summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/doloop.c
blob: 67b742cde714f59b44ad8f6724a65f45fd5bcf34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/* Perform doloop optimizations
   Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
   Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "flags.h"
#include "expr.h"
#include "loop.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "toplev.h"
#include "tm_p.h"


/* This module is used to modify loops with a determinable number of
   iterations to use special low-overhead looping instructions.

   It first validates whether the loop is well behaved and has a
   determinable number of iterations (either at compile or run-time).
   It then modifies the loop to use a low-overhead looping pattern as
   follows:

   1. A pseudo register is allocated as the loop iteration counter.

   2. The number of loop iterations is calculated and is stored
      in the loop counter.

   3. At the end of the loop, the jump insn is replaced by the
      doloop_end pattern.  The compare must remain because it might be
      used elsewhere.  If the loop-variable or condition register are
      used elsewhere, they will be eliminated by flow.

   4. An optional doloop_begin pattern is inserted at the top of the
      loop.
*/


#ifdef HAVE_doloop_end

static rtx doloop_condition_get
  PARAMS ((rtx));
static unsigned HOST_WIDE_INT doloop_iterations_max
  PARAMS ((const struct loop_info *, enum machine_mode, int));
static int doloop_valid_p
  PARAMS ((const struct loop *, rtx));
static int doloop_modify
  PARAMS ((const struct loop *, rtx, rtx, rtx, rtx, rtx));
static int doloop_modify_runtime
  PARAMS ((const struct loop *, rtx, rtx, rtx, enum machine_mode, rtx));


/* Return the loop termination condition for PATTERN or zero
   if it is not a decrement and branch jump insn.  */
static rtx
doloop_condition_get (pattern)
     rtx pattern;
{
  rtx cmp;
  rtx inc;
  rtx reg;
  rtx condition;

  /* The canonical doloop pattern we expect is:

     (parallel [(set (pc) (if_then_else (condition)
                                        (label_ref (label))
                                        (pc)))
                (set (reg) (plus (reg) (const_int -1)))
                (additional clobbers and uses)])

     Some machines (IA-64) make the decrement conditional on
     the condition as well, so we don't bother verifying the
     actual decrement.  In summary, the branch must be the
     first entry of the parallel (also required by jump.c),
     and the second entry of the parallel must be a set of
     the loop counter register.  */

  if (GET_CODE (pattern) != PARALLEL)
    return 0;

  cmp = XVECEXP (pattern, 0, 0);
  inc = XVECEXP (pattern, 0, 1);

  /* Check for (set (reg) (something)).  */
  if (GET_CODE (inc) != SET || ! REG_P (SET_DEST (inc)))
    return 0;

  /* Extract loop counter register.  */
  reg = SET_DEST (inc);

  /* Check for (set (pc) (if_then_else (condition)
                                       (label_ref (label))
                                       (pc))).  */
  if (GET_CODE (cmp) != SET
      || SET_DEST (cmp) != pc_rtx
      || GET_CODE (SET_SRC (cmp)) != IF_THEN_ELSE
      || GET_CODE (XEXP (SET_SRC (cmp), 1)) != LABEL_REF
      || XEXP (SET_SRC (cmp), 2) != pc_rtx)
    return 0;

  /* Extract loop termination condition.  */
  condition = XEXP (SET_SRC (cmp), 0);

  if ((GET_CODE (condition) != GE && GET_CODE (condition) != NE)
      || GET_CODE (XEXP (condition, 1)) != CONST_INT)
    return 0;

  if (XEXP (condition, 0) == reg)
    return condition;

  if (GET_CODE (XEXP (condition, 0)) == PLUS
      && XEXP (XEXP (condition, 0), 0) == reg)
    return condition;

