summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/config/alpha/alpha.h
blob: e9c3f6d2f684826e38668cb4dc14653c46aaf26e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
/* Definitions of target machine for GNU compiler, for DEC Alpha.
   Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* Write out the correct language type definition for the header files.  
   Unless we have assembler language, write out the symbols for C.  */
#define CPP_SPEC "\
%{!undef:\
%{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
%{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
%{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
%{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
%{mieee:-D_IEEE_FP }\
%{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
%(cpp_cpu) %(cpp_subtarget)"

#ifndef CPP_SUBTARGET_SPEC
#define CPP_SUBTARGET_SPEC ""
#endif

/* Set the spec to use for signed char.  The default tests the above macro
   but DEC's compiler can't handle the conditional in a "constant"
   operand.  */

#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"

#define WORD_SWITCH_TAKES_ARG(STR)		\
 (!strcmp (STR, "rpath") || !strcmp (STR, "include")	\
  || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
  || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
  || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
  || !strcmp (STR, "isystem"))

/* Print subsidiary information on the compiler version in use.  */
#define TARGET_VERSION

/* Run-time compilation parameters selecting different hardware subsets.  */

/* Which processor to schedule for. The cpu attribute defines a list that
   mirrors this list, so changes to alpha.md must be made at the same time.  */

enum processor_type
 {PROCESSOR_EV4,			/* 2106[46]{a,} */
  PROCESSOR_EV5,			/* 21164{a,pc,} */
  PROCESSOR_EV6};			/* 21264 */

extern enum processor_type alpha_cpu;

enum alpha_trap_precision
{
  ALPHA_TP_PROG,	/* No precision (default).  */
  ALPHA_TP_FUNC,      	/* Trap contained within originating function.  */
  ALPHA_TP_INSN		/* Instruction accuracy and code is resumption safe. */
};

enum alpha_fp_rounding_mode
{
  ALPHA_FPRM_NORM,	/* Normal rounding mode.  */
  ALPHA_FPRM_MINF,	/* Round towards minus-infinity.  */
  ALPHA_FPRM_CHOP,	/* Chopped rounding mode (towards 0). */
  ALPHA_FPRM_DYN	/* Dynamic rounding mode.  */
};

enum alpha_fp_trap_mode
{
  ALPHA_FPTM_N,		/* Normal trap mode. */
  ALPHA_FPTM_U,		/* Underflow traps enabled.  */
  ALPHA_FPTM_SU,	/* Software completion, w/underflow traps */
  ALPHA_FPTM_SUI	/* Software completion, w/underflow & inexact traps */
};

extern int target_flags;

extern enum alpha_trap_precision alpha_tp;
extern enum alpha_fp_rounding_mode alpha_fprm;
extern enum alpha_fp_trap_mode alpha_fptm;

/* This means that floating-point support exists in the target implementation
   of the Alpha architecture.  This is usually the default.  */
#define MASK_FP		(1 << 0)
#define TARGET_FP	(target_flags & MASK_FP)

/* This means that floating-point registers are allowed to be used.  Note
   that Alpha implementations without FP operations are required to
   provide the FP registers.  */

#define MASK_FPREGS	(1 << 1)
#define TARGET_FPREGS	(target_flags & MASK_FPREGS)

/* This means that gas is used to process the assembler file.  */

#define MASK_GAS	(1 << 2)
#define TARGET_GAS	(target_flags & MASK_GAS)

/* This means that we should mark procedures as IEEE conformant. */

#define MASK_IEEE_CONFORMANT (1 << 3)
#define TARGET_IEEE_CONFORMANT	(target_flags & MASK_IEEE_CONFORMANT)

/* This means we should be IEEE-compliant except for inexact.  */

#define MASK_IEEE	(1 << 4)
#define TARGET_IEEE	(target_flags & MASK_IEEE)

/* This means we should be fully IEEE-compliant.  */

#define MASK_IEEE_WITH_INEXACT (1 << 5)
#define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)

/* This means we must construct all constants rather than emitting
   them as literal data.  */

#define MASK_BUILD_CONSTANTS (1 << 6)
#define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)

/* This means we handle floating points in VAX F- (float)
   or G- (double) Format.  */

#define MASK_FLOAT_VAX	(1 << 7)
#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)

/* This means that the processor has byte and half word loads and stores
   (the BWX extension).  */

#define MASK_BWX	(1 << 8)
#define TARGET_BWX	(target_flags & MASK_BWX)

/* This means that the processor has the MAX extension.  */
#define MASK_MAX	(1 << 9)
#define TARGET_MAX	(target_flags & MASK_MAX)

/* This means that the processor has the FIX extension.  */
#define MASK_FIX	(1 << 10)
#define TARGET_FIX	(target_flags & MASK_FIX)

/* This means that the processor has the CIX extension.  */
#define MASK_CIX	(1 << 11)
#define TARGET_CIX	(target_flags & MASK_CIX)

/* This means that the processor is an EV5, EV56, or PCA56.  This is defined
   only in TARGET_CPU_DEFAULT.  */
#define MASK_CPU_EV5	(1 << 28)

/* Likewise for EV6.  */
#define MASK_CPU_EV6	(1 << 29)

/* This means we support the .arch directive in the assembler.  Only
   defined in TARGET_CPU_DEFAULT.  */
#define MASK_SUPPORT_ARCH (1 << 30)
#define TARGET_SUPPORT_ARCH	(target_flags & MASK_SUPPORT_ARCH)

/* These are for target os support and cannot be changed at runtime.  */
#ifndef TARGET_WINDOWS_NT
#define TARGET_WINDOWS_NT 0
#endif
#ifndef TARGET_OPEN_VMS
#define TARGET_OPEN_VMS 0
#endif

#ifndef TARGET_AS_CAN_SUBTRACT_LABELS
#define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
#endif
#ifndef TARGET_CAN_FAULT_IN_PROLOGUE
#define TARGET_CAN_FAULT_IN_PROLOGUE 0
#endif

/* Macro to define tables used to set the flags.
   This is a list in braces of pairs in braces,
   each pair being { "NAME", VALUE }
   where VALUE is the bits to set or minus the bits to clear.
   An empty string NAME is used to identify the default VALUE.  */

#define TARGET_SWITCHES							\
  { {"no-soft-float", MASK_FP, "Use hardware fp"},			\
    {"soft-float", - MASK_FP, "Do not use hardware fp"},		\
    {"fp-regs", MASK_FPREGS, "Use fp registers"},			\
    {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"},	\
    {"alpha-as", -MASK_GAS, "Do not assume GAS"},			\
    {"gas", MASK_GAS, "Assume GAS"},					\
    {"ieee-conformant", MASK_IEEE_CONFORMANT,				\
     "Request IEEE-conformant math library routines (OSF/1)"},		\
    {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT,				\
     "Emit IEEE-conformant code, without inexact exceptions"},		\
    {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT,	\
     "Emit IEEE-conformant code, with inexact exceptions"},		\
    {"build-constants", MASK_BUILD_CONSTANTS,				\
     "Do not emit complex integer constants to read-only memory"},	\
    {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"},			\
    {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"},		\
    {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"},	\
    {"no-bwx", -MASK_BWX, ""},						\
    {"max", MASK_MAX, "Emit code for the motion video ISA extension"},	\
    {"no-max", -MASK_MAX, ""},						\
    {"fix", MASK_FIX, "Emit code for the fp move and sqrt ISA extension"}, \
    {"no-fix", -MASK_FIX, ""},						\
    {"cix", MASK_CIX, "Emit code for the counting ISA extension"},	\
    {"no-cix", -MASK_CIX, ""},						\
    {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }

#define TARGET_DEFAULT MASK_FP|MASK_FPREGS

#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif

/* This macro is similar to `TARGET_SWITCHES' but defines names of
   command options that have values.  Its definition is an initializer
   with a subgrouping for each command option.

   Each subgrouping contains a string constant, that defines the fixed
   part of the option name, and the address of a variable.  The
   variable, type `char *', is set to the variable part of the given
   option if the fixed part matches.  The actual option name is made
   by appending `-m' to the specified name.

   Here is an example which defines `-mshort-data-NUMBER'.  If the
   given option is `-mshort-data-512', the variable `m88k_short_data'
   will be set to the string `"512"'.

	extern char *m88k_short_data;
	#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } }  */

extern const char *alpha_cpu_string;	/* For -mcpu= */
extern const char *alpha_fprm_string;	/* For -mfp-rounding-mode=[n|m|c|d] */
extern const char *alpha_fptm_string;	/* For -mfp-trap-mode=[n|u|su|sui]  */
extern const char *alpha_tp_string;	/* For -mtrap-precision=[p|f|i] */
extern const char *alpha_mlat_string;	/* For -mmemory-latency= */

#define TARGET_OPTIONS					\
{							\
  {"cpu=",		&alpha_cpu_string,		\
   "Generate code for a given CPU"},			\
  {"fp-rounding-mode=",	&alpha_fprm_string,		\
   "Control the generated fp rounding mode"},		\
  {"fp-trap-mode=",	&alpha_fptm_string,		\
   "Control the IEEE trap mode"},			\
  {"trap-precision=",	&alpha_tp_string,		\
   "Control the precision given to fp exceptions"},	\
  {"memory-latency=",	&alpha_mlat_string,		\
   "Tune expected memory latency"},			\
}

/* Attempt to describe CPU characteristics to the preprocessor.  */

/* Corresponding to amask... */
#define CPP_AM_BWX_SPEC	"-D__alpha_bwx__ -Acpu(bwx)"
#define CPP_AM_MAX_SPEC	"-D__alpha_max__ -Acpu(max)"
#define CPP_AM_FIX_SPEC	"-D__alpha_fix__ -Acpu(fix)"
#define CPP_AM_CIX_SPEC	"-D__alpha_cix__ -Acpu(cix)"

/* Corresponding to implver... */
#define CPP_IM_EV4_SPEC	"-D__alpha_ev4__ -Acpu(ev4)"
#define CPP_IM_EV5_SPEC	"-D__alpha_ev5__ -Acpu(ev5)"
#define CPP_IM_EV6_SPEC	"-D__alpha_ev6__ -Acpu(ev6)"

/* Common combinations.  */
#define CPP_CPU_EV4_SPEC	"%(cpp_im_ev4)"
#define CPP_CPU_EV5_SPEC	"%(cpp_im_ev5)"
#define CPP_CPU_EV56_SPEC	"%(cpp_im_ev5) %(cpp_am_bwx)"
#define CPP_CPU_PCA56_SPEC	"%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
#define CPP_CPU_EV6_SPEC	"%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"

#ifndef CPP_CPU_DEFAULT_SPEC
# if TARGET_CPU_DEFAULT & MASK_CPU_EV6
#  define CPP_CPU_DEFAULT_SPEC		CPP_CPU_EV6_SPEC
# else
#  if TARGET_CPU_DEFAULT & MASK_CPU_EV5
#   if TARGET_CPU_DEFAULT & MASK_MAX
#    define CPP_CPU_DEFAULT_SPEC	CPP_CPU_PCA56_SPEC
#   else
#    if TARGET_CPU_DEFAULT & MASK_BWX
#     define CPP_CPU_DEFAULT_SPEC	CPP_CPU_EV56_SPEC
#    else
#     define CPP_CPU_DEFAULT_SPEC	CPP_CPU_EV5_SPEC
#    endif
#   endif
#  else
#   define CPP_CPU_DEFAULT_SPEC		CPP_CPU_EV4_SPEC
#  endif
# endif
#endif /* CPP_CPU_DEFAULT_SPEC */

#ifndef CPP_CPU_SPEC
#define CPP_CPU_SPEC "\
%{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
%{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
%{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
%{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
%{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
%{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
%{!mcpu*:%(cpp_cpu_default) }}"
#endif

/* This macro defines names of additional specifications to put in the
   specs that can be used in various specifications like CC1_SPEC.  Its
   definition is an initializer with a subgrouping for each command option.

