
     the inner array type comes before the outer array type.  Thus we must
     call gen_type_die before we call new_die.  See below also.  */
#ifdef MIPS_DEBUGGING_INFO
  gen_type_die (TREE_TYPE (type), context_die);
#endif

  array_die = new_die (DW_TAG_array_type, scope_die, type);
  add_name_attribute (array_die, type_tag (type));
  equate_type_number_to_die (type, array_die);

  if (TREE_CODE (type) == VECTOR_TYPE)
    {
      /* The frontend feeds us a representation for the vector as a struct
	 containing an array.  Pull out the array type.  */
      type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
      add_AT_flag (array_die, DW_AT_GNU_vector, 1);
    }

#if 0
  /* We default the array ordering.  SDB will probably do
     the right things even if DW_AT_ordering is not present.  It's not even
     an issue until we start to get into multidimensional arrays anyway.  If
     SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
     then we'll have to put the DW_AT_ordering attribute back in.  (But if
     and when we find out that we need to put these in, we will only do so
     for multidimensional arrays.  */
  add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
#endif

#ifdef MIPS_DEBUGGING_INFO
  /* The SGI compilers handle arrays of unknown bound by setting
     AT_declaration and not emitting any subrange DIEs.  */
  if (! TYPE_DOMAIN (type))
    add_AT_flag (array_die, DW_AT_declaration, 1);
  else
#endif
    add_subscript_info (array_die, type);

  /* Add representation of the type of the elements of this array type.  */
  element_type = TREE_TYPE (type);

  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
     We work around this by disabling this feature.  See also
     add_subscript_info.  */
#ifndef MIPS_DEBUGGING_INFO
  while (TREE_CODE (element_type) == ARRAY_TYPE)
    element_type = TREE_TYPE (element_type);

  gen_type_die (element_type, context_die);
#endif

  add_type_attribute (array_die, element_type, 0, 0, context_die);

  if (get_AT (array_die, DW_AT_name))
    add_pubtype (type, array_die);
}

#if 0
static void
gen_entry_point_die (tree decl, dw_die_ref context_die)
{
  tree origin = decl_ultimate_origin (decl);
  dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);

  if (origin != NULL)
    add_abstract_origin_attribute (decl_die, origin);
  else
    {
      add_name_and_src_coords_attributes (decl_die, decl);
      add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
			  0, 0, context_die);
    }

  if (DECL_ABSTRACT (decl))
    equate_decl_number_to_die (decl, decl_die);
  else
    add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
}
#endif

/* Walk through the list of incomplete types again, trying once more to
   emit full debugging info for them.  */

static void
retry_incomplete_types (void)
{
  int i;

  for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
    gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
}

/* Generate a DIE to represent an inlined instance of an enumeration type.  */

static void
gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);

  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
     be incomplete and such types are not marked.  */
  add_abstract_origin_attribute (type_die, type);
}

/* Generate a DIE to represent an inlined instance of a structure type.  */

static void
gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);

  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
     be incomplete and such types are not marked.  */
  add_abstract_origin_attribute (type_die, type);
}

/* Generate a DIE to represent an inlined instance of a union type.  */

static void
gen_inlined_union_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);

  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
     be incomplete and such types are not marked.  */
  add_abstract_origin_attribute (type_die, type);
}

/* Generate a DIE to represent an enumeration type.  Note that these DIEs
   include all of the information about the enumeration values also. Each
   enumerated type name/value is listed as a child of the enumerated type
   DIE.  */

static dw_die_ref
gen_enumeration_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref type_die = lookup_type_die (type);

  if (type_die == NULL)
    {
      type_die = new_die (DW_TAG_enumeration_type,
			  scope_die_for (type, context_die), type);
      equate_type_number_to_die (type, type_die);
      add_name_attribute (type_die, type_tag (type));
    }
  else if (! TYPE_SIZE (type))
    return type_die;
  else
    remove_AT (type_die, DW_AT_declaration);

  /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
     given enum type is incomplete, do not generate the DW_AT_byte_size
     attribute or the DW_AT_element_list attribute.  */
  if (TYPE_SIZE (type))
    {
      tree link;

      TREE_ASM_WRITTEN (type) = 1;
      add_byte_size_attribute (type_die, type);
      if (TYPE_STUB_DECL (type) != NULL_TREE)
	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));

      /* If the first reference to this type was as the return type of an
	 inline function, then it may not have a parent.  Fix this now.  */
      if (type_die->die_parent == NULL)
	add_child_die (scope_die_for (type, context_die), type_die);

      for (link = TYPE_VALUES (type);
	   link != NULL; link = TREE_CHAIN (link))
	{
	  dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
	  tree value = TREE_VALUE (link);

	  add_name_attribute (enum_die,
			      IDENTIFIER_POINTER (TREE_PURPOSE (link)));

	  if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
	    /* DWARF2 does not provide a way of indicating whether or
	       not enumeration constants are signed or unsigned.  GDB
	       always assumes the values are signed, so we output all
	       values as if they were signed.  That means that
	       enumeration constants with very large unsigned values
	       will appear to have negative values in the debugger.  */
	    add_AT_int (enum_die, DW_AT_const_value,
			tree_low_cst (value, tree_int_cst_sgn (value) > 0));
	}
    }
  else
    add_AT_flag (type_die, DW_AT_declaration, 1);

  if (get_AT (type_die, DW_AT_name))
    add_pubtype (type, type_die);

  return type_die;
}

/* Generate a DIE to represent either a real live formal parameter decl or to
   represent just the type of some formal parameter position in some function
   type.

   Note that this routine is a bit unusual because its argument may be a
   ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
   represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
   node.  If it's the former then this function is being called to output a
   DIE to represent a formal parameter object (or some inlining thereof).  If
   it's the latter, then this function is only being called to output a
   DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
   argument type of some subprogram type.  */

static dw_die_ref
gen_formal_parameter_die (tree node, dw_die_ref context_die)
{
  dw_die_ref parm_die
    = new_die (DW_TAG_formal_parameter, context_die, node);
  tree origin;

  switch (TREE_CODE_CLASS (TREE_CODE (node)))
    {
    case tcc_declaration:
      origin = decl_ultimate_origin (node);
      if (origin != NULL)
	add_abstract_origin_attribute (parm_die, origin);
      else
	{
	  add_name_and_src_coords_attributes (parm_die, node);
	  add_type_attribute (parm_die, TREE_TYPE (node),
			      TREE_READONLY (node),
			      TREE_THIS_VOLATILE (node),
			      context_die);
	  if (DECL_ARTIFICIAL (node))
	    add_AT_flag (parm_die, DW_AT_artificial, 1);
	}

      equate_decl_number_to_die (node, parm_die);
      if (! DECL_ABSTRACT (node))
	add_location_or_const_value_attribute (parm_die, node, DW_AT_location);

      break;

    case tcc_type:
      /* We were called with some kind of a ..._TYPE node.  */
      add_type_attribute (parm_die, node, 0, 0, context_die);
      break;

    default:
      gcc_unreachable ();
    }

  return parm_die;
}

/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
   at the end of an (ANSI prototyped) formal parameters list.  */

static void
gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
{
  new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
}

/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
   DW_TAG_unspecified_parameters DIE) to represent the types of the formal
   parameters as specified in some function type specification (except for
   those which appear as part of a function *definition*).  */

static void
gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
{
  tree link;
  tree formal_type = NULL;
  tree first_parm_type;
  tree arg;

  if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
    {
      arg = DECL_ARGUMENTS (function_or_method_type);
      function_or_method_type = TREE_TYPE (function_or_method_type);
    }
  else
    arg = NULL_TREE;

  first_parm_type = TYPE_ARG_TYPES (function_or_method_type);

  /* Make our first pass over the list of formal parameter types and output a
     DW_TAG_formal_parameter DIE for each one.  */
  for (link = first_parm_type; link; )
    {
      dw_die_ref parm_die;

      formal_type = TREE_VALUE (link);
      if (formal_type == void_type_node)
	break;

      /* Output a (nameless) DIE to represent the formal parameter itself.  */
      parm_die = gen_formal_parameter_die (formal_type, context_die);
      if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
	   && link == first_parm_type)
	  || (arg && DECL_ARTIFICIAL (arg)))
	add_AT_flag (parm_die, DW_AT_artificial, 1);

      link = TREE_CHAIN (link);
      if (arg)
	arg = TREE_CHAIN (arg);
    }

  /* If this function type has an ellipsis, add a
     DW_TAG_unspecified_parameters DIE to the end of the parameter list.  */
  if (formal_type != void_type_node)
    gen_unspecified_parameters_die (function_or_method_type, context_die);

  /* Make our second (and final) pass over the list of formal parameter types
     and output DIEs to represent those types (as necessary).  */
  for (link = TYPE_ARG_TYPES (function_or_method_type);
       link && TREE_VALUE (link);
       link = TREE_CHAIN (link))
    gen_type_die (TREE_VALUE (link), context_die);
}

/* We want to generate the DIE for TYPE so that we can generate the
   die for MEMBER, which has been defined; we will need to refer back
   to the member declaration nested within TYPE.  If we're trying to
   generate minimal debug info for TYPE, processing TYPE won't do the
   trick; we need to attach the member declaration by hand.  */

static void
gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
{
  gen_type_die (type, context_die);

  /* If we're trying to avoid duplicate debug info, we may not have
     emitted the member decl for this function.  Emit it now.  */
  if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
      && ! lookup_decl_die (member))
    {
      dw_die_ref type_die;
      gcc_assert (!decl_ultimate_origin (member));

      push_decl_scope (type);
      type_die = lookup_type_die (type);
      if (TREE_CODE (member) == FUNCTION_DECL)
	gen_subprogram_die (member, type_die);
      else if (TREE_CODE (member) == FIELD_DECL)
	{
	  /* Ignore the nameless fields that are used to skip bits but handle
	     C++ anonymous unions and structs.  */
	  if (DECL_NAME (member) != NULL_TREE
	      || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
	      || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
	    {
	      gen_type_die (member_declared_type (member), type_die);
	      gen_field_die (member, type_die);
	    }
	}
      else
	gen_variable_die (member, type_die);

      pop_decl_scope ();
    }
}

/* Generate the DWARF2 info for the "abstract" instance of a function which we
   may later generate inlined and/or out-of-line instances of.  */

static void
dwarf2out_abstract_function (tree decl)
{
  dw_die_ref old_die;
  tree save_fn;
  struct function *save_cfun;
  tree context;
  int was_abstract = DECL_ABSTRACT (decl);

  /* Make sure we have the actual abstract inline, not a clone.  */
  decl = DECL_ORIGIN (decl);

  old_die = lookup_decl_die (decl);
  if (old_die && get_AT (old_die, DW_AT_inline))
    /* We've already generated the abstract instance.  */
    return;

  /* Be sure we've emitted the in-class declaration DIE (if any) first, so
     we don't get confused by DECL_ABSTRACT.  */
  if (debug_info_level > DINFO_LEVEL_TERSE)
    {
      context = decl_class_context (decl);
      if (context)
	gen_type_die_for_member
	  (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
    }

  /* Pretend we've just finished compiling this function.  */
  save_fn = current_function_decl;
  save_cfun = cfun;
  current_function_decl = decl;
  cfun = DECL_STRUCT_FUNCTION (decl);

  set_decl_abstract_flags (decl, 1);
  dwarf2out_decl (decl);
  if (! was_abstract)
    set_decl_abstract_flags (decl, 0);

  current_function_decl = save_fn;
  cfun = save_cfun;
}

/* Helper function of premark_used_types() which gets called through
   htab_traverse_resize().