  /* ??? If a machine uses a funny comparison, we could return a
     canonicalised form here.  */

  return 0;
}


/* Return an estimate of the maximum number of loop iterations for the
   loop specified by LOOP or zero if the loop is not normal.
   MODE is the mode of the iteration count and NONNEG is nonzero if
   the iteration count has been proved to be non-negative.  */
static unsigned HOST_WIDE_INT
doloop_iterations_max (loop_info, mode, nonneg)
     const struct loop_info *loop_info;
     enum machine_mode mode;
     int nonneg;
{
  unsigned HOST_WIDE_INT n_iterations_max;
  enum rtx_code code;
  rtx min_value;
  rtx max_value;
  HOST_WIDE_INT abs_inc;
  int neg_inc;

  neg_inc = 0;
  abs_inc = INTVAL (loop_info->increment);
  if (abs_inc < 0)
    {
      abs_inc = -abs_inc;
      neg_inc = 1;
    }

  if (neg_inc)
    {
      code = swap_condition (loop_info->comparison_code);
      min_value = loop_info->final_equiv_value;
      max_value = loop_info->initial_equiv_value;
    }
  else
    {
      code = loop_info->comparison_code;
      min_value = loop_info->initial_equiv_value;
      max_value = loop_info->final_equiv_value;
    }

  /* Since the loop has a VTOP, we know that the initial test will be
     true and thus the value of max_value should be greater than the
     value of min_value.  Thus the difference should always be positive
     and the code must be LT, LE, LTU, LEU, or NE.  Otherwise the loop is
     not normal, e.g., `for (i = 0; i < 10; i--)'.  */
  switch (code)
    {
    case LTU:
    case LEU:
      {
	unsigned HOST_WIDE_INT umax;
	unsigned HOST_WIDE_INT umin;

	if (GET_CODE (min_value) == CONST_INT)
	  umin = INTVAL (min_value);
	else
	  umin = 0;

	if (GET_CODE (max_value) == CONST_INT)
	  umax = INTVAL (max_value);
	else
	  umax = ((unsigned) 2 << (GET_MODE_BITSIZE (mode) - 1)) - 1;

	n_iterations_max = umax - umin;
	break;
      }

    case LT:
    case LE:
      {
	HOST_WIDE_INT smax;
	HOST_WIDE_INT smin;

	if (GET_CODE (min_value) == CONST_INT)
	  smin = INTVAL (min_value);
	else
	  smin = -((unsigned) 1 << (GET_MODE_BITSIZE (mode) - 1));

	if (GET_CODE (max_value) == CONST_INT)
	  smax = INTVAL (max_value);
	else
	  smax = ((unsigned) 1 << (GET_MODE_BITSIZE (mode) - 1)) - 1;

	n_iterations_max = smax - smin;
	break;
      }

    case NE:
      if (GET_CODE (min_value) == CONST_INT
	  && GET_CODE (max_value) == CONST_INT)
	n_iterations_max = INTVAL (max_value) - INTVAL (min_value);
      else
	/* We need to conservatively assume that we might have the maximum
	   number of iterations without any additional knowledge.  */
	n_iterations_max = ((unsigned) 2 << (GET_MODE_BITSIZE (mode) - 1)) - 1;
      break;

    default:
      return 0;
    }

  n_iterations_max /= abs_inc;

  /* If we know that the iteration count is non-negative then adjust
     n_iterations_max if it is so large that it appears negative.  */
  if (nonneg
      && n_iterations_max > ((unsigned) 1 << (GET_MODE_BITSIZE (mode) - 1)))
    n_iterations_max = ((unsigned) 1 << (GET_MODE_BITSIZE (mode) - 1)) - 1;

  return n_iterations_max;
}


/* Return nonzero if the loop specified by LOOP is suitable for
   the use of special low-overhead looping instructions.  */
static int
doloop_valid_p (loop, jump_insn)
     const struct loop *loop;
     rtx jump_insn;
{
  const struct loop_info *loop_info = LOOP_INFO (loop);

  /* The loop must have a conditional jump at the end.  */
  if (! any_condjump_p (jump_insn)
      || ! onlyjump_p (jump_insn))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Invalid jump at loop end.\n");
      return 0;
    }