   Each subgrouping contains a string constant, that defines the
   specification name, and a string constant that used by the GNU CC driver
   program.

   Do not define this macro if it does not need to do anything.  */

#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif

#define EXTRA_SPECS				\
  { "cpp_am_bwx", CPP_AM_BWX_SPEC },		\
  { "cpp_am_max", CPP_AM_MAX_SPEC },		\
  { "cpp_am_fix", CPP_AM_FIX_SPEC },		\
  { "cpp_am_cix", CPP_AM_CIX_SPEC },		\
  { "cpp_im_ev4", CPP_IM_EV4_SPEC },		\
  { "cpp_im_ev5", CPP_IM_EV5_SPEC },		\
  { "cpp_im_ev6", CPP_IM_EV6_SPEC },		\
  { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC },		\
  { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC },		\
  { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC },	\
  { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC },	\
  { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC },		\
  { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC },	\
  { "cpp_cpu", CPP_CPU_SPEC },			\
  { "cpp_subtarget", CPP_SUBTARGET_SPEC },	\
  SUBTARGET_EXTRA_SPECS


/* Sometimes certain combinations of command options do not make sense
   on a particular target machine.  You can define a macro
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
   defined, is executed once just after all the command options have
   been parsed.

   On the Alpha, it is used to translate target-option strings into
   numeric values.  */

extern void override_options ();
#define OVERRIDE_OPTIONS override_options ()


/* Define this macro to change register usage conditional on target flags.

   On the Alpha, we use this to disable the floating-point registers when
   they don't exist.  */

#define CONDITIONAL_REGISTER_USAGE	\
  if (! TARGET_FPREGS)			\
    for (i = 32; i < 63; i++)		\
      fixed_regs[i] = call_used_regs[i] = 1;

/* Show we can debug even without a frame pointer.  */
#define CAN_DEBUG_WITHOUT_FP

/* target machine storage layout */

/* Define to enable software floating point emulation. */
#define REAL_ARITHMETIC

/* The following #defines are used when compiling the routines in
   libgcc1.c.  Since the Alpha calling conventions require single
   precision floats to be passed in the floating-point registers
   (rather than in the general registers) we have to build the
   libgcc1.c routines in such a way that they know the actual types
   of their formal arguments and the actual types of their return
   values.  Otherwise, gcc will generate calls to the libgcc1.c
   routines, passing arguments in the floating-point registers,
   but the libgcc1.c routines will expect their arguments on the
   stack (where the Alpha calling conventions require structs &
   unions to be passed).  */

#define FLOAT_VALUE_TYPE	double
#define INTIFY(FLOATVAL)	(FLOATVAL)
#define FLOATIFY(INTVAL)	(INTVAL)
#define FLOAT_ARG_TYPE		double

/* Define the size of `int'.  The default is the same as the word size.  */
#define INT_TYPE_SIZE 32

/* Define the size of `long long'.  The default is the twice the word size.  */
#define LONG_LONG_TYPE_SIZE 64

/* The two floating-point formats we support are S-floating, which is
   4 bytes, and T-floating, which is 8 bytes.  `float' is S and `double'
   and `long double' are T.  */

#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64

#define	WCHAR_TYPE "unsigned int"
#define	WCHAR_TYPE_SIZE 32

/* Define this macro if it is advisable to hold scalars in registers
   in a wider mode than that declared by the program.  In such cases, 
   the value is constrained to be within the bounds of the declared
   type, but kept valid in the wider mode.  The signedness of the
   extension may differ from that of the type.

   For Alpha, we always store objects in a full register.  32-bit objects
   are always sign-extended, but smaller objects retain their signedness.  */

#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
  if (GET_MODE_CLASS (MODE) == MODE_INT		\
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
    {						\
      if ((MODE) == SImode)			\
	(UNSIGNEDP) = 0;			\
      (MODE) = DImode;				\
    }

/* Define this if function arguments should also be promoted using the above
   procedure.  */

#define PROMOTE_FUNCTION_ARGS

/* Likewise, if the function return value is promoted.  */

#define PROMOTE_FUNCTION_RETURN

/* Define this if most significant bit is lowest numbered
   in instructions that operate on numbered bit-fields.

   There are no such instructions on the Alpha, but the documentation
   is little endian.  */
#define BITS_BIG_ENDIAN 0

/* Define this if most significant byte of a word is the lowest numbered.
   This is false on the Alpha.  */
#define BYTES_BIG_ENDIAN 0

/* Define this if most significant word of a multiword number is lowest
   numbered.

   For Alpha we can decide arbitrarily since there are no machine instructions
   for them.  Might as well be consistent with bytes. */
#define WORDS_BIG_ENDIAN 0

/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8

/* Width in bits of a "word", which is the contents of a machine register.
   Note that this is not necessarily the width of data type `int';
   if using 16-bit ints on a 68000, this would still be 32.
   But on a machine with 16-bit registers, this would be 16.  */
#define BITS_PER_WORD 64

/* Width of a word, in units (bytes).  */
#define UNITS_PER_WORD 8

/* Width in bits of a pointer.
   See also the macro `Pmode' defined below.  */
#define POINTER_SIZE 64

/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
#define PARM_BOUNDARY 64

/* Boundary (in *bits*) on which stack pointer should be aligned.  */
#define STACK_BOUNDARY 64

/* Allocation boundary (in *bits*) for the code of a function.  */
#define FUNCTION_BOUNDARY 256

/* Alignment of field after `int : 0' in a structure.  */
#define EMPTY_FIELD_BOUNDARY 64

/* Every structure's size must be a multiple of this.  */
#define STRUCTURE_SIZE_BOUNDARY 8

/* A bitfield declared as `int' forces `int' alignment for the struct.  */
#define PCC_BITFIELD_TYPE_MATTERS 1

/* Align loop starts for optimal branching.  

   ??? Kludge this and the next macro for the moment by not doing anything if
   we don't optimize and also if we are writing ECOFF symbols to work around
   a bug in DEC's assembler. */

#define LOOP_ALIGN(LABEL) \
  (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)

/* This is how to align an instruction for optimal branching.  On
   Alpha we'll get better performance by aligning on an octaword
   boundary.  */

#define LABEL_ALIGN_AFTER_BARRIER(FILE)	\
  (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)

/* No data type wants to be aligned rounder than this.  */
#define BIGGEST_ALIGNMENT 64

/* For atomic access to objects, must have at least 32-bit alignment
   unless the machine has byte operations.  */
#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)

/* Align all constants and variables to at least a word boundary so
   we can pick up pieces of them faster.  */
/* ??? Only if block-move stuff knows about different source/destination
   alignment.  */
#if 0
#define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
#define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
#endif

/* Set this non-zero if move instructions will actually fail to work
   when given unaligned data.

   Since we get an error message when we do one, call them invalid.  */

#define STRICT_ALIGNMENT 1

/* Set this non-zero if unaligned move instructions are extremely slow.

   On the Alpha, they trap.  */

#define SLOW_UNALIGNED_ACCESS 1

/* Standard register usage.  */

/* Number of actual hardware registers.
   The hardware registers are assigned numbers for the compiler
   from 0 to just below FIRST_PSEUDO_REGISTER.
   All registers that the compiler knows about must be given numbers,
   even those that are not normally considered general registers.

   We define all 32 integer registers, even though $31 is always zero,
   and all 32 floating-point registers, even though $f31 is also
   always zero.  We do not bother defining the FP status register and
   there are no other registers. 

   Since $31 is always zero, we will use register number 31 as the
   argument pointer.  It will never appear in the generated code
   because we will always be eliminating it in favor of the stack
   pointer or hardware frame pointer.

   Likewise, we use $f31 for the frame pointer, which will always
   be eliminated in favor of the hardware frame pointer or the
   stack pointer.  */

#define FIRST_PSEUDO_REGISTER 64

/* 1 for registers that have pervasive standard uses
   and are not available for the register allocator.  */

#define FIXED_REGISTERS  \
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }

/* 1 for registers not available across function calls.
   These must include the FIXED_REGISTERS and also any
   registers that can be used without being saved.
   The latter must include the registers where values are returned
   and the register where structure-value addresses are passed.
   Aside from that, you can include as many other registers as you like.  */
#define CALL_USED_REGISTERS  \
 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

/* List the order in which to allocate registers.  Each register must be
   listed once, even those in FIXED_REGISTERS.