   Marks the DIE of a given type in *SLOT as perennial, so it never gets
   marked as unused by prune_unused_types.  */
static int
premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
{
  tree type;
  dw_die_ref die;

  type = *slot;
  die = lookup_type_die (type);
  if (die != NULL)
    die->die_perennial_p = 1;
  return 1;
}

/* Mark all members of used_types_hash as perennial.  */
static void
premark_used_types (void)
{
  if (cfun && cfun->used_types_hash)
    htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
}

/* Generate a DIE to represent a declared function (either file-scope or
   block-local).  */

static void
gen_subprogram_die (tree decl, dw_die_ref context_die)
{
  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
  tree origin = decl_ultimate_origin (decl);
  dw_die_ref subr_die;
  tree fn_arg_types;
  tree outer_scope;
  dw_die_ref old_die = lookup_decl_die (decl);
  int declaration = (current_function_decl != decl
		     || class_or_namespace_scope_p (context_die));

  premark_used_types ();

  /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
     started to generate the abstract instance of an inline, decided to output
     its containing class, and proceeded to emit the declaration of the inline
     from the member list for the class.  If so, DECLARATION takes priority;
     we'll get back to the abstract instance when done with the class.  */

  /* The class-scope declaration DIE must be the primary DIE.  */
  if (origin && declaration && class_or_namespace_scope_p (context_die))
    {
      origin = NULL;
      gcc_assert (!old_die);
    }

  /* Now that the C++ front end lazily declares artificial member fns, we
     might need to retrofit the declaration into its class.  */
  if (!declaration && !origin && !old_die
      && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
      && !class_or_namespace_scope_p (context_die)
      && debug_info_level > DINFO_LEVEL_TERSE)
    old_die = force_decl_die (decl);

  if (origin != NULL)
    {
      gcc_assert (!declaration || local_scope_p (context_die));

      /* Fixup die_parent for the abstract instance of a nested
	 inline function.  */
      if (old_die && old_die->die_parent == NULL)
	add_child_die (context_die, old_die);

      subr_die = new_die (DW_TAG_subprogram, context_die, decl);
      add_abstract_origin_attribute (subr_die, origin);
    }
  else if (old_die)
    {
      expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
      struct dwarf_file_data * file_index = lookup_filename (s.file);

      if (!get_AT_flag (old_die, DW_AT_declaration)
	  /* We can have a normal definition following an inline one in the
	     case of redefinition of GNU C extern inlines.
	     It seems reasonable to use AT_specification in this case.  */
	  && !get_AT (old_die, DW_AT_inline))
	{
	  /* Detect and ignore this case, where we are trying to output
	     something we have already output.  */
	  return;
	}

      /* If the definition comes from the same place as the declaration,
	 maybe use the old DIE.  We always want the DIE for this function
	 that has the *_pc attributes to be under comp_unit_die so the
	 debugger can find it.  We also need to do this for abstract
	 instances of inlines, since the spec requires the out-of-line copy
	 to have the same parent.  For local class methods, this doesn't
	 apply; we just use the old DIE.  */
      if ((old_die->die_parent == comp_unit_die || context_die == NULL)
	  && (DECL_ARTIFICIAL (decl)
	      || (get_AT_file (old_die, DW_AT_decl_file) == file_index
		  && (get_AT_unsigned (old_die, DW_AT_decl_line)
		      == (unsigned) s.line))))
	{
	  subr_die = old_die;

	  /* Clear out the declaration attribute and the formal parameters.
	     Do not remove all children, because it is possible that this
	     declaration die was forced using force_decl_die(). In such
	     cases die that forced declaration die (e.g. TAG_imported_module)
	     is one of the children that we do not want to remove.  */
	  remove_AT (subr_die, DW_AT_declaration);
	  remove_child_TAG (subr_die, DW_TAG_formal_parameter);
	}
      else
	{
	  subr_die = new_die (DW_TAG_subprogram, context_die, decl);
	  add_AT_specification (subr_die, old_die);
	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
	    add_AT_file (subr_die, DW_AT_decl_file, file_index);
	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
	    add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
	}
    }
  else
    {
      subr_die = new_die (DW_TAG_subprogram, context_die, decl);

      if (TREE_PUBLIC (decl))
	add_AT_flag (subr_die, DW_AT_external, 1);

      add_name_and_src_coords_attributes (subr_die, decl);
      if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  add_prototyped_attribute (subr_die, TREE_TYPE (decl));
	  add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
			      0, 0, context_die);
	}

      add_pure_or_virtual_attribute (subr_die, decl);
      if (DECL_ARTIFICIAL (decl))
	add_AT_flag (subr_die, DW_AT_artificial, 1);

      if (TREE_PROTECTED (decl))
	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
      else if (TREE_PRIVATE (decl))
	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
    }

  if (declaration)
    {
      if (!old_die || !get_AT (old_die, DW_AT_inline))
	{
	  add_AT_flag (subr_die, DW_AT_declaration, 1);

	  /* The first time we see a member function, it is in the context of
	     the class to which it belongs.  We make sure of this by emitting
	     the class first.  The next time is the definition, which is
	     handled above.  The two may come from the same source text.

	     Note that force_decl_die() forces function declaration die. It is
	     later reused to represent definition.  */
	  equate_decl_number_to_die (decl, subr_die);
	}
    }
  else if (DECL_ABSTRACT (decl))
    {
      if (DECL_DECLARED_INLINE_P (decl))
	{
          if (cgraph_function_possibly_inlined_p (decl))
	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
	  else
	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
	}
      else
	{
	  if (cgraph_function_possibly_inlined_p (decl))
            add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
	  else
            add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
	}

      equate_decl_number_to_die (decl, subr_die);
    }
  else if (!DECL_EXTERNAL (decl))
    {
      HOST_WIDE_INT cfa_fb_offset;

      if (!old_die || !get_AT (old_die, DW_AT_inline))
	equate_decl_number_to_die (decl, subr_die);

      if (!flag_reorder_blocks_and_partition)
	{
	  ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
				       current_function_funcdef_no);
	  add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
	  ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
				       current_function_funcdef_no);
	  add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
	  
	  add_pubname (decl, subr_die);
	  add_arange (decl, subr_die);
	}
      else
	{  /* Do nothing for now; maybe need to duplicate die, one for
	      hot section and ond for cold section, then use the hot/cold
	      section begin/end labels to generate the aranges...  */
	  /*
	    add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
	    add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
	    add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
	    add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);

	    add_pubname (decl, subr_die);
	    add_arange (decl, subr_die);
	    add_arange (decl, subr_die);
	   */
	}

#ifdef MIPS_DEBUGGING_INFO
      /* Add a reference to the FDE for this routine.  */
      add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
#endif

      cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);

      /* We define the "frame base" as the function's CFA.  This is more
	 convenient for several reasons: (1) It's stable across the prologue
	 and epilogue, which makes it better than just a frame pointer,
	 (2) With dwarf3, there exists a one-byte encoding that allows us
	 to reference the .debug_frame data by proxy, but failing that,
	 (3) We can at least reuse the code inspection and interpretation
	 code that determines the CFA position at various points in the
	 function.  */
      /* ??? Use some command-line or configury switch to enable the use
	 of dwarf3 DW_OP_call_frame_cfa.  At present there are no dwarf
	 consumers that understand it; fall back to "pure" dwarf2 and
	 convert the CFA data into a location list.  */
      {
	dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
	if (list->dw_loc_next)
	  add_AT_loc_list (subr_die, DW_AT_frame_base, list);
	else
	  add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
      }

      /* Compute a displacement from the "steady-state frame pointer" to
	 the CFA.  The former is what all stack slots and argument slots
	 will reference in the rtl; the later is what we've told the 
	 debugger about.  We'll need to adjust all frame_base references
	 by this displacement.  */
      compute_frame_pointer_to_fb_displacement (cfa_fb_offset);

      if (cfun->static_chain_decl)
	add_AT_location_description (subr_die, DW_AT_static_link,
		 loc_descriptor_from_tree (cfun->static_chain_decl));
    }

  /* Now output descriptions of the arguments for this function. This gets
     (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
     for a FUNCTION_DECL doesn't indicate cases where there was a trailing
     `...' at the end of the formal parameter list.  In order to find out if
     there was a trailing ellipsis or not, we must instead look at the type
     associated with the FUNCTION_DECL.  This will be a node of type
     FUNCTION_TYPE. If the chain of type nodes hanging off of this
     FUNCTION_TYPE node ends with a void_type_node then there should *not* be
     an ellipsis at the end.  */

  /* In the case where we are describing a mere function declaration, all we
     need to do here (and all we *can* do here) is to describe the *types* of
     its formal parameters.  */
  if (debug_info_level <= DINFO_LEVEL_TERSE)
    ;
  else if (declaration)
    gen_formal_types_die (decl, subr_die);
  else
    {
      /* Generate DIEs to represent all known formal parameters.  */
      tree arg_decls = DECL_ARGUMENTS (decl);
      tree parm;

      /* When generating DIEs, generate the unspecified_parameters DIE
	 instead if we come across the arg "__builtin_va_alist" */
      for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
	if (TREE_CODE (parm) == PARM_DECL)
	  {
	    if (DECL_NAME (parm)
		&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
			    "__builtin_va_alist"))
	      gen_unspecified_parameters_die (parm, subr_die);
	    else
	      gen_decl_die (parm, subr_die);
	  }

      /* Decide whether we need an unspecified_parameters DIE at the end.
	 There are 2 more cases to do this for: 1) the ansi ... declaration -
	 this is detectable when the end of the arg list is not a
	 void_type_node 2) an unprototyped function declaration (not a
	 definition).  This just means that we have no info about the
	 parameters at all.  */
      fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
      if (fn_arg_types != NULL)
	{
	  /* This is the prototyped case, check for....  */
	  if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
	    gen_unspecified_parameters_die (decl, subr_die);
	}
      else if (DECL_INITIAL (decl) == NULL_TREE)
	gen_unspecified_parameters_die (decl, subr_die);
    }

  /* Output Dwarf info for all of the stuff within the body of the function
     (if it has one - it may be just a declaration).  */
  outer_scope = DECL_INITIAL (decl);

  /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
     a function.  This BLOCK actually represents the outermost binding contour
     for the function, i.e. the contour in which the function's formal
     parameters and labels get declared. Curiously, it appears that the front
     end doesn't actually put the PARM_DECL nodes for the current function onto
     the BLOCK_VARS list for this outer scope, but are strung off of the
     DECL_ARGUMENTS list for the function instead.

     The BLOCK_VARS list for the `outer_scope' does provide us with a list of
     the LABEL_DECL nodes for the function however, and we output DWARF info
     for those in decls_for_scope.  Just within the `outer_scope' there will be
     a BLOCK node representing the function's outermost pair of curly braces,
     and any blocks used for the base and member initializers of a C++
     constructor function.  */
  if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
    {
      /* Emit a DW_TAG_variable DIE for a named return value.  */
      if (DECL_NAME (DECL_RESULT (decl)))
	gen_decl_die (DECL_RESULT (decl), subr_die);

      current_function_has_inlines = 0;
      decls_for_scope (outer_scope, subr_die, 0);

#if 0 && defined (MIPS_DEBUGGING_INFO)
      if (current_function_has_inlines)
	{
	  add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
	  if (! comp_unit_has_inlines)
	    {
	      add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
	      comp_unit_has_inlines = 1;
	    }
	}
#endif
    }
  /* Add the calling convention attribute if requested.  */
  add_calling_convention_attribute (subr_die, TREE_TYPE (decl));

}

/* Generate a DIE to represent a declared data object.  */

static void
gen_variable_die (tree decl, dw_die_ref context_die)
{
  tree origin = decl_ultimate_origin (decl);
  dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);

  dw_die_ref old_die = lookup_decl_die (decl);
  int declaration = (DECL_EXTERNAL (decl)
		     /* If DECL is COMDAT and has not actually been
			emitted, we cannot take its address; there
			might end up being no definition anywhere in
			the program.  For example, consider the C++
			test case:

                          template <class T>
                          struct S { static const int i = 7; };

                          template <class T>
                          const int S<T>::i;

                          int f() { return S<int>::i; }
			  
			Here, S<int>::i is not DECL_EXTERNAL, but no
			definition is required, so the compiler will
			not emit a definition.  */  
		     || (TREE_CODE (decl) == VAR_DECL
			 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
		     || class_or_namespace_scope_p (context_die));

  if (origin != NULL)
    add_abstract_origin_attribute (var_die, origin);

  /* Loop unrolling can create multiple blocks that refer to the same
     static variable, so we must test for the DW_AT_declaration flag.

     ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
     copy decls and set the DECL_ABSTRACT flag on them instead of
     sharing them.

     ??? Duplicated blocks have been rewritten to use .debug_ranges.

     ??? The declare_in_namespace support causes us to get two DIEs for one
     variable, both of which are declarations.  We want to avoid considering
     one to be a specification, so we must test that this DIE is not a
     declaration.  */
  else if (old_die && TREE_STATIC (decl) && ! declaration
	   && get_AT_flag (old_die, DW_AT_declaration) == 1)
    {
      /* This is a definition of a C++ class level static.  */
      add_AT_specification (var_die, old_die);
      if (DECL_NAME (decl))
	{
	  expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
	  struct dwarf_file_data * file_index = lookup_filename (s.file);

	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
	    add_AT_file (var_die, DW_AT_decl_file, file_index);

	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)

	    add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
	}
    }
  else
    {
      add_name_and_src_coords_attributes (var_die, decl);
      add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
			  TREE_THIS_VOLATILE (decl), context_die);

      if (TREE_PUBLIC (decl))
	add_AT_flag (var_die, DW_AT_external, 1);

      if (DECL_ARTIFICIAL (decl))
	add_AT_flag (var_die, DW_AT_artificial, 1);

      if (TREE_PROTECTED (decl))
	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
      else if (TREE_PRIVATE (decl))
	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
    }

  if (declaration)
    add_AT_flag (var_die, DW_AT_declaration, 1);

  if (DECL_ABSTRACT (decl) || declaration)
    equate_decl_number_to_die (decl, var_die);

  if (! declaration && ! DECL_ABSTRACT (decl))
    {
      add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
      add_pubname (decl, var_die);
    }
  else
    tree_add_const_value_attribute (var_die, decl);
}

/* Generate a DIE to represent a label identifier.  */

static void
gen_label_die (tree decl, dw_die_ref context_die)
{
  tree origin = decl_ultimate_origin (decl);
  dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
  rtx insn;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  if (origin != NULL)
    add_abstract_origin_attribute (lbl_die, origin);
  else
    add_name_and_src_coords_attributes (lbl_die, decl);

  if (DECL_ABSTRACT (decl))
    equate_decl_number_to_die (decl, lbl_die);
  else
    {
      insn = DECL_RTL_IF_SET (decl);

      /* Deleted labels are programmer specified labels which have been
	 eliminated because of various optimizations.  We still emit them
	 here so that it is possible to put breakpoints on them.  */
      if (insn
	  && (LABEL_P (insn)
	      || ((NOTE_P (insn)
	           && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
	{
	  /* When optimization is enabled (via -O) some parts of the compiler
	     (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
	     represent source-level labels which were explicitly declared by
	     the user.  This really shouldn't be happening though, so catch
	     it if it ever does happen.  */
	  gcc_assert (!INSN_DELETED_P (insn));

	  ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
	  add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
	}
    }
}

/* A helper function for gen_inlined_subroutine_die.  Add source coordinate
   attributes to the DIE for a block STMT, to describe where the inlined
   function was called from.  This is similar to add_src_coords_attributes.  */

static inline void
add_call_src_coords_attributes (tree stmt, dw_die_ref die)
{
  expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));

  add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
  add_AT_unsigned (die, DW_AT_call_line, s.line);
}

/* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
   Add low_pc and high_pc attributes to the DIE for a block STMT.  */

static inline void
add_high_low_attributes (tree stmt, dw_die_ref die)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  if (BLOCK_FRAGMENT_CHAIN (stmt))
    {
      tree chain;

      add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));

      chain = BLOCK_FRAGMENT_CHAIN (stmt);
      do
	{
	  add_ranges (chain);
	  chain = BLOCK_FRAGMENT_CHAIN (chain);
	}
      while (chain);
      add_ranges (NULL);
    }
  else
    {
      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
				   BLOCK_NUMBER (stmt));
      add_AT_lbl_id (die, DW_AT_low_pc, label);
      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
				   BLOCK_NUMBER (stmt));
      add_AT_lbl_id (die, DW_AT_high_pc, label);
    }
}

/* Generate a DIE for a lexical block.  */

static void
gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
{
  dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);

  if (! BLOCK_ABSTRACT (stmt))
    add_high_low_attributes (stmt, stmt_die);

  decls_for_scope (stmt, stmt_die, depth);
}

/* Generate a DIE for an inlined subprogram.  */

static void
gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
{
  tree decl = block_ultimate_origin (stmt);

  /* Emit info for the abstract instance first, if we haven't yet.  We
     must emit this even if the block is abstract, otherwise when we
     emit the block below (or elsewhere), we may end up trying to emit
     a die whose origin die hasn't been emitted, and crashing.  */
  dwarf2out_abstract_function (decl);

  if (! BLOCK_ABSTRACT (stmt))
    {
      dw_die_ref subr_die
	= new_die (DW_TAG_inlined_subroutine, context_die, stmt);

      add_abstract_origin_attribute (subr_die, decl);
      add_high_low_attributes (stmt, subr_die);
      add_call_src_coords_attributes (stmt, subr_die);

      decls_for_scope (stmt, subr_die, depth);
      current_function_has_inlines = 1;
    }
  else
    /* We may get here if we're the outer block of function A that was
       inlined into function B that was inlined into function C.  When
       generating debugging info for C, dwarf2out_abstract_function(B)
       would mark all inlined blocks as abstract, including this one.
       So, we wouldn't (and shouldn't) expect labels to be generated
       for this one.  Instead, just emit debugging info for
       declarations within the block.  This is particularly important
       in the case of initializers of arguments passed from B to us:
       if they're statement expressions containing declarations, we
       wouldn't generate dies for their abstract variables, and then,
       when generating dies for the real variables, we'd die (pun
       intended :-)  */
    gen_lexical_block_die (stmt, context_die, depth);
}

/* Generate a DIE for a field in a record, or structure.  */

static void
gen_field_die (tree decl, dw_die_ref context_die)
{
  dw_die_ref decl_die;

  if (TREE_TYPE (decl) == error_mark_node)
    return;

  decl_die = new_die (DW_TAG_member, context_die, decl);
  add_name_and_src_coords_attributes (decl_die, decl);
  add_type_attribute (decl_die, member_declared_type (decl),
		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
		      context_die);

  if (DECL_BIT_FIELD_TYPE (decl))
    {
      add_byte_size_attribute (decl_die, decl);
      add_bit_size_attribute (decl_die, decl);
      add_bit_offset_attribute (decl_die, decl);
    }

  if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
    add_data_member_location_attribute (decl_die, decl);

  if (DECL_ARTIFICIAL (decl))
    add_AT_flag (decl_die, DW_AT_artificial, 1);

  if (TREE_PROTECTED (decl))
    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
  else if (TREE_PRIVATE (decl))
    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);

  /* Equate decl number to die, so that we can look up this decl later on.  */
  equate_decl_number_to_die (decl, decl_die);
}

#if 0
/* Don't generate either pointer_type DIEs or reference_type DIEs here.
   Use modified_type_die instead.
   We keep this code here just in case these types of DIEs may be needed to
   represent certain things in other languages (e.g. Pascal) someday.  */

static void
gen_pointer_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref ptr_die
    = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);

  equate_type_number_to_die (type, ptr_die);
  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
}

/* Don't generate either pointer_type DIEs or reference_type DIEs here.
   Use modified_type_die instead.
   We keep this code here just in case these types of DIEs may be needed to
   represent certain things in other languages (e.g. Pascal) someday.  */

static void
gen_reference_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref ref_die
    = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);

  equate_type_number_to_die (type, ref_die);
  add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
}
#endif

/* Generate a DIE for a pointer to a member type.  */

static void
gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref ptr_die
    = new_die (DW_TAG_ptr_to_member_type,
	       scope_die_for (type, context_die), type);

  equate_type_number_to_die (type, ptr_die);
  add_AT_die_ref (ptr_die, DW_AT_containing_type,
		  lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
}

/* Generate the DIE for the compilation unit.  */

static dw_die_ref
gen_compile_unit_die (const char *filename)
{
  dw_die_ref die;
  char producer[250];
  const char *language_string = lang_hooks.name;
  int language;

  die = new_die (DW_TAG_compile_unit, NULL, NULL);

  if (filename)
    {
      add_name_attribute (die, filename);
      /* Don't add cwd for <built-in>.  */
      if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
	add_comp_dir_attribute (die);
    }

  sprintf (producer, "%s %s", language_string, version_string);

#ifdef MIPS_DEBUGGING_INFO
  /* The MIPS/SGI compilers place the 'cc' command line options in the producer
     string.  The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
     not appear in the producer string, the debugger reaches the conclusion
     that the object file is stripped and has no debugging information.
     To get the MIPS/SGI debugger to believe that there is debugging
     information in the object file, we add a -g to the producer string.  */
  if (debug_info_level > DINFO_LEVEL_TERSE)
    strcat (producer, " -g");
#endif

  add_AT_string (die, DW_AT_producer, producer);

  if (strcmp (language_string, "GNU C++") == 0)
    language = DW_LANG_C_plus_plus;
  else if (strcmp (language_string, "GNU Ada") == 0)
    language = DW_LANG_Ada95;
  else if (strcmp (language_string, "GNU F77") == 0)
    language = DW_LANG_Fortran77;
  else if (strcmp (language_string, "GNU F95") == 0)
    language = DW_LANG_Fortran95;
  else if (strcmp (language_string, "GNU Pascal") == 0)
    language = DW_LANG_Pascal83;
  else if (strcmp (language_string, "GNU Java") == 0)
    language = DW_LANG_Java;
  else if (strcmp (language_string, "GNU Objective-C") == 0)
    language = DW_LANG_ObjC;
  else if (strcmp (language_string, "GNU Objective-C++") == 0)
    language = DW_LANG_ObjC_plus_plus;
  else
    language = DW_LANG_C89;

  add_AT_unsigned (die, DW_AT_language, language);
  return die;
}

/* Generate the DIE for a base class.  */

static void
gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
{
  dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);

  add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
  add_data_member_location_attribute (die, binfo);

  if (BINFO_VIRTUAL_P (binfo))
    add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);

  if (access == access_public_node)
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
  else if (access == access_protected_node)
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
}

/* Generate a DIE for a class member.  */

static void
gen_member_die (tree type, dw_die_ref context_die)
{
  tree member;
  tree binfo = TYPE_BINFO (type);
  dw_die_ref child;

  /* If this is not an incomplete type, output descriptions of each of its
     members. Note that as we output the DIEs necessary to represent the
     members of this record or union type, we will also be trying to output
     DIEs to represent the *types* of those members. However the `type'
     function (above) will specifically avoid generating type DIEs for member
     types *within* the list of member DIEs for this (containing) type except
     for those types (of members) which are explicitly marked as also being
     members of this (containing) type themselves.  The g++ front- end can
     force any given type to be treated as a member of some other (containing)
     type by setting the TYPE_CONTEXT of the given (member) type to point to
     the TREE node representing the appropriate (containing) type.  */