  /* Give up if a loop has been completely unrolled.  */
  if (loop_info->n_iterations == loop_info->unroll_number)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Loop completely unrolled.\n");
      return 0;
    }

  /* The loop must have a single exit target.  A break or return
     statement within a loop will generate multiple loop exits.
     Another example of a loop that currently generates multiple exit
     targets is for (i = 0; i < (foo ? 8 : 4); i++) { }.  */
  if (loop_info->has_multiple_exit_targets || loop->exit_count)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Loop has multiple exit targets.\n");
      return 0;
    }

  /* An indirect jump may jump out of the loop.  */
  if (loop_info->has_indirect_jump)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Indirect jump in function.\n");
      return 0;
    }

  /* A called function may clobber any special registers required for
     low-overhead looping.  */
  if (loop_info->has_call)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Function call in loop.\n");
      return 0;
    }

  /* Some targets (eg, PPC) use the count register for branch on table
     instructions.  ??? This should be a target specific check.  */
  if (loop_info->has_tablejump)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Computed branch in the loop.\n");
      return 0;
    }

  if (! loop_info->increment)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Could not determine iteration info.\n");
      return 0;
    }

  if (GET_CODE (loop_info->increment) != CONST_INT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Increment not an integer constant.\n");
      return 0;
    }

  /* There is no guarantee that a NE loop will terminate if the
     absolute increment is not unity.  ??? We could compute this
     condition at run-time and have an additional jump around the loop
     to ensure an infinite loop.  */
  if (loop_info->comparison_code == NE
      && !loop_info->preconditioned
      && INTVAL (loop_info->increment) != -1
      && INTVAL (loop_info->increment) != 1)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: NE loop with non-unity increment.\n");
      return 0;
    }

  /* Check for loops that may not terminate under special conditions.  */
  if (! loop_info->n_iterations
      && ((loop_info->comparison_code == LEU
	   && INTVAL (loop_info->increment) > 0)
	  || (loop_info->comparison_code == GEU
	      && INTVAL (loop_info->increment) < 0)
	  || (loop_info->comparison_code == LTU
	      && INTVAL (loop_info->increment) > 1)
	  || (loop_info->comparison_code == GTU
	      && INTVAL (loop_info->increment) < -1)))
    {
      /* If the comparison is LEU and the comparison value is UINT_MAX
	 then the loop will not terminate.  Similarly, if the
	 comparison code is GEU and the comparison value is 0, the
	 loop will not terminate.

	 If the absolute increment is not 1, the loop can be infinite
	 even with LTU/GTU, e.g. for (i = 3; i > 0; i -= 2)

	 Note that with LE and GE, the loop behavior is undefined
	 (C++ standard section 5 clause 5) if an overflow occurs, say
	 between INT_MAX and INT_MAX + 1.  We thus don't have to worry
	 about these two cases.

	 ??? We could compute these conditions at run-time and have a
	 additional jump around the loop to ensure an infinite loop.
	 However, it is very unlikely that this is the intended
	 behavior of the loop and checking for these rare boundary
	 conditions would pessimize all other code.

	 If the loop is executed only a few times an extra check to
	 restart the loop could use up most of the benefits of using a
	 count register loop.  Note however, that normally, this
	 restart branch would never execute, so it could be predicted
	 well by the CPU.  We should generate the pessimistic code by
	 default, and have an option, e.g. -funsafe-loops that would
	 enable count-register loops in this case.  */
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Possible infinite iteration case ignored.\n");
    }

  return 1;
}


/* Modify the loop to use the low-overhead looping insn where LOOP
   describes the loop, ITERATIONS is an RTX containing the desired
   number of loop iterations, ITERATIONS_MAX is a CONST_INT specifying
   the maximum number of loop iterations, and DOLOOP_INSN is the
   low-overhead looping insn to emit at the end of the loop.  This
   returns nonzero if it was successful.  */
static int
doloop_modify (loop, iterations, iterations_max,
	       doloop_seq, start_label, condition)
     const struct loop *loop;
     rtx iterations;
     rtx iterations_max;
     rtx doloop_seq;
     rtx start_label;
     rtx condition;
{
  rtx counter_reg;
  rtx count;
  rtx sequence;
  rtx jump_insn;
  int nonneg = 0;
  int decrement_count;

  jump_insn = prev_nonnote_insn (loop->end);

  if (loop_dump_stream)
    {
      fprintf (loop_dump_stream, "Doloop: Inserting doloop pattern (");
      if (GET_CODE (iterations) == CONST_INT)
	fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
		 INTVAL (iterations));
      else
	fputs ("runtime", loop_dump_stream);
      fputs (" iterations).", loop_dump_stream);
    }

