1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
|
/* Optimize by combining instructions for GNU compiler.
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This module is essentially the "combiner" phase of the U. of Arizona
Portable Optimizer, but redone to work on our list-structured
representation for RTL instead of their string representation.
The LOG_LINKS of each insn identify the most recent assignment
to each REG used in the insn. It is a list of previous insns,
each of which contains a SET for a REG that is used in this insn
and not used or set in between. LOG_LINKs never cross basic blocks.
They were set up by the preceding pass (lifetime analysis).
We try to combine each pair of insns joined by a logical link.
We also try to combine triples of insns A, B and C when
C has a link back to B and B has a link back to A.
LOG_LINKS does not have links for use of the CC0. They don't
need to, because the insn that sets the CC0 is always immediately
before the insn that tests it. So we always regard a branch
insn as having a logical link to the preceding insn. The same is true
for an insn explicitly using CC0.
We check (with use_crosses_set_p) to avoid combining in such a way
as to move a computation to a place where its value would be different.
Combination is done by mathematically substituting the previous
insn(s) values for the regs they set into the expressions in
the later insns that refer to these regs. If the result is a valid insn
for our target machine, according to the machine description,
we install it, delete the earlier insns, and update the data flow
information (LOG_LINKS and REG_NOTES) for what we did.
There are a few exceptions where the dataflow information created by
flow.c aren't completely updated:
- reg_live_length is not updated
- reg_n_refs is not adjusted in the rare case when a register is
no longer required in a computation
- there are extremely rare cases (see distribute_regnotes) when a
REG_DEAD note is lost
- a LOG_LINKS entry that refers to an insn with multiple SETs may be
removed because there is no way to know which register it was
linking
To simplify substitution, we combine only when the earlier insn(s)
consist of only a single assignment. To simplify updating afterward,
we never combine when a subroutine call appears in the middle.
Since we do not represent assignments to CC0 explicitly except when that
is all an insn does, there is no LOG_LINKS entry in an insn that uses
the condition code for the insn that set the condition code.
Fortunately, these two insns must be consecutive.
Therefore, every JUMP_INSN is taken to have an implicit logical link
to the preceding insn. This is not quite right, since non-jumps can
also use the condition code; but in practice such insns would not
combine anyway. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tm_p.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "function.h"
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
#include "expr.h"
#include "insn-attr.h"
#include "recog.h"
#include "real.h"
#include "toplev.h"
/* It is not safe to use ordinary gen_lowpart in combine.
Use gen_lowpart_for_combine instead. See comments there. */
#define gen_lowpart dont_use_gen_lowpart_you_dummy
/* Number of attempts to combine instructions in this function. */
static int combine_attempts;
/* Number of attempts that got as far as substitution in this function. */
static int combine_merges;
/* Number of instructions combined with added SETs in this function. */
static int combine_extras;
/* Number of instructions combined in this function. */
static int combine_successes;
/* Totals over entire compilation. */
static int total_attempts, total_merges, total_extras, total_successes;
/* Vector mapping INSN_UIDs to cuids.
The cuids are like uids but increase monotonically always.
Combine always uses cuids so that it can compare them.
But actually renumbering the uids, which we used to do,
proves to be a bad idea because it makes it hard to compare
the dumps produced by earlier passes with those from later passes. */
static int *uid_cuid;
static int max_uid_cuid;
/* Get the cuid of an insn. */
#define INSN_CUID(INSN) \
(INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
/* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
BITS_PER_WORD would invoke undefined behavior. Work around it. */
#define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
(((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
#define nonzero_bits(X, M) \
cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
#define num_sign_bit_copies(X, M) \
cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
/* Maximum register number, which is the size of the tables below. */
static unsigned int combine_max_regno;
/* Record last point of death of (hard or pseudo) register n. */
static rtx *reg_last_death;
/* Record last point of modification of (hard or pseudo) register n. */
static rtx *reg_last_set;
/* Record the cuid of the last insn that invalidated memory
(anything that writes memory, and subroutine calls, but not pushes). */
static int mem_last_set;
/* Record the cuid of the last CALL_INSN
so we can tell whether a potential combination crosses any calls. */
static int last_call_cuid;
/* When `subst' is called, this is the insn that is being modified
(by combining in a previous insn). The PATTERN of this insn
is still the old pattern partially modified and it should not be
looked at, but this may be used to examine the successors of the insn
to judge whether a simplification is valid. */
static rtx subst_insn;
/* This is an insn that belongs before subst_insn, but is not currently
on the insn chain. */
static rtx subst_prev_insn;
/* This is the lowest CUID that `subst' is currently dealing with.
get_last_value will not return a value if the register was set at or
after this CUID. If not for this mechanism, we could get confused if
I2 or I1 in try_combine were an insn that used the old value of a register
to obtain a new value. In that case, we might erroneously get the
new value of the register when we wanted the old one. */
static int subst_low_cuid;
/* This contains any hard registers that are used in newpat; reg_dead_at_p
must consider all these registers to be always live. */
static HARD_REG_SET newpat_used_regs;
/* This is an insn to which a LOG_LINKS entry has been added. If this
insn is the earlier than I2 or I3, combine should rescan starting at
that location. */
static rtx added_links_insn;
/* Basic block in which we are performing combines. */
static basic_block this_basic_block;
/* A bitmap indicating which blocks had registers go dead at entry.
After combine, we'll need to re-do global life analysis with
those blocks as starting points. */
static sbitmap refresh_blocks;
static int need_refresh;
/* The next group of arrays allows the recording of the last value assigned
to (hard or pseudo) register n. We use this information to see if an
operation being processed is redundant given a prior operation performed
on the register. For example, an `and' with a constant is redundant if
all the zero bits are already known to be turned off.
We use an approach similar to that used by cse, but change it in the
following ways:
(1) We do not want to reinitialize at each label.
(2) It is useful, but not critical, to know the actual value assigned
to a register. Often just its form is helpful.
Therefore, we maintain the following arrays:
reg_last_set_value the last value assigned
reg_last_set_label records the value of label_tick when the
register was assigned
reg_last_set_table_tick records the value of label_tick when a
value using the register is assigned
reg_last_set_invalid set to nonzero when it is not valid
to use the value of this register in some
register's value
To understand the usage of these tables, it is important to understand
the distinction between the value in reg_last_set_value being valid
and the register being validly contained in some other expression in the
table.
Entry I in reg_last_set_value is valid if it is nonzero, and either
reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
Register I may validly appear in any expression returned for the value
of another register if reg_n_sets[i] is 1. It may also appear in the
value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
reg_last_set_invalid[j] is zero.
If an expression is found in the table containing a register which may
not validly appear in an expression, the register is replaced by
something that won't match, (clobber (const_int 0)).
reg_last_set_invalid[i] is set nonzero when register I is being assigned
to and reg_last_set_table_tick[i] == label_tick. */
/* Record last value assigned to (hard or pseudo) register n. */
static rtx *reg_last_set_value;
/* Record the value of label_tick when the value for register n is placed in
reg_last_set_value[n]. */
static int *reg_last_set_label;
/* Record the value of label_tick when an expression involving register n
is placed in reg_last_set_value. */
static int *reg_last_set_table_tick;
/* Set nonzero if references to register n in expressions should not be
used. */
static char *reg_last_set_invalid;
/* Incremented for each label. */
static int label_tick;
/* Some registers that are set more than once and used in more than one
basic block are nevertheless always set in similar ways. For example,
a QImode register may be loaded from memory in two places on a machine
where byte loads zero extend.
We record in the following array what we know about the nonzero
bits of a register, specifically which bits are known to be zero.
If an entry is zero, it means that we don't know anything special. */
static unsigned HOST_WIDE_INT *reg_nonzero_bits;
/* Mode used to compute significance in reg_nonzero_bits. It is the largest
integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
static enum machine_mode nonzero_bits_mode;
/* Nonzero if we know that a register has some leading bits that are always
equal to the sign bit. */
static unsigned char *reg_sign_bit_copies;
/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
It is zero while computing them and after combine has completed. This
former test prevents propagating values based on previously set values,
which can be incorrect if a variable is modified in a loop. */
static int nonzero_sign_valid;
/* These arrays are maintained in parallel with reg_last_set_value
and are used to store the mode in which the register was last set,
the bits that were known to be zero when it was last set, and the
number of sign bits copies it was known to have when it was last set. */
static enum machine_mode *reg_last_set_mode;
static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
static char *reg_last_set_sign_bit_copies;
/* Record one modification to rtl structure
to be undone by storing old_contents into *where.
is_int is 1 if the contents are an int. */
struct undo
{
struct undo *next;
int is_int;
union {rtx r; int i;} old_contents;
union {rtx *r; int *i;} where;
};
/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
num_undo says how many are currently recorded.
other_insn is nonzero if we have modified some other insn in the process
of working on subst_insn. It must be verified too. */
struct undobuf
{
struct undo *undos;
struct undo *frees;
rtx other_insn;
};
static struct undobuf undobuf;
/* Number of times the pseudo being substituted for
was found and replaced. */
static int n_occurrences;
static void do_SUBST PARAMS ((rtx *, rtx));
static void do_SUBST_INT PARAMS ((int *, int));
static void init_reg_last_arrays PARAMS ((void));
static void setup_incoming_promotions PARAMS ((void));
static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
static int cant_combine_insn_p PARAMS ((rtx));
static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
static int sets_function_arg_p PARAMS ((rtx));
static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
static int contains_muldiv PARAMS ((rtx));
static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
static void undo_all PARAMS ((void));
static void undo_commit PARAMS ((void));
static rtx *find_split_point PARAMS ((rtx *, rtx));
static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
static rtx simplify_if_then_else PARAMS ((rtx));
static rtx simplify_set PARAMS ((rtx));
static rtx simplify_logical PARAMS ((rtx, int));
static rtx expand_compound_operation PARAMS ((rtx));
static rtx expand_field_assignment PARAMS ((rtx));
static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
rtx, unsigned HOST_WIDE_INT, int,
int, int));
static rtx extract_left_shift PARAMS ((rtx, int));
static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT *));
static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
unsigned HOST_WIDE_INT, rtx, int));
static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
static rtx make_field_assignment PARAMS ((rtx));
static rtx apply_distributive_law PARAMS ((rtx));
static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
unsigned HOST_WIDE_INT));
static unsigned HOST_WIDE_INT cached_nonzero_bits
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode,
unsigned HOST_WIDE_INT));
static unsigned HOST_WIDE_INT nonzero_bits1
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode,
unsigned HOST_WIDE_INT));
static unsigned int cached_num_sign_bit_copies
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode, unsigned int));
static unsigned int num_sign_bit_copies1
PARAMS ((rtx, enum machine_mode, rtx,
enum machine_mode, unsigned int));
static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
enum rtx_code, HOST_WIDE_INT,
enum machine_mode, int *));
static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
rtx, int));
static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
rtx, rtx));
static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
static void update_table_tick PARAMS ((rtx));
static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
static void check_promoted_subreg PARAMS ((rtx, rtx));
static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
static void record_dead_and_set_regs PARAMS ((rtx));
static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
static rtx get_last_value PARAMS ((rtx));
static int use_crosses_set_p PARAMS ((rtx, int));
static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
static int reg_dead_at_p PARAMS ((rtx, rtx));
static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
static int reg_bitfield_target_p PARAMS ((rtx, rtx));
static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
static void distribute_links PARAMS ((rtx));
static void mark_used_regs_combine PARAMS ((rtx));
static int insn_cuid PARAMS ((rtx));
static void record_promoted_value PARAMS ((rtx, rtx));
static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
insn. The substitution can be undone by undo_all. If INTO is already
set to NEWVAL, do not record this change. Because computing NEWVAL might
also call SUBST, we have to compute it before we put anything into
the undo table. */
static void
do_SUBST (into, newval)
rtx *into, newval;
{
struct undo *buf;
rtx oldval = *into;
if (oldval == newval)
return;
/* We'd like to catch as many invalid transformations here as
possible. Unfortunately, there are way too many mode changes
that are perfectly valid, so we'd waste too much effort for
little gain doing the checks here. Focus on catching invalid
transformations involving integer constants. */
if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
&& GET_CODE (newval) == CONST_INT)
{
/* Sanity check that we're replacing oldval with a CONST_INT
that is a valid sign-extension for the original mode. */
if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
GET_MODE (oldval)))
abort ();
/* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
CONST_INT is not valid, because after the replacement, the
original mode would be gone. Unfortunately, we can't tell
when do_SUBST is called to replace the operand thereof, so we
perform this test on oldval instead, checking whether an
invalid replacement took place before we got here. */
if ((GET_CODE (oldval) == SUBREG
&& GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
|| (GET_CODE (oldval) == ZERO_EXTEND
&& GET_CODE (XEXP (oldval, 0)) == CONST_INT))
abort ();
}
if (undobuf.frees)
buf = undobuf.frees, undobuf.frees = buf->next;
else
buf = (struct undo *) xmalloc (sizeof (struct undo));
buf->is_int = 0;
buf->where.r = into;
buf->old_contents.r = oldval;
*into = newval;
buf->next = undobuf.undos, undobuf.undos = buf;
}
#define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
/* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
for the value of a HOST_WIDE_INT value (including CONST_INT) is
not safe. */
static void
do_SUBST_INT (into, newval)
int *into, newval;
{
struct undo *buf;
int oldval = *into;
if (oldval == newval)
return;
if (undobuf.frees)
buf = undobuf.frees, undobuf.frees = buf->next;
else
buf = (struct undo *) xmalloc (sizeof (struct undo));
buf->is_int = 1;
buf->where.i = into;
buf->old_contents.i = oldval;
*into = newval;
buf->next = undobuf.undos, undobuf.undos = buf;
}
#define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
/* Main entry point for combiner. F is the first insn of the function.
NREGS is the first unused pseudo-reg number.
Return nonzero if the combiner has turned an indirect jump
instruction into a direct jump. */
int
combine_instructions (f, nregs)
rtx f;
unsigned int nregs;
{
rtx insn, next;
#ifdef HAVE_cc0
rtx prev;
#endif
int i;
rtx links, nextlinks;
int new_direct_jump_p = 0;
combine_attempts = 0;
combine_merges = 0;
combine_extras = 0;
combine_successes = 0;
combine_max_regno = nregs;
reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
reg_sign_bit_copies
= (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
reg_last_set_mode
= (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
reg_last_set_nonzero_bits
= (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
reg_last_set_sign_bit_copies
= (char *) xmalloc (nregs * sizeof (char));
init_reg_last_arrays ();
init_recog_no_volatile ();
/* Compute maximum uid value so uid_cuid can be allocated. */
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
if (INSN_UID (insn) > i)
i = INSN_UID (insn);
uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
max_uid_cuid = i;
nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
/* Don't use reg_nonzero_bits when computing it. This can cause problems
when, for example, we have j <<= 1 in a loop. */
nonzero_sign_valid = 0;
/* Compute the mapping from uids to cuids.