   We allocate in the following order:
   $f10-$f15		(nonsaved floating-point register)
   $f22-$f30		(likewise)
   $f21-$f16		(likewise, but input args)
   $f0			(nonsaved, but return value)
   $f1			(nonsaved, but immediate before saved)
   $f2-$f9		(saved floating-point registers)
   $1-$8		(nonsaved integer registers)
   $22-$25		(likewise)
   $28			(likewise)
   $0			(likewise, but return value)
   $21-$16		(likewise, but input args)
   $27			(procedure value in OSF, nonsaved in NT)
   $9-$14		(saved integer registers)
   $26			(return PC)
   $15			(frame pointer)
   $29			(global pointer)
   $30, $31, $f31	(stack pointer and always zero/ap & fp)  */

#define REG_ALLOC_ORDER		\
  {42, 43, 44, 45, 46, 47,		\
   54, 55, 56, 57, 58, 59, 60, 61, 62,	\
   53, 52, 51, 50, 49, 48,		\
   32, 33,				\
   34, 35, 36, 37, 38, 39, 40, 41,	\
   1, 2, 3, 4, 5, 6, 7, 8,		\
   22, 23, 24, 25,			\
   28,					\
   0,					\
   21, 20, 19, 18, 17, 16,		\
   27,					\
   9, 10, 11, 12, 13, 14,		\
   26,					\
   15,					\
   29,					\
   30, 31, 63 }

/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.
   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers.  */

#define HARD_REGNO_NREGS(REGNO, MODE)   \
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
   On Alpha, the integer registers can hold any mode.  The floating-point
   registers can hold 32-bit and 64-bit integers as well, but not 16-bit
   or 8-bit values.  */

#define HARD_REGNO_MODE_OK(REGNO, MODE) 				\
  ((REGNO) >= 32 && (REGNO) <= 62 					\
   ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4	\
   : 1)

/* A C expression that is nonzero if a value of mode
   MODE1 is accessible in mode MODE2 without copying.

   This asymmetric test is true when MODE1 could be put
   in an FP register but MODE2 could not.  */

#define MODES_TIEABLE_P(MODE1, MODE2) 				\
  (HARD_REGNO_MODE_OK (32, (MODE1))				\
   ? HARD_REGNO_MODE_OK (32, (MODE2))				\
   : 1)

/* Specify the registers used for certain standard purposes.
   The values of these macros are register numbers.  */

/* Alpha pc isn't overloaded on a register that the compiler knows about.  */
/* #define PC_REGNUM  */

/* Register to use for pushing function arguments.  */
#define STACK_POINTER_REGNUM 30

/* Base register for access to local variables of the function.  */
#define HARD_FRAME_POINTER_REGNUM 15

/* Value should be nonzero if functions must have frame pointers.
   Zero means the frame pointer need not be set up (and parms
   may be accessed via the stack pointer) in functions that seem suitable.
   This is computed in `reload', in reload1.c.  */
#define FRAME_POINTER_REQUIRED 0

/* Base register for access to arguments of the function.  */
#define ARG_POINTER_REGNUM 31

/* Base register for access to local variables of function.  */
#define FRAME_POINTER_REGNUM 63

/* Register in which static-chain is passed to a function. 

   For the Alpha, this is based on an example; the calling sequence
   doesn't seem to specify this.  */
#define STATIC_CHAIN_REGNUM 1

/* Register in which address to store a structure value
   arrives in the function.  On the Alpha, the address is passed
   as a hidden argument.  */
#define STRUCT_VALUE 0

/* Define the classes of registers for register constraints in the
   machine description.  Also define ranges of constants.

   One of the classes must always be named ALL_REGS and include all hard regs.
   If there is more than one class, another class must be named NO_REGS
   and contain no registers.

   The name GENERAL_REGS must be the name of a class (or an alias for
   another name such as ALL_REGS).  This is the class of registers
   that is allowed by "g" or "r" in a register constraint.
   Also, registers outside this class are allocated only when
   instructions express preferences for them.

   The classes must be numbered in nondecreasing order; that is,
   a larger-numbered class must never be contained completely
   in a smaller-numbered class.

   For any two classes, it is very desirable that there be another
   class that represents their union.  */
   
enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
		 LIM_REG_CLASSES };

#define N_REG_CLASSES (int) LIM_REG_CLASSES

/* Give names of register classes as strings for dump file.   */

#define REG_CLASS_NAMES				\
 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }

/* Define which registers fit in which classes.
   This is an initializer for a vector of HARD_REG_SET
   of length N_REG_CLASSES.  */

#define REG_CLASS_CONTENTS	\
  { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }

/* The same information, inverted:
   Return the class number of the smallest class containing
   reg number REGNO.  This could be a conditional expression
   or could index an array.  */

#define REGNO_REG_CLASS(REGNO) \
 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)

/* The class value for index registers, and the one for base regs.  */
#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS GENERAL_REGS

/* Get reg_class from a letter such as appears in the machine description.  */

#define REG_CLASS_FROM_LETTER(C)	\
 ((C) == 'f' ? FLOAT_REGS : NO_REGS)

/* Define this macro to change register usage conditional on target flags.  */
/* #define CONDITIONAL_REGISTER_USAGE  */

/* The letters I, J, K, L, M, N, O, and P in a register constraint string
   can be used to stand for particular ranges of immediate operands.
   This macro defines what the ranges are.
   C is the letter, and VALUE is a constant value.
   Return 1 if VALUE is in the range specified by C.

   For Alpha:
   `I' is used for the range of constants most insns can contain.
   `J' is the constant zero.
   `K' is used for the constant in an LDA insn.
   `L' is used for the constant in a LDAH insn.
   `M' is used for the constants that can be AND'ed with using a ZAP insn.
   `N' is used for complemented 8-bit constants.
   `O' is used for negated 8-bit constants.
   `P' is used for the constants 1, 2 and 3.  */

#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
  ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100	\
   : (C) == 'J' ? (VALUE) == 0					\
   : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\
   : (C) == 'L' ? (((VALUE) & 0xffff) == 0			\
                  && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
   : (C) == 'M' ? zap_mask (VALUE)				\
   : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100	\
   : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100	\
   : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3	\
   : 0)

/* Similar, but for floating or large integer constants, and defining letters
   G and H.   Here VALUE is the CONST_DOUBLE rtx itself.

   For Alpha, `G' is the floating-point constant zero.  `H' is a CONST_DOUBLE
   that is the operand of a ZAP insn.  */

#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  			\
  ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT	\
		 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))		\
   : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode				\
		   && zap_mask (CONST_DOUBLE_LOW (VALUE))		\
		   && zap_mask (CONST_DOUBLE_HIGH (VALUE)))		\
   : 0)

/* Optional extra constraints for this machine.

   For the Alpha, `Q' means that this is a memory operand but not a
   reference to an unaligned location.

   `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
   function.

   'S' is a 6-bit constant (valid for a shift insn).  */

#define EXTRA_CONSTRAINT(OP, C)				\
  ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode)			\
   : (C) == 'R' ? current_file_function_operand (OP, Pmode)		\
   : (C) == 'S' ? (GET_CODE (OP) == CONST_INT				\
		   && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64)	\
   : 0)
extern int normal_memory_operand ();

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.

   On the Alpha, all constants except zero go into a floating-point
   register via memory.  */

#define PREFERRED_RELOAD_CLASS(X, CLASS)		\
  (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
   ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
   : (CLASS))

/* Loading and storing HImode or QImode values to and from memory
   usually requires a scratch register.  The exceptions are loading
   QImode and HImode from an aligned address to a general register
   unless byte instructions are permitted.
   We also cannot load an unaligned address or a paradoxical SUBREG into an
   FP register.   */

#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN)			\
(((GET_CODE (IN) == MEM 						\
   || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER)	\
   || (GET_CODE (IN) == SUBREG						\
       && (GET_CODE (SUBREG_REG (IN)) == MEM				\
	   || (GET_CODE (SUBREG_REG (IN)) == REG			\
	       && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER))))	\
  && (((CLASS) == FLOAT_REGS						\
       && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode))	\
      || (((MODE) == QImode || (MODE) == HImode)			\
	  && ! TARGET_BWX && ! aligned_memory_operand (IN, MODE))))	\
 ? GENERAL_REGS								\
 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM			\
    && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS			\
 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG			\
    && (GET_MODE_SIZE (GET_MODE (IN))					\
	> GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS	\
 : NO_REGS)

#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT)			\
(((GET_CODE (OUT) == MEM 						\
   || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER)	\
   || (GET_CODE (OUT) == SUBREG						\
       && (GET_CODE (SUBREG_REG (OUT)) == MEM				\
	   || (GET_CODE (SUBREG_REG (OUT)) == REG			\
	       && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
  && ((((MODE) == HImode || (MODE) == QImode)				\
       && (! TARGET_BWX || (CLASS) == FLOAT_REGS))			\
      || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))			\
 ? GENERAL_REGS								\
 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM			\
    && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS			\
 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG			\
    && (GET_MODE_SIZE (GET_MODE (OUT))					\
	> GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS	\
 : NO_REGS)

/* If we are copying between general and FP registers, we need a memory
   location unless the FIX extension is available.  */

#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
 (! TARGET_FIX && (CLASS1) != (CLASS2))

/* Specify the mode to be used for memory when a secondary memory
   location is needed.  If MODE is floating-point, use it.  Otherwise,
   widen to a word like the default.  This is needed because we always
   store integers in FP registers in quadword format.  This whole
   area is very tricky! */
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)		\
  (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE)		\
   : GET_MODE_SIZE (MODE) >= 4 ? (MODE)			\
   : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))

/* Return the maximum number of consecutive registers
   needed to represent mode MODE in a register of class CLASS.  */

#define CLASS_MAX_NREGS(CLASS, MODE)				\
 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* If defined, gives a class of registers that cannot be used as the
   operand of a SUBREG that changes the size of the object.  */

#define CLASS_CANNOT_CHANGE_SIZE	FLOAT_REGS

/* Define the cost of moving between registers of various classes.  Moving
   between FLOAT_REGS and anything else except float regs is expensive. 
   In fact, we make it quite expensive because we really don't want to
   do these moves unless it is clearly worth it.  Optimizations may
   reduce the impact of not being able to allocate a pseudo to a
   hard register.  */

#define REGISTER_MOVE_COST(CLASS1, CLASS2)		\
  (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS)	\
   ? 2							\
   : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)

/* A C expressions returning the cost of moving data of MODE from a register to
   or from memory.