  /* Emit the label that will delimit the top of the loop.
     This has to be done before the delete_insn call below, to prevent
     delete_insn from deleting too much.  */
  emit_label_after (start_label, loop->top ? loop->top : loop->start);
  LABEL_NUSES (start_label)++;

  /* Discard original jump to continue loop.  The original compare
     result may still be live, so it cannot be discarded explicitly.  */
  delete_related_insns (jump_insn);

  counter_reg = XEXP (condition, 0);
  if (GET_CODE (counter_reg) == PLUS)
    counter_reg = XEXP (counter_reg, 0);

  start_sequence ();

  count = iterations;
  decrement_count = 0;
  switch (GET_CODE (condition))
    {
    case NE:
      /* Currently only NE tests against zero and one are supported.  */
      if (XEXP (condition, 1) == const0_rtx)
	decrement_count = 1;
      else if (XEXP (condition, 1) != const1_rtx)
	abort ();
      break;

    case GE:
      /* Currently only GE tests against zero are supported.  */
      if (XEXP (condition, 1) != const0_rtx)
	abort ();

      /* The iteration count needs decrementing for a GE test.  */
      decrement_count = 1;

      /* Determine if the iteration counter will be non-negative.
	 Note that the maximum value loaded is iterations_max - 1.  */
      if ((unsigned HOST_WIDE_INT) INTVAL (iterations_max)
	  <= ((unsigned) 1 << (GET_MODE_BITSIZE (GET_MODE (counter_reg)) - 1)))
	nonneg = 1;
      break;

      /* Abort if an invalid doloop pattern has been generated.  */
    default:
      abort ();
    }

  if (decrement_count)
    {
      if (GET_CODE (count) == CONST_INT)
	count = GEN_INT (INTVAL (count) - 1);
      else
	count = expand_simple_binop (GET_MODE (counter_reg), MINUS,
				     count, GEN_INT (1),
				     0, 0, OPTAB_LIB_WIDEN);
    }

  /* Insert initialization of the count register into the loop header.  */
  convert_move (counter_reg, count, 1);
  sequence = get_insns ();
  end_sequence ();
  emit_insn_before (sequence, loop->start);

  /* Some targets (eg, C4x) need to initialize special looping
     registers.  */
#ifdef HAVE_doloop_begin
  {
    rtx init;

    init = gen_doloop_begin (counter_reg,
			     GET_CODE (iterations) == CONST_INT
			     ? iterations : const0_rtx, iterations_max,
			     GEN_INT (loop->level));
    if (init)
      {
	start_sequence ();
	emit_insn (init);
	sequence = get_insns ();
	end_sequence ();
	emit_insn_after (sequence, loop->start);
      }
  }
#endif

  /* Insert the new low-overhead looping insn.  */
  emit_jump_insn_before (doloop_seq, loop->end);
  jump_insn = prev_nonnote_insn (loop->end);
  JUMP_LABEL (jump_insn) = start_label;

  /* Add a REG_NONNEG note if the actual or estimated maximum number
     of iterations is non-negative.  */
  if (nonneg)
    {
      REG_NOTES (jump_insn)
	= gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX, REG_NOTES (jump_insn));
    }
  return 1;
}