  /* First output info about the base classes.  */
  if (binfo)
    {
      VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
      int i;
      tree base;

      for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
	gen_inheritance_die (base,
			     (accesses ? VEC_index (tree, accesses, i)
			      : access_public_node), context_die);
    }

  /* Now output info about the data members and type members.  */
  for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
    {
      /* If we thought we were generating minimal debug info for TYPE
	 and then changed our minds, some of the member declarations
	 may have already been defined.  Don't define them again, but
	 do put them in the right order.  */

      child = lookup_decl_die (member);
      if (child)
	splice_child_die (context_die, child);
      else
	gen_decl_die (member, context_die);
    }

  /* Now output info about the function members (if any).  */
  for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
    {
      /* Don't include clones in the member list.  */
      if (DECL_ABSTRACT_ORIGIN (member))
	continue;

      child = lookup_decl_die (member);
      if (child)
	splice_child_die (context_die, child);
      else
	gen_decl_die (member, context_die);
    }
}

/* Generate a DIE for a structure or union type.  If TYPE_DECL_SUPPRESS_DEBUG
   is set, we pretend that the type was never defined, so we only get the
   member DIEs needed by later specification DIEs.  */

static void
gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
				enum debug_info_usage usage)
{
  dw_die_ref type_die = lookup_type_die (type);
  dw_die_ref scope_die = 0;
  int nested = 0;
  int complete = (TYPE_SIZE (type)
		  && (! TYPE_STUB_DECL (type)
		      || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
  int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
  complete = complete && should_emit_struct_debug (type, usage);

  if (type_die && ! complete)
    return;

  if (TYPE_CONTEXT (type) != NULL_TREE
      && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
	  || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
    nested = 1;

  scope_die = scope_die_for (type, context_die);

  if (! type_die || (nested && scope_die == comp_unit_die))
    /* First occurrence of type or toplevel definition of nested class.  */
    {
      dw_die_ref old_die = type_die;

      type_die = new_die (TREE_CODE (type) == RECORD_TYPE
			  ? DW_TAG_structure_type : DW_TAG_union_type,
			  scope_die, type);
      equate_type_number_to_die (type, type_die);
      if (old_die)
	add_AT_specification (type_die, old_die);
      else
	add_name_attribute (type_die, type_tag (type));
      /* APPLE LOCAL begin radar 5811943 - Fix type of pointers to Blocks  */
      if (TYPE_BLOCK_IMPL_STRUCT (type))
	add_AT_flag (type_die, DW_AT_APPLE_block, 1);
      /* APPLE LOCAL end radar 5811943 - Fix type of pointers to Blocks  */
     }
  else
    remove_AT (type_die, DW_AT_declaration);

  /* If this type has been completed, then give it a byte_size attribute and
     then give a list of members.  */
  if (complete && !ns_decl)
    {
      /* Prevent infinite recursion in cases where the type of some member of
	 this type is expressed in terms of this type itself.  */
      TREE_ASM_WRITTEN (type) = 1;
      add_byte_size_attribute (type_die, type);
      if (TYPE_STUB_DECL (type) != NULL_TREE)
	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));

      /* If the first reference to this type was as the return type of an
	 inline function, then it may not have a parent.  Fix this now.  */
      if (type_die->die_parent == NULL)
	add_child_die (scope_die, type_die);

      push_decl_scope (type);
      gen_member_die (type, type_die);
      pop_decl_scope ();

      /* GNU extension: Record what type our vtable lives in.  */
      if (TYPE_VFIELD (type))
	{
	  tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));

	  gen_type_die (vtype, context_die);
	  add_AT_die_ref (type_die, DW_AT_containing_type,
			  lookup_type_die (vtype));
	}
    }
  else
    {
      add_AT_flag (type_die, DW_AT_declaration, 1);

      /* We don't need to do this for function-local types.  */
      if (TYPE_STUB_DECL (type)
	  && ! decl_function_context (TYPE_STUB_DECL (type)))
	VEC_safe_push (tree, gc, incomplete_types, type);
    }

  if (get_AT (type_die, DW_AT_name))
    add_pubtype (type, type_die);
}

/* Generate a DIE for a subroutine _type_.  */

static void
gen_subroutine_type_die (tree type, dw_die_ref context_die)
{
  tree return_type = TREE_TYPE (type);
  dw_die_ref subr_die
    = new_die (DW_TAG_subroutine_type,
	       scope_die_for (type, context_die), type);

  equate_type_number_to_die (type, subr_die);
  add_prototyped_attribute (subr_die, type);
  add_type_attribute (subr_die, return_type, 0, 0, context_die);
  gen_formal_types_die (type, subr_die);

  if (get_AT (subr_die, DW_AT_name))
    add_pubtype (type, subr_die);
}

/* Generate a DIE for a type definition.  */

static void
gen_typedef_die (tree decl, dw_die_ref context_die)
{
  dw_die_ref type_die;
  tree origin;

  if (TREE_ASM_WRITTEN (decl))
    return;

  TREE_ASM_WRITTEN (decl) = 1;
  type_die = new_die (DW_TAG_typedef, context_die, decl);
  origin = decl_ultimate_origin (decl);
  if (origin != NULL)
    add_abstract_origin_attribute (type_die, origin);
  else
    {
      tree type;

      add_name_and_src_coords_attributes (type_die, decl);
      if (DECL_ORIGINAL_TYPE (decl))
	{
	  type = DECL_ORIGINAL_TYPE (decl);

	  gcc_assert (type != TREE_TYPE (decl));
	  equate_type_number_to_die (TREE_TYPE (decl), type_die);
	}
      else
	type = TREE_TYPE (decl);

      add_type_attribute (type_die, type, TREE_READONLY (decl),
			  TREE_THIS_VOLATILE (decl), context_die);
    }

  if (DECL_ABSTRACT (decl))
    equate_decl_number_to_die (decl, type_die);

  if (get_AT (type_die, DW_AT_name))
    add_pubtype (decl, type_die);
}

/* Generate a type description DIE.  */

static void
gen_type_die_with_usage (tree type, dw_die_ref context_die,
				enum debug_info_usage usage)
{
  int need_pop;

  if (type == NULL_TREE || type == error_mark_node)
    return;

  if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
      && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
    {
      if (TREE_ASM_WRITTEN (type))
	return;

      /* Prevent broken recursion; we can't hand off to the same type.  */
      gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);

      TREE_ASM_WRITTEN (type) = 1;
      gen_decl_die (TYPE_NAME (type), context_die);
      return;
    }

  /* We are going to output a DIE to represent the unqualified version
     of this type (i.e. without any const or volatile qualifiers) so
     get the main variant (i.e. the unqualified version) of this type
     now.  (Vectors are special because the debugging info is in the
     cloned type itself).  */
  if (TREE_CODE (type) != VECTOR_TYPE)
    type = type_main_variant (type);

  if (TREE_ASM_WRITTEN (type))
    return;

  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
      break;
	/* APPLE LOCAL radar 5732232 - blocks */
    case BLOCK_POINTER_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
      /* We must set TREE_ASM_WRITTEN in case this is a recursive type.  This
	 ensures that the gen_type_die recursion will terminate even if the
	 type is recursive.  Recursive types are possible in Ada.  */
      /* ??? We could perhaps do this for all types before the switch
	 statement.  */
      TREE_ASM_WRITTEN (type) = 1;

      /* For these types, all that is required is that we output a DIE (or a
	 set of DIEs) to represent the "basis" type.  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
				DINFO_USAGE_IND_USE);
      break;

    case OFFSET_TYPE:
      /* This code is used for C++ pointer-to-data-member types.
	 Output a description of the relevant class type.  */
      gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
					DINFO_USAGE_IND_USE);

      /* Output a description of the type of the object pointed to.  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
					DINFO_USAGE_IND_USE);

      /* Now output a DIE to represent this pointer-to-data-member type
	 itself.  */
      gen_ptr_to_mbr_type_die (type, context_die);
      break;

    case FUNCTION_TYPE:
      /* Force out return type (in case it wasn't forced out already).  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
					DINFO_USAGE_DIR_USE);
      gen_subroutine_type_die (type, context_die);
      break;

    case METHOD_TYPE:
      /* Force out return type (in case it wasn't forced out already).  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
					DINFO_USAGE_DIR_USE);
      gen_subroutine_type_die (type, context_die);
      break;

    case ARRAY_TYPE:
      gen_array_type_die (type, context_die);
      break;

    case VECTOR_TYPE:
      gen_array_type_die (type, context_die);
      break;

    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      /* If this is a nested type whose containing class hasn't been written
	 out yet, writing it out will cover this one, too.  This does not apply
	 to instantiations of member class templates; they need to be added to
	 the containing class as they are generated.  FIXME: This hurts the
	 idea of combining type decls from multiple TUs, since we can't predict
	 what set of template instantiations we'll get.  */
      if (TYPE_CONTEXT (type)
	  && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
	  && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
	{
	  gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);

	  if (TREE_ASM_WRITTEN (type))
	    return;

	  /* If that failed, attach ourselves to the stub.  */
	  push_decl_scope (TYPE_CONTEXT (type));
	  context_die = lookup_type_die (TYPE_CONTEXT (type));
	  need_pop = 1;
	}
      else
	{
	  declare_in_namespace (type, context_die);
	  need_pop = 0;
	}

      if (TREE_CODE (type) == ENUMERAL_TYPE)
	{
	  /* This might have been written out by the call to
	     declare_in_namespace.  */
	  if (!TREE_ASM_WRITTEN (type))
	    gen_enumeration_type_die (type, context_die);
	}
      else
	gen_struct_or_union_type_die (type, context_die, usage);

      if (need_pop)
	pop_decl_scope ();

      /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
	 it up if it is ever completed.  gen_*_type_die will set it for us
	 when appropriate.  */
      return;

    case VOID_TYPE:
    case INTEGER_TYPE:
    case REAL_TYPE:
    case COMPLEX_TYPE:
    case BOOLEAN_TYPE:
      /* No DIEs needed for fundamental types.  */
      break;

    case LANG_TYPE:
      /* No Dwarf representation currently defined.  */
      break;

    default:
      gcc_unreachable ();
    }

  TREE_ASM_WRITTEN (type) = 1;
}

static void
gen_type_die (tree type, dw_die_ref context_die)
{
  gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
}

/* Generate a DIE for a tagged type instantiation.  */

static void
gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
{
  if (type == NULL_TREE || type == error_mark_node)
    return;

  /* We are going to output a DIE to represent the unqualified version of
     this type (i.e. without any const or volatile qualifiers) so make sure
     that we have the main variant (i.e. the unqualified version) of this
     type now.  */
  gcc_assert (type == type_main_variant (type));

  /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
     an instance of an unresolved type.  */

  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
      break;

    case ENUMERAL_TYPE:
      gen_inlined_enumeration_type_die (type, context_die);
      break;

    case RECORD_TYPE:
      gen_inlined_structure_type_die (type, context_die);
      break;

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      gen_inlined_union_type_die (type, context_die);
      break;

    default:
      gcc_unreachable ();
    }
}

/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
   things which are local to the given block.  */

static void
gen_block_die (tree stmt, dw_die_ref context_die, int depth)
{
  int must_output_die = 0;
  tree origin;
  tree decl;
  enum tree_code origin_code;

  /* Ignore blocks that are NULL.  */
  if (stmt == NULL_TREE)
    return;

  /* If the block is one fragment of a non-contiguous block, do not
     process the variables, since they will have been done by the
     origin block.  Do process subblocks.  */
  if (BLOCK_FRAGMENT_ORIGIN (stmt))
    {
      tree sub;

      for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
	gen_block_die (sub, context_die, depth + 1);

      return;
    }

  /* Determine the "ultimate origin" of this block.  This block may be an
     inlined instance of an inlined instance of inline function, so we have
     to trace all of the way back through the origin chain to find out what
     sort of node actually served as the original seed for the creation of
     the current block.  */
  origin = block_ultimate_origin (stmt);
  origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;