   On the Alpha, bump this up a bit.  */

extern int alpha_memory_latency;
#define MEMORY_MOVE_COST(MODE,CLASS,IN)  (2*alpha_memory_latency)

/* Provide the cost of a branch.  Exact meaning under development.  */
#define BRANCH_COST 5

/* Adjust the cost of dependencies.  */

#define ADJUST_COST(INSN,LINK,DEP,COST) \
  (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)

/* Stack layout; function entry, exit and calling.  */

/* Define this if pushing a word on the stack
   makes the stack pointer a smaller address.  */
#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
   is at the high-address end of the local variables;
   that is, each additional local variable allocated
   goes at a more negative offset in the frame.  */
/* #define FRAME_GROWS_DOWNWARD */

/* Offset within stack frame to start allocating local variables at.
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
   first local allocated.  Otherwise, it is the offset to the BEGINNING
   of the first local allocated.  */

#define STARTING_FRAME_OFFSET 0

/* If we generate an insn to push BYTES bytes,
   this says how many the stack pointer really advances by.
   On Alpha, don't define this because there are no push insns.  */
/*  #define PUSH_ROUNDING(BYTES) */

/* Define this to be nonzero if stack checking is built into the ABI.  */
#define STACK_CHECK_BUILTIN 1

/* Define this if the maximum size of all the outgoing args is to be
   accumulated and pushed during the prologue.  The amount can be
   found in the variable current_function_outgoing_args_size.  */
#define ACCUMULATE_OUTGOING_ARGS

/* Offset of first parameter from the argument pointer register value.  */

#define FIRST_PARM_OFFSET(FNDECL) 0

/* Definitions for register eliminations.

   We have two registers that can be eliminated on the Alpha.  First, the
   frame pointer register can often be eliminated in favor of the stack
   pointer register.  Secondly, the argument pointer register can always be
   eliminated; it is replaced with either the stack or frame pointer. */

/* This is an array of structures.  Each structure initializes one pair
   of eliminable registers.  The "from" register number is given first,
   followed by "to".  Eliminations of the same "from" register are listed
   in order of preference.  */

#define ELIMINABLE_REGS				     \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}

/* Given FROM and TO register numbers, say whether this elimination is allowed.
   Frame pointer elimination is automatically handled.

   All eliminations are valid since the cases where FP can't be
   eliminated are already handled.  */

#define CAN_ELIMINATE(FROM, TO) 1

/* Round up to a multiple of 16 bytes.  */
#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)

/* Define the offset between two registers, one to be eliminated, and the other
   its replacement, at the start of a routine.  */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
{ if ((FROM) == FRAME_POINTER_REGNUM)					\
    (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size)	\
		+ alpha_sa_size ());					\
  else if ((FROM) == ARG_POINTER_REGNUM)				\
    (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size)	\
		+ alpha_sa_size ()					\
		+ (ALPHA_ROUND (get_frame_size ()			\
			       + current_function_pretend_args_size)	\
		   - current_function_pretend_args_size));		\
}

/* Define this if stack space is still allocated for a parameter passed
   in a register.  */
/* #define REG_PARM_STACK_SPACE */

/* Value is the number of bytes of arguments automatically
   popped when returning from a subroutine call.
   FUNDECL is the declaration node of the function (as a tree),
   FUNTYPE is the data type of the function (as a tree),
   or for a library call it is an identifier node for the subroutine name.
   SIZE is the number of bytes of arguments passed on the stack.  */

#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0

/* Define how to find the value returned by a function.
   VALTYPE is the data type of the value (as a tree).
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
   otherwise, FUNC is 0.

   On Alpha the value is found in $0 for integer functions and
   $f0 for floating-point functions.  */

#define FUNCTION_VALUE(VALTYPE, FUNC)				\
  gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE)			\
	         && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD)	\
	        || POINTER_TYPE_P (VALTYPE))			\
	       ? word_mode : TYPE_MODE (VALTYPE),		\
	       ((TARGET_FPREGS					\
	         && (TREE_CODE (VALTYPE) == REAL_TYPE		\
		     || TREE_CODE (VALTYPE) == COMPLEX_TYPE))	\
	        ? 32 : 0))

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  */

#define LIBCALL_VALUE(MODE)					\
   gen_rtx_REG (MODE,						\
	        (TARGET_FPREGS					\
	         && (GET_MODE_CLASS (MODE) == MODE_FLOAT	\
		     || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
	         ? 32 : 0))

/* The definition of this macro implies that there are cases where
   a scalar value cannot be returned in registers.

   For the Alpha, any structure or union type is returned in memory, as
   are integers whose size is larger than 64 bits.  */

#define RETURN_IN_MEMORY(TYPE) \
  (TYPE_MODE (TYPE) == BLKmode \
   || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))

/* 1 if N is a possible register number for a function value
   as seen by the caller.  */

#define FUNCTION_VALUE_REGNO_P(N)  \
  ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)

/* 1 if N is a possible register number for function argument passing.
   On Alpha, these are $16-$21 and $f16-$f21.  */

#define FUNCTION_ARG_REGNO_P(N) \
  (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))

/* Define a data type for recording info about an argument list
   during the scan of that argument list.  This data type should
   hold all necessary information about the function itself
   and about the args processed so far, enough to enable macros
   such as FUNCTION_ARG to determine where the next arg should go.

   On Alpha, this is a single integer, which is a number of words
   of arguments scanned so far.
   Thus 6 or more means all following args should go on the stack.  */

#define CUMULATIVE_ARGS int

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.  */

#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)  (CUM) = 0

/* Define intermediate macro to compute the size (in registers) of an argument
   for the Alpha.  */

#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED)				\
((MODE) != BLKmode							\
 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD 	\
 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
  if (MUST_PASS_IN_STACK (MODE, TYPE))					\
    (CUM) = 6;								\
  else									\
    (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).

   On Alpha the first 6 words of args are normally in registers
   and the rest are pushed.  */

#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)	\
((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE)	\
 ? gen_rtx(REG, (MODE),				\
	   (CUM) + 16 + ((TARGET_FPREGS		\
			  && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT  \
			      || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
			 * 32))			\
 : 0)

/* Specify the padding direction of arguments.

   On the Alpha, we must pad upwards in order to be able to pass args in
   registers.  */

#define FUNCTION_ARG_PADDING(MODE, TYPE)	upward

/* For an arg passed partly in registers and partly in memory,
   this is the number of registers used.
   For args passed entirely in registers or entirely in memory, zero.  */

#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED)	\
((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED)	\
 ? 6 - (CUM) : 0)

/* Perform any needed actions needed for a function that is receiving a
   variable number of arguments. 

   CUM is as above.

   MODE and TYPE are the mode and type of the current parameter.

   PRETEND_SIZE is a variable that should be set to the amount of stack
   that must be pushed by the prolog to pretend that our caller pushed
   it.

   Normally, this macro will push all remaining incoming registers on the
   stack and set PRETEND_SIZE to the length of the registers pushed. 

   On the Alpha, we allocate space for all 12 arg registers, but only
   push those that are remaining.

   However, if NO registers need to be saved, don't allocate any space.
   This is not only because we won't need the space, but because AP includes
   the current_pretend_args_size and we don't want to mess up any
   ap-relative addresses already made.

   If we are not to use the floating-point registers, save the integer
   registers where we would put the floating-point registers.  This is
   not the most efficient way to implement varargs with just one register
   class, but it isn't worth doing anything more efficient in this rare
   case.  */
   

#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL)	\
{ if ((CUM) < 6)							\
    {									\
      if (! (NO_RTL))							\
	{								\
	  move_block_from_reg						\
	    (16 + CUM,							\
	     gen_rtx (MEM, BLKmode,					\
		      plus_constant (virtual_incoming_args_rtx,		\
				     ((CUM) + 6)* UNITS_PER_WORD)),	\
	     6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD);			\
	  move_block_from_reg						\
	    (16 + (TARGET_FPREGS ? 32 : 0) + CUM,			\
	     gen_rtx (MEM, BLKmode,					\
		      plus_constant (virtual_incoming_args_rtx,		\
				     (CUM) * UNITS_PER_WORD)),		\
	     6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD);			\
	   emit_insn (gen_blockage ());					\
	 }								\
      PRETEND_SIZE = 12 * UNITS_PER_WORD;				\
    }									\
}

/* Try to output insns to set TARGET equal to the constant C if it can be
   done in less than N insns.  Do all computations in MODE.  Returns the place
   where the output has been placed if it can be done and the insns have been
   emitted.  If it would take more than N insns, zero is returned and no
   insns and emitted.  */
extern struct rtx_def *alpha_emit_set_const ();
extern struct rtx_def *alpha_emit_set_long_const ();
extern struct rtx_def *alpha_emit_conditional_branch ();
extern struct rtx_def *alpha_emit_conditional_move ();

/* Generate necessary RTL for __builtin_saveregs().
   ARGLIST is the argument list; see expr.c.  */
extern struct rtx_def *alpha_builtin_saveregs ();
#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)

/* Define the information needed to generate branch and scc insns.  This is
   stored from the compare operation.  Note that we can't use "rtx" here
   since it hasn't been defined!  */

extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
extern int alpha_compare_fp_p;

/* Define the information needed to modify the epilogue for EH.  */

extern struct rtx_def *alpha_eh_epilogue_sp_ofs;

/* Make (or fake) .linkage entry for function call.
   IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.  */
extern void alpha_need_linkage ();

/* This macro defines the start of an assembly comment.  */

#define ASM_COMMENT_START " #"

/* This macro produces the initial definition of a function.  */

#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
  alpha_start_function(FILE,NAME,DECL);
extern void alpha_start_function ();

/* This macro closes up a function definition for the assembler.  */

#define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
  alpha_end_function(FILE,NAME,DECL)
extern void alpha_end_function ();
   
/* This macro notes the end of the prologue.  */

#define FUNCTION_END_PROLOGUE(FILE)  output_end_prologue (FILE)
extern void output_end_prologue ();

/* Output any profiling code before the prologue.  */

#define PROFILE_BEFORE_PROLOGUE 1

/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  Under OSF/1, profiling is enabled
   by simply passing -pg to the assembler and linker.  */

#define FUNCTION_PROFILER(FILE, LABELNO)

/* Output assembler code to FILE to initialize this source file's
   basic block profiling info, if that has not already been done.
   This assumes that __bb_init_func doesn't garble a1-a5. */

#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO)			\
    do {							\
	ASM_OUTPUT_REG_PUSH (FILE, 16);				\
	fputs ("\tlda $16,$PBX32\n", (FILE));			\
	fputs ("\tldq $26,0($16)\n", (FILE));			\
	fputs ("\tbne $26,1f\n", (FILE));			\
	fputs ("\tlda $27,__bb_init_func\n", (FILE));		\
	fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE));	\
	fputs ("\tldgp $29,0($26)\n", (FILE));			\
	fputs ("1:\n", (FILE));					\
	ASM_OUTPUT_REG_POP (FILE, 16);				\
    } while (0);

/* Output assembler code to FILE to increment the entry-count for
   the BLOCKNO'th basic block in this source file.  */

#define BLOCK_PROFILER(FILE, BLOCKNO)				\
    do {							\
	int blockn = (BLOCKNO);					\
	fputs ("\tsubq $30,16,$30\n", (FILE));			\
	fputs ("\tstq $26,0($30)\n", (FILE));			\
	fputs ("\tstq $27,8($30)\n", (FILE));			\
	fputs ("\tlda $26,$PBX34\n", (FILE));			\
	fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn);	\
	fputs ("\taddq $27,1,$27\n", (FILE));			\
	fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn);	\
	fputs ("\tldq $26,0($30)\n", (FILE));			\
	fputs ("\tldq $27,8($30)\n", (FILE));			\
	fputs ("\taddq $30,16,$30\n", (FILE));			\
    } while (0)


/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in
   functions that have frame pointers.
   No definition is equivalent to always zero.  */

#define EXIT_IGNORE_STACK 1

/* Output assembler code for a block containing the constant parts
   of a trampoline, leaving space for the variable parts.