Cuids are numbers assigned to insns, like uids,
except that cuids increase monotonically through the code.
Scan all SETs and see if we can deduce anything about what
bits are known to be zero for some registers and how many copies
of the sign bit are known to exist for those registers.
Also set any known values so that we can use it while searching
for what bits are known to be set. */
label_tick = 1;
/* We need to initialize it here, because record_dead_and_set_regs may call
get_last_value. */
subst_prev_insn = NULL_RTX;
setup_incoming_promotions ();
refresh_blocks = sbitmap_alloc (last_basic_block);
sbitmap_zero (refresh_blocks);
need_refresh = 0;
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
{
uid_cuid[INSN_UID (insn)] = ++i;
subst_low_cuid = i;
subst_insn = insn;
if (INSN_P (insn))
{
note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
NULL);
record_dead_and_set_regs (insn);
#ifdef AUTO_INC_DEC
for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
if (REG_NOTE_KIND (links) == REG_INC)
set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
NULL);
#endif
}
if (GET_CODE (insn) == CODE_LABEL)
label_tick++;
}
nonzero_sign_valid = 1;
/* Now scan all the insns in forward order. */
label_tick = 1;
last_call_cuid = 0;
mem_last_set = 0;
init_reg_last_arrays ();
setup_incoming_promotions ();
FOR_EACH_BB (this_basic_block)
{
for (insn = this_basic_block->head;
insn != NEXT_INSN (this_basic_block->end);
insn = next ? next : NEXT_INSN (insn))
{
next = 0;
if (GET_CODE (insn) == CODE_LABEL)
label_tick++;
else if (INSN_P (insn))
{
/* See if we know about function return values before this
insn based upon SUBREG flags. */
check_promoted_subreg (insn, PATTERN (insn));
/* Try this insn with each insn it links back to. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
if ((next = try_combine (insn, XEXP (links, 0),
NULL_RTX, &new_direct_jump_p)) != 0)
goto retry;
/* Try each sequence of three linked insns ending with this one. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
{
rtx link = XEXP (links, 0);
/* If the linked insn has been replaced by a note, then there
is no point in pursuing this chain any further. */
if (GET_CODE (link) == NOTE)
continue;
for (nextlinks = LOG_LINKS (link);
nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, link,
XEXP (nextlinks, 0),
&new_direct_jump_p)) != 0)
goto retry;
}
#ifdef HAVE_cc0
/* Try to combine a jump insn that uses CC0
with a preceding insn that sets CC0, and maybe with its
logical predecessor as well.
This is how we make decrement-and-branch insns.
We need this special code because data flow connections
via CC0 do not get entered in LOG_LINKS. */
if (GET_CODE (insn) == JUMP_INSN
&& (prev = prev_nonnote_insn (insn)) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev)))
{
if ((next = try_combine (insn, prev,
NULL_RTX, &new_direct_jump_p)) != 0)
goto retry;
for (nextlinks = LOG_LINKS (prev); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, prev,
XEXP (nextlinks, 0),
&new_direct_jump_p)) != 0)
goto retry;
}
/* Do the same for an insn that explicitly references CC0. */
if (GET_CODE (insn) == INSN
&& (prev = prev_nonnote_insn (insn)) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev))
&& GET_CODE (PATTERN (insn)) == SET
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
{
if ((next = try_combine (insn, prev,
NULL_RTX, &new_direct_jump_p)) != 0)
goto retry;
for (nextlinks = LOG_LINKS (prev); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, prev,
XEXP (nextlinks, 0),
&new_direct_jump_p)) != 0)
goto retry;
}
/* Finally, see if any of the insns that this insn links to
explicitly references CC0. If so, try this insn, that insn,
and its predecessor if it sets CC0. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
if (GET_CODE (XEXP (links, 0)) == INSN
&& GET_CODE (PATTERN (XEXP (links, 0))) == SET
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
&& (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev))
&& (next = try_combine (insn, XEXP (links, 0),
prev, &new_direct_jump_p)) != 0)
goto retry;
#endif
/* Try combining an insn with two different insns whose results it
uses. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
for (nextlinks = XEXP (links, 1); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, XEXP (links, 0),
XEXP (nextlinks, 0),
&new_direct_jump_p)) != 0)
goto retry;
if (GET_CODE (insn) != NOTE)
record_dead_and_set_regs (insn);
retry:
;
}
}
}
clear_bb_flags ();
EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
BASIC_BLOCK (i)->flags |= BB_DIRTY);
new_direct_jump_p |= purge_all_dead_edges (0);
delete_noop_moves (f);
update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
| PROP_KILL_DEAD_CODE);
/* Clean up. */
sbitmap_free (refresh_blocks);
free (reg_nonzero_bits);
free (reg_sign_bit_copies);
free (reg_last_death);
free (reg_last_set);
free (reg_last_set_value);
free (reg_last_set_table_tick);
free (reg_last_set_label);
free (reg_last_set_invalid);
free (reg_last_set_mode);
free (reg_last_set_nonzero_bits);
free (reg_last_set_sign_bit_copies);
free (uid_cuid);
{
struct undo *undo, *next;
for (undo = undobuf.frees; undo; undo = next)
{
next = undo->next;
free (undo);
}
undobuf.frees = 0;
}
total_attempts += combine_attempts;
total_merges += combine_merges;
total_extras += combine_extras;
total_successes += combine_successes;
nonzero_sign_valid = 0;
/* Make recognizer allow volatile MEMs again. */
init_recog ();
return new_direct_jump_p;
}
/* Wipe the reg_last_xxx arrays in preparation for another pass. */
static void
init_reg_last_arrays ()
{
unsigned int nregs = combine_max_regno;
memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
memset (reg_last_set_invalid, 0, nregs * sizeof (char));
memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
}
/* Set up any promoted values for incoming argument registers. */
static void
setup_incoming_promotions ()
{
#ifdef PROMOTE_FUNCTION_ARGS
unsigned int regno;
rtx reg;
enum machine_mode mode;
int unsignedp;
rtx first = get_insns ();
#ifndef OUTGOING_REGNO
#define OUTGOING_REGNO(N) N
#endif
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
/* Check whether this register can hold an incoming pointer
argument. FUNCTION_ARG_REGNO_P tests outgoing register
numbers, so translate if necessary due to register windows. */
if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
&& (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
{
record_value_for_reg
(reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
: SIGN_EXTEND),
GET_MODE (reg),
gen_rtx_CLOBBER (mode, const0_rtx)));
}
#endif
}
/* Called via note_stores. If X is a pseudo that is narrower than
HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
If we are setting only a portion of X and we can't figure out what
portion, assume all bits will be used since we don't know what will
be happening.
Similarly, set how many bits of X are known to be copies of the sign bit
at all locations in the function. This is the smallest number implied
by any set of X. */
static void
set_nonzero_bits_and_sign_copies (x, set, data)
rtx x;
rtx set;
void *data ATTRIBUTE_UNUSED;
{
unsigned int num;
if (GET_CODE (x) == REG
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
/* If this register is undefined at the start of the file, we can't
say what its contents were. */
&& ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
{
if (set == 0 || GET_CODE (set) == CLOBBER)
{
reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
reg_sign_bit_copies[REGNO (x)] = 1;
return;
}
/* If this is a complex assignment, see if we can convert it into a
simple assignment. */
set = expand_field_assignment (set);
/* If this is a simple assignment, or we have a paradoxical SUBREG,
set what we know about X. */
if (SET_DEST (set) == x
|| (GET_CODE (SET_DEST (set)) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
&& SUBREG_REG (SET_DEST (set)) == x))
{
rtx src = SET_SRC (set);
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
/* If X is narrower than a word and SRC is a non-negative
constant that would appear negative in the mode of X,
sign-extend it for use in reg_nonzero_bits because some
machines (maybe most) will actually do the sign-extension
and this is the conservative approach.
??? For 2.5, try to tighten up the MD files in this regard
instead of this kludge. */
if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
&& GET_CODE (src) == CONST_INT
&& INTVAL (src) > 0
&& 0 != (INTVAL (src)
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
src = GEN_INT (INTVAL (src)
| ((HOST_WIDE_INT) (-1)
<< GET_MODE_BITSIZE (GET_MODE (x))));
#endif
/* Don't call nonzero_bits if it cannot change anything. */
if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
reg_nonzero_bits[REGNO (x)]
|= nonzero_bits (src, nonzero_bits_mode);
num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
if (reg_sign_bit_copies[REGNO (x)] == 0
|| reg_sign_bit_copies[REGNO (x)] > num)
reg_sign_bit_copies[REGNO (x)] = num;
}
else
{
reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
reg_sign_bit_copies[REGNO (x)] = 1;
}
}
}
/* See if INSN can be combined into I3. PRED and SUCC are optionally
insns that were previously combined into I3 or that will be combined
into the merger of INSN and I3.
Return 0 if the combination is not allowed for any reason.
If the combination is allowed, *PDEST will be set to the single
destination of INSN and *PSRC to the single source, and this function
will return 1. */
static int
can_combine_p (insn, i3, pred, succ, pdest, psrc)
rtx insn;
rtx i3;
rtx pred ATTRIBUTE_UNUSED;
rtx succ;
rtx *pdest, *psrc;
{
int i;
rtx set = 0, src, dest;
rtx p;
#ifdef AUTO_INC_DEC
rtx link;
#endif
int all_adjacent = (succ ? (next_active_insn (insn) == succ
&& next_active_insn (succ) == i3)
: next_active_insn (insn) == i3);
/* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
or a PARALLEL consisting of such a SET and CLOBBERs.
If INSN has CLOBBER parallel parts, ignore them for our processing.
By definition, these happen during the execution of the insn. When it
is merged with another insn, all bets are off. If they are, in fact,
needed and aren't also supplied in I3, they may be added by
recog_for_combine. Otherwise, it won't match.
We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
note.
Get the source and destination of INSN. If more than one, can't
combine. */
if (GET_CODE (PATTERN (insn)) == SET)
set = PATTERN (insn);
else if (GET_CODE (PATTERN (insn)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
{
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx elt = XVECEXP (PATTERN (insn), 0, i);
switch (GET_CODE (elt))
{
/* This is important to combine floating point insns
for the SH4 port. */
case USE:
/* Combining an isolated USE doesn't make sense.
We depend here on combinable_i3pat to reject them. */
/* The code below this loop only verifies that the inputs of
the SET in INSN do not change. We call reg_set_between_p
to verify that the REG in the USE does not change between
I3 and INSN.
If the USE in INSN was for a pseudo register, the matching
insn pattern will likely match any register; combining this
with any other USE would only be safe if we knew that the
used registers have identical values, or if there was
something to tell them apart, e.g. different modes. For
now, we forgo such complicated tests and simply disallow
combining of USES of pseudo registers with any other USE. */
if (GET_CODE (XEXP (elt, 0)) == REG
&& GET_CODE (PATTERN (i3)) == PARALLEL)
{
rtx i3pat = PATTERN (i3);
int i = XVECLEN (i3pat, 0) - 1;
unsigned int regno = REGNO (XEXP (elt, 0));
do
{
rtx i3elt = XVECEXP (i3pat, 0, i);
if (GET_CODE (i3elt) == USE
&& GET_CODE (XEXP (i3elt, 0)) == REG
&& (REGNO (XEXP (i3elt, 0)) == regno
? reg_set_between_p (XEXP (elt, 0),
PREV_INSN (insn), i3)
: regno >= FIRST_PSEUDO_REGISTER))
return 0;
}
while (--i >= 0);
}
break;
/* We can ignore CLOBBERs. */
case CLOBBER:
break;
case SET:
/* Ignore SETs whose result isn't used but not those that
have side-effects. */
if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
&& ! side_effects_p (elt))
break;
/* If we have already found a SET, this is a second one and
so we cannot combine with this insn. */
if (set)
return 0;
set = elt;
break;
default:
/* Anything else means we can't combine. */
return 0;
}
}
if (set == 0
/* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
so don't do anything with it. */
|| GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
return 0;
}
else
return 0;
if (set == 0)
return 0;
set = expand_field_assignment (set);
src = SET_SRC (set), dest = SET_DEST (set);
/* Don't eliminate a store in the stack pointer. */
if (dest == stack_pointer_rtx
/* If we couldn't eliminate a field assignment, we can't combine. */
|| GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
/* Don't combine with an insn that sets a register to itself if it has
a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
|| (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
/* Can't merge an ASM_OPERANDS. */
|| GET_CODE (src) == ASM_OPERANDS
/* Can't merge a function call. */
|| GET_CODE (src) == CALL
/* Don't eliminate a function call argument. */
|| (GET_CODE (i3) == CALL_INSN
&& (find_reg_fusage (i3, USE, dest)
|| (GET_CODE (dest) == REG
&& REGNO (dest) < FIRST_PSEUDO_REGISTER
&& global_regs[REGNO (dest)])))
/* Don't substitute into an incremented register. */
|| FIND_REG_INC_NOTE (i3, dest)
|| (succ && FIND_REG_INC_NOTE (succ, dest))
#if 0
/* Don't combine the end of a libcall into anything. */
/* ??? This gives worse code, and appears to be unnecessary, since no
pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
use REG_RETVAL notes for noconflict blocks, but other code here
makes sure that those insns don't disappear. */
|| find_reg_note (insn, REG_RETVAL, NULL_RTX)
#endif
/* Make sure that DEST is not used after SUCC but before I3. */
|| (succ && ! all_adjacent
&& reg_used_between_p (dest, succ, i3))
/* Make sure that the value that is to be substituted for the register
does not use any registers whose values alter in between. However,
If the insns are adjacent, a use can't cross a set even though we
think it might (this can happen for a sequence of insns each setting
the same destination; reg_last_set of that register might point to
a NOTE). If INSN has a REG_EQUIV note, the register is always
equivalent to the memory so the substitution is valid even if there
are intervening stores. Also, don't move a volatile asm or
UNSPEC_VOLATILE across any other insns. */
|| (! all_adjacent
&& (((GET_CODE (src) != MEM
|| ! find_reg_note (insn, REG_EQUIV, src))
&& use_crosses_set_p (src, INSN_CUID (insn)))
|| (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
|| GET_CODE (src) == UNSPEC_VOLATILE))
/* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
better register allocation by not doing the combine. */
|| find_reg_note (i3, REG_NO_CONFLICT, dest)
|| (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
/* Don't combine across a CALL_INSN, because that would possibly
change whether the life span of some REGs crosses calls or not,
and it is a pain to update that information.