  /* Determine if we need to output any Dwarf DIEs at all to represent this
     block.  */
  if (origin_code == FUNCTION_DECL)
    /* The outer scopes for inlinings *must* always be represented.  We
       generate DW_TAG_inlined_subroutine DIEs for them.  (See below.) */
    must_output_die = 1;
  else
    {
      /* In the case where the current block represents an inlining of the
	 "body block" of an inline function, we must *NOT* output any DIE for
	 this block because we have already output a DIE to represent the whole
	 inlined function scope and the "body block" of any function doesn't
	 really represent a different scope according to ANSI C rules.  So we
	 check here to make sure that this block does not represent a "body
	 block inlining" before trying to set the MUST_OUTPUT_DIE flag.  */
      if (! is_body_block (origin ? origin : stmt))
	{
	  /* Determine if this block directly contains any "significant"
	     local declarations which we will need to output DIEs for.  */
	  if (debug_info_level > DINFO_LEVEL_TERSE)
	    /* We are not in terse mode so *any* local declaration counts
	       as being a "significant" one.  */
	    must_output_die = (BLOCK_VARS (stmt) != NULL 
			       && (TREE_USED (stmt) 
				   || TREE_ASM_WRITTEN (stmt)
				   || BLOCK_ABSTRACT (stmt)));
	  else
	    /* We are in terse mode, so only local (nested) function
	       definitions count as "significant" local declarations.  */
	    for (decl = BLOCK_VARS (stmt);
		 decl != NULL; decl = TREE_CHAIN (decl))
	      if (TREE_CODE (decl) == FUNCTION_DECL
		  && DECL_INITIAL (decl))
		{
		  must_output_die = 1;
		  break;
		}
	}
    }

  /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
     DIE for any block which contains no significant local declarations at
     all.  Rather, in such cases we just call `decls_for_scope' so that any
     needed Dwarf info for any sub-blocks will get properly generated. Note
     that in terse mode, our definition of what constitutes a "significant"
     local declaration gets restricted to include only inlined function
     instances and local (nested) function definitions.  */
  if (must_output_die)
    {
      if (origin_code == FUNCTION_DECL)
	gen_inlined_subroutine_die (stmt, context_die, depth);
      else
	gen_lexical_block_die (stmt, context_die, depth);
    }
  else
    decls_for_scope (stmt, context_die, depth);
}

/* Generate all of the decls declared within a given scope and (recursively)
   all of its sub-blocks.  */

static void
decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
{
  tree decl;
  tree subblocks;

  /* Ignore NULL blocks.  */
  if (stmt == NULL_TREE)
    return;

  if (TREE_USED (stmt))
    {
      /* Output the DIEs to represent all of the data objects and typedefs
	 declared directly within this block but not within any nested
	 sub-blocks.  Also, nested function and tag DIEs have been
	 generated with a parent of NULL; fix that up now.  */
      for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
	{
	  dw_die_ref die;
	  
	  if (TREE_CODE (decl) == FUNCTION_DECL)
	    die = lookup_decl_die (decl);
	  else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
	    die = lookup_type_die (TREE_TYPE (decl));
	  else
	    die = NULL;
	  
	  if (die != NULL && die->die_parent == NULL)
	    add_child_die (context_die, die);
	  /* Do not produce debug information for static variables since
	     these might be optimized out.  We are called for these later
	     in cgraph_varpool_analyze_pending_decls. */
	  if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
	    ;
	  else
	    gen_decl_die (decl, context_die);
	}
    }

  /* If we're at -g1, we're not interested in subblocks.  */
  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return;

  /* Output the DIEs to represent all sub-blocks (and the items declared
     therein) of this block.  */
  for (subblocks = BLOCK_SUBBLOCKS (stmt);
       subblocks != NULL;
       subblocks = BLOCK_CHAIN (subblocks))
    gen_block_die (subblocks, context_die, depth + 1);
}

/* Is this a typedef we can avoid emitting?  */

static inline int
is_redundant_typedef (tree decl)
{
  if (TYPE_DECL_IS_STUB (decl))
    return 1;

  if (DECL_ARTIFICIAL (decl)
      && DECL_CONTEXT (decl)
      && is_tagged_type (DECL_CONTEXT (decl))
      && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
      && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
    /* Also ignore the artificial member typedef for the class name.  */
    return 1;

  return 0;
}

/* Returns the DIE for decl.  A DIE will always be returned.  */

static dw_die_ref
force_decl_die (tree decl)
{
  dw_die_ref decl_die;
  unsigned saved_external_flag;
  tree save_fn = NULL_TREE;
  decl_die = lookup_decl_die (decl);
  if (!decl_die)
    {
      dw_die_ref context_die;
      tree decl_context = DECL_CONTEXT (decl);
      if (decl_context)
	{
	  /* Find die that represents this context.  */
	  if (TYPE_P (decl_context))
	    context_die = force_type_die (decl_context);
	  else
	    context_die = force_decl_die (decl_context);
	}
      else
	context_die = comp_unit_die;

      decl_die = lookup_decl_die (decl);
      if (decl_die)
	return decl_die;

      switch (TREE_CODE (decl))
	{
	case FUNCTION_DECL:
	  /* Clear current_function_decl, so that gen_subprogram_die thinks
	     that this is a declaration. At this point, we just want to force
	     declaration die.  */
	  save_fn = current_function_decl;
	  current_function_decl = NULL_TREE;
	  gen_subprogram_die (decl, context_die);
	  current_function_decl = save_fn;
	  break;

	case VAR_DECL:
	  /* Set external flag to force declaration die. Restore it after
	   gen_decl_die() call.  */
	  saved_external_flag = DECL_EXTERNAL (decl);
	  DECL_EXTERNAL (decl) = 1;
	  gen_decl_die (decl, context_die);
	  DECL_EXTERNAL (decl) = saved_external_flag;
	  break;

	case NAMESPACE_DECL:
	  dwarf2out_decl (decl);
	  break;

	default:
	  gcc_unreachable ();
	}

      /* We should be able to find the DIE now.  */
      if (!decl_die)
	decl_die = lookup_decl_die (decl);
      gcc_assert (decl_die);
    }

  return decl_die;
}

/* Returns the DIE for TYPE, that must not be a base type.  A DIE is
   always returned.  */

static dw_die_ref
force_type_die (tree type)
{
  dw_die_ref type_die;

  type_die = lookup_type_die (type);
  if (!type_die)
    {
      dw_die_ref context_die;
      if (TYPE_CONTEXT (type))
	{
	  if (TYPE_P (TYPE_CONTEXT (type)))
	    context_die = force_type_die (TYPE_CONTEXT (type));
	  else
	    context_die = force_decl_die (TYPE_CONTEXT (type));
	}
      else
	context_die = comp_unit_die;

      type_die = lookup_type_die (type);
      if (type_die)
	return type_die;
      gen_type_die (type, context_die);
      type_die = lookup_type_die (type);
      gcc_assert (type_die);
    }
  return type_die;
}

/* Force out any required namespaces to be able to output DECL,
   and return the new context_die for it, if it's changed.  */

static dw_die_ref
setup_namespace_context (tree thing, dw_die_ref context_die)
{
  tree context = (DECL_P (thing)
		  ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
  if (context && TREE_CODE (context) == NAMESPACE_DECL)
    /* Force out the namespace.  */
    context_die = force_decl_die (context);

  return context_die;
}

/* Emit a declaration DIE for THING (which is either a DECL or a tagged
   type) within its namespace, if appropriate.

   For compatibility with older debuggers, namespace DIEs only contain
   declarations; all definitions are emitted at CU scope.  */

static void
declare_in_namespace (tree thing, dw_die_ref context_die)
{
  dw_die_ref ns_context;

  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return;

  /* If this decl is from an inlined function, then don't try to emit it in its
     namespace, as we will get confused.  It would have already been emitted
     when the abstract instance of the inline function was emitted anyways.  */
  if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
    return;

  ns_context = setup_namespace_context (thing, context_die);

  if (ns_context != context_die)
    {
      if (DECL_P (thing))
	gen_decl_die (thing, ns_context);
      else
	gen_type_die (thing, ns_context);
    }
}

/* Generate a DIE for a namespace or namespace alias.  */

static void
gen_namespace_die (tree decl)
{
  dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);

  /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
     they are an alias of.  */
  if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
    {
      /* Output a real namespace.  */
      dw_die_ref namespace_die
	= new_die (DW_TAG_namespace, context_die, decl);
      add_name_and_src_coords_attributes (namespace_die, decl);
      equate_decl_number_to_die (decl, namespace_die);
    }
  else
    {
      /* Output a namespace alias.  */

      /* Force out the namespace we are an alias of, if necessary.  */
      dw_die_ref origin_die
	= force_decl_die (DECL_ABSTRACT_ORIGIN (decl));

      /* Now create the namespace alias DIE.  */
      dw_die_ref namespace_die
	= new_die (DW_TAG_imported_declaration, context_die, decl);
      add_name_and_src_coords_attributes (namespace_die, decl);
      add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
      equate_decl_number_to_die (decl, namespace_die);
    }
}

/* Generate Dwarf debug information for a decl described by DECL.  */

static void
gen_decl_die (tree decl, dw_die_ref context_die)
{
  tree origin;

  if (DECL_P (decl) && DECL_IGNORED_P (decl))
    return;

  switch (TREE_CODE (decl))
    {
    case ERROR_MARK:
      break;

    case CONST_DECL:
      /* The individual enumerators of an enum type get output when we output
	 the Dwarf representation of the relevant enum type itself.  */
      break;

    case FUNCTION_DECL:
      /* Don't output any DIEs to represent mere function declarations,
	 unless they are class members or explicit block externs.  */
      if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
	  && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
	break;

#if 0
      /* FIXME */
      /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
	 on local redeclarations of global functions.  That seems broken.  */
      if (current_function_decl != decl)
	/* This is only a declaration.  */;
#endif

      /* If we're emitting a clone, emit info for the abstract instance.  */
      if (DECL_ORIGIN (decl) != decl)
	dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));

      /* If we're emitting an out-of-line copy of an inline function,
	 emit info for the abstract instance and set up to refer to it.  */
      else if (cgraph_function_possibly_inlined_p (decl)
	       && ! DECL_ABSTRACT (decl)
	       && ! class_or_namespace_scope_p (context_die)
	       /* dwarf2out_abstract_function won't emit a die if this is just
		  a declaration.  We must avoid setting DECL_ABSTRACT_ORIGIN in
		  that case, because that works only if we have a die.  */
	       && DECL_INITIAL (decl) != NULL_TREE)
	{
	  dwarf2out_abstract_function (decl);
	  set_decl_origin_self (decl);
	}

      /* Otherwise we're emitting the primary DIE for this decl.  */
      else if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  /* Before we describe the FUNCTION_DECL itself, make sure that we
	     have described its return type.  */
	  gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);

	  /* And its virtual context.  */
	  if (DECL_VINDEX (decl) != NULL_TREE)
	    gen_type_die (DECL_CONTEXT (decl), context_die);

	  /* And its containing type.  */
	  origin = decl_class_context (decl);
	  if (origin != NULL_TREE)
	    gen_type_die_for_member (origin, decl, context_die);

	  /* And its containing namespace.  */
	  declare_in_namespace (decl, context_die);
	}

      /* Now output a DIE to represent the function itself.  */
      gen_subprogram_die (decl, context_die);
      break;

    case TYPE_DECL:
      /* If we are in terse mode, don't generate any DIEs to represent any
	 actual typedefs.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	break;