   The trampoline should set the static chain pointer to value placed
   into the trampoline and should branch to the specified routine.  
   Note that $27 has been set to the address of the trampoline, so we can
   use it for addressability of the two data items.  Trampolines are always
   aligned to FUNCTION_BOUNDARY, which is 64 bits.  */

#define TRAMPOLINE_TEMPLATE(FILE)		\
do {						\
  fprintf (FILE, "\tldq $1,24($27)\n");		\
  fprintf (FILE, "\tldq $27,16($27)\n");	\
  fprintf (FILE, "\tjmp $31,($27),0\n");	\
  fprintf (FILE, "\tnop\n");			\
  fprintf (FILE, "\t.quad 0,0\n");		\
} while (0)

/* Section in which to place the trampoline.  On Alpha, instructions
   may only be placed in a text segment.  */

#define TRAMPOLINE_SECTION text_section

/* Length in units of the trampoline for entering a nested function.  */

#define TRAMPOLINE_SIZE    32

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */

#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
  alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
extern void alpha_initialize_trampoline ();

/* A C expression whose value is RTL representing the value of the return
   address for the frame COUNT steps up from the current frame.
   FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
   the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.  */

#define RETURN_ADDR_RTX  alpha_return_addr
extern struct rtx_def *alpha_return_addr ();

/* Before the prologue, RA lives in $26. */
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, 26)

/* Initialize data used by insn expanders.  This is called from insn_emit,
   once for every function before code is generated.  */

#define INIT_EXPANDERS  alpha_init_expanders ()
extern void alpha_init_expanders ();

/* Addressing modes, and classification of registers for them.  */

/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */

/* #define HAVE_PRE_DECREMENT 0 */
/* #define HAVE_PRE_INCREMENT 0 */

/* Macros to check register numbers against specific register classes.  */

/* These assume that REGNO is a hard or pseudo reg number.
   They give nonzero only if REGNO is a hard reg of the suitable class
   or a pseudo reg currently allocated to a suitable hard reg.
   Since they use reg_renumber, they are safe only once reg_renumber
   has been allocated, which happens in local-alloc.c.  */

#define REGNO_OK_FOR_INDEX_P(REGNO) 0
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32  \
 || (REGNO) == 63 || reg_renumber[REGNO] == 63)

/* Maximum number of registers that can appear in a valid memory address.  */
#define MAX_REGS_PER_ADDRESS 1

/* Recognize any constant value that is a valid address.  For the Alpha,
   there are only constants none since we want to use LDA to load any
   symbolic addresses into registers.  */

#define CONSTANT_ADDRESS_P(X)   \
  (GET_CODE (X) == CONST_INT	\
   && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)

/* Include all constant integers and constant doubles, but not
   floating-point, except for floating-point zero.  */

#define LEGITIMATE_CONSTANT_P(X)  		\
  (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT	\
   || (X) == CONST0_RTX (GET_MODE (X)))

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
   and check its validity for a certain class.
   We have two alternate definitions for each of them.
   The usual definition accepts all pseudo regs; the other rejects
   them unless they have been allocated suitable hard regs.
   The symbol REG_OK_STRICT causes the latter definition to be used.

   Most source files want to accept pseudo regs in the hope that
   they will get allocated to the class that the insn wants them to be in.
   Source files for reload pass need to be strict.
   After reload, it makes no difference, since pseudo regs have
   been eliminated by then.  */

#ifndef REG_OK_STRICT

/* Nonzero if X is a hard reg that can be used as an index
   or if it is a pseudo reg.  */
#define REG_OK_FOR_INDEX_P(X) 0

/* Nonzero if X is a hard reg that can be used as a base reg
   or if it is a pseudo reg.  */
#define REG_OK_FOR_BASE_P(X)  \
  (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)

/* ??? Nonzero if X is the frame pointer, or some virtual register
   that may eliminate to the frame pointer.  These will be allowed to
   have offsets greater than 32K.  This is done because register
   elimination offsets will change the hi/lo split, and if we split
   before reload, we will require additional instructions.   */
#define REG_OK_FP_BASE_P(X)			\
  (REGNO (X) == 31 || REGNO (X) == 63		\
   || (REGNO (X) >= FIRST_PSEUDO_REGISTER	\
       && REGNO (X) < LAST_VIRTUAL_REGISTER))

#else

/* Nonzero if X is a hard reg that can be used as an index.  */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))

/* Nonzero if X is a hard reg that can be used as a base reg.  */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))

#define REG_OK_FP_BASE_P(X) 0

#endif

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address. 

   For Alpha, we have either a constant address or the sum of a register
   and a constant address, or just a register.  For DImode, any of those
   forms can be surrounded with an AND that clear the low-order three bits;
   this is an "unaligned" access.

   First define the basic valid address.  */

#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR)			\
{									\
  rtx tmp = (X);							\
  if (GET_CODE (tmp) == SUBREG						\
      && (GET_MODE_SIZE (GET_MODE (tmp))				\
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp)))))		\
    tmp = SUBREG_REG (tmp);						\
  if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp))				\
    goto ADDR;								\
  if (CONSTANT_ADDRESS_P (X))						\
    goto ADDR;								\
  if (GET_CODE (X) == PLUS)						\
    {									\
      tmp = XEXP (X, 0);						\
      if (GET_CODE (tmp) == SUBREG					\
          && (GET_MODE_SIZE (GET_MODE (tmp))				\
	      < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp)))))		\
        tmp = SUBREG_REG (tmp);						\
      if (REG_P (tmp))							\
	{								\
	  if (REG_OK_FP_BASE_P (tmp)					\
	      && GET_CODE (XEXP (X, 1)) == CONST_INT)			\
	    goto ADDR;							\
	  if (REG_OK_FOR_BASE_P (tmp)					\
	      && CONSTANT_ADDRESS_P (XEXP (X, 1)))			\
	    goto ADDR;							\
	}								\
    }									\
}

/* Now accept the simple address, or, for DImode only, an AND of a simple
   address that turns off the low three bits.  */

#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
  if ((MODE) == DImode				\
      && GET_CODE (X) == AND			\
      && GET_CODE (XEXP (X, 1)) == CONST_INT	\
      && INTVAL (XEXP (X, 1)) == -8)		\
    GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
}

/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This macro is used in only one place: `memory_address' in explow.c.

   OLDX is the address as it was before break_out_memory_refs was called.
   In some cases it is useful to look at this to decide what needs to be done.

   MODE and WIN are passed so that this macro can use
   GO_IF_LEGITIMATE_ADDRESS.

   It is always safe for this macro to do nothing.  It exists to recognize
   opportunities to optimize the output. 

   For the Alpha, there are three cases we handle:

   (1) If the address is (plus reg const_int) and the CONST_INT is not a
       valid offset, compute the high part of the constant and add it to the
       register.  Then our address is (plus temp low-part-const).
   (2) If the address is (const (plus FOO const_int)), find the low-order
       part of the CONST_INT.  Then load FOO plus any high-order part of the
       CONST_INT into a register.  Our address is (plus reg low-part-const).
       This is done to reduce the number of GOT entries.
   (3) If we have a (plus reg const), emit the load as in (2), then add
       the two registers, and finally generate (plus reg low-part-const) as
       our address.  */

#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG	\
      && GET_CODE (XEXP (X, 1)) == CONST_INT			\
      && ! CONSTANT_ADDRESS_P (XEXP (X, 1)))			\
    {								\
      HOST_WIDE_INT val = INTVAL (XEXP (X, 1));			\
      HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
      HOST_WIDE_INT highpart = val - lowpart;			\
      rtx high = GEN_INT (highpart);				\
      rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0),	\
			       high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
								\
      (X) = plus_constant (temp, lowpart);			\
      goto WIN;							\
    }								\
  else if (GET_CODE (X) == CONST				\
	   && GET_CODE (XEXP (X, 0)) == PLUS			\
	   && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)	\
    {								\
      HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1));	\
      HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
      HOST_WIDE_INT highpart = val - lowpart;			\
      rtx high = XEXP (XEXP (X, 0), 0);				\
								\
      if (highpart)						\
	high = plus_constant (high, highpart);			\
								\
      (X) = plus_constant (force_reg (Pmode, high), lowpart);	\
      goto WIN;							\
    }								\
  else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
	   && GET_CODE (XEXP (X, 1)) == CONST			\
	   && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS		\
	   && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
    {								\
      HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
      HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
      HOST_WIDE_INT highpart = val - lowpart;			\
      rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0);		\
								\
      if (highpart)						\
	high = plus_constant (high, highpart);			\
								\
      high = expand_binop (Pmode, add_optab, XEXP (X, 0),	\
			   force_reg (Pmode, high),		\
			   high, 1, OPTAB_LIB_WIDEN);		\
      (X) = plus_constant (high, lowpart);			\
      goto WIN;							\
    }								\
}

/* Try a machine-dependent way of reloading an illegitimate address
   operand.  If we find one, push the reload and jump to WIN.  This
   macro is used in only one place: `find_reloads_address' in reload.c.