Exception: if source is a constant, moving it later can't hurt.
Accept that special case, because it helps -fforce-addr a lot. */
|| (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
return 0;
/* DEST must either be a REG or CC0. */
if (GET_CODE (dest) == REG)
{
/* If register alignment is being enforced for multi-word items in all
cases except for parameters, it is possible to have a register copy
insn referencing a hard register that is not allowed to contain the
mode being copied and which would not be valid as an operand of most
insns. Eliminate this problem by not combining with such an insn.
Also, on some machines we don't want to extend the life of a hard
register. */
if (GET_CODE (src) == REG
&& ((REGNO (dest) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
/* Don't extend the life of a hard register unless it is
user variable (if we have few registers) or it can't
fit into the desired register (meaning something special
is going on).
Also avoid substituting a return register into I3, because
reload can't handle a conflict with constraints of other
inputs. */
|| (REGNO (src) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
return 0;
}
else if (GET_CODE (dest) != CC0)
return 0;
/* Don't substitute for a register intended as a clobberable operand.
Similarly, don't substitute an expression containing a register that
will be clobbered in I3. */
if (GET_CODE (PATTERN (i3)) == PARALLEL)
for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
&& (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
src)
|| rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
return 0;
/* If INSN contains anything volatile, or is an `asm' (whether volatile
or not), reject, unless nothing volatile comes between it and I3 */
if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
{
/* Make sure succ doesn't contain a volatile reference. */
if (succ != 0 && volatile_refs_p (PATTERN (succ)))
return 0;
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
return 0;
}
/* If INSN is an asm, and DEST is a hard register, reject, since it has
to be an explicit register variable, and was chosen for a reason. */
if (GET_CODE (src) == ASM_OPERANDS
&& GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
return 0;
/* If there are any volatile insns between INSN and I3, reject, because
they might affect machine state. */
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
return 0;
/* If INSN or I2 contains an autoincrement or autodecrement,
make sure that register is not used between there and I3,
and not already used in I3 either.
Also insist that I3 not be a jump; if it were one
and the incremented register were spilled, we would lose. */
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& (GET_CODE (i3) == JUMP_INSN
|| reg_used_between_p (XEXP (link, 0), insn, i3)
|| reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
return 0;
#endif
#ifdef HAVE_cc0
/* Don't combine an insn that follows a CC0-setting insn.
An insn that uses CC0 must not be separated from the one that sets it.
We do, however, allow I2 to follow a CC0-setting insn if that insn
is passed as I1; in that case it will be deleted also.
We also allow combining in this case if all the insns are adjacent
because that would leave the two CC0 insns adjacent as well.
It would be more logical to test whether CC0 occurs inside I1 or I2,
but that would be much slower, and this ought to be equivalent. */
p = prev_nonnote_insn (insn);
if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
&& ! all_adjacent)
return 0;
#endif
/* If we get here, we have passed all the tests and the combination is
to be allowed. */
*pdest = dest;
*psrc = src;
return 1;
}
/* Check if PAT is an insn - or a part of it - used to set up an
argument for a function in a hard register. */
static int
sets_function_arg_p (pat)
rtx pat;
{
int i;
rtx inner_dest;
switch (GET_CODE (pat))
{
case INSN:
return sets_function_arg_p (PATTERN (pat));
case PARALLEL:
for (i = XVECLEN (pat, 0); --i >= 0;)
if (sets_function_arg_p (XVECEXP (pat, 0, i)))
return 1;
break;
case SET:
inner_dest = SET_DEST (pat);
while (GET_CODE (inner_dest) == STRICT_LOW_PART
|| GET_CODE (inner_dest) == SUBREG
|| GET_CODE (inner_dest) == ZERO_EXTRACT)
inner_dest = XEXP (inner_dest, 0);
return (GET_CODE (inner_dest) == REG
&& REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
&& FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
default:
break;
}
return 0;
}
/* LOC is the location within I3 that contains its pattern or the component
of a PARALLEL of the pattern. We validate that it is valid for combining.
One problem is if I3 modifies its output, as opposed to replacing it
entirely, we can't allow the output to contain I2DEST or I1DEST as doing
so would produce an insn that is not equivalent to the original insns.
Consider:
(set (reg:DI 101) (reg:DI 100))
(set (subreg:SI (reg:DI 101) 0) <foo>)
This is NOT equivalent to:
(parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
(set (reg:DI 101) (reg:DI 100))])
Not only does this modify 100 (in which case it might still be valid
if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
We can also run into a problem if I2 sets a register that I1
uses and I1 gets directly substituted into I3 (not via I2). In that
case, we would be getting the wrong value of I2DEST into I3, so we
must reject the combination. This case occurs when I2 and I1 both
feed into I3, rather than when I1 feeds into I2, which feeds into I3.
If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
of a SET must prevent combination from occurring.
Before doing the above check, we first try to expand a field assignment
into a set of logical operations.
If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
we place a register that is both set and used within I3. If more than one
such register is detected, we fail.
Return 1 if the combination is valid, zero otherwise. */
static int
combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
rtx i3;
rtx *loc;
rtx i2dest;
rtx i1dest;
int i1_not_in_src;
rtx *pi3dest_killed;
{
rtx x = *loc;
if (GET_CODE (x) == SET)
{
rtx set = expand_field_assignment (x);
rtx dest = SET_DEST (set);
rtx src = SET_SRC (set);
rtx inner_dest = dest;
#if 0
rtx inner_src = src;
#endif
SUBST (*loc, set);
while (GET_CODE (inner_dest) == STRICT_LOW_PART
|| GET_CODE (inner_dest) == SUBREG
|| GET_CODE (inner_dest) == ZERO_EXTRACT)
inner_dest = XEXP (inner_dest, 0);
/* We probably don't need this any more now that LIMIT_RELOAD_CLASS
was added. */
#if 0
while (GET_CODE (inner_src) == STRICT_LOW_PART
|| GET_CODE (inner_src) == SUBREG
|| GET_CODE (inner_src) == ZERO_EXTRACT)
inner_src = XEXP (inner_src, 0);
/* If it is better that two different modes keep two different pseudos,
avoid combining them. This avoids producing the following pattern
on a 386:
(set (subreg:SI (reg/v:QI 21) 0)
(lshiftrt:SI (reg/v:SI 20)
(const_int 24)))
If that were made, reload could not handle the pair of
reg 20/21, since it would try to get any GENERAL_REGS
but some of them don't handle QImode. */
if (rtx_equal_p (inner_src, i2dest)
&& GET_CODE (inner_dest) == REG
&& ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
return 0;
#endif
/* Check for the case where I3 modifies its output, as
discussed above. */
if ((inner_dest != dest
&& (reg_overlap_mentioned_p (i2dest, inner_dest)
|| (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
/* This is the same test done in can_combine_p except we can't test
all_adjacent; we don't have to, since this instruction will stay
in place, thus we are not considering increasing the lifetime of
INNER_DEST.
Also, if this insn sets a function argument, combining it with
something that might need a spill could clobber a previous
function argument; the all_adjacent test in can_combine_p also
checks this; here, we do a more specific test for this case. */
|| (GET_CODE (inner_dest) == REG
&& REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
GET_MODE (inner_dest))))
|| (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
return 0;
/* If DEST is used in I3, it is being killed in this insn,
so record that for later.
Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
STACK_POINTER_REGNUM, since these are always considered to be
live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
if (pi3dest_killed && GET_CODE (dest) == REG
&& reg_referenced_p (dest, PATTERN (i3))
&& REGNO (dest) != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& REGNO (dest) != HARD_FRAME_POINTER_REGNUM
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& (REGNO (dest) != ARG_POINTER_REGNUM
|| ! fixed_regs [REGNO (dest)])
#endif
&& REGNO (dest) != STACK_POINTER_REGNUM)
{
if (*pi3dest_killed)
return 0;
*pi3dest_killed = dest;
}
}
else if (GET_CODE (x) == PARALLEL)
{
int i;
for (i = 0; i < XVECLEN (x, 0); i++)
if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
i1_not_in_src, pi3dest_killed))
return 0;
}
return 1;
}
/* Return 1 if X is an arithmetic expression that contains a multiplication
and division. We don't count multiplications by powers of two here. */
static int
contains_muldiv (x)
rtx x;
{
switch (GET_CODE (x))
{
case MOD: case DIV: case UMOD: case UDIV:
return 1;
case MULT:
return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
&& exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
default:
switch (GET_RTX_CLASS (GET_CODE (x)))
{
case 'c': case '<': case '2':
return contains_muldiv (XEXP (x, 0))
|| contains_muldiv (XEXP (x, 1));
case '1':
return contains_muldiv (XEXP (x, 0));
default:
return 0;
}
}
}
/* Determine whether INSN can be used in a combination. Return nonzero if
not. This is used in try_combine to detect early some cases where we
can't perform combinations. */
static int
cant_combine_insn_p (insn)
rtx insn;
{
rtx set;
rtx src, dest;
/* If this isn't really an insn, we can't do anything.
This can occur when flow deletes an insn that it has merged into an
auto-increment address. */
if (! INSN_P (insn))
return 1;
/* Never combine loads and stores involving hard regs. The register
allocator can usually handle such reg-reg moves by tying. If we allow
the combiner to make substitutions of hard regs, we risk aborting in
reload on machines that have SMALL_REGISTER_CLASSES.
As an exception, we allow combinations involving fixed regs; these are
not available to the register allocator so there's no risk involved. */
set = single_set (insn);
if (! set)
return 0;
src = SET_SRC (set);
dest = SET_DEST (set);
if (GET_CODE (src) == SUBREG)
src = SUBREG_REG (src);
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (REG_P (src) && REG_P (dest)
&& ((REGNO (src) < FIRST_PSEUDO_REGISTER
&& ! fixed_regs[REGNO (src)])
|| (REGNO (dest) < FIRST_PSEUDO_REGISTER
&& ! fixed_regs[REGNO (dest)])))
return 1;
return 0;
}
/* Try to combine the insns I1 and I2 into I3.
Here I1 and I2 appear earlier than I3.
I1 can be zero; then we combine just I2 into I3.
If we are combining three insns and the resulting insn is not recognized,
try splitting it into two insns. If that happens, I2 and I3 are retained
and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
are pseudo-deleted.
Return 0 if the combination does not work. Then nothing is changed.
If we did the combination, return the insn at which combine should
resume scanning.
Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
new direct jump instruction. */
static rtx
try_combine (i3, i2, i1, new_direct_jump_p)
rtx i3, i2, i1;
int *new_direct_jump_p;
{
/* New patterns for I3 and I2, respectively. */
rtx newpat, newi2pat = 0;
int substed_i2 = 0, substed_i1 = 0;
/* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
int added_sets_1, added_sets_2;
/* Total number of SETs to put into I3. */
int total_sets;
/* Nonzero is I2's body now appears in I3. */
int i2_is_used;
/* INSN_CODEs for new I3, new I2, and user of condition code. */
int insn_code_number, i2_code_number = 0, other_code_number = 0;
/* Contains I3 if the destination of I3 is used in its source, which means
that the old life of I3 is being killed. If that usage is placed into
I2 and not in I3, a REG_DEAD note must be made. */
rtx i3dest_killed = 0;
/* SET_DEST and SET_SRC of I2 and I1. */
rtx i2dest, i2src, i1dest = 0, i1src = 0;
/* PATTERN (I2), or a copy of it in certain cases. */
rtx i2pat;
/* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
int i1_feeds_i3 = 0;
/* Notes that must be added to REG_NOTES in I3 and I2. */
rtx new_i3_notes, new_i2_notes;
/* Notes that we substituted I3 into I2 instead of the normal case. */
int i3_subst_into_i2 = 0;
/* Notes that I1, I2 or I3 is a MULT operation. */
int have_mult = 0;
int maxreg;
rtx temp;
rtx link;
int i;
/* Exit early if one of the insns involved can't be used for
combinations. */
if (cant_combine_insn_p (i3)
|| cant_combine_insn_p (i2)
|| (i1 && cant_combine_insn_p (i1))
/* We also can't do anything if I3 has a
REG_LIBCALL note since we don't want to disrupt the contiguity of a
libcall. */
#if 0
/* ??? This gives worse code, and appears to be unnecessary, since no
pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
|| find_reg_note (i3, REG_LIBCALL, NULL_RTX)
#endif
)
return 0;
combine_attempts++;
undobuf.other_insn = 0;
/* Reset the hard register usage information. */
CLEAR_HARD_REG_SET (newpat_used_regs);
/* If I1 and I2 both feed I3, they can be in any order. To simplify the
code below, set I1 to be the earlier of the two insns. */
if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
temp = i1, i1 = i2, i2 = temp;
added_links_insn = 0;
/* First check for one important special-case that the code below will
not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
we may be able to replace that destination with the destination of I3.
This occurs in the common code where we compute both a quotient and
remainder into a structure, in which case we want to do the computation
directly into the structure to avoid register-register copies.
Note that this case handles both multiple sets in I2 and also
cases where I2 has a number of CLOBBER or PARALLELs.
We make very conservative checks below and only try to handle the
most common cases of this. For example, we only handle the case
where I2 and I3 are adjacent to avoid making difficult register
usage tests. */
if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
&& REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
&& find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
&& GET_CODE (PATTERN (i2)) == PARALLEL
&& ! side_effects_p (SET_DEST (PATTERN (i3)))
/* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
below would need to check what is inside (and reg_overlap_mentioned_p
doesn't support those codes anyway). Don't allow those destinations;
the resulting insn isn't likely to be recognized anyway. */
&& GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
&& ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
SET_DEST (PATTERN (i3)))
&& next_real_insn (i2) == i3)
{
rtx p2 = PATTERN (i2);
/* Make sure that the destination of I3,
which we are going to substitute into one output of I2,
is not used within another output of I2. We must avoid making this:
(parallel [(set (mem (reg 69)) ...)
(set (reg 69) ...)])
which is not well-defined as to order of actions.
(Besides, reload can't handle output reloads for this.)