/* Handle the more complex case, where the bounds are not known at
   compile time.  In this case we generate a run_time calculation of
   the number of iterations.  We rely on the existence of a run-time
   guard to ensure that the loop executes at least once, i.e.,
   initial_value obeys the loop comparison condition.  If a guard is
   not present, we emit one.  The loop to modify is described by LOOP.
   ITERATIONS_MAX is a CONST_INT specifying the estimated maximum
   number of loop iterations.  DOLOOP_INSN is the low-overhead looping
   insn to insert.  Returns nonzero if loop successfully modified.  */
static int
doloop_modify_runtime (loop, iterations_max,
		       doloop_seq, start_label, mode, condition)
     const struct loop *loop;
     rtx iterations_max;
     rtx doloop_seq;
     rtx start_label;
     enum machine_mode mode;
     rtx condition;
{
  const struct loop_info *loop_info = LOOP_INFO (loop);
  HOST_WIDE_INT abs_inc;
  HOST_WIDE_INT abs_loop_inc;
  int neg_inc;
  rtx diff;
  rtx sequence;
  rtx iterations;
  rtx initial_value;
  rtx final_value;
  rtx increment;
  int unsigned_p;
  enum rtx_code comparison_code;

  increment = loop_info->increment;
  initial_value = loop_info->initial_value;
  final_value = loop_info->final_value;

  neg_inc = 0;
  abs_inc = INTVAL (increment);
  if (abs_inc < 0)
    {
      abs_inc = -abs_inc;
      neg_inc = 1;
    }

  comparison_code = loop_info->comparison_code;
  unsigned_p = (comparison_code == LTU
		|| comparison_code == LEU
		|| comparison_code == GTU
		|| comparison_code == GEU
		|| comparison_code == NE);

  /* The number of iterations (prior to any loop unrolling) is given by:

       n = (abs (final - initial) + abs_inc - 1) / abs_inc.

     However, it is possible for the summation to overflow, and a
     safer method is:

       n = abs (final - initial) / abs_inc;
       n += (abs (final - initial) % abs_inc) != 0;

     But when abs_inc is a power of two, the summation won't overflow
     except in cases where the loop never terminates.  So we don't
     need to use this more costly calculation.

     If the loop has been unrolled, the full calculation is

       t1 = abs_inc * unroll_number;		        increment per loop
       n = (abs (final - initial) + abs_inc - 1) / t1;    full loops
       n += (abs (final - initial) + abs_inc - 1) % t1) >= abs_inc;
                                                          partial loop
     which works out to be equivalent to

       n = (abs (final - initial) + t1 - 1) / t1;

     In the case where the loop was preconditioned, a few iterations
     may have been executed earlier; but 'initial' was adjusted as they
     were executed, so we don't need anything special for that case here.
     As above, when t1 is a power of two we don't need to worry about
     overflow.

     The division and modulo operations can be avoided by requiring
     that the increment is a power of 2 (precondition_loop_p enforces
     this requirement).  Nevertheless, the RTX_COSTS should be checked
     to see if a fast divmod is available.  */

  start_sequence ();
  /* abs (final - initial)  */
  diff = expand_simple_binop (mode, MINUS,
			      copy_rtx (neg_inc ? initial_value : final_value),
			      copy_rtx (neg_inc ? final_value : initial_value),
			      NULL_RTX, unsigned_p, OPTAB_LIB_WIDEN);

  /* Some code transformations can result in code akin to

	  tmp = i + 1;
	  ...
	  goto scan_start;
	top:
	  tmp = tmp + 1;
	scan_start:
	  i = tmp;
	  if (i < n) goto top;

     We'll have already detected this form of loop in scan_loop,
     and set loop->top and loop->scan_start appropriately.