   For the Alpha, we wish to handle large displacements off a base
   register by splitting the addend across an ldah and the mem insn.
   This cuts number of extra insns needed from 3 to 1.  */
   
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
do {									\
  /* We must recognize output that we have already generated ourselves.  */ \
  if (GET_CODE (X) == PLUS						\
      && GET_CODE (XEXP (X, 0)) == PLUS					\
      && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG			\
      && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT			\
      && GET_CODE (XEXP (X, 1)) == CONST_INT)				\
    {									\
      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR,	\
		   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,	\
		   OPNUM, TYPE);					\
      goto WIN;								\
    }									\
  if (GET_CODE (X) == PLUS						\
      && GET_CODE (XEXP (X, 0)) == REG					\
      && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER			\
      && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE)			\
      && GET_CODE (XEXP (X, 1)) == CONST_INT)				\
    {									\
      HOST_WIDE_INT val = INTVAL (XEXP (X, 1));				\
      HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;		\
      HOST_WIDE_INT high						\
	= (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;	\
									\
      /* Check for 32-bit overflow.  */					\
      if (high + low != val)						\
	break;								\
									\
      /* Reload the high part into a base reg; leave the low part	\
	 in the mem directly.  */					\
									\
      X = gen_rtx_PLUS (GET_MODE (X),					\
			gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0),	\
				      GEN_INT (high)),			\
			GEN_INT (low));					\
	  								\
      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR,	\
		   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,	\
		   OPNUM, TYPE);					\
      goto WIN;								\
    }									\
} while (0)

/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.
   On the Alpha this is true only for the unaligned modes.   We can
   simplify this test since we know that the address must be valid.  */

#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
{ if (GET_CODE (ADDR) == AND) goto LABEL; }

/* Compute the cost of an address.  For the Alpha, all valid addresses are
   the same cost.  */

#define ADDRESS_COST(X)  0

/* Machine-dependent reorg pass.   */
#define MACHINE_DEPENDENT_REORG(X)	alpha_reorg(X)

/* Specify the machine mode that this machine uses
   for the index in the tablejump instruction.  */
#define CASE_VECTOR_MODE SImode

/* Define as C expression which evaluates to nonzero if the tablejump
   instruction expects the table to contain offsets from the address of the
   table.

   Do not define this if the table should contain absolute addresses.
   On the Alpha, the table is really GP-relative, not relative to the PC
   of the table, but we pretend that it is PC-relative; this should be OK,
   but we should try to find some better way sometime.  */
#define CASE_VECTOR_PC_RELATIVE 1

/* Specify the tree operation to be used to convert reals to integers.  */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR

/* This is the kind of divide that is easiest to do in the general case.  */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR

/* Define this as 1 if `char' should by default be signed; else as 0.  */
#define DEFAULT_SIGNED_CHAR 1

/* This flag, if defined, says the same insns that convert to a signed fixnum
   also convert validly to an unsigned one.

   We actually lie a bit here as overflow conditions are different.  But
   they aren't being checked anyway.  */

#define FIXUNS_TRUNC_LIKE_FIX_TRUNC

/* Max number of bytes we can move to or from memory
   in one reasonably fast instruction.  */

#define MOVE_MAX 8

/* If a memory-to-memory move would take MOVE_RATIO or more simple
   move-instruction pairs, we will do a movstr or libcall instead.

   Without byte/word accesses, we want no more than four instructions;
   with, several single byte accesses are better.   */

#define MOVE_RATIO  (TARGET_BWX ? 7 : 2)

/* Largest number of bytes of an object that can be placed in a register.
   On the Alpha we have plenty of registers, so use TImode.  */
#define MAX_FIXED_MODE_SIZE	GET_MODE_BITSIZE (TImode)

/* Nonzero if access to memory by bytes is no faster than for words.
   Also non-zero if doing byte operations (specifically shifts) in registers
   is undesirable. 

   On the Alpha, we want to not use the byte operation and instead use
   masking operations to access fields; these will save instructions.  */

#define SLOW_BYTE_ACCESS	1

/* Define if operations between registers always perform the operation
   on the full register even if a narrower mode is specified.  */
#define WORD_REGISTER_OPERATIONS

/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
   will either zero-extend or sign-extend.  The value of this macro should
   be the code that says which one of the two operations is implicitly
   done, NIL if none.  */
#define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)

/* Define if loading short immediate values into registers sign extends.  */
#define SHORT_IMMEDIATES_SIGN_EXTEND

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1

/* We assume that the store-condition-codes instructions store 0 for false
   and some other value for true.  This is the value stored for true.  */

#define STORE_FLAG_VALUE 1

/* Define the value returned by a floating-point comparison instruction.  */

#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)

/* Canonicalize a comparison from one we don't have to one we do have.  */

#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
  do {									\
    if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
	&& (GET_CODE (OP1) == REG || (OP1) == const0_rtx))		\
      {									\
	rtx tem = (OP0);						\
	(OP0) = (OP1);							\
	(OP1) = tem;							\
	(CODE) = swap_condition (CODE);					\
      }									\
    if (((CODE) == LT || (CODE) == LTU)					\
	&& GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256)		\
      {									\
	(CODE) = (CODE) == LT ? LE : LEU;				\
	(OP1) = GEN_INT (255);						\
      }									\
  } while (0)

/* Specify the machine mode that pointers have.
   After generation of rtl, the compiler makes no further distinction
   between pointers and any other objects of this machine mode.  */
#define Pmode DImode

/* Mode of a function address in a call instruction (for indexing purposes). */

#define FUNCTION_MODE Pmode

/* Define this if addresses of constant functions
   shouldn't be put through pseudo regs where they can be cse'd.
   Desirable on machines where ordinary constants are expensive
   but a CALL with constant address is cheap.

   We define this on the Alpha so that gen_call and gen_call_value
   get to see the SYMBOL_REF (for the hint field of the jsr).  It will
   then copy it into a register, thus actually letting the address be
   cse'ed.  */

#define NO_FUNCTION_CSE

/* Define this to be nonzero if shift instructions ignore all but the low-order
   few bits. */
#define SHIFT_COUNT_TRUNCATED 1

/* Use atexit for static constructors/destructors, instead of defining
   our own exit function.  */
#define HAVE_ATEXIT

/* The EV4 is dual issue; EV5/EV6 are quad issue.  */
#define ISSUE_RATE  (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)

/* Describe the fact that MULTI instructions are multiple instructions
   and so to assume they don't pair with anything.  */
#define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
  if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI)	   \
     (CAN_ISSUE_MORE) = 0

/* Compute the cost of computing a constant rtl expression RTX
   whose rtx-code is CODE.  The body of this macro is a portion
   of a switch statement.  If the code is computed here,
   return it with a return statement.  Otherwise, break from the switch.

   If this is an 8-bit constant, return zero since it can be used
   nearly anywhere with no cost.  If it is a valid operand for an
   ADD or AND, likewise return 0 if we know it will be used in that
   context.  Otherwise, return 2 since it might be used there later.
   All other constants take at least two insns.  */

#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
  case CONST_INT:						\
    if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256)		\
      return 0;							\
  case CONST_DOUBLE:						\
    if ((RTX) == CONST0_RTX (GET_MODE (RTX)))			\
      return 0;							\
    else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
	|| ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
      return 0;							\
    else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
      return 2;							\
    else							\
      return COSTS_N_INSNS (2);					\
  case CONST:							\
  case SYMBOL_REF:						\
  case LABEL_REF:						\
  switch (alpha_cpu)						\
    {								\
    case PROCESSOR_EV4:						\
      return COSTS_N_INSNS (3);					\
    case PROCESSOR_EV5:						\
    case PROCESSOR_EV6:						\
      return COSTS_N_INSNS (2);					\
    default: abort();						\
    }
    
/* Provide the costs of a rtl expression.  This is in the body of a
   switch on CODE.  */
   
#define RTX_COSTS(X,CODE,OUTER_CODE)			\
  case PLUS:  case MINUS:				\
    if (FLOAT_MODE_P (GET_MODE (X)))			\
      switch (alpha_cpu)				\
        {						\
        case PROCESSOR_EV4:				\
          return COSTS_N_INSNS (6);			\
        case PROCESSOR_EV5:				\
        case PROCESSOR_EV6:				\
          return COSTS_N_INSNS (4); 			\
	default: abort();				\
	}						\
    else if (GET_CODE (XEXP (X, 0)) == MULT		\
	     && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
      return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE)	\
	      + rtx_cost (XEXP (X, 1), OUTER_CODE));	\
    break;						\
  case MULT:						\
    switch (alpha_cpu)					\
      {							\
      case PROCESSOR_EV4:				\
        if (FLOAT_MODE_P (GET_MODE (X)))		\
          return COSTS_N_INSNS (6);			\
        return COSTS_N_INSNS (23);			\
      case PROCESSOR_EV5:				\
        if (FLOAT_MODE_P (GET_MODE (X)))		\
          return COSTS_N_INSNS (4);			\
        else if (GET_MODE (X) == DImode)		\
          return COSTS_N_INSNS (12);			\
        else						\
          return COSTS_N_INSNS (8);			\
      case PROCESSOR_EV6:				\
	if (FLOAT_MODE_P (GET_MODE (X)))		\
	  return COSTS_N_INSNS (4);			\
	else 						\
	  return COSTS_N_INSNS (7);			\
      default: abort();					\
      }							\
  case ASHIFT:						\
    if (GET_CODE (XEXP (X, 1)) == CONST_INT		\
	&& INTVAL (XEXP (X, 1)) <= 3)			\
      break;						\
    /* ... fall through ... */				\
  case ASHIFTRT:  case LSHIFTRT:			\
    switch (alpha_cpu)					\
      {							\
      case PROCESSOR_EV4:				\
        return COSTS_N_INSNS (2);			\
      case PROCESSOR_EV5:				\
      case PROCESSOR_EV6:				\
        return COSTS_N_INSNS (1); 			\
      default: abort();					\
      }							\
  case IF_THEN_ELSE:					\
    switch (alpha_cpu)					\
      {							\
      case PROCESSOR_EV4:				\
      case PROCESSOR_EV6:				\
        return COSTS_N_INSNS (2);			\
      case PROCESSOR_EV5:				\
        return COSTS_N_INSNS (1); 			\
      default: abort();					\
      }							\
  case DIV:  case UDIV:  case MOD:  case UMOD:		\
    switch (alpha_cpu)					\
      {							\
      case PROCESSOR_EV4:				\
        if (GET_MODE (X) == SFmode)			\
          return COSTS_N_INSNS (34);			\
        else if (GET_MODE (X) == DFmode)		\
          return COSTS_N_INSNS (63);			\
        else						\
          return COSTS_N_INSNS (70);			\
      case PROCESSOR_EV5:				\
        if (GET_MODE (X) == SFmode)			\
          return COSTS_N_INSNS (15);			\
        else if (GET_MODE (X) == DFmode)		\
          return COSTS_N_INSNS (22);			\
        else						\
          return COSTS_N_INSNS (70);	/* ??? */	\
      case PROCESSOR_EV6:				\
	if (GET_MODE (X) == SFmode)			\
	  return COSTS_N_INSNS (12);			\
        else if (GET_MODE (X) == DFmode)		\
          return COSTS_N_INSNS (15);			\
        else						\
          return COSTS_N_INSNS (70);	/* ??? */	\
      default: abort();					\
      }							\
  case MEM:						\
    switch (alpha_cpu)					\
      {							\
      case PROCESSOR_EV4:				\
      case PROCESSOR_EV6:				\
        return COSTS_N_INSNS (3);			\
      case PROCESSOR_EV5:				\
        return COSTS_N_INSNS (2); 			\
      default: abort();					\
      }							\
  case NEG:  case ABS:					\
    if (! FLOAT_MODE_P (GET_MODE (X)))			\
      break;						\
    /* ... fall through ... */				\
  case FLOAT:  case UNSIGNED_FLOAT:  case FIX:  case UNSIGNED_FIX: \
  case FLOAT_EXTEND:  case FLOAT_TRUNCATE:		\
    switch (alpha_cpu)					\
      {							\
      case PROCESSOR_EV4:				\
        return COSTS_N_INSNS (6);			\
      case PROCESSOR_EV5:				\
      case PROCESSOR_EV6:				\
        return COSTS_N_INSNS (4); 			\
      default: abort();					\
      }