The problem can also happen if the dest of I3 is a memory ref,
if another dest in I2 is an indirect memory ref. */
for (i = 0; i < XVECLEN (p2, 0); i++)
if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
|| GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
&& reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
SET_DEST (XVECEXP (p2, 0, i))))
break;
if (i == XVECLEN (p2, 0))
for (i = 0; i < XVECLEN (p2, 0); i++)
if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
|| GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
&& SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
{
combine_merges++;
subst_insn = i3;
subst_low_cuid = INSN_CUID (i2);
added_sets_2 = added_sets_1 = 0;
i2dest = SET_SRC (PATTERN (i3));
/* Replace the dest in I2 with our dest and make the resulting
insn the new pattern for I3. Then skip to where we
validate the pattern. Everything was set up above. */
SUBST (SET_DEST (XVECEXP (p2, 0, i)),
SET_DEST (PATTERN (i3)));
newpat = p2;
i3_subst_into_i2 = 1;
goto validate_replacement;
}
}
/* If I2 is setting a double-word pseudo to a constant and I3 is setting
one of those words to another constant, merge them by making a new
constant. */
if (i1 == 0
&& (temp = single_set (i2)) != 0
&& (GET_CODE (SET_SRC (temp)) == CONST_INT
|| GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
&& GET_CODE (SET_DEST (temp)) == REG
&& GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
&& GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
&& GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
&& SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
&& GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
&& GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
&& GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
{
HOST_WIDE_INT lo, hi;
if (GET_CODE (SET_SRC (temp)) == CONST_INT)
lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
else
{
lo = CONST_DOUBLE_LOW (SET_SRC (temp));
hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
}
if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
{
/* We don't handle the case of the target word being wider
than a host wide int. */
if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
abort ();
lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
lo |= (INTVAL (SET_SRC (PATTERN (i3)))
& (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
}
else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
hi = INTVAL (SET_SRC (PATTERN (i3)));
else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
{
int sign = -(int) ((unsigned HOST_WIDE_INT) lo
>> (HOST_BITS_PER_WIDE_INT - 1));
lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
(INTVAL (SET_SRC (PATTERN (i3)))));
if (hi == sign)
hi = lo < 0 ? -1 : 0;
}
else
/* We don't handle the case of the higher word not fitting
entirely in either hi or lo. */
abort ();
combine_merges++;
subst_insn = i3;
subst_low_cuid = INSN_CUID (i2);
added_sets_2 = added_sets_1 = 0;
i2dest = SET_DEST (temp);
SUBST (SET_SRC (temp),
immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
newpat = PATTERN (i2);
goto validate_replacement;
}
#ifndef HAVE_cc0
/* If we have no I1 and I2 looks like:
(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
(set Y OP)])
make up a dummy I1 that is
(set Y OP)
and change I2 to be
(set (reg:CC X) (compare:CC Y (const_int 0)))
(We can ignore any trailing CLOBBERs.)
This undoes a previous combination and allows us to match a branch-and-
decrement insn. */
if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
&& XVECLEN (PATTERN (i2), 0) >= 2
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
&& (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
== MODE_CC)
&& GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
&& XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
&& rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
{
for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
break;
if (i == 1)
{
/* We make I1 with the same INSN_UID as I2. This gives it
the same INSN_CUID for value tracking. Our fake I1 will
never appear in the insn stream so giving it the same INSN_UID
as I2 will not cause a problem. */
subst_prev_insn = i1
= gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
NULL_RTX);
SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
SET_DEST (PATTERN (i1)));
}
}
#endif
/* Verify that I2 and I1 are valid for combining. */
if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
|| (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
{
undo_all ();
return 0;
}
/* Record whether I2DEST is used in I2SRC and similarly for the other
cases. Knowing this will help in register status updating below. */
i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
/* See if I1 directly feeds into I3. It does if I1DEST is not used
in I2SRC. */
i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
/* Ensure that I3's pattern can be the destination of combines. */
if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
i1 && i2dest_in_i1src && i1_feeds_i3,
&i3dest_killed))
{
undo_all ();
return 0;
}
/* See if any of the insns is a MULT operation. Unless one is, we will
reject a combination that is, since it must be slower. Be conservative
here. */
if (GET_CODE (i2src) == MULT
|| (i1 != 0 && GET_CODE (i1src) == MULT)
|| (GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
have_mult = 1;
/* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
We used to do this EXCEPT in one case: I3 has a post-inc in an
output operand. However, that exception can give rise to insns like
mov r3,(r3)+
which is a famous insn on the PDP-11 where the value of r3 used as the
source was model-dependent. Avoid this sort of thing. */
#if 0
if (!(GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
|| GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
/* It's not the exception. */
#endif
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
|| (i1 != 0
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
{
undo_all ();
return 0;
}
#endif
/* See if the SETs in I1 or I2 need to be kept around in the merged
instruction: whenever the value set there is still needed past I3.
For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
For the SET in I1, we have two cases: If I1 and I2 independently
feed into I3, the set in I1 needs to be kept around if I1DEST dies
or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
in I1 needs to be kept around unless I1DEST dies or is set in either
I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
I1DEST. If so, we know I1 feeds into I2. */
added_sets_2 = ! dead_or_set_p (i3, i2dest);
added_sets_1
= i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
: (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
/* If the set in I2 needs to be kept around, we must make a copy of
PATTERN (I2), so that when we substitute I1SRC for I1DEST in
PATTERN (I2), we are only substituting for the original I1DEST, not into
an already-substituted copy. This also prevents making self-referential
rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
I2DEST. */
i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
? gen_rtx_SET (VOIDmode, i2dest, i2src)
: PATTERN (i2));
if (added_sets_2)
i2pat = copy_rtx (i2pat);
combine_merges++;
/* Substitute in the latest insn for the regs set by the earlier ones. */
maxreg = max_reg_num ();
subst_insn = i3;
/* It is possible that the source of I2 or I1 may be performing an
unneeded operation, such as a ZERO_EXTEND of something that is known
to have the high part zero. Handle that case by letting subst look at
the innermost one of them.
Another way to do this would be to have a function that tries to
simplify a single insn instead of merging two or more insns. We don't
do this because of the potential of infinite loops and because
of the potential extra memory required. However, doing it the way
we are is a bit of a kludge and doesn't catch all cases.
But only do this if -fexpensive-optimizations since it slows things down
and doesn't usually win. */
if (flag_expensive_optimizations)
{
/* Pass pc_rtx so no substitutions are done, just simplifications.
The cases that we are interested in here do not involve the few
cases were is_replaced is checked. */
if (i1)
{
subst_low_cuid = INSN_CUID (i1);
i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
}
else
{
subst_low_cuid = INSN_CUID (i2);
i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
}
}
#ifndef HAVE_cc0
/* Many machines that don't use CC0 have insns that can both perform an
arithmetic operation and set the condition code. These operations will
be represented as a PARALLEL with the first element of the vector
being a COMPARE of an arithmetic operation with the constant zero.
The second element of the vector will set some pseudo to the result
of the same arithmetic operation. If we simplify the COMPARE, we won't
match such a pattern and so will generate an extra insn. Here we test
for this case, where both the comparison and the operation result are
needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
I2SRC. Later we will make the PARALLEL that contains I2. */
if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
&& XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
&& rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
{
#ifdef EXTRA_CC_MODES
rtx *cc_use;
enum machine_mode compare_mode;
#endif
newpat = PATTERN (i3);
SUBST (XEXP (SET_SRC (newpat), 0), i2src);
i2_is_used = 1;
#ifdef EXTRA_CC_MODES
/* See if a COMPARE with the operand we substituted in should be done
with the mode that is currently being used. If not, do the same
processing we do in `subst' for a SET; namely, if the destination
is used only once, try to replace it with a register of the proper
mode and also replace the COMPARE. */
if (undobuf.other_insn == 0
&& (cc_use = find_single_use (SET_DEST (newpat), i3,
&undobuf.other_insn))
&& ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
i2src, const0_rtx))
!= GET_MODE (SET_DEST (newpat))))
{
unsigned int regno = REGNO (SET_DEST (newpat));
rtx new_dest = gen_rtx_REG (compare_mode, regno);
if (regno < FIRST_PSEUDO_REGISTER
|| (REG_N_SETS (regno) == 1 && ! added_sets_2
&& ! REG_USERVAR_P (SET_DEST (newpat))))
{
if (regno >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[regno], new_dest);
SUBST (SET_DEST (newpat), new_dest);
SUBST (XEXP (*cc_use, 0), new_dest);
SUBST (SET_SRC (newpat),
gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
}
else
undobuf.other_insn = 0;
}
#endif
}
else
#endif
{
n_occurrences = 0; /* `subst' counts here */
/* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
need to make a unique copy of I2SRC each time we substitute it
to avoid self-referential rtl. */
subst_low_cuid = INSN_CUID (i2);
newpat = subst (PATTERN (i3), i2dest, i2src, 0,
! i1_feeds_i3 && i1dest_in_i1src);
substed_i2 = 1;
/* Record whether i2's body now appears within i3's body. */
i2_is_used = n_occurrences;
}
/* If we already got a failure, don't try to do more. Otherwise,
try to substitute in I1 if we have it. */
if (i1 && GET_CODE (newpat) != CLOBBER)
{
/* Before we can do this substitution, we must redo the test done
above (see detailed comments there) that ensures that I1DEST
isn't mentioned in any SETs in NEWPAT that are field assignments. */
if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
0, (rtx*) 0))
{
undo_all ();
return 0;
}
n_occurrences = 0;
subst_low_cuid = INSN_CUID (i1);
newpat = subst (newpat, i1dest, i1src, 0, 0);
substed_i1 = 1;
}
/* Fail if an autoincrement side-effect has been duplicated. Be careful
to count all the ways that I2SRC and I1SRC can be used. */
if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
&& i2_is_used + added_sets_2 > 1)
|| (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
&& (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
> 1))
/* Fail if we tried to make a new register (we used to abort, but there's
really no reason to). */
|| max_reg_num () != maxreg
/* Fail if we couldn't do something and have a CLOBBER. */
|| GET_CODE (newpat) == CLOBBER
/* Fail if this new pattern is a MULT and we didn't have one before
at the outer level. */
|| (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
&& ! have_mult))
{
undo_all ();
return 0;
}
/* If the actions of the earlier insns must be kept
in addition to substituting them into the latest one,
we must make a new PARALLEL for the latest insn
to hold additional the SETs. */
if (added_sets_1 || added_sets_2)
{
combine_extras++;
if (GET_CODE (newpat) == PARALLEL)
{
rtvec old = XVEC (newpat, 0);
total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
sizeof (old->elem[0]) * old->num_elem);
}
else
{
rtx old = newpat;
total_sets = 1 + added_sets_1 + added_sets_2;
newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
XVECEXP (newpat, 0, 0) = old;
}
if (added_sets_1)
XVECEXP (newpat, 0, --total_sets)
= (GET_CODE (PATTERN (i1)) == PARALLEL
? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
if (added_sets_2)
{
/* If there is no I1, use I2's body as is. We used to also not do
the subst call below if I2 was substituted into I3,
but that could lose a simplification. */
if (i1 == 0)
XVECEXP (newpat, 0, --total_sets) = i2pat;
else
/* See comment where i2pat is assigned. */
XVECEXP (newpat, 0, --total_sets)
= subst (i2pat, i1dest, i1src, 0, 0);
}
}
/* We come here when we are replacing a destination in I2 with the
destination of I3. */
validate_replacement:
/* Note which hard regs this insn has as inputs. */
mark_used_regs_combine (newpat);
/* Is the result of combination a valid instruction? */
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
/* If the result isn't valid, see if it is a PARALLEL of two SETs where
the second SET's destination is a register that is unused. In that case,
we just need the first SET. This can occur when simplifying a divmod
insn. We *must* test for this case here because the code below that
splits two independent SETs doesn't handle this case correctly when it
updates the register status. Also check the case where the first
SET's destination is unused. That would not cause incorrect code, but
does cause an unneeded insn to remain. */
if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
&& find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
&& ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
&& asm_noperands (newpat) < 0)
{
newpat = XVECEXP (newpat, 0, 0);
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
}
else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
&& find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
&& ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
&& asm_noperands (newpat) < 0)
{
newpat = XVECEXP (newpat, 0, 1);
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
}
/* If we were combining three insns and the result is a simple SET
with no ASM_OPERANDS that wasn't recognized, try to split it into two
insns. There are two ways to do this. It can be split using a
machine-specific method (like when you have an addition of a large
constant) or by combine in the function find_split_point. */
if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
&& asm_noperands (newpat) < 0)
{
rtx m_split, *split;
rtx ni2dest = i2dest;
/* See if the MD file can split NEWPAT. If it can't, see if letting it
use I2DEST as a scratch register will help. In the latter case,
convert I2DEST to the mode of the source of NEWPAT if we can. */
m_split = split_insns (newpat, i3);
/* We can only use I2DEST as a scratch reg if it doesn't overlap any
inputs of NEWPAT. */
/* ??? If I2DEST is not safe, and I1DEST exists, then it would be
possible to try that as a scratch reg. This would require adding
more code to make it work though. */
if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
{
/* If I2DEST is a hard register or the only use of a pseudo,
we can change its mode. */
if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
&& GET_MODE (SET_DEST (newpat)) != VOIDmode
&& GET_CODE (i2dest) == REG
&& (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
|| (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
&& ! REG_USERVAR_P (i2dest))))
ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
REGNO (i2dest));
m_split = split_insns (gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2, newpat,
gen_rtx_CLOBBER (VOIDmode,
ni2dest))),
i3);
/* If the split with the mode-changed register didn't work, try
the original register. */
if (! m_split && ni2dest != i2dest)
{
ni2dest = i2dest;
m_split = split_insns (gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2, newpat,
gen_rtx_CLOBBER (VOIDmode,
i2dest))),
i3);
}
}
if (m_split && NEXT_INSN (m_split) == NULL_RTX)
{
m_split = PATTERN (m_split);
insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
if (insn_code_number >= 0)
newpat = m_split;
}
else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
&& (next_real_insn (i2) == i3
|| ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
{
rtx i2set, i3set;
rtx newi3pat = PATTERN (NEXT_INSN (m_split));
newi2pat = PATTERN (m_split);
i3set = single_set (NEXT_INSN (m_split));
i2set = single_set (m_split);
/* In case we changed the mode of I2DEST, replace it in the
pseudo-register table here. We can't do it above in case this
code doesn't get executed and we do a split the other way. */
if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
/* If I2 or I3 has multiple SETs, we won't know how to track
register status, so don't use these insns. If I2's destination
is used between I2 and I3, we also can't use these insns. */
if (i2_code_number >= 0 && i2set && i3set
&& (next_real_insn (i2) == i3
|| ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
insn_code_number = recog_for_combine (&newi3pat, i3,
&new_i3_notes);
if (insn_code_number >= 0)
newpat = newi3pat;
/* It is possible that both insns now set the destination of I3.