      /* In the special case of a TYPE_DECL node representing the declaration
	 of some type tag, if the given TYPE_DECL is marked as having been
	 instantiated from some other (original) TYPE_DECL node (e.g. one which
	 was generated within the original definition of an inline function) we
	 have to generate a special (abbreviated) DW_TAG_structure_type,
	 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here.  */
      if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE
	  && is_tagged_type (TREE_TYPE (decl)))
	{
	  gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
	  break;
	}

      if (is_redundant_typedef (decl))
	gen_type_die (TREE_TYPE (decl), context_die);
      else
	/* Output a DIE to represent the typedef itself.  */
	gen_typedef_die (decl, context_die);
      break;

    case LABEL_DECL:
      if (debug_info_level >= DINFO_LEVEL_NORMAL)
	gen_label_die (decl, context_die);
      break;

    case VAR_DECL:
    case RESULT_DECL:
      /* If we are in terse mode, don't generate any DIEs to represent any
	 variable declarations or definitions.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	break;

      /* Output any DIEs that are needed to specify the type of this data
	 object.  */
      gen_type_die (TREE_TYPE (decl), context_die);

      /* And its containing type.  */
      origin = decl_class_context (decl);
      if (origin != NULL_TREE)
	gen_type_die_for_member (origin, decl, context_die);

      /* And its containing namespace.  */
      declare_in_namespace (decl, context_die);

      /* Now output the DIE to represent the data object itself.  This gets
	 complicated because of the possibility that the VAR_DECL really
	 represents an inlined instance of a formal parameter for an inline
	 function.  */
      origin = decl_ultimate_origin (decl);
      if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
	gen_formal_parameter_die (decl, context_die);
      else
	gen_variable_die (decl, context_die);
      break;

    case FIELD_DECL:
      /* Ignore the nameless fields that are used to skip bits but handle C++
	 anonymous unions and structs.  */
      if (DECL_NAME (decl) != NULL_TREE
	  || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
	  || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
	{
	  gen_type_die (member_declared_type (decl), context_die);
	  gen_field_die (decl, context_die);
	}
      break;

    case PARM_DECL:
      gen_type_die (TREE_TYPE (decl), context_die);
      gen_formal_parameter_die (decl, context_die);
      break;

    case NAMESPACE_DECL:
      gen_namespace_die (decl);
      break;

    default:
      /* Probably some frontend-internal decl.  Assume we don't care.  */
      gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
      break;
    }
}

/* Output debug information for global decl DECL.  Called from toplev.c after
   compilation proper has finished.  */

static void
dwarf2out_global_decl (tree decl)
{
  /* Output DWARF2 information for file-scope tentative data object
     declarations, file-scope (extern) function declarations (which had no
     corresponding body) and file-scope tagged type declarations and
     definitions which have not yet been forced out.  */
  if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
    dwarf2out_decl (decl);
}

/* Output debug information for type decl DECL.  Called from toplev.c
   and from language front ends (to record built-in types).  */
static void
dwarf2out_type_decl (tree decl, int local)
{
  if (!local)
    dwarf2out_decl (decl);
}

/* Output debug information for imported module or decl.  */

static void
dwarf2out_imported_module_or_decl (tree decl, tree context)
{
  dw_die_ref imported_die, at_import_die;
  dw_die_ref scope_die;
  expanded_location xloc;

  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return;

  gcc_assert (decl);

  /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
     We need decl DIE for reference and scope die. First, get DIE for the decl
     itself.  */

  /* Get the scope die for decl context. Use comp_unit_die for global module
     or decl. If die is not found for non globals, force new die.  */
  if (!context)
    scope_die = comp_unit_die;
  else if (TYPE_P (context))
    {
      if (!should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
	return;
    scope_die = force_type_die (context);
    }
  else
    scope_die = force_decl_die (context);

  /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE.  */
  if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
    {
      if (is_base_type (TREE_TYPE (decl)))
	at_import_die = base_type_die (TREE_TYPE (decl));
      else
	at_import_die = force_type_die (TREE_TYPE (decl));
    }
  else
    {
      at_import_die = lookup_decl_die (decl);
      if (!at_import_die)
	{
	  /* If we're trying to avoid duplicate debug info, we may not have
	     emitted the member decl for this field.  Emit it now.  */
	  if (TREE_CODE (decl) == FIELD_DECL)
	    {
	      tree type = DECL_CONTEXT (decl);
	      dw_die_ref type_context_die;

	      if (TYPE_CONTEXT (type))
		if (TYPE_P (TYPE_CONTEXT (type)))
		  {
		    if (!should_emit_struct_debug (TYPE_CONTEXT (type),
						   DINFO_USAGE_DIR_USE))
		      return;
		  type_context_die = force_type_die (TYPE_CONTEXT (type));
		  }
	      else
		type_context_die = force_decl_die (TYPE_CONTEXT (type));
	      else
		type_context_die = comp_unit_die;
	      gen_type_die_for_member (type, decl, type_context_die);
	    }
	  at_import_die = force_decl_die (decl);
	}
    }

  /* OK, now we have DIEs for decl as well as scope. Emit imported die.  */
  if (TREE_CODE (decl) == NAMESPACE_DECL)
    imported_die = new_die (DW_TAG_imported_module, scope_die, context);
  else
    imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);

  xloc = expand_location (input_location);
  add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
  add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
  add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
}

/* Write the debugging output for DECL.  */

void
dwarf2out_decl (tree decl)
{
  dw_die_ref context_die = comp_unit_die;

  switch (TREE_CODE (decl))
    {
    case ERROR_MARK:
      return;

    case FUNCTION_DECL:
      /* What we would really like to do here is to filter out all mere
	 file-scope declarations of file-scope functions which are never
	 referenced later within this translation unit (and keep all of ones
	 that *are* referenced later on) but we aren't clairvoyant, so we have
	 no idea which functions will be referenced in the future (i.e. later
	 on within the current translation unit). So here we just ignore all
	 file-scope function declarations which are not also definitions.  If
	 and when the debugger needs to know something about these functions,
	 it will have to hunt around and find the DWARF information associated
	 with the definition of the function.

	 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
	 nodes represent definitions and which ones represent mere
	 declarations.  We have to check DECL_INITIAL instead. That's because
	 the C front-end supports some weird semantics for "extern inline"
	 function definitions.  These can get inlined within the current
	 translation unit (and thus, we need to generate Dwarf info for their
	 abstract instances so that the Dwarf info for the concrete inlined
	 instances can have something to refer to) but the compiler never
	 generates any out-of-lines instances of such things (despite the fact
	 that they *are* definitions).

	 The important point is that the C front-end marks these "extern
	 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
	 them anyway. Note that the C++ front-end also plays some similar games
	 for inline function definitions appearing within include files which
	 also contain `#pragma interface' pragmas.  */
      if (DECL_INITIAL (decl) == NULL_TREE)
	return;

      /* If we're a nested function, initially use a parent of NULL; if we're
	 a plain function, this will be fixed up in decls_for_scope.  If
	 we're a method, it will be ignored, since we already have a DIE.  */
      if (decl_function_context (decl)
	  /* But if we're in terse mode, we don't care about scope.  */
	  && debug_info_level > DINFO_LEVEL_TERSE)
	context_die = NULL;
      break;

    case VAR_DECL:
      /* Ignore this VAR_DECL if it refers to a file-scope extern data object
	 declaration and if the declaration was never even referenced from
	 within this entire compilation unit.  We suppress these DIEs in
	 order to save space in the .debug section (by eliminating entries
	 which are probably useless).  Note that we must not suppress
	 block-local extern declarations (whether used or not) because that
	 would screw-up the debugger's name lookup mechanism and cause it to
	 miss things which really ought to be in scope at a given point.  */
      if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
	return;

      /* For local statics lookup proper context die.  */
      if (TREE_STATIC (decl) && decl_function_context (decl))
	context_die = lookup_decl_die (DECL_CONTEXT (decl));

      /* If we are in terse mode, don't generate any DIEs to represent any
	 variable declarations or definitions.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;
      break;

    case NAMESPACE_DECL:
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;
      if (lookup_decl_die (decl) != NULL)
        return;
      break;

    case TYPE_DECL:
      /* Don't emit stubs for types unless they are needed by other DIEs.  */
      if (TYPE_DECL_SUPPRESS_DEBUG (decl))
	return;

      /* Don't bother trying to generate any DIEs to represent any of the
	 normal built-in types for the language we are compiling.  */
      if (DECL_IS_BUILTIN (decl))
	{
	  /* OK, we need to generate one for `bool' so GDB knows what type
	     comparisons have.  */
	  if (is_cxx ()
	      && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
	      && ! DECL_IGNORED_P (decl))
	    modified_type_die (TREE_TYPE (decl), 0, 0, NULL);

	  return;
	}

      /* If we are in terse mode, don't generate any DIEs for types.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;

      /* If we're a function-scope tag, initially use a parent of NULL;
	 this will be fixed up in decls_for_scope.  */
      if (decl_function_context (decl))
	context_die = NULL;

      break;

    default:
      return;
    }

  gen_decl_die (decl, context_die);
}

/* Output a marker (i.e. a label) for the beginning of the generated code for
   a lexical block.  */

static void
dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
		       unsigned int blocknum)
{
  switch_to_section (current_function_section ());
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
}

/* Output a marker (i.e. a label) for the end of the generated code for a
   lexical block.  */

static void
dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
{
  switch_to_section (current_function_section ());
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
}

/* Returns nonzero if it is appropriate not to emit any debugging
   information for BLOCK, because it doesn't contain any instructions.

   Don't allow this for blocks with nested functions or local classes
   as we would end up with orphans, and in the presence of scheduling
   we may end up calling them anyway.  */

static bool
dwarf2out_ignore_block (tree block)
{
  tree decl;

  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
    if (TREE_CODE (decl) == FUNCTION_DECL
	|| (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
      return 0;

  return 1;
}

/* Hash table routines for file_hash.  */

static int
file_table_eq (const void *p1_p, const void *p2_p)
{
  const struct dwarf_file_data * p1 = p1_p;
  const char * p2 = p2_p;
  return strcmp (p1->filename, p2) == 0;
}

static hashval_t
file_table_hash (const void *p_p)
{
  const struct dwarf_file_data * p = p_p;
  return htab_hash_string (p->filename);
}

/* Lookup FILE_NAME (in the list of filenames that we know about here in
   dwarf2out.c) and return its "index".  The index of each (known) filename is
   just a unique number which is associated with only that one filename.  We
   need such numbers for the sake of generating labels (in the .debug_sfnames
   section) and references to those files numbers (in the .debug_srcinfo
   and.debug_macinfo sections).  If the filename given as an argument is not
   found in our current list, add it to the list and assign it the next
   available unique index number.  In order to speed up searches, we remember
   the index of the filename was looked up last.  This handles the majority of
   all searches.  */

static struct dwarf_file_data *
lookup_filename (const char *file_name)
{
  void ** slot;
  struct dwarf_file_data * created;

  /* Check to see if the file name that was searched on the previous
     call matches this file name.  If so, return the index.  */
  if (file_table_last_lookup
      && (file_name == file_table_last_lookup->filename
	  || strcmp (file_table_last_lookup->filename, file_name) == 0))
    return file_table_last_lookup;

  /* Didn't match the previous lookup, search the table.  */
  slot = htab_find_slot_with_hash (file_table, file_name,
				   htab_hash_string (file_name), INSERT);
  if (*slot)
    return *slot;

  created = ggc_alloc (sizeof (struct dwarf_file_data));
  created->filename = file_name;
  created->emitted_number = 0;
  *slot = created;
  return created;
}