/* Control the assembler format that we output.  */

/* We don't emit these labels, so as to avoid getting linker errors about
   missing exception handling info.  If we emit a gcc_compiled. label into
   text, and the file has no code, then the DEC assembler gives us a zero
   sized text section with no associated exception handling info.  The
   DEC linker sees this text section, and gives a warning saying that
   the exception handling info is missing.  */
#define ASM_IDENTIFY_GCC(x)
#define ASM_IDENTIFY_LANGUAGE(x)

/* Output to assembler file text saying following lines
   may contain character constants, extra white space, comments, etc.  */

#define ASM_APP_ON ""

/* Output to assembler file text saying following lines
   no longer contain unusual constructs.  */

#define ASM_APP_OFF ""

#define TEXT_SECTION_ASM_OP ".text"

/* Output before read-only data.  */

#define READONLY_DATA_SECTION_ASM_OP ".rdata"

/* Output before writable data.  */

#define DATA_SECTION_ASM_OP ".data"

/* Define an extra section for read-only data, a routine to enter it, and
   indicate that it is for read-only data.

   The first time we enter the readonly data section for a file, we write
   eight bytes of zero.  This works around a bug in DEC's assembler in
   some versions of OSF/1 V3.x.  */

#define EXTRA_SECTIONS	readonly_data

#define EXTRA_SECTION_FUNCTIONS					\
void								\
literal_section ()						\
{								\
  if (in_section != readonly_data)				\
    {								\
      static int firsttime = 1;				        \
								\
      fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
      if (firsttime)						\
	{							\
	  firsttime = 0;				        \
	  ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx);	\
	}							\
								\
      in_section = readonly_data;				\
    }								\
}								\

#define READONLY_DATA_SECTION	literal_section

/* If we are referencing a function that is static, make the SYMBOL_REF
   special.  We use this to see indicate we can branch to this function
   without setting PV or restoring GP.  */

#define ENCODE_SECTION_INFO(DECL)  \
  if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
    SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;

/* How to refer to registers in assembler output.
   This sequence is indexed by compiler's hard-register-number (see above).  */

#define REGISTER_NAMES						\
{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8",		\
 "$9", "$10", "$11", "$12", "$13", "$14", "$15",		\
 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",	\
 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP",		\
 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",	\
 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",		\
 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}

/* How to renumber registers for dbx and gdb.  */

#define DBX_REGISTER_NUMBER(REGNO) (REGNO)

/* This is how to output the definition of a user-level label named NAME,
   such as the label on a static function or variable NAME.  */

#define ASM_OUTPUT_LABEL(FILE,NAME)	\
  do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)

/* This is how to output a command to make the user-level label named NAME
   defined for reference from other files.  */

#define ASM_GLOBALIZE_LABEL(FILE,NAME)	\
  do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)

/* The prefix to add to user-visible assembler symbols. */

#define USER_LABEL_PREFIX ""

/* This is how to output an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.  */

#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
  fprintf (FILE, "$%s%d:\n", PREFIX, NUM)

/* This is how to output a label for a jump table.  Arguments are the same as
   for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
   passed. */

#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN)	\
{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }

/* This is how to store into the string LABEL
   the symbol_ref name of an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.
   This is suitable for output with `assemble_name'.  */

#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
  sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))

/* Check a floating-point value for validity for a particular machine mode.  */

#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
  ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))

/* This is how to output an assembler line defining a `double' constant.  */

#define ASM_OUTPUT_DOUBLE(FILE,VALUE)					\
  {									\
    if (REAL_VALUE_ISINF (VALUE)					\
        || REAL_VALUE_ISNAN (VALUE)					\
	|| REAL_VALUE_MINUS_ZERO (VALUE))				\
      {									\
	long t[2];							\
	REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t);			\
	fprintf (FILE, "\t.quad 0x%lx%08lx\n",				\
		t[1] & 0xffffffff, t[0] & 0xffffffff);			\
      }									\
    else								\
      {									\
	char str[30];							\
	REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str);			\
	fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str);			\
      }									\
  }

/* This is how to output an assembler line defining a `float' constant.  */

#define ASM_OUTPUT_FLOAT(FILE,VALUE)				\
  do {								\
    long t;							\
    REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t);			\
    fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff);		\
} while (0)
  
/* This is how to output an assembler line defining an `int' constant.  */

#define ASM_OUTPUT_INT(FILE,VALUE)  		\
( fprintf (FILE, "\t.long "),			\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

/* This is how to output an assembler line defining a `long' constant.  */

#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE)	\
( fprintf (FILE, "\t.quad "),			\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

/* Likewise for `char' and `short' constants.  */

#define ASM_OUTPUT_SHORT(FILE,VALUE)  \
  fprintf (FILE, "\t.word %d\n",		\
    (int)(GET_CODE (VALUE) == CONST_INT		\
     ? INTVAL (VALUE) & 0xffff : (abort (), 0)))

#define ASM_OUTPUT_CHAR(FILE,VALUE)		\
  fprintf (FILE, "\t.byte %d\n",		\
    (int)(GET_CODE (VALUE) == CONST_INT		\
     ? INTVAL (VALUE) & 0xff : (abort (), 0)))

/* We use the default ASCII-output routine, except that we don't write more
   than 50 characters since the assembler doesn't support very long lines.  */

#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
  do {									      \
    FILE *_hide_asm_out_file = (MYFILE);				      \
    unsigned char *_hide_p = (unsigned char *) (MYSTRING);		      \
    int _hide_thissize = (MYLENGTH);					      \
    int _size_so_far = 0;						      \
    {									      \
      FILE *asm_out_file = _hide_asm_out_file;				      \
      unsigned char *p = _hide_p;					      \
      int thissize = _hide_thissize;					      \
      int i;								      \
      fprintf (asm_out_file, "\t.ascii \"");				      \
									      \
      for (i = 0; i < thissize; i++)					      \
	{								      \
	  register int c = p[i];					      \
									      \
	  if (_size_so_far ++ > 50 && i < thissize - 4)			      \
	    _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");      \
									      \
	  if (c == '\"' || c == '\\')					      \
	    putc ('\\', asm_out_file);					      \
	  if (c >= ' ' && c < 0177)					      \
	    putc (c, asm_out_file);					      \
	  else								      \
	    {								      \
	      fprintf (asm_out_file, "\\%o", c);			      \
	      /* After an octal-escape, if a digit follows,		      \
		 terminate one string constant and start another.	      \
		 The Vax assembler fails to stop reading the escape	      \
		 after three digits, so this is the only way we		      \
		 can get it to parse the data properly.  */		      \
	      if (i < thissize - 1					      \
		  && p[i + 1] >= '0' && p[i + 1] <= '9')		      \
		_size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \"");  \
	  }								      \
	}								      \
      fprintf (asm_out_file, "\"\n");					      \
    }									      \
  }									      \
  while (0)

/* To get unaligned data, we have to turn off auto alignment.  */
#define UNALIGNED_SHORT_ASM_OP		".align 0\n\t.word"
#define UNALIGNED_INT_ASM_OP		".align 0\n\t.long"
#define UNALIGNED_DOUBLE_INT_ASM_OP	".align 0\n\t.quad"

/* This is how to output an insn to push a register on the stack.
   It need not be very fast code.  */

#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)					\
 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n",		\
	  (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "",		\
	  (REGNO) & 31);

/* This is how to output an insn to pop a register from the stack.
   It need not be very fast code.  */

#define ASM_OUTPUT_REG_POP(FILE,REGNO)					\
  fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n",		\
	  (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "",		\
	  (REGNO) & 31);

/* This is how to output an assembler line for a numeric constant byte.  */

#define ASM_OUTPUT_BYTE(FILE,VALUE)  \
  fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))

/* This is how to output an element of a case-vector that is absolute.
   (Alpha does not use such vectors, but we must define this macro anyway.)  */

#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()

/* This is how to output an element of a case-vector that is relative.  */

#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
  fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
	   (VALUE))

/* This is how to output an assembler line
   that says to advance the location counter
   to a multiple of 2**LOG bytes.  */

#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
  if ((LOG) != 0)			\
    fprintf (FILE, "\t.align %d\n", LOG);

/* This is how to advance the location counter by SIZE bytes.  */

#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
  fprintf (FILE, "\t.space %d\n", (SIZE))

/* This says how to output an assembler line
   to define a global common symbol.  */

#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
( fputs ("\t.comm ", (FILE)),			\
  assemble_name ((FILE), (NAME)),		\
  fprintf ((FILE), ",%d\n", (SIZE)))

/* This says how to output an assembler line
   to define a local common symbol.  */

#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)	\
( fputs ("\t.lcomm ", (FILE)),				\
  assemble_name ((FILE), (NAME)),			\
  fprintf ((FILE), ",%d\n", (SIZE)))

/* Store in OUTPUT a string (made with alloca) containing
   an assembler-name for a local static variable named NAME.
   LABELNO is an integer which is different for each call.  */

#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))

/* Define the parentheses used to group arithmetic operations
   in assembler code.  */

#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
   Used for C++ multiple inheritance.  */

#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION)	\
do {									\
  char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0);		\
  int reg;								\
									\
  /* Mark end of prologue.  */						\
  output_end_prologue (FILE);						\
									\
  /* Rely on the assembler to macro expand a large delta.  */		\
  reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16;	\
  fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg);	\
									\
  if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0)))	\
    {									\
      fprintf (FILE, "\tbr $31,$");					\
      assemble_name (FILE, fn_name);					\
      fprintf (FILE, "..ng\n");						\
    }									\
  else									\
    {									\
      fprintf (FILE, "\tjmp $31,");					\
      assemble_name (FILE, fn_name);					\
      fputc ('\n', FILE);						\
    }									\
} while (0)


/* Define results of standard character escape sequences.  */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015

/* Print operand X (an rtx) in assembler syntax to file FILE.
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */

#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)

/* Determine which codes are valid without a following integer.  These must
   not be alphabetic (the characters are chosen so that
   PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
   using ASCII).