If so, we must show an extra use of it. */
if (insn_code_number >= 0)
{
rtx new_i3_dest = SET_DEST (i3set);
rtx new_i2_dest = SET_DEST (i2set);
while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
|| GET_CODE (new_i3_dest) == STRICT_LOW_PART
|| GET_CODE (new_i3_dest) == SUBREG)
new_i3_dest = XEXP (new_i3_dest, 0);
while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
|| GET_CODE (new_i2_dest) == STRICT_LOW_PART
|| GET_CODE (new_i2_dest) == SUBREG)
new_i2_dest = XEXP (new_i2_dest, 0);
if (GET_CODE (new_i3_dest) == REG
&& GET_CODE (new_i2_dest) == REG
&& REGNO (new_i3_dest) == REGNO (new_i2_dest))
REG_N_SETS (REGNO (new_i2_dest))++;
}
}
/* If we can split it and use I2DEST, go ahead and see if that
helps things be recognized. Verify that none of the registers
are set between I2 and I3. */
if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
#ifdef HAVE_cc0
&& GET_CODE (i2dest) == REG
#endif
/* We need I2DEST in the proper mode. If it is a hard register
or the only use of a pseudo, we can change its mode. */
&& (GET_MODE (*split) == GET_MODE (i2dest)
|| GET_MODE (*split) == VOIDmode
|| REGNO (i2dest) < FIRST_PSEUDO_REGISTER
|| (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
&& ! REG_USERVAR_P (i2dest)))
&& (next_real_insn (i2) == i3
|| ! use_crosses_set_p (*split, INSN_CUID (i2)))
/* We can't overwrite I2DEST if its value is still used by
NEWPAT. */
&& ! reg_referenced_p (i2dest, newpat))
{
rtx newdest = i2dest;
enum rtx_code split_code = GET_CODE (*split);
enum machine_mode split_mode = GET_MODE (*split);
/* Get NEWDEST as a register in the proper mode. We have already
validated that we can do this. */
if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
{
newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
}
/* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
an ASHIFT. This can occur if it was inside a PLUS and hence
appeared to be a memory address. This is a kludge. */
if (split_code == MULT
&& GET_CODE (XEXP (*split, 1)) == CONST_INT
&& INTVAL (XEXP (*split, 1)) > 0
&& (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
{
SUBST (*split, gen_rtx_ASHIFT (split_mode,
XEXP (*split, 0), GEN_INT (i)));
/* Update split_code because we may not have a multiply
anymore. */
split_code = GET_CODE (*split);
}
#ifdef INSN_SCHEDULING
/* If *SPLIT is a paradoxical SUBREG, when we split it, it should
be written as a ZERO_EXTEND. */
if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
{
#ifdef LOAD_EXTEND_OP
/* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
what it really is. */
if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
== SIGN_EXTEND)
SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
SUBREG_REG (*split)));
else
#endif
SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
SUBREG_REG (*split)));
}
#endif
newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
SUBST (*split, newdest);
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
/* If the split point was a MULT and we didn't have one before,
don't use one now. */
if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
}
}
/* Check for a case where we loaded from memory in a narrow mode and
then sign extended it, but we need both registers. In that case,
we have a PARALLEL with both loads from the same memory location.
We can split this into a load from memory followed by a register-register
copy. This saves at least one insn, more if register allocation can
eliminate the copy.
We cannot do this if the destination of the first assignment is a
condition code register or cc0. We eliminate this case by making sure
the SET_DEST and SET_SRC have the same mode.
We cannot do this if the destination of the second assignment is
a register that we have already assumed is zero-extended. Similarly
for a SUBREG of such a register. */
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
&& GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
&& (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
== GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
&& ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
INSN_CUID (i2))
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
&& ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
(GET_CODE (temp) == REG
&& reg_nonzero_bits[REGNO (temp)] != 0
&& GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
&& (reg_nonzero_bits[REGNO (temp)]
!= GET_MODE_MASK (word_mode))))
&& ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
&& (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
(GET_CODE (temp) == REG
&& reg_nonzero_bits[REGNO (temp)] != 0
&& GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
&& (reg_nonzero_bits[REGNO (temp)]
!= GET_MODE_MASK (word_mode)))))
&& ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
SET_SRC (XVECEXP (newpat, 0, 1)))
&& ! find_reg_note (i3, REG_UNUSED,
SET_DEST (XVECEXP (newpat, 0, 0))))
{
rtx ni2dest;
newi2pat = XVECEXP (newpat, 0, 0);
ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
newpat = XVECEXP (newpat, 0, 1);
SUBST (SET_SRC (newpat),
gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
if (i2_code_number >= 0)
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
if (insn_code_number >= 0)
{
rtx insn;
rtx link;
/* If we will be able to accept this, we have made a change to the
destination of I3. This can invalidate a LOG_LINKS pointing
to I3. No other part of combine.c makes such a transformation.
The new I3 will have a destination that was previously the
destination of I1 or I2 and which was used in i2 or I3. Call
distribute_links to make a LOG_LINK from the next use of
that destination. */
PATTERN (i3) = newpat;
distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
/* I3 now uses what used to be its destination and which is
now I2's destination. That means we need a LOG_LINK from
I3 to I2. But we used to have one, so we still will.
However, some later insn might be using I2's dest and have
a LOG_LINK pointing at I3. We must remove this link.
The simplest way to remove the link is to point it at I1,
which we know will be a NOTE. */
for (insn = NEXT_INSN (i3);
insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
|| insn != this_basic_block->next_bb->head);
insn = NEXT_INSN (insn))
{
if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
{
for (link = LOG_LINKS (insn); link;
link = XEXP (link, 1))
if (XEXP (link, 0) == i3)
XEXP (link, 0) = i1;
break;
}
}
}
}
/* Similarly, check for a case where we have a PARALLEL of two independent
SETs but we started with three insns. In this case, we can do the sets
as two separate insns. This case occurs when some SET allows two
other insns to combine, but the destination of that SET is still live. */
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
&& GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
&& ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
INSN_CUID (i2))
/* Don't pass sets with (USE (MEM ...)) dests to the following. */
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
XVECEXP (newpat, 0, 0))
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
XVECEXP (newpat, 0, 1))
&& ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
&& contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
{
/* Normally, it doesn't matter which of the two is done first,
but it does if one references cc0. In that case, it has to
be first. */
#ifdef HAVE_cc0
if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
{
newi2pat = XVECEXP (newpat, 0, 0);
newpat = XVECEXP (newpat, 0, 1);
}
else
#endif
{
newi2pat = XVECEXP (newpat, 0, 1);
newpat = XVECEXP (newpat, 0, 0);
}
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
if (i2_code_number >= 0)
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
}
/* If it still isn't recognized, fail and change things back the way they
were. */
if ((insn_code_number < 0
/* Is the result a reasonable ASM_OPERANDS? */
&& (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
{
undo_all ();
return 0;
}
/* If we had to change another insn, make sure it is valid also. */
if (undobuf.other_insn)
{
rtx other_pat = PATTERN (undobuf.other_insn);
rtx new_other_notes;
rtx note, next;
CLEAR_HARD_REG_SET (newpat_used_regs);
other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
&new_other_notes);
if (other_code_number < 0 && ! check_asm_operands (other_pat))
{
undo_all ();
return 0;
}
PATTERN (undobuf.other_insn) = other_pat;
/* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
are still valid. Then add any non-duplicate notes added by
recog_for_combine. */
for (note = REG_NOTES (undobuf.other_insn); note; note = next)
{
next = XEXP (note, 1);
if (REG_NOTE_KIND (note) == REG_UNUSED
&& ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
{
if (GET_CODE (XEXP (note, 0)) == REG)
REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
remove_note (undobuf.other_insn, note);
}
}
for (note = new_other_notes; note; note = XEXP (note, 1))
if (GET_CODE (XEXP (note, 0)) == REG)
REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
distribute_notes (new_other_notes, undobuf.other_insn,
undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
}
#ifdef HAVE_cc0
/* If I2 is the setter CC0 and I3 is the user CC0 then check whether
they are adjacent to each other or not. */
{
rtx p = prev_nonnote_insn (i3);
if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
&& sets_cc0_p (newi2pat))
{
undo_all ();
return 0;
}
}
#endif
/* We now know that we can do this combination. Merge the insns and
update the status of registers and LOG_LINKS. */
{
rtx i3notes, i2notes, i1notes = 0;
rtx i3links, i2links, i1links = 0;
rtx midnotes = 0;
unsigned int regno;
/* Compute which registers we expect to eliminate. newi2pat may be setting
either i3dest or i2dest, so we must check it. Also, i1dest may be the
same as i3dest, in which case newi2pat may be setting i1dest. */
rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
|| i2dest_in_i2src || i2dest_in_i1src
? 0 : i2dest);
rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
|| (newi2pat && reg_set_p (i1dest, newi2pat))
? 0 : i1dest);
/* Get the old REG_NOTES and LOG_LINKS from all our insns and
clear them. */
i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
if (i1)
i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
/* Ensure that we do not have something that should not be shared but
occurs multiple times in the new insns. Check this by first
resetting all the `used' flags and then copying anything is shared. */
reset_used_flags (i3notes);
reset_used_flags (i2notes);
reset_used_flags (i1notes);
reset_used_flags (newpat);
reset_used_flags (newi2pat);
if (undobuf.other_insn)
reset_used_flags (PATTERN (undobuf.other_insn));
i3notes = copy_rtx_if_shared (i3notes);
i2notes = copy_rtx_if_shared (i2notes);
i1notes = copy_rtx_if_shared (i1notes);
newpat = copy_rtx_if_shared (newpat);
newi2pat = copy_rtx_if_shared (newi2pat);
if (undobuf.other_insn)
reset_used_flags (PATTERN (undobuf.other_insn));
INSN_CODE (i3) = insn_code_number;
PATTERN (i3) = newpat;
if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
{
rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
reset_used_flags (call_usage);
call_usage = copy_rtx (call_usage);
if (substed_i2)
replace_rtx (call_usage, i2dest, i2src);
if (substed_i1)
replace_rtx (call_usage, i1dest, i1src);
CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
}
if (undobuf.other_insn)
INSN_CODE (undobuf.other_insn) = other_code_number;
/* We had one special case above where I2 had more than one set and
we replaced a destination of one of those sets with the destination
of I3. In that case, we have to update LOG_LINKS of insns later
in this basic block. Note that this (expensive) case is rare.
Also, in this case, we must pretend that all REG_NOTEs for I2
actually came from I3, so that REG_UNUSED notes from I2 will be
properly handled. */
if (i3_subst_into_i2)
{
for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
&& GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
&& SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
&& ! find_reg_note (i2, REG_UNUSED,
SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
for (temp = NEXT_INSN (i2);
temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
|| this_basic_block->head != temp);
temp = NEXT_INSN (temp))
if (temp != i3 && INSN_P (temp))
for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
if (XEXP (link, 0) == i2)
XEXP (link, 0) = i3;
if (i3notes)
{
rtx link = i3notes;
while (XEXP (link, 1))
link = XEXP (link, 1);
XEXP (link, 1) = i2notes;
}
else
i3notes = i2notes;
i2notes = 0;
}
LOG_LINKS (i3) = 0;
REG_NOTES (i3) = 0;
LOG_LINKS (i2) = 0;
REG_NOTES (i2) = 0;
if (newi2pat)
{
INSN_CODE (i2) = i2_code_number;
PATTERN (i2) = newi2pat;
}
else
{
PUT_CODE (i2, NOTE);
NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (i2) = 0;
}
if (i1)
{
LOG_LINKS (i1) = 0;
REG_NOTES (i1) = 0;
PUT_CODE (i1, NOTE);
NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (i1) = 0;
}
/* Get death notes for everything that is now used in either I3 or
I2 and used to die in a previous insn. If we built two new
patterns, move from I1 to I2 then I2 to I3 so that we get the
proper movement on registers that I2 modifies. */
if (newi2pat)
{
move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
}
else
move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
i3, &midnotes);
/* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
if (i3notes)
distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
if (i2notes)
distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
if (i1notes)
distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
if (midnotes)
distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
/* Distribute any notes added to I2 or I3 by recog_for_combine. We
know these are REG_UNUSED and want them to go to the desired insn,
so we always pass it as i3. We have not counted the notes in
reg_n_deaths yet, so we need to do so now. */
if (newi2pat && new_i2_notes)
{
for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
if (GET_CODE (XEXP (temp, 0)) == REG)
REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
}
if (new_i3_notes)
{
for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
if (GET_CODE (XEXP (temp, 0)) == REG)
REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
}
/* If I3DEST was used in I3SRC, it really died in I3. We may need to
put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
I3DEST, the death must be somewhere before I2, not I3. If we passed I3
in that case, it might delete I2. Similarly for I2 and I1.
Show an additional death due to the REG_DEAD note we make here. If
we discard it in distribute_notes, we will decrement it again. */
if (i3dest_killed)
{
if (GET_CODE (i3dest_killed) == REG)
REG_N_DEATHS (REGNO (i3dest_killed))++;
if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
NULL_RTX),
NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
else
distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
NULL_RTX),
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
}
if (i2dest_in_i2src)
{
if (GET_CODE (i2dest) == REG)
REG_N_DEATHS (REGNO (i2dest))++;
if (newi2pat && reg_set_p (i2dest, newi2pat))
distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
else
distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
NULL_RTX, NULL_RTX);
}
if (i1dest_in_i1src)
{
if (GET_CODE (i1dest) == REG)
REG_N_DEATHS (REGNO (i1dest))++;
if (newi2pat && reg_set_p (i1dest, newi2pat))
distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
else
distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
NULL_RTX, NULL_RTX);
}
distribute_links (i3links);
distribute_links (i2links);
distribute_links (i1links);
if (GET_CODE (i2dest) == REG)
{
rtx link;
rtx i2_insn = 0, i2_val = 0, set;
/* The insn that used to set this register doesn't exist, and
this life of the register may not exist either. See if one of
I3's links points to an insn that sets I2DEST. If it does,
that is now the last known value for I2DEST. If we don't update
this and I2 set the register to a value that depended on its old
contents, we will get confused. If this insn is used, thing
will be set correctly in combine_instructions. */
for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
if ((set = single_set (XEXP (link, 0))) != 0
&& rtx_equal_p (i2dest, SET_DEST (set)))
i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
record_value_for_reg (i2dest, i2_insn, i2_val);
/* If the reg formerly set in I2 died only once and that was in I3,
zero its use count so it won't make `reload' do any work. */
if (! added_sets_2
&& (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
&& ! i2dest_in_i2src)
{
regno = REGNO (i2dest);
REG_N_SETS (regno)--;
}
}
if (i1 && GET_CODE (i1dest) == REG)
{
rtx link;
rtx i1_insn = 0, i1_val = 0, set;
for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
if ((set = single_set (XEXP (link, 0))) != 0
&& rtx_equal_p (i1dest, SET_DEST (set)))
i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
record_value_for_reg (i1dest, i1_insn, i1_val);
regno = REGNO (i1dest);
if (! added_sets_1 && ! i1dest_in_i1src)
REG_N_SETS (regno)--;
}
/* Update reg_nonzero_bits et al for any changes that may have been made
to this insn. The order of set_nonzero_bits_and_sign_copies() is
important. Because newi2pat can affect nonzero_bits of newpat */
if (newi2pat)
note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
/* Set new_direct_jump_p if a new return or simple jump instruction
has been created.