/* If the assembler will construct the file table, then translate the compiler
   internal file table number into the assembler file table number, and emit
   a .file directive if we haven't already emitted one yet.  The file table
   numbers are different because we prune debug info for unused variables and
   types, which may include filenames.  */

static int
maybe_emit_file (struct dwarf_file_data * fd)
{
  if (! fd->emitted_number)
    {
      if (last_emitted_file)
	fd->emitted_number = last_emitted_file->emitted_number + 1;
      else
	fd->emitted_number = 1;
      last_emitted_file = fd;
      
      if (DWARF2_ASM_LINE_DEBUG_INFO)
	{
	  fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
	  output_quoted_string (asm_out_file, fd->filename);
	  fputc ('\n', asm_out_file);
	}
    }
  
  return fd->emitted_number;
}

/* Called by the final INSN scan whenever we see a var location.  We
   use it to drop labels in the right places, and throw the location in
   our lookup table.  */

static void
dwarf2out_var_location (rtx loc_note)
{
  char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
  struct var_loc_node *newloc;
  rtx prev_insn;
  static rtx last_insn;
  static const char *last_label;
  tree decl;

  if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
    return;
  prev_insn = PREV_INSN (loc_note);

  newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
  /* If the insn we processed last time is the previous insn
     and it is also a var location note, use the label we emitted
     last time.  */
  if (last_insn != NULL_RTX
      && last_insn == prev_insn
      && NOTE_P (prev_insn)
      && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
    {
      newloc->label = last_label;
    }
  else
    {
      ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
      ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
      loclabel_num++;
      newloc->label = ggc_strdup (loclabel);
    }
  newloc->var_loc_note = loc_note;
  newloc->next = NULL;

  if (cfun && in_cold_section_p)
    newloc->section_label = cfun->cold_section_label;
  else
    newloc->section_label = text_section_label;

  last_insn = loc_note;
  last_label = newloc->label;
  decl = NOTE_VAR_LOCATION_DECL (loc_note);
  add_var_loc_to_decl (decl, newloc);
}

/* We need to reset the locations at the beginning of each
   function. We can't do this in the end_function hook, because the
   declarations that use the locations won't have been output when
   that hook is called.  Also compute have_multiple_function_sections here.  */

static void
dwarf2out_begin_function (tree fun)
{
  htab_empty (decl_loc_table);
  
  if (function_section (fun) != text_section)
    have_multiple_function_sections = true;
}

/* Output a label to mark the beginning of a source code line entry
   and record information relating to this source line, in
   'line_info_table' for later output of the .debug_line section.  */

static void
dwarf2out_source_line (unsigned int line, const char *filename)
{
  if (debug_info_level >= DINFO_LEVEL_NORMAL
      && line != 0)
    {
      int file_num = maybe_emit_file (lookup_filename (filename));
      
      switch_to_section (current_function_section ());

      /* If requested, emit something human-readable.  */
      if (flag_debug_asm)
	fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
		 filename, line);

      if (DWARF2_ASM_LINE_DEBUG_INFO)
	{
	  /* Emit the .loc directive understood by GNU as.  */
	  fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);

	  /* Indicate that line number info exists.  */
	  line_info_table_in_use++;
	}
      else if (function_section (current_function_decl) != text_section)
	{
	  dw_separate_line_info_ref line_info;
	  targetm.asm_out.internal_label (asm_out_file, 
					  SEPARATE_LINE_CODE_LABEL,
					  separate_line_info_table_in_use);

	  /* Expand the line info table if necessary.  */
	  if (separate_line_info_table_in_use
	      == separate_line_info_table_allocated)
	    {
	      separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
	      separate_line_info_table
		= ggc_realloc (separate_line_info_table,
			       separate_line_info_table_allocated
			       * sizeof (dw_separate_line_info_entry));
	      memset (separate_line_info_table
		       + separate_line_info_table_in_use,
		      0,
		      (LINE_INFO_TABLE_INCREMENT
		       * sizeof (dw_separate_line_info_entry)));
	    }

	  /* Add the new entry at the end of the line_info_table.  */
	  line_info
	    = &separate_line_info_table[separate_line_info_table_in_use++];
	  line_info->dw_file_num = file_num;
	  line_info->dw_line_num = line;
	  line_info->function = current_function_funcdef_no;
	}
      else
	{
	  dw_line_info_ref line_info;

	  targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
				     line_info_table_in_use);

	  /* Expand the line info table if necessary.  */
	  if (line_info_table_in_use == line_info_table_allocated)
	    {
	      line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
	      line_info_table
		= ggc_realloc (line_info_table,
			       (line_info_table_allocated
				* sizeof (dw_line_info_entry)));
	      memset (line_info_table + line_info_table_in_use, 0,
		      LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
	    }

	  /* Add the new entry at the end of the line_info_table.  */
	  line_info = &line_info_table[line_info_table_in_use++];
	  line_info->dw_file_num = file_num;
	  line_info->dw_line_num = line;
	}
    }
}

/* Record the beginning of a new source file.  */

static void
dwarf2out_start_source_file (unsigned int lineno, const char *filename)
{
  if (flag_eliminate_dwarf2_dups)
    {
      /* Record the beginning of the file for break_out_includes.  */
      dw_die_ref bincl_die;

      bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
      add_AT_string (bincl_die, DW_AT_name, filename);
    }

  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      int file_num = maybe_emit_file (lookup_filename (filename));

      switch_to_section (debug_macinfo_section);
      dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
      dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
				   lineno);

      dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
    }
}

/* Record the end of a source file.  */

static void
dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
{
  if (flag_eliminate_dwarf2_dups)
    /* Record the end of the file for break_out_includes.  */
    new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);

  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      switch_to_section (debug_macinfo_section);
      dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
    }
}

/* Called from debug_define in toplev.c.  The `buffer' parameter contains
   the tail part of the directive line, i.e. the part which is past the
   initial whitespace, #, whitespace, directive-name, whitespace part.  */

static void
dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
		  const char *buffer ATTRIBUTE_UNUSED)
{
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      switch_to_section (debug_macinfo_section);
      dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
      dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
      dw2_asm_output_nstring (buffer, -1, "The macro");
    }
}

/* Called from debug_undef in toplev.c.  The `buffer' parameter contains
   the tail part of the directive line, i.e. the part which is past the
   initial whitespace, #, whitespace, directive-name, whitespace part.  */

static void
dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
		 const char *buffer ATTRIBUTE_UNUSED)
{
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      switch_to_section (debug_macinfo_section);
      dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
      dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
      dw2_asm_output_nstring (buffer, -1, "The macro");
    }
}

/* Set up for Dwarf output at the start of compilation.  */

static void
dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
{
  /* Allocate the file_table.  */
  file_table = htab_create_ggc (50, file_table_hash,
				file_table_eq, NULL);

  /* Allocate the decl_die_table.  */
  decl_die_table = htab_create_ggc (10, decl_die_table_hash,
				    decl_die_table_eq, NULL);

  /* Allocate the decl_loc_table.  */
  decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
				    decl_loc_table_eq, NULL);

  /* Allocate the initial hunk of the decl_scope_table.  */
  decl_scope_table = VEC_alloc (tree, gc, 256);

  /* Allocate the initial hunk of the abbrev_die_table.  */
  abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
					* sizeof (dw_die_ref));
  abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
  /* Zero-th entry is allocated, but unused.  */
  abbrev_die_table_in_use = 1;

  /* Allocate the initial hunk of the line_info_table.  */
  line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
				       * sizeof (dw_line_info_entry));
  line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;

  /* Zero-th entry is allocated, but unused.  */
  line_info_table_in_use = 1;

  /* Allocate the pubtypes and pubnames vectors.  */
  pubname_table = VEC_alloc (pubname_entry, gc, 32);
  pubtype_table = VEC_alloc (pubname_entry, gc, 32);

  /* Generate the initial DIE for the .debug section.  Note that the (string)
     value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
     will (typically) be a relative pathname and that this pathname should be
     taken as being relative to the directory from which the compiler was
     invoked when the given (base) source file was compiled.  We will fill
     in this value in dwarf2out_finish.  */
  comp_unit_die = gen_compile_unit_die (NULL);

  incomplete_types = VEC_alloc (tree, gc, 64);

  used_rtx_array = VEC_alloc (rtx, gc, 32);

  debug_info_section = get_section (DEBUG_INFO_SECTION,
				    SECTION_DEBUG, NULL);
  debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
				      SECTION_DEBUG, NULL);
  debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
				       SECTION_DEBUG, NULL);
  debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
				       SECTION_DEBUG, NULL);
  debug_line_section = get_section (DEBUG_LINE_SECTION,
				    SECTION_DEBUG, NULL);
  debug_loc_section = get_section (DEBUG_LOC_SECTION,
				   SECTION_DEBUG, NULL);
  debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
					SECTION_DEBUG, NULL);
#ifdef DEBUG_PUBTYPES_SECTION
  debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
					SECTION_DEBUG, NULL);
#endif
  debug_str_section = get_section (DEBUG_STR_SECTION,
				   DEBUG_STR_SECTION_FLAGS, NULL);
  debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
				      SECTION_DEBUG, NULL);
  debug_frame_section = get_section (DEBUG_FRAME_SECTION,
				     SECTION_DEBUG, NULL);

  ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
			       DEBUG_ABBREV_SECTION_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label, 
			       COLD_TEXT_SECTION_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);

  ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
			       DEBUG_INFO_SECTION_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
			       DEBUG_LINE_SECTION_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
			       DEBUG_RANGES_SECTION_LABEL, 0);
  switch_to_section (debug_abbrev_section);
  ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
  switch_to_section (debug_info_section);
  ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
  switch_to_section (debug_line_section);
  ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);

  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      switch_to_section (debug_macinfo_section);
      ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
				   DEBUG_MACINFO_SECTION_LABEL, 0);
      ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
    }

  switch_to_section (text_section);
  ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
  if (flag_reorder_blocks_and_partition)
    {
      switch_to_section (unlikely_text_section ());
      ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
    }
}

/* A helper function for dwarf2out_finish called through
   ht_forall.  Emit one queued .debug_str string.  */

static int
output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
{
  struct indirect_string_node *node = (struct indirect_string_node *) *h;

  if (node->form == DW_FORM_strp)
    {
      switch_to_section (debug_str_section);
      ASM_OUTPUT_LABEL (asm_out_file, node->label);
      assemble_string (node->str, strlen (node->str) + 1);
    }

  return 1;
}

#if ENABLE_ASSERT_CHECKING
/* Verify that all marks are clear.  */

static void
verify_marks_clear (dw_die_ref die)
{
  dw_die_ref c;
  
  gcc_assert (! die->die_mark);
  FOR_EACH_CHILD (die, c, verify_marks_clear (c));
}
#endif /* ENABLE_ASSERT_CHECKING */

/* Clear the marks for a die and its children.
   Be cool if the mark isn't set.  */

static void
prune_unmark_dies (dw_die_ref die)
{
  dw_die_ref c;
  
  if (die->die_mark)
    die->die_mark = 0;
  FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
}

/* Given DIE that we're marking as used, find any other dies
   it references as attributes and mark them as used.  */

static void
prune_unused_types_walk_attribs (dw_die_ref die)
{
  dw_attr_ref a;
  unsigned ix;

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    {
      if (a->dw_attr_val.val_class == dw_val_class_die_ref)
	{
	  /* A reference to another DIE.
	     Make sure that it will get emitted.  */
	  prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
	}
      /* Set the string's refcount to 0 so that prune_unused_types_mark
	 accounts properly for it.  */
      if (AT_class (a) == dw_val_class_str)
	a->dw_attr_val.v.val_str->refcount = 0;
    }
}