   &	Generates fp-rounding mode suffix: nothing for normal, 'c' for
   	chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
	mode.  alpha_fprm controls which suffix is generated.

   '	Generates trap-mode suffix for instructions that accept the
        su suffix only (cmpt et al).

   `    Generates trap-mode suffix for instructions that accept the
	v and sv suffix.  The only instruction that needs this is cvtql.

   (	Generates trap-mode suffix for instructions that accept the
	v, sv, and svi suffix.  The only instruction that needs this
	is cvttq.

   )    Generates trap-mode suffix for instructions that accept the
	u, su, and sui suffix.  This is the bulk of the IEEE floating
	point instructions (addt et al).

   +    Generates trap-mode suffix for instructions that accept the
	sui suffix (cvtqt and cvtqs).

   ,    Generates single precision suffix for floating point
	instructions (s for IEEE, f for VAX)

   -	Generates double precision suffix for floating point
	instructions (t for IEEE, g for VAX)
   */

#define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
  ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '('	\
   || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')

/* Print a memory address as an operand to reference that memory location.  */

#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
  print_operand_address((FILE), (ADDR))

/* Define the codes that are matched by predicates in alpha.c.  */

#define PREDICATE_CODES 						\
  {"reg_or_0_operand", {SUBREG, REG, CONST_INT}},			\
  {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}},			\
  {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}},			\
  {"cint8_operand", {CONST_INT}},					\
  {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			\
  {"add_operand", {SUBREG, REG, CONST_INT}},				\
  {"sext_add_operand", {SUBREG, REG, CONST_INT}},			\
  {"const48_operand", {CONST_INT}},					\
  {"and_operand", {SUBREG, REG, CONST_INT}},				\
  {"or_operand", {SUBREG, REG, CONST_INT}},				\
  {"mode_mask_operand", {CONST_INT}},					\
  {"mul8_operand", {CONST_INT}},					\
  {"mode_width_operand", {CONST_INT}},					\
  {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}},			\
  {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}},		\
  {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}},	\
  {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}},		\
  {"divmod_operator", {DIV, MOD, UDIV, UMOD}},				\
  {"fp0_operand", {CONST_DOUBLE}},					\
  {"current_file_function_operand", {SYMBOL_REF}},			\
  {"call_operand", {REG, SYMBOL_REF}},					\
  {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE,		\
		     SYMBOL_REF, CONST, LABEL_REF}},			\
  {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE,		\
		    SYMBOL_REF, CONST, LABEL_REF}},			\
  {"aligned_memory_operand", {MEM}},					\
  {"unaligned_memory_operand", {MEM}},					\
  {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}},			\
  {"any_memory_operand", {MEM}},					\
  {"hard_fp_register_operand", {SUBREG, REG}},				\
  {"reg_not_elim_operand", {SUBREG, REG}},				\
  {"reg_no_subreg_operand", {REG}},

/* Tell collect that the object format is ECOFF.  */
#define OBJECT_FORMAT_COFF
#define EXTENDED_COFF

/* If we use NM, pass -g to it so it only lists globals.  */
#define NM_FLAGS "-pg"

/* Definitions for debugging.  */

#define SDB_DEBUGGING_INFO		/* generate info for mips-tfile */
#define DBX_DEBUGGING_INFO		/* generate embedded stabs */
#define MIPS_DEBUGGING_INFO		/* MIPS specific debugging info */

#ifndef PREFERRED_DEBUGGING_TYPE	/* assume SDB_DEBUGGING_INFO */
#define PREFERRED_DEBUGGING_TYPE  SDB_DEBUG
#endif


/* Correct the offset of automatic variables and arguments.  Note that
   the Alpha debug format wants all automatic variables and arguments
   to be in terms of two different offsets from the virtual frame pointer,
   which is the stack pointer before any adjustment in the function.
   The offset for the argument pointer is fixed for the native compiler,
   it is either zero (for the no arguments case) or large enough to hold
   all argument registers.
   The offset for the auto pointer is the fourth argument to the .frame
   directive (local_offset).
   To stay compatible with the native tools we use the same offsets
   from the virtual frame pointer and adjust the debugger arg/auto offsets
   accordingly. These debugger offsets are set up in output_prolog.  */

extern long alpha_arg_offset;
extern long alpha_auto_offset;
#define DEBUGGER_AUTO_OFFSET(X) \
  ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)


#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE)				\
  alpha_output_lineno (STREAM, LINE)
extern void alpha_output_lineno ();

#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)			\
  alpha_output_filename (STREAM, NAME)
extern void alpha_output_filename ();

/* mips-tfile.c limits us to strings of one page.  We must underestimate this
   number, because the real length runs past this up to the next
   continuation point.  This is really a dbxout.c bug.  */
#define DBX_CONTIN_LENGTH 3000

/* By default, turn on GDB extensions.  */
#define DEFAULT_GDB_EXTENSIONS 1

/* Stabs-in-ECOFF can't handle dbxout_function_end().  */
#define NO_DBX_FUNCTION_END 1

/* If we are smuggling stabs through the ALPHA ECOFF object
   format, put a comment in front of the .stab<x> operation so
   that the ALPHA assembler does not choke.  The mips-tfile program
   will correctly put the stab into the object file.  */

#define ASM_STABS_OP	((TARGET_GAS) ? ".stabs" : " #.stabs")
#define ASM_STABN_OP	((TARGET_GAS) ? ".stabn" : " #.stabn")
#define ASM_STABD_OP	((TARGET_GAS) ? ".stabd" : " #.stabd")

/* Forward references to tags are allowed.  */
#define SDB_ALLOW_FORWARD_REFERENCES

/* Unknown tags are also allowed.  */
#define SDB_ALLOW_UNKNOWN_REFERENCES

#define PUT_SDB_DEF(a)					\
do {							\
  fprintf (asm_out_file, "\t%s.def\t",			\
	   (TARGET_GAS) ? "" : "#");			\
  ASM_OUTPUT_LABELREF (asm_out_file, a); 		\
  fputc (';', asm_out_file);				\
} while (0)

#define PUT_SDB_PLAIN_DEF(a)				\
do {							\
  fprintf (asm_out_file, "\t%s.def\t.%s;",		\
	   (TARGET_GAS) ? "" : "#", (a));		\
} while (0)

#define PUT_SDB_TYPE(a)					\
do {							\
  fprintf (asm_out_file, "\t.type\t0x%x;", (a));	\
} while (0)

/* For block start and end, we create labels, so that
   later we can figure out where the correct offset is.
   The normal .ent/.end serve well enough for functions,
   so those are just commented out.  */

extern int sdb_label_count;		/* block start/end next label # */

#define PUT_SDB_BLOCK_START(LINE)			\
do {							\
  fprintf (asm_out_file,				\
	   "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n",		\
	   sdb_label_count,				\
	   (TARGET_GAS) ? "" : "#",			\
	   sdb_label_count,				\
	   (LINE));					\
  sdb_label_count++;					\
} while (0)

#define PUT_SDB_BLOCK_END(LINE)				\
do {							\
  fprintf (asm_out_file,				\
	   "$Le%d:\n\t%s.bend\t$Le%d\t%d\n",		\
	   sdb_label_count,				\
	   (TARGET_GAS) ? "" : "#",			\
	   sdb_label_count,				\
	   (LINE));					\
  sdb_label_count++;					\
} while (0)

#define PUT_SDB_FUNCTION_START(LINE)

#define PUT_SDB_FUNCTION_END(LINE)

#define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))

/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
   mips-tdump.c to print them out.

   These must match the corresponding definitions in gdb/mipsread.c.
   Unfortunately, gcc and gdb do not currently share any directories. */

#define CODE_MASK 0x8F300
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)

/* Override some mips-tfile definitions.  */

#define SHASH_SIZE 511
#define THASH_SIZE 55

/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints.  */

#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)

/* The linker will stick __main into the .init section.  */
#define HAS_INIT_SECTION
#define LD_INIT_SWITCH "-init"
#define LD_FINI_SWITCH "-fini"

/* The system headers under Alpha systems are generally C++-aware.  */
#define NO_IMPLICIT_EXTERN_C

/* Prototypes for alpha.c functions used in the md file & elsewhere.  */
extern struct rtx_def *get_unaligned_address ();
extern void alpha_write_verstamp ();
extern void alpha_reorg ();
extern int check_float_value ();
extern int direct_return ();
extern int const48_operand ();
extern int add_operand ();
extern int and_operand ();
extern int unaligned_memory_operand ();
extern int zap_mask ();
extern int current_file_function_operand ();
extern int alpha_sa_size ();
extern int alpha_adjust_cost ();
extern void print_operand ();
extern void print_operand_address ();
extern int reg_or_0_operand ();
extern int reg_or_8bit_operand ();
extern int mul8_operand ();
extern int reg_or_6bit_operand ();
extern int alpha_comparison_operator ();
extern int alpha_swapped_comparison_operator ();
extern int sext_add_operand ();
extern int cint8_operand ();
extern int mode_mask_operand ();
extern int or_operand ();
extern int mode_width_operand ();
extern int reg_or_fp0_operand ();
extern int signed_comparison_operator ();
extern int fp0_operand ();
extern int some_operand ();
extern int input_operand ();
extern int divmod_operator ();
extern int call_operand ();
extern int reg_or_cint_operand ();
extern int hard_fp_register_operand ();
extern int reg_not_elim_operand ();
extern void alpha_set_memflags ();
extern int aligned_memory_operand ();
extern void get_aligned_mem ();
extern void alpha_expand_unaligned_load ();
extern void alpha_expand_unaligned_store ();
extern int alpha_expand_block_move ();
extern int alpha_expand_block_clear ();
extern void alpha_expand_prologue ();
extern void alpha_expand_epilogue ();
OpenPOWER on IntegriCloud