     In this situation, we skip the increment the first time through
     the loop, which results in an incorrect estimate of the number
     of iterations.  Adjust the difference to compensate.  */
  /* ??? Logically, it would seem this belongs in loop_iterations.
     However, this causes regressions e.g. on x86 execute/20011008-3.c,
     so I do not believe we've properly characterized the exact nature
     of the problem.  In the meantime, this fixes execute/20011126-2.c
     on ia64 and some Ada front end miscompilation on ppc.  */

  if (loop->scan_start)
    {
      rtx iteration_var = loop_info->iteration_var;
      struct loop_ivs *ivs = LOOP_IVS (loop);
      struct iv_class *bl;

      if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
	bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
      else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
	{
	  struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
	  bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
	}
      else
	/* Iteration var must be an induction variable to get here.  */
	abort ();

      if (INSN_UID (bl->biv->insn) < max_uid_for_loop
	  && INSN_LUID (bl->biv->insn) < INSN_LUID (loop->scan_start))
	{
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
	         "Doloop: Basic induction var skips initial incr.\n");

	  diff = expand_simple_binop (mode, PLUS, diff, GEN_INT (abs_inc),
				      diff, unsigned_p, OPTAB_LIB_WIDEN);
	}
    }

  abs_loop_inc = abs_inc * loop_info->unroll_number;
  if (abs_loop_inc != 1)
    {
      int shift_count;

      shift_count = exact_log2 (abs_loop_inc);
      if (shift_count < 0)
	abort ();

      /* (abs (final - initial) + abs_inc * unroll_number - 1) */
      diff = expand_simple_binop (GET_MODE (diff), PLUS,
				  diff, GEN_INT (abs_loop_inc - 1),
				  diff, 1, OPTAB_LIB_WIDEN);

      /* (abs (final - initial) + abs_inc * unroll_number - 1)
	 / (abs_inc * unroll_number)  */
      diff = expand_simple_binop (GET_MODE (diff), LSHIFTRT,
				  diff, GEN_INT (shift_count),
				  diff, 1, OPTAB_LIB_WIDEN);
    }
  iterations = diff;

  /* If there is a NOTE_INSN_LOOP_VTOP, we have a `for' or `while'
     style loop, with a loop exit test at the start.  Thus, we can
     assume that the loop condition was true when the loop was
     entered.

     `do-while' loops require special treatment since the exit test is
     not executed before the start of the loop.  We need to determine
     if the loop will terminate after the first pass and to limit the
     iteration count to one if necessary.  */
  if (! loop->vtop)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream, "Doloop: Do-while loop.\n");

      /* A `do-while' loop must iterate at least once.  For code like
	 i = initial; do { ... } while (++i < final);
	 we will calculate a bogus iteration count if initial > final.
	 So detect this and set the iteration count to 1.
	 Note that if the loop has been unrolled, then the loop body
	 is guaranteed to execute at least once.  Also, when the
	 comparison is NE, our calculated count will be OK.  */
      if (loop_info->unroll_number == 1 && comparison_code != NE)
	{
	  rtx label;

	  /*  Emit insns to test if the loop will immediately
	      terminate and to set the iteration count to 1 if true.  */
	  label = gen_label_rtx();
	  emit_cmp_and_jump_insns (copy_rtx (initial_value),
				   copy_rtx (loop_info->comparison_value),
				   comparison_code, NULL_RTX, mode, 0,
				   label);
	  JUMP_LABEL (get_last_insn ()) = label;
	  LABEL_NUSES (label)++;
	  emit_move_insn (iterations, const1_rtx);
	  emit_label (label);
	}
    }

  sequence = get_insns ();
  end_sequence ();
  emit_insn_before (sequence, loop->start);

  return doloop_modify (loop, iterations, iterations_max, doloop_seq,
			start_label, condition);
}


/* This is the main entry point.  Process loop described by LOOP
   validating that the loop is suitable for conversion to use a low
   overhead looping instruction, replacing the jump insn where
   suitable.  We distinguish between loops with compile-time bounds
   and those with run-time bounds.  Information from LOOP is used to
   compute the number of iterations and to determine whether the loop
   is a candidate for this optimization.  Returns nonzero if loop
   successfully modified.  */
int
doloop_optimize (loop)
     const struct loop *loop;
{
  struct loop_info *loop_info = LOOP_INFO (loop);
  rtx initial_value;
  rtx final_value;
  rtx increment;
  rtx jump_insn;
  enum machine_mode mode;
  unsigned HOST_WIDE_INT n_iterations;
  unsigned HOST_WIDE_INT n_iterations_max;
  rtx doloop_seq, doloop_pat, doloop_reg;
  rtx iterations;
  rtx iterations_max;
  rtx start_label;
  rtx condition;

  if (loop_dump_stream)
    fprintf (loop_dump_stream,
	     "Doloop: Processing loop %d, enclosed levels %d.\n",
	     loop->num, loop->level);

  jump_insn = prev_nonnote_insn (loop->end);