/* Mark DIE as being used.  If DOKIDS is true, then walk down
   to DIE's children.  */

static void
prune_unused_types_mark (dw_die_ref die, int dokids)
{
  dw_die_ref c;

  if (die->die_mark == 0)
    {
      /* We haven't done this node yet.  Mark it as used.  */
      die->die_mark = 1;

      /* We also have to mark its parents as used.
	 (But we don't want to mark our parents' kids due to this.)  */
      if (die->die_parent)
	prune_unused_types_mark (die->die_parent, 0);

      /* Mark any referenced nodes.  */
      prune_unused_types_walk_attribs (die);

      /* If this node is a specification,
         also mark the definition, if it exists.  */
      if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
        prune_unused_types_mark (die->die_definition, 1);
    }

  if (dokids && die->die_mark != 2)
    {
      /* We need to walk the children, but haven't done so yet.
	 Remember that we've walked the kids.  */
      die->die_mark = 2;

      /* If this is an array type, we need to make sure our
	 kids get marked, even if they're types.  */
      if (die->die_tag == DW_TAG_array_type)
	FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
      else
	FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
    }
}


/* Walk the tree DIE and mark types that we actually use.  */

static void
prune_unused_types_walk (dw_die_ref die)
{
  dw_die_ref c;

  /* Don't do anything if this node is already marked.  */
  if (die->die_mark)
    return;

  switch (die->die_tag) {
  case DW_TAG_const_type:
  case DW_TAG_packed_type:
  case DW_TAG_pointer_type:
  case DW_TAG_reference_type:
  case DW_TAG_volatile_type:
  case DW_TAG_typedef:
  case DW_TAG_array_type:
  case DW_TAG_structure_type:
  case DW_TAG_union_type:
  case DW_TAG_class_type:
  case DW_TAG_friend:
  case DW_TAG_variant_part:
  case DW_TAG_enumeration_type:
  case DW_TAG_subroutine_type:
  case DW_TAG_string_type:
  case DW_TAG_set_type:
  case DW_TAG_subrange_type:
  case DW_TAG_ptr_to_member_type:
  case DW_TAG_file_type:
    if (die->die_perennial_p)
      break;

    /* It's a type node --- don't mark it.  */
    return;

  default:
    /* Mark everything else.  */
    break;
  }

  die->die_mark = 1;

  /* Now, mark any dies referenced from here.  */
  prune_unused_types_walk_attribs (die);

  /* Mark children.  */
  FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
}

/* Increment the string counts on strings referred to from DIE's
   attributes.  */

static void
prune_unused_types_update_strings (dw_die_ref die)
{
  dw_attr_ref a;
  unsigned ix;

  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
    if (AT_class (a) == dw_val_class_str)
      {
	struct indirect_string_node *s = a->dw_attr_val.v.val_str;
	s->refcount++;
	/* Avoid unnecessarily putting strings that are used less than
	   twice in the hash table.  */
	if (s->refcount
	    == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
	  {
	    void ** slot;
	    slot = htab_find_slot_with_hash (debug_str_hash, s->str,
					     htab_hash_string (s->str),
					     INSERT);
	    gcc_assert (*slot == NULL);
	    *slot = s;
	  }
      }
}

/* Remove from the tree DIE any dies that aren't marked.  */

static void
prune_unused_types_prune (dw_die_ref die)
{
  dw_die_ref c;

  gcc_assert (die->die_mark);
  prune_unused_types_update_strings (die);

  if (! die->die_child)
    return;
  
  c = die->die_child;
  do {
    dw_die_ref prev = c;
    for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
      if (c == die->die_child)
	{
	  /* No marked children between 'prev' and the end of the list.  */
	  if (prev == c)
	    /* No marked children at all.  */
	    die->die_child = NULL;
	  else
	    {
	      prev->die_sib = c->die_sib;
	      die->die_child = prev;
	    }
	  return;
	}

    if (c != prev->die_sib)
      prev->die_sib = c;
    prune_unused_types_prune (c);
  } while (c != die->die_child);
}


/* Remove dies representing declarations that we never use.  */

static void
prune_unused_types (void)
{
  unsigned int i;
  limbo_die_node *node;
  pubname_ref pub;

#if ENABLE_ASSERT_CHECKING
  /* All the marks should already be clear.  */
  verify_marks_clear (comp_unit_die);
  for (node = limbo_die_list; node; node = node->next)
    verify_marks_clear (node->die);
#endif /* ENABLE_ASSERT_CHECKING */

  /* Set the mark on nodes that are actually used.  */
  prune_unused_types_walk (comp_unit_die);
  for (node = limbo_die_list; node; node = node->next)
    prune_unused_types_walk (node->die);

  /* Also set the mark on nodes referenced from the
     pubname_table or arange_table.  */
  for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
    prune_unused_types_mark (pub->die, 1);
  for (i = 0; i < arange_table_in_use; i++)
    prune_unused_types_mark (arange_table[i], 1);

  /* Get rid of nodes that aren't marked; and update the string counts.  */
  if (debug_str_hash)
    htab_empty (debug_str_hash);
  prune_unused_types_prune (comp_unit_die);
  for (node = limbo_die_list; node; node = node->next)
    prune_unused_types_prune (node->die);

  /* Leave the marks clear.  */
  prune_unmark_dies (comp_unit_die);
  for (node = limbo_die_list; node; node = node->next)
    prune_unmark_dies (node->die);
}

/* Set the parameter to true if there are any relative pathnames in
   the file table.  */
static int
file_table_relative_p (void ** slot, void *param)
{
  bool *p = param;
  struct dwarf_file_data *d = *slot;
  if (d->emitted_number && d->filename[0] != DIR_SEPARATOR)
    {
      *p = true;
      return 0;
    }
  return 1;
}

/* Output stuff that dwarf requires at the end of every file,
   and generate the DWARF-2 debugging info.  */

static void
dwarf2out_finish (const char *filename)
{
  limbo_die_node *node, *next_node;
  dw_die_ref die = 0;

  /* Add the name for the main input file now.  We delayed this from
     dwarf2out_init to avoid complications with PCH.  */
  add_name_attribute (comp_unit_die, filename);
  if (filename[0] != DIR_SEPARATOR)
    add_comp_dir_attribute (comp_unit_die);
  else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
    {
      bool p = false;
      htab_traverse (file_table, file_table_relative_p, &p);
      if (p)
	add_comp_dir_attribute (comp_unit_die);
    }

  /* Traverse the limbo die list, and add parent/child links.  The only
     dies without parents that should be here are concrete instances of
     inline functions, and the comp_unit_die.  We can ignore the comp_unit_die.
     For concrete instances, we can get the parent die from the abstract
     instance.  */
  for (node = limbo_die_list; node; node = next_node)
    {
      next_node = node->next;
      die = node->die;

      if (die->die_parent == NULL)
	{
	  dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);

	  if (origin)
	    add_child_die (origin->die_parent, die);
	  else if (die == comp_unit_die)
	    ;
	  else if (errorcount > 0 || sorrycount > 0)
	    /* It's OK to be confused by errors in the input.  */
	    add_child_die (comp_unit_die, die);
	  else
	    {
	      /* In certain situations, the lexical block containing a
		 nested function can be optimized away, which results
		 in the nested function die being orphaned.  Likewise
		 with the return type of that nested function.  Force
		 this to be a child of the containing function.

		 It may happen that even the containing function got fully
		 inlined and optimized out.  In that case we are lost and
		 assign the empty child.  This should not be big issue as
		 the function is likely unreachable too.  */
	      tree context = NULL_TREE;

	      gcc_assert (node->created_for);

	      if (DECL_P (node->created_for))
		context = DECL_CONTEXT (node->created_for);
	      else if (TYPE_P (node->created_for))
		context = TYPE_CONTEXT (node->created_for);

	      gcc_assert (context
			  && (TREE_CODE (context) == FUNCTION_DECL
			      || TREE_CODE (context) == NAMESPACE_DECL));

	      origin = lookup_decl_die (context);
	      if (origin)
	        add_child_die (origin, die);
	      else
	        add_child_die (comp_unit_die, die);
	    }
	}
    }

  limbo_die_list = NULL;

  /* Walk through the list of incomplete types again, trying once more to
     emit full debugging info for them.  */
  retry_incomplete_types ();

  if (flag_eliminate_unused_debug_types)
    prune_unused_types ();

  /* Generate separate CUs for each of the include files we've seen.
     They will go into limbo_die_list.  */
  if (flag_eliminate_dwarf2_dups)
    break_out_includes (comp_unit_die);

  /* Traverse the DIE's and add add sibling attributes to those DIE's
     that have children.  */
  add_sibling_attributes (comp_unit_die);
  for (node = limbo_die_list; node; node = node->next)
    add_sibling_attributes (node->die);

  /* Output a terminator label for the .text section.  */
  switch_to_section (text_section);
  targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
  if (flag_reorder_blocks_and_partition)
    {
      switch_to_section (unlikely_text_section ());
      targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
    }

  /* We can only use the low/high_pc attributes if all of the code was
     in .text.  */
  if (!have_multiple_function_sections)
    {
      add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
      add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
    }

  /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
     "base address".  Use zero so that these addresses become absolute.  */
  else if (have_location_lists || ranges_table_in_use)
    add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);

  /* Output location list section if necessary.  */
  if (have_location_lists)
    {
      /* Output the location lists info.  */
      switch_to_section (debug_loc_section);
      ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
				   DEBUG_LOC_SECTION_LABEL, 0);
      ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
      output_location_lists (die);
    }

  if (debug_info_level >= DINFO_LEVEL_NORMAL)
    add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
		    debug_line_section_label);

  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);

  /* Output all of the compilation units.  We put the main one last so that
     the offsets are available to output_pubnames.  */
  for (node = limbo_die_list; node; node = node->next)
    output_comp_unit (node->die, 0);

  output_comp_unit (comp_unit_die, 0);

  /* Output the abbreviation table.  */
  switch_to_section (debug_abbrev_section);
  output_abbrev_section ();

  /* Output public names table if necessary.  */
  if (!VEC_empty (pubname_entry, pubname_table))
    {
      switch_to_section (debug_pubnames_section);
      output_pubnames (pubname_table);
    }

#ifdef DEBUG_PUBTYPES_SECTION
  /* Output public types table if necessary.  */
  if (!VEC_empty (pubname_entry, pubtype_table))
    {
      switch_to_section (debug_pubtypes_section);
      output_pubnames (pubtype_table);
    }
#endif
  
  /* Output the address range information.  We only put functions in the arange
     table, so don't write it out if we don't have any.  */
  if (fde_table_in_use)
    {
      switch_to_section (debug_aranges_section);
      output_aranges ();
    }

  /* Output ranges section if necessary.  */
  if (ranges_table_in_use)
    {
      switch_to_section (debug_ranges_section);
      ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
      output_ranges ();
    }

  /* Output the source line correspondence table.  We must do this
     even if there is no line information.  Otherwise, on an empty
     translation unit, we will generate a present, but empty,
     .debug_info section.  IRIX 6.5 `nm' will then complain when
     examining the file.  This is done late so that any filenames
     used by the debug_info section are marked as 'used'.  */
  if (! DWARF2_ASM_LINE_DEBUG_INFO)
    {
      switch_to_section (debug_line_section);
      output_line_info ();
    }

  /* Have to end the macro section.  */
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      switch_to_section (debug_macinfo_section);
      dw2_asm_output_data (1, 0, "End compilation unit");
    }

  /* If we emitted any DW_FORM_strp form attribute, output the string
     table too.  */
  if (debug_str_hash)
    htab_traverse (debug_str_hash, output_indirect_string, NULL);
}
#else

/* This should never be used, but its address is needed for comparisons.  */
const struct gcc_debug_hooks dwarf2_debug_hooks;

#endif /* DWARF2_DEBUGGING_INFO */

#include "gt-dwarf2out.h"
OpenPOWER on IntegriCloud