If I3 is now an unconditional jump, ensure that it has a
BARRIER following it since it may have initially been a
conditional jump. It may also be the last nonnote insn. */
if (returnjump_p (i3) || any_uncondjump_p (i3))
{
*new_direct_jump_p = 1;
if ((temp = next_nonnote_insn (i3)) == NULL_RTX
|| GET_CODE (temp) != BARRIER)
emit_barrier_after (i3);
}
if (undobuf.other_insn != NULL_RTX
&& (returnjump_p (undobuf.other_insn)
|| any_uncondjump_p (undobuf.other_insn)))
{
*new_direct_jump_p = 1;
if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
|| GET_CODE (temp) != BARRIER)
emit_barrier_after (undobuf.other_insn);
}
/* An NOOP jump does not need barrier, but it does need cleaning up
of CFG. */
if (GET_CODE (newpat) == SET
&& SET_SRC (newpat) == pc_rtx
&& SET_DEST (newpat) == pc_rtx)
*new_direct_jump_p = 1;
}
combine_successes++;
undo_commit ();
/* Clear this here, so that subsequent get_last_value calls are not
affected. */
subst_prev_insn = NULL_RTX;
if (added_links_insn
&& (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
&& INSN_CUID (added_links_insn) < INSN_CUID (i3))
return added_links_insn;
else
return newi2pat ? i2 : i3;
}
/* Undo all the modifications recorded in undobuf. */
static void
undo_all ()
{
struct undo *undo, *next;
for (undo = undobuf.undos; undo; undo = next)
{
next = undo->next;
if (undo->is_int)
*undo->where.i = undo->old_contents.i;
else
*undo->where.r = undo->old_contents.r;
undo->next = undobuf.frees;
undobuf.frees = undo;
}
undobuf.undos = 0;
/* Clear this here, so that subsequent get_last_value calls are not
affected. */
subst_prev_insn = NULL_RTX;
}
/* We've committed to accepting the changes we made. Move all
of the undos to the free list. */
static void
undo_commit ()
{
struct undo *undo, *next;
for (undo = undobuf.undos; undo; undo = next)
{
next = undo->next;
undo->next = undobuf.frees;
undobuf.frees = undo;
}
undobuf.undos = 0;
}
/* Find the innermost point within the rtx at LOC, possibly LOC itself,
where we have an arithmetic expression and return that point. LOC will
be inside INSN.
try_combine will call this function to see if an insn can be split into
two insns. */
static rtx *
find_split_point (loc, insn)
rtx *loc;
rtx insn;
{
rtx x = *loc;
enum rtx_code code = GET_CODE (x);
rtx *split;
unsigned HOST_WIDE_INT len = 0;
HOST_WIDE_INT pos = 0;
int unsignedp = 0;
rtx inner = NULL_RTX;
/* First special-case some codes. */
switch (code)
{
case SUBREG:
#ifdef INSN_SCHEDULING
/* If we are making a paradoxical SUBREG invalid, it becomes a split
point. */
if (GET_CODE (SUBREG_REG (x)) == MEM)
return loc;
#endif
return find_split_point (&SUBREG_REG (x), insn);
case MEM:
#ifdef HAVE_lo_sum
/* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
using LO_SUM and HIGH. */
if (GET_CODE (XEXP (x, 0)) == CONST
|| GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
{
SUBST (XEXP (x, 0),
gen_rtx_LO_SUM (Pmode,
gen_rtx_HIGH (Pmode, XEXP (x, 0)),
XEXP (x, 0)));
return &XEXP (XEXP (x, 0), 0);
}
#endif
/* If we have a PLUS whose second operand is a constant and the
address is not valid, perhaps will can split it up using
the machine-specific way to split large constants. We use
the first pseudo-reg (one of the virtual regs) as a placeholder;
it will not remain in the result. */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
{
rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
subst_insn);
/* This should have produced two insns, each of which sets our
placeholder. If the source of the second is a valid address,
we can make put both sources together and make a split point
in the middle. */
if (seq
&& NEXT_INSN (seq) != NULL_RTX
&& NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
&& GET_CODE (seq) == INSN
&& GET_CODE (PATTERN (seq)) == SET
&& SET_DEST (PATTERN (seq)) == reg
&& ! reg_mentioned_p (reg,
SET_SRC (PATTERN (seq)))
&& GET_CODE (NEXT_INSN (seq)) == INSN
&& GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
&& SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
&& memory_address_p (GET_MODE (x),
SET_SRC (PATTERN (NEXT_INSN (seq)))))
{
rtx src1 = SET_SRC (PATTERN (seq));
rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
/* Replace the placeholder in SRC2 with SRC1. If we can
find where in SRC2 it was placed, that can become our
split point and we can replace this address with SRC2.
Just try two obvious places. */
src2 = replace_rtx (src2, reg, src1);
split = 0;
if (XEXP (src2, 0) == src1)
split = &XEXP (src2, 0);
else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
&& XEXP (XEXP (src2, 0), 0) == src1)
split = &XEXP (XEXP (src2, 0), 0);
if (split)
{
SUBST (XEXP (x, 0), src2);
return split;
}
}
/* If that didn't work, perhaps the first operand is complex and
needs to be computed separately, so make a split point there.
This will occur on machines that just support REG + CONST
and have a constant moved through some previous computation. */
else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
&& ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
== 'o')))
return &XEXP (XEXP (x, 0), 0);
}
break;
case SET:
#ifdef HAVE_cc0
/* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
ZERO_EXTRACT, the most likely reason why this doesn't match is that
we need to put the operand into a register. So split at that
point. */
if (SET_DEST (x) == cc0_rtx
&& GET_CODE (SET_SRC (x)) != COMPARE
&& GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
&& GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
&& ! (GET_CODE (SET_SRC (x)) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
return &SET_SRC (x);
#endif
/* See if we can split SET_SRC as it stands. */
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
/* See if we can split SET_DEST as it stands. */
split = find_split_point (&SET_DEST (x), insn);
if (split && split != &SET_DEST (x))
return split;
/* See if this is a bitfield assignment with everything constant. If
so, this is an IOR of an AND, so split it into that. */
if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
<= HOST_BITS_PER_WIDE_INT)
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
&& GET_CODE (SET_SRC (x)) == CONST_INT
&& ((INTVAL (XEXP (SET_DEST (x), 1))
+ INTVAL (XEXP (SET_DEST (x), 2)))
<= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
&& ! side_effects_p (XEXP (SET_DEST (x), 0)))
{
HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
rtx dest = XEXP (SET_DEST (x), 0);
enum machine_mode mode = GET_MODE (dest);
unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
if (BITS_BIG_ENDIAN)
pos = GET_MODE_BITSIZE (mode) - len - pos;
if (src == mask)
SUBST (SET_SRC (x),
gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
else
SUBST (SET_SRC (x),
gen_binary (IOR, mode,
gen_binary (AND, mode, dest,
gen_int_mode (~(mask << pos),
mode)),
GEN_INT (src << pos)));
SUBST (SET_DEST (x), dest);
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
}
/* Otherwise, see if this is an operation that we can split into two.
If so, try to split that. */
code = GET_CODE (SET_SRC (x));
switch (code)
{
case AND:
/* If we are AND'ing with a large constant that is only a single
bit and the result is only being used in a context where we
need to know if it is zero or nonzero, replace it with a bit
extraction. This will avoid the large constant, which might
have taken more than one insn to make. If the constant were
not a valid argument to the AND but took only one insn to make,
this is no worse, but if it took more than one insn, it will
be better. */
if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_SRC (x), 0)) == REG
&& (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
&& GET_CODE (SET_DEST (x)) == REG
&& (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
&& (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
&& XEXP (*split, 0) == SET_DEST (x)
&& XEXP (*split, 1) == const0_rtx)
{
rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
XEXP (SET_SRC (x), 0),
pos, NULL_RTX, 1, 1, 0, 0);
if (extraction != 0)
{
SUBST (SET_SRC (x), extraction);
return find_split_point (loc, insn);
}
}
break;
case NE:
/* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
is known to be on, this can be converted into a NEG of a shift. */
if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
&& GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
&& 1 <= (pos = exact_log2
(nonzero_bits (XEXP (SET_SRC (x), 0),
GET_MODE (XEXP (SET_SRC (x), 0))))))
{
enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
SUBST (SET_SRC (x),
gen_rtx_NEG (mode,
gen_rtx_LSHIFTRT (mode,
XEXP (SET_SRC (x), 0),
GEN_INT (pos))));
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
}
break;
case SIGN_EXTEND:
inner = XEXP (SET_SRC (x), 0);
/* We can't optimize if either mode is a partial integer
mode as we don't know how many bits are significant
in those modes. */
if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
|| GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
break;
pos = 0;
len = GET_MODE_BITSIZE (GET_MODE (inner));
unsignedp = 0;
break;
case SIGN_EXTRACT:
case ZERO_EXTRACT:
if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
{
inner = XEXP (SET_SRC (x), 0);
len = INTVAL (XEXP (SET_SRC (x), 1));
pos = INTVAL (XEXP (SET_SRC (x), 2));
if (BITS_BIG_ENDIAN)
pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
unsignedp = (code == ZERO_EXTRACT);
}
break;
default:
break;
}
if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
{
enum machine_mode mode = GET_MODE (SET_SRC (x));
/* For unsigned, we have a choice of a shift followed by an
AND or two shifts. Use two shifts for field sizes where the
constant might be too large. We assume here that we can
always at least get 8-bit constants in an AND insn, which is
true for every current RISC. */
if (unsignedp && len <= 8)
{
SUBST (SET_SRC (x),
gen_rtx_AND (mode,
gen_rtx_LSHIFTRT
(mode, gen_lowpart_for_combine (mode, inner),
GEN_INT (pos)),
GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
}
else
{
SUBST (SET_SRC (x),
gen_rtx_fmt_ee
(unsignedp ? LSHIFTRT : ASHIFTRT, mode,
gen_rtx_ASHIFT (mode,
gen_lowpart_for_combine (mode, inner),
GEN_INT (GET_MODE_BITSIZE (mode)
- len - pos)),
GEN_INT (GET_MODE_BITSIZE (mode) - len)));
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
}
}
/* See if this is a simple operation with a constant as the second
operand. It might be that this constant is out of range and hence
could be used as a split point. */
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
&& CONSTANT_P (XEXP (SET_SRC (x), 1))
&& (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
|| (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
== 'o'))))
return &XEXP (SET_SRC (x), 1);
/* Finally, see if this is a simple operation with its first operand
not in a register. The operation might require this operand in a
register, so return it as a split point. We can always do this
because if the first operand were another operation, we would have
already found it as a split point. */
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
&& ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
return &XEXP (SET_SRC (x), 0);
return 0;
case AND:
case IOR:
/* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
it is better to write this as (not (ior A B)) so we can split it.
Similarly for IOR. */
if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
{
SUBST (*loc,
gen_rtx_NOT (GET_MODE (x),
gen_rtx_fmt_ee (code == IOR ? AND : IOR,
GET_MODE (x),
XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 1), 0))));
return find_split_point (loc, insn);
}
/* Many RISC machines have a large set of logical insns. If the
second operand is a NOT, put it first so we will try to split the
other operand first. */
if (GET_CODE (XEXP (x, 1)) == NOT)
{
rtx tem = XEXP (x, 0);
SUBST (XEXP (x, 0), XEXP (x, 1));
SUBST (XEXP (x, 1), tem);
}
break;
default:
break;
}
/* Otherwise, select our actions depending on our rtx class. */
switch (GET_RTX_CLASS (code))
{
case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
case '3':
split = find_split_point (&XEXP (x, 2), insn);
if (split)
return split;
/* ... fall through ... */
case '2':
case 'c':
case '<':
split = find_split_point (&XEXP (x, 1), insn);
if (split)
return split;
/* ... fall through ... */
case '1':
/* Some machines have (and (shift ...) ...) insns. If X is not
an AND, but XEXP (X, 0) is, use it as our split point. */
if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
return &XEXP (x, 0);
split = find_split_point (&XEXP (x, 0), insn);
if (split)
return split;
return loc;
}
/* Otherwise, we don't have a split point. */
return 0;
}
/* Throughout X, replace FROM with TO, and return the result.
The result is TO if X is FROM;
otherwise the result is X, but its contents may have been modified.
If they were modified, a record was made in undobuf so that
undo_all will (among other things) return X to its original state.
If the number of changes necessary is too much to record to undo,
the excess changes are not made, so the result is invalid.
The changes already made can still be undone.
undobuf.num_undo is incremented for such changes, so by testing that
the caller can tell whether the result is valid.
`n_occurrences' is incremented each time FROM is replaced.
IN_DEST is nonzero if we are processing the SET_DEST of a SET.
UNIQUE_COPY is nonzero if each substitution must be unique. We do this
by copying if `n_occurrences' is nonzero. */
static rtx
subst (x, from, to, in_dest, unique_copy)
rtx x, from, to;
int in_dest;
int unique_copy;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode op0_mode = VOIDmode;
const char *fmt;
int len, i;
rtx new;
/* Two expressions are equal if they are identical copies of a shared
RTX or if they are both registers with the same register number
and mode. */
#define COMBINE_RTX_EQUAL_P(X,Y) \
((X) == (Y) \
|| (GET_CODE (X) == REG && GET_CODE (Y) == REG \
&& REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
{
n_occurrences++;
return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
}
/* If X and FROM are the same register but different modes, they will
not have been seen as equal above. However, flow.c will make a
LOG_LINKS entry for that case. If we do nothing, we will try to
rerecognize our original insn and, when it succeeds, we will
delete the feeding insn, which is incorrect.
So force this insn not to match in this (rare) case. */
if (! in_dest && code == REG && GET_CODE (from) == REG
&& REGNO (x) == REGNO (from))
return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
/* If this is an object, we are done unless it is a MEM or LO_SUM, both
of which may contain things that can be combined. */
if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
return x;
/* It is possible to have a subexpression appear twice in the insn.
Suppose that FROM is a register that appears within TO.
Then, after that subexpression has been scanned once by `subst',
the second time it is scanned, TO may be found. If we were
to scan TO here, we would find FROM within it and create a
self-referent rtl structure which is completely wrong. */
if (COMBINE_RTX_EQUAL_P (x, to))
return to;
/* Parallel asm_operands need special attention because all of the
inputs are shared across the arms. Furthermore, unsharing the
rtl results in recognition failures. Failure to handle this case
specially can result in circular rtl.