  /* Check that loop is a candidate for a low-overhead looping insn.  */
  if (! doloop_valid_p (loop, jump_insn))
    return 0;

  /* Determine if the loop can be safely, and profitably,
     preconditioned.  While we don't precondition the loop in a loop
     unrolling sense, this test ensures that the loop is well behaved
     and that the increment is a constant integer.  */
  if (! precondition_loop_p (loop, &initial_value, &final_value,
			     &increment, &mode))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Cannot precondition loop.\n");
      return 0;
    }

  /* Determine or estimate the maximum number of loop iterations.  */
  n_iterations = loop_info->n_iterations;
  if (n_iterations)
    {
      /* This is the simple case where the initial and final loop
	 values are constants.  */
      n_iterations_max = n_iterations;
    }
  else
    {
      int nonneg = find_reg_note (jump_insn, REG_NONNEG, 0) != 0;

      /* This is the harder case where the initial and final loop
	 values may not be constants.  */
      n_iterations_max = doloop_iterations_max (loop_info, mode, nonneg);

      if (! n_iterations_max)
	{
	  /* We have something like `for (i = 0; i < 10; i--)'.  */
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Doloop: Not normal loop.\n");
	  return 0;
	}
    }

  /* Account for loop unrolling in the iteration count.  This will
     have no effect if loop_iterations could not determine the number
     of iterations.  */
  n_iterations /= loop_info->unroll_number;
  n_iterations_max /= loop_info->unroll_number;

  if (n_iterations && n_iterations < 3)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Too few iterations (%ld) to be profitable.\n",
		 (long int) n_iterations);
      return 0;
    }

  iterations = GEN_INT (n_iterations);
  iterations_max = GEN_INT (n_iterations_max);

  /* Generate looping insn.  If the pattern FAILs then give up trying
     to modify the loop since there is some aspect the back-end does
     not like.  */
  start_label = gen_label_rtx ();
  doloop_reg = gen_reg_rtx (mode);
  doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
			       GEN_INT (loop->level), start_label);
  if (! doloop_seq && mode != word_mode)
    {
      PUT_MODE (doloop_reg, word_mode);
      doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
				   GEN_INT (loop->level), start_label);
    }
  if (! doloop_seq)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Target unwilling to use doloop pattern!\n");
      return 0;
    }

  /* If multiple instructions were created, the last must be the
     jump instruction.  Also, a raw define_insn may yield a plain
     pattern.  */
  doloop_pat = doloop_seq;
  if (INSN_P (doloop_pat))
    {
      while (NEXT_INSN (doloop_pat) != NULL_RTX)
	doloop_pat = NEXT_INSN (doloop_pat);
      if (GET_CODE (doloop_pat) == JUMP_INSN)
	doloop_pat = PATTERN (doloop_pat);
      else
	doloop_pat = NULL_RTX;
    }

  if (! doloop_pat
      || ! (condition = doloop_condition_get (doloop_pat)))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Doloop: Unrecognizable doloop pattern!\n");
      return 0;
    }

  if (n_iterations != 0)
    /* Handle the simpler case, where we know the iteration count at
       compile time.  */
    return doloop_modify (loop, iterations, iterations_max, doloop_seq,
			  start_label, condition);
  else
    /* Handle the harder case, where we must add additional runtime tests.  */
    return doloop_modify_runtime (loop, iterations_max, doloop_seq,
				  start_label, mode, condition);
}

#endif /* HAVE_doloop_end */
OpenPOWER on IntegriCloud