Solve this by doing a normal pass across the first entry of the
parallel, and only processing the SET_DESTs of the subsequent
entries. Ug. */
if (code == PARALLEL
&& GET_CODE (XVECEXP (x, 0, 0)) == SET
&& GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
{
new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
/* If this substitution failed, this whole thing fails. */
if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx)
return new;
SUBST (XVECEXP (x, 0, 0), new);
for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
{
rtx dest = SET_DEST (XVECEXP (x, 0, i));
if (GET_CODE (dest) != REG
&& GET_CODE (dest) != CC0
&& GET_CODE (dest) != PC)
{
new = subst (dest, from, to, 0, unique_copy);
/* If this substitution failed, this whole thing fails. */
if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx)
return new;
SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
}
}
}
else
{
len = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
/* We don't need to process a SET_DEST that is a register, CC0,
or PC, so set up to skip this common case. All other cases
where we want to suppress replacing something inside a
SET_SRC are handled via the IN_DEST operand. */
if (code == SET
&& (GET_CODE (SET_DEST (x)) == REG
|| GET_CODE (SET_DEST (x)) == CC0
|| GET_CODE (SET_DEST (x)) == PC))
fmt = "ie";
/* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
constant. */
if (fmt[0] == 'e')
op0_mode = GET_MODE (XEXP (x, 0));
for (i = 0; i < len; i++)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
{
if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
{
new = (unique_copy && n_occurrences
? copy_rtx (to) : to);
n_occurrences++;
}
else
{
new = subst (XVECEXP (x, i, j), from, to, 0,
unique_copy);
/* If this substitution failed, this whole thing
fails. */
if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx)
return new;
}
SUBST (XVECEXP (x, i, j), new);
}
}
else if (fmt[i] == 'e')
{
/* If this is a register being set, ignore it. */
new = XEXP (x, i);
if (in_dest
&& (code == SUBREG || code == STRICT_LOW_PART
|| code == ZERO_EXTRACT)
&& i == 0
&& GET_CODE (new) == REG)
;
else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
{
/* In general, don't install a subreg involving two
modes not tieable. It can worsen register
allocation, and can even make invalid reload
insns, since the reg inside may need to be copied
from in the outside mode, and that may be invalid
if it is an fp reg copied in integer mode.
We allow two exceptions to this: It is valid if
it is inside another SUBREG and the mode of that
SUBREG and the mode of the inside of TO is
tieable and it is valid if X is a SET that copies
FROM to CC0. */
if (GET_CODE (to) == SUBREG
&& ! MODES_TIEABLE_P (GET_MODE (to),
GET_MODE (SUBREG_REG (to)))
&& ! (code == SUBREG
&& MODES_TIEABLE_P (GET_MODE (x),
GET_MODE (SUBREG_REG (to))))
#ifdef HAVE_cc0
&& ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
#endif
)
return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
#ifdef CANNOT_CHANGE_MODE_CLASS
if (code == SUBREG
&& GET_CODE (to) == REG
&& REGNO (to) < FIRST_PSEUDO_REGISTER
&& REG_CANNOT_CHANGE_MODE_P (REGNO (to),
GET_MODE (to),
GET_MODE (x)))
return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
#endif
new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
n_occurrences++;
}
else
/* If we are in a SET_DEST, suppress most cases unless we
have gone inside a MEM, in which case we want to
simplify the address. We assume here that things that
are actually part of the destination have their inner
parts in the first expression. This is true for SUBREG,
STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
things aside from REG and MEM that should appear in a
SET_DEST. */
new = subst (XEXP (x, i), from, to,
(((in_dest
&& (code == SUBREG || code == STRICT_LOW_PART
|| code == ZERO_EXTRACT))
|| code == SET)
&& i == 0), unique_copy);
/* If we found that we will have to reject this combination,
indicate that by returning the CLOBBER ourselves, rather than
an expression containing it. This will speed things up as
well as prevent accidents where two CLOBBERs are considered
to be equal, thus producing an incorrect simplification. */
if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
return new;
if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
{
enum machine_mode mode = GET_MODE (x);
x = simplify_subreg (GET_MODE (x), new,
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
if (! x)
x = gen_rtx_CLOBBER (mode, const0_rtx);
}
else if (GET_CODE (new) == CONST_INT
&& GET_CODE (x) == ZERO_EXTEND)
{
x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
new, GET_MODE (XEXP (x, 0)));
if (! x)
abort ();
}
else
SUBST (XEXP (x, i), new);
}
}
}
/* Try to simplify X. If the simplification changed the code, it is likely
that further simplification will help, so loop, but limit the number
of repetitions that will be performed. */
for (i = 0; i < 4; i++)
{
/* If X is sufficiently simple, don't bother trying to do anything
with it. */
if (code != CONST_INT && code != REG && code != CLOBBER)
x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
if (GET_CODE (x) == code)
break;
code = GET_CODE (x);
/* We no longer know the original mode of operand 0 since we
have changed the form of X) */
op0_mode = VOIDmode;
}
return x;
}
/* Simplify X, a piece of RTL. We just operate on the expression at the
outer level; call `subst' to simplify recursively. Return the new
expression.
OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
will be the iteration even if an expression with a code different from
X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
static rtx
combine_simplify_rtx (x, op0_mode, last, in_dest)
rtx x;
enum machine_mode op0_mode;
int last;
int in_dest;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
rtx temp;
rtx reversed;
int i;
/* If this is a commutative operation, put a constant last and a complex
expression first. We don't need to do this for comparisons here. */
if (GET_RTX_CLASS (code) == 'c'
&& swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
{
temp = XEXP (x, 0);
SUBST (XEXP (x, 0), XEXP (x, 1));
SUBST (XEXP (x, 1), temp);
}
/* If this is a PLUS, MINUS, or MULT, and the first operand is the
sign extension of a PLUS with a constant, reverse the order of the sign
extension and the addition. Note that this not the same as the original
code, but overflow is undefined for signed values. Also note that the
PLUS will have been partially moved "inside" the sign-extension, so that
the first operand of X will really look like:
(ashiftrt (plus (ashift A C4) C5) C4).
We convert this to
(plus (ashiftrt (ashift A C4) C2) C4)
and replace the first operand of X with that expression. Later parts
of this function may simplify the expression further.
For example, if we start with (mult (sign_extend (plus A C1)) C2),
we swap the SIGN_EXTEND and PLUS. Later code will apply the
distributive law to produce (plus (mult (sign_extend X) C1) C3).
We do this to simplify address expressions. */
if ((code == PLUS || code == MINUS || code == MULT)
&& GET_CODE (XEXP (x, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
&& (temp = simplify_binary_operation (ASHIFTRT, mode,
XEXP (XEXP (XEXP (x, 0), 0), 1),
XEXP (XEXP (x, 0), 1))) != 0)
{
rtx new
= simplify_shift_const (NULL_RTX, ASHIFT, mode,
XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
INTVAL (XEXP (XEXP (x, 0), 1)));
new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
INTVAL (XEXP (XEXP (x, 0), 1)));
SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
}
/* If this is a simple operation applied to an IF_THEN_ELSE, try
applying it to the arms of the IF_THEN_ELSE. This often simplifies
things. Check for cases where both arms are testing the same
condition.
Don't do anything if all operands are very simple. */
if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
|| GET_RTX_CLASS (code) == '<')
&& ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
== 'o')))
|| (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
&& ! (GET_CODE (XEXP (x, 1)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
== 'o')))))
|| (GET_RTX_CLASS (code) == '1'
&& ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
== 'o'))))))
{
rtx cond, true_rtx, false_rtx;
cond = if_then_else_cond (x, &true_rtx, &false_rtx);
if (cond != 0
/* If everything is a comparison, what we have is highly unlikely
to be simpler, so don't use it. */
&& ! (GET_RTX_CLASS (code) == '<'
&& (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
|| GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
{
rtx cop1 = const0_rtx;
enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
return x;
/* Simplify the alternative arms; this may collapse the true and
false arms to store-flag values. */
true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
/* If true_rtx and false_rtx are not general_operands, an if_then_else
is unlikely to be simpler. */
if (general_operand (true_rtx, VOIDmode)
&& general_operand (false_rtx, VOIDmode))
{
/* Restarting if we generate a store-flag expression will cause
us to loop. Just drop through in this case. */
/* If the result values are STORE_FLAG_VALUE and zero, we can
just make the comparison operation. */
if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
x = gen_binary (cond_code, mode, cond, cop1);
else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
&& reverse_condition (cond_code) != UNKNOWN)
x = gen_binary (reverse_condition (cond_code),
mode, cond, cop1);
/* Likewise, we can make the negate of a comparison operation
if the result values are - STORE_FLAG_VALUE and zero. */
else if (GET_CODE (true_rtx) == CONST_INT
&& INTVAL (true_rtx) == - STORE_FLAG_VALUE
&& false_rtx == const0_rtx)
x = simplify_gen_unary (NEG, mode,
gen_binary (cond_code, mode, cond,
cop1),
mode);
else if (GET_CODE (false_rtx) == CONST_INT
&& INTVAL (false_rtx) == - STORE_FLAG_VALUE
&& true_rtx == const0_rtx)
x = simplify_gen_unary (NEG, mode,
gen_binary (reverse_condition
(cond_code),
mode, cond, cop1),
mode);
else
return gen_rtx_IF_THEN_ELSE (mode,
gen_binary (cond_code, VOIDmode,
cond, cop1),
true_rtx, false_rtx);
code = GET_CODE (x);
op0_mode = VOIDmode;
}
}
}
/* Try to fold this expression in case we have constants that weren't
present before. */
temp = 0;
switch (GET_RTX_CLASS (code))
{
case '1':
temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
break;
case '<':
{
enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
if (cmp_mode == VOIDmode)
{
cmp_mode = GET_MODE (XEXP (x, 1));
if (cmp_mode == VOIDmode)
cmp_mode = op0_mode;
}
temp = simplify_relational_operation (code, cmp_mode,
XEXP (x, 0), XEXP (x, 1));
}
#ifdef FLOAT_STORE_FLAG_VALUE
if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
{
if (temp == const0_rtx)
temp = CONST0_RTX (mode);
else
temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
mode);
}
#endif
break;
case 'c':
case '2':
temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
break;
case 'b':
case '3':
temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
XEXP (x, 1), XEXP (x, 2));
break;
}
if (temp)
{
x = temp;
code = GET_CODE (temp);
op0_mode = VOIDmode;
mode = GET_MODE (temp);
}
/* First see if we can apply the inverse distributive law. */
if (code == PLUS || code == MINUS
|| code == AND || code == IOR || code == XOR)
{
x = apply_distributive_law (x);
code = GET_CODE (x);
op0_mode = VOIDmode;
}
/* If CODE is an associative operation not otherwise handled, see if we
can associate some operands. This can win if they are constants or
if they are logically related (i.e. (a & b) & a). */
if ((code == PLUS || code == MINUS || code == MULT || code == DIV
|| code == AND || code == IOR || code == XOR
|| code == SMAX || code == SMIN || code == UMAX || code == UMIN)
&& ((INTEGRAL_MODE_P (mode) && code != DIV)
|| (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
{
if (GET_CODE (XEXP (x, 0)) == code)
{
rtx other = XEXP (XEXP (x, 0), 0);
rtx inner_op0 = XEXP (XEXP (x, 0), 1);
rtx inner_op1 = XEXP (x, 1);
rtx inner;
/* Make sure we pass the constant operand if any as the second
one if this is a commutative operation. */
if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
{
rtx tem = inner_op0;
inner_op0 = inner_op1;
inner_op1 = tem;
}
inner = simplify_binary_operation (code == MINUS ? PLUS
: code == DIV ? MULT
: code,
mode, inner_op0, inner_op1);
/* For commutative operations, try the other pair if that one
didn't simplify. */
if (inner == 0 && GET_RTX_CLASS (code) == 'c')
{
other = XEXP (XEXP (x, 0), 1);
inner = simplify_binary_operation (code, mode,
XEXP (XEXP (x, 0), 0),
XEXP (x, 1));
}
if (inner)
return gen_binary (code, mode, other, inner);
}
}
/* A little bit of algebraic simplification here. */
switch (code)
{
case MEM:
/* Ensure that our address has any ASHIFTs converted to MULT in case
address-recognizing predicates are called later. */
temp = make_compound_operation (XEXP (x, 0), MEM);
SUBST (XEXP (x, 0), temp);
break;
case SUBREG:
if (op0_mode == VOIDmode)
op0_mode = GET_MODE (SUBREG_REG (x));
/* simplify_subreg can't use gen_lowpart_for_combine. */
if (CONSTANT_P (SUBREG_REG (x))
&& subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
/* Don't call gen_lowpart_for_combine if the inner mode
is VOIDmode and we cannot simplify it, as SUBREG without
inner mode is invalid. */
&& (GET_MODE (SUBREG_REG (x)) != VOIDmode
|| gen_lowpart_common (mode, SUBREG_REG (x))))
return gen_lowpart_for_combine (mode, SUBREG_REG (x));
if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
break;
{
rtx temp;
temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
SUBREG_BYTE (x));
if (temp)
return temp;
}
/* Don't change the mode of the MEM if that would change the meaning
of the address. */
if (GET_CODE (SUBREG_REG (x)) == MEM
&& (MEM_VOLATILE_P (SUBREG_REG (x))
|| mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
return gen_rtx_CLOBBER (mode, const0_rtx);
/* Note that we cannot do any narrowing for non-constants since
we might have been counting on using the fact that some bits were
zero. We now do this in the SET. */
break;
case NOT:
/* (not (plus X -1)) can become (neg X). */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 1) == constm1_rtx)
return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
/* Similarly, (not (neg X)) is (plus X -1). */
if (GET_CODE (XEXP (x, 0)) == NEG)
return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
/* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
if (GET_CODE (XEXP (x, 0)) == XOR
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (temp = simplify_unary_operation (NOT, mode,
XEXP (XEXP (x, 0), 1),
mode)) != 0)
return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
other than 1, but that is not valid. We could do a similar
simplification for (not (lshiftrt C X)) where C is just the sign bit,
but this doesn't seem common enough to bother with. */
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& XEXP (XEXP (x, 0), 0) == const1_rtx)
return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
const1_rtx, mode),
XEXP (XEXP (x, 0), 1));
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
&& XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
x = gen_rtx_ROTATE (inner_mode,
simplify_gen_unary (NOT, inner_mode, const1_rtx,
inner_mode),
XEXP (SUBREG_REG (XEXP (x, 0)), 1));
return gen_lowpart_for_combine (mode, x);
}
/* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
reversing the comparison code if valid. */
if (STORE_FLAG_VALUE == -1
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1))))
return reversed;
/* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
perform the above simplification. */
if (STORE_FLAG_VALUE == -1
&& GET_CODE (XEXP (x, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
/* Apply De Morgan's laws to reduce number of patterns for machines
with negating logical insns (and-not, nand, etc.). If result has
only one NOT, put it first, since that is how the patterns are
coded. */
if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
{
rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
enum machine_mode op_mode;
op_mode = GET_MODE (in1);
in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
op_mode = GET_MODE (in2);
if (op_mode == VOIDmode)
op_mode = mode;
in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
{
rtx tem = in2;
in2 = in1; in1 = tem;
}
return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
mode, in1, in2);
}
break;
case NEG:
/* (neg (plus X 1)) can become (not X). */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 1) == const1_rtx)
return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
/* Similarly, (neg (not X)) is (plus X 1). */
if (GET_CODE (XEXP (x, 0)) == NOT)
return plus_constant (XEXP (XEXP (x, 0), 0), 1);
/* (neg (minus X Y)) can become (minus Y X). This transformation
isn't safe for modes with signed zeros, since if X and Y are
both +0, (minus Y X) is the same as (minus X Y). If the rounding
mode is towards +infinity (or -infinity) then the two expressions
will be rounded differently. */
if (GET_CODE (XEXP (x, 0)) == MINUS
&& !HONOR_SIGNED_ZEROS (mode)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
XEXP (XEXP (x, 0), 0));
/* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& !HONOR_SIGNED_ZEROS (mode)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
{
temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
temp = combine_simplify_rtx (temp, mode, last, in_dest);
return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
}
/* (neg (mult A B)) becomes (mult (neg A) B).
This works even for floating-point values. */
if (GET_CODE (XEXP (x, 0)) == MULT)
{
temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
}
/* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
&& nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
/* NEG commutes with ASHIFT since it is multiplication. Only do this
if we can then eliminate the NEG (e.g.,
if the operand is a constant). */
if (GET_CODE (XEXP (x, 0)) == ASHIFT)
{
temp = simplify_unary_operation (NEG, mode,
XEXP (XEXP (x, 0), 0), mode);
if (temp)
return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
}
temp = expand_compound_operation (XEXP (x, 0));
/* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
replaced by (lshiftrt X C). This will convert
(neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
if (GET_CODE (temp) == ASHIFTRT
&& GET_CODE (XEXP (temp, 1)) == CONST_INT
&& INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
INTVAL (XEXP (temp, 1)));
/* If X has only a single bit that might be nonzero, say, bit I, convert
(neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
(sign_extract X 1 Y). But only do this if TEMP isn't a register
or a SUBREG of one since we'd be making the expression more
complex if it was just a register. */
if (GET_CODE (temp) != REG
&& ! (GET_CODE (temp) == SUBREG
&& GET_CODE (SUBREG_REG (temp)) == REG)
&& (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
{
rtx temp1 = simplify_shift_const
(NULL_RTX, ASHIFTRT, mode,
simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
GET_MODE_BITSIZE (mode) - 1 - i),
GET_MODE_BITSIZE (mode) - 1 - i);
/* If all we did was surround TEMP with the two shifts, we
haven't improved anything, so don't use it. Otherwise,
we are better off with TEMP1. */
if (GET_CODE (temp1) != ASHIFTRT
|| GET_CODE (XEXP (temp1, 0)) != ASHIFT
|| XEXP (XEXP (temp1, 0), 0) != temp)
return temp1;
}
break;
case TRUNCATE:
/* We can't handle truncation to a partial integer mode here
because we don't know the real bitsize of the partial
integer mode. */
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
break;
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
SUBST (XEXP (x, 0),
force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
GET_MODE_MASK (mode), NULL_RTX, 0));
/* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
|| GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
return XEXP (XEXP (x, 0), 0);
/* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
(OP:SI foo:SI) if OP is NEG or ABS. */
if ((GET_CODE (XEXP (x, 0)) == ABS
|| GET_CODE (XEXP (x, 0)) == NEG)
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
|| GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
&& GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
/* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
(truncate:SI x). */
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
&& subreg_lowpart_p (XEXP (x, 0)))
return SUBREG_REG (XEXP (x, 0));
/* If we know that the value is already truncated, we can
replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
is nonzero for the corresponding modes. But don't do this
for an (LSHIFTRT (MULT ...)) since this will cause problems
with the umulXi3_highpart patterns. */
if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
&& num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
>= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
&& ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
return gen_lowpart_for_combine (mode, XEXP (x, 0));
/* A truncate of a comparison can be replaced with a subreg if
STORE_FLAG_VALUE permits. This is like the previous test,
but it works even if the comparison is done in a mode larger
than HOST_BITS_PER_WIDE_INT. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
return gen_lowpart_for_combine (mode, XEXP (x, 0));
/* Similarly, a truncate of a register whose value is a
comparison can be replaced with a subreg if STORE_FLAG_VALUE
permits. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
&& (temp = get_last_value (XEXP (x, 0)))
&& GET_RTX_CLASS (GET_CODE (temp)) == '<')
return gen_lowpart_for_combine (mode, XEXP (x, 0));
break;
case FLOAT_TRUNCATE:
/* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
return XEXP (XEXP (x, 0), 0);
/* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
(OP:SF foo:SF) if OP is NEG or ABS. */
if ((GET_CODE (XEXP (x, 0)) == ABS
|| GET_CODE (XEXP (x, 0)) == NEG)
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
&& GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
/* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
is (float_truncate:SF x). */
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
return SUBREG_REG (XEXP (x, 0));
break;
#ifdef HAVE_cc0
case COMPARE:
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
using cc0, in which case we want to leave it as a COMPARE
so we can distinguish it from a register-register-copy. */
if (XEXP (x, 1) == const0_rtx)
return XEXP (x, 0);
/* x - 0 is the same as x unless x's mode has signed zeros and
allows rounding towards -infinity. Under those conditions,
0 - 0 is -0. */
if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
&& HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
&& XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
return XEXP (x, 0);
break;
#endif
case CONST:
/* (const (const X)) can become (const X). Do it this way rather than
returning the inner CONST since CONST can be shared with a
REG_EQUAL note. */
if (GET_CODE (XEXP (x, 0)) == CONST)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
#ifdef HAVE_lo_sum
case LO_SUM:
/* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
can add in an offset. find_split_point will split this address up
again if it doesn't match. */
if (GET_CODE (XEXP (x, 0)) == HIGH
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
return XEXP (x, 1);
break;
#endif
case PLUS:
/* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
*/
if (GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
{
rtx in1, in2;
in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
in2 = XEXP (XEXP (x, 0), 1);
return gen_binary (MINUS, mode, XEXP (x, 1),
gen_binary (MULT, mode, in1, in2));
}
/* If we have (plus (plus (A const) B)), associate it so that CONST is
outermost. That's because that's the way indexed addresses are
supposed to appear. This code used to check many more cases, but
they are now checked elsewhere. */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
return gen_binary (PLUS, mode,
gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
XEXP (x, 1)),
XEXP (XEXP (x, 0), 1));
/* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
when c is (const_int (pow2 + 1) / 2) is a sign extension of a
bit-field and can be replaced by either a sign_extend or a
sign_extract. The `and' may be a zero_extend and the two
<c>, -<c> constants may be reversed. */
if (GET_CODE (XEXP (x, 0)) == XOR
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
&& ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
|| (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
== ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
== (unsigned int) i + 1))))
return simplify_shift_const
(NULL_RTX, ASHIFTRT, mode,
simplify_shift_const (NULL_RTX, ASHIFT, mode,
XEXP (XEXP (XEXP (x, 0), 0), 0),
GET_MODE_BITSIZE (mode) - (i + 1)),
GET_MODE_BITSIZE (mode) - (i + 1));
/* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
is 1. This produces better code than the alternative immediately
below. */
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
|| (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
&& (reversed = reversed_comparison (XEXP (x, 0), mode,
XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1))))
return
simplify_gen_unary (NEG, mode, reversed, mode);
/* If only the low-order bit of X is possibly nonzero, (plus x -1)
can become (ashiftrt (ashift (xor x 1) C) C) where C is
the bitsize of the mode - 1. This allows simplification of
"a = (b & 8) == 0;" */
if (XEXP (x, 1) == constm1_rtx
&& GET_CODE (XEXP (x, 0)) != REG
&& ! (GET_CODE (XEXP (x,0)) == SUBREG
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
&& nonzero_bits (XEXP (x, 0), mode) == 1)
return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
simplify_shift_const (NULL_RTX, ASHIFT, mode,
gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
GET_MODE_BITSIZE (mode) - 1),
GET_MODE_BITSIZE (mode) - 1);
/* If we are adding two things that have no bits in common, convert
the addition into an IOR. This will often be further simplified,
for example in cases like ((a & 1) + (a & 2)), which can
become a & 3. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (x, 0), mode)
& nonzero_bits (XEXP (x, 1), mode)) == 0)
{
/* Try to simplify the expression further. */
rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
temp = combine_simplify_rtx (tor, mode, last, in_dest);
/* If we could, great. If not, do not go ahead with the IOR
replacement, since PLUS appears in many special purpose
address arithmetic instructions. */
if (GET_CODE (temp) != CLOBBER && temp != tor)
return temp;
}
break;
case MINUS:
/* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
by reversing the comparison code if valid. */
if (STORE_FLAG_VALUE == 1
&& XEXP (x, 0) == const1_rtx
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
&& (reversed = reversed_comparison (XEXP (x, 1), mode,
XEXP (XEXP (x, 1), 0),
XEXP (XEXP (x, 1), 1))))
return reversed;
/* (minus <foo> (and <foo> (const_int -pow2))) becomes
(and <foo> (const_int pow2-1)) */
if (GET_CODE (XEXP (x, 1)) == AND
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
&& rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
-INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
/* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
*/
if (GET_CODE (XEXP (x, 1)) == MULT
&& GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
{
rtx in1, in2;
in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
in2 = XEXP (XEXP (x, 1), 1);
return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
XEXP (x, 0));
}
/* Canonicalize (minus (neg A) (mult B C)) to
(minus (mult (neg B) C) A). */
if (GET_CODE (XEXP (x, 1)) == MULT
&& GET_CODE (XEXP (x, 0)) == NEG)
{
rtx in1, in2;
in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
in2 = XEXP (XEXP (x, 1), 1);
return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
XEXP (XEXP (x, 0), 0));
}
/* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
integers. */
if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
return gen_binary (MINUS, mode,
gen_binary (MINUS, mode, XEXP (x, 0),
XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
break;
case MULT:
/* If we have (mult (plus A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. This
occurs mostly in addresses, often when unrolling loops. */
if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,
gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 1),
copy_rtx (XEXP (x, 1)))));
if (GET_CODE (x) != MULT)
return x;
}
/* Try simplify a*(b/c) as (a*b)/c. */
if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
&& GET_CODE (XEXP (x, 0)) == DIV)
{
rtx tem = simplify_binary_operation (MULT, mode,
XEXP (XEXP (x, 0), 0),
XEXP (x, 1));
if (tem)
return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
}
break;
case UDIV:
/* If this is a divide by a power of two, treat it as a shift if
its first operand is a shift. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
&& (GET_CODE (XEXP (x, 0)) == ASHIFT
|| GET_CODE (XEXP (x, 0)) == LSHIFTRT
|| GET_CODE (XEXP (x, 0)) == ASHIFTRT
|| GET_CODE (XEXP (x, 0)) == ROTATE
|| GET_CODE (XEXP (x, 0)) == ROTATERT))
return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
break;
case EQ: case NE:
case GT: case GTU: case GE: case GEU:
case LT: case LTU: case LE: case LEU:
case UNEQ: case LTGT:
case UNGT: case UNGE:
case UNLT: case UNLE:
case UNORDERED: case ORDERED:
/* If the first operand is a condition code, we can't do anything
with it. */
if (GET_CODE (XEXP (x, 0)) == COMPARE
|| (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
#ifdef HAVE_cc0
&& XEXP (x, 0) != cc0_rtx
#endif
))
{
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
enum rtx_code new_code;
if (GET_CODE (op0) == COMPARE)
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
/* Simplify our comparison, if possible. */
new_code = simplify_comparison (code, &op0, &op1);
/* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
if only the low-order bit is possibly nonzero in X (such as when
X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
(xor X 1) or (minus 1 X); we use the former. Finally, if X is
known to be either 0 or -1, NE becomes a NEG and EQ becomes
(plus X 1).
Remove any ZERO_EXTRACT we made when thinking this was a
comparison. It may now be simpler to use, e.g., an AND. If a
ZERO_EXTRACT is indeed appropriate, it will be placed back by
the call to make_compound_operation in the SET case. */
if (STORE_FLAG_VALUE == 1
&& new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& nonzero_bits (op0, mode) == 1)
return gen_lowpart_for_combine (mode,
expand_compound_operation (op0));
else if (STORE_FLAG_VALUE == 1
&& new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
{
op0 = expand_compound_operation (op0);
return simplify_gen_unary (NEG, mode,
gen_lowpart_for_combine (mode, op0),
mode);
}
else if (STORE_FLAG_VALUE == 1
&& new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& nonzero_bits (op0, mode) == 1)
{
op0 = expand_compound_operation (op0);
return gen_binary (XOR, mode,
gen_lowpart_for_combine (mode, op0),
const1_rtx);
}
else if (STORE_FLAG_VALUE == 1
&& new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
{
op0 = expand_compound_operation (op0);
return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
}
/* If STORE_FLAG_VALUE is -1, we have cases similar to
those above. */
if (STORE_FLAG_VALUE == -1
&& new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
return gen_lowpart_for_combine (mode,
expand_compound_operation (op0));
else if (STORE_FLAG_VALUE == -1
&& new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& nonzero_bits (op0, mode) == 1)
{
op0 = expand_compound_operation (op0);
return simplify_gen_unary (NEG, mode,
gen_lowpart_for_combine (mode, op0),
mode);
}
else if (STORE_FLAG_VALUE == -1
&& new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
{
op0 = expand_compound_operation (op0);
return simplify_gen_unary (NOT, mode,
gen_lowpart_for_combine (mode, op0),
mode);
}
/* If X is 0/1, (eq X 0) is X-1. */
else if (STORE_FLAG_VALUE == -1
&& new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& nonzero_bits (op0, mode) == 1)
{
op0 = expand_compound_operation (op0);
return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
}
/* If STORE_FLAG_VALUE says to just test the sign bit and X has just
one bit that might be nonzero, we can convert (ne x 0) to
(ashift x c) where C puts the bit in the sign bit. Remove any
AND with STORE_FLAG_VALUE when we are done, since we are only
going to test the sign bit. */
if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
== (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
{
x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
expand_compound_operation (op0),
GET_MODE_BITSIZE (mode) - 1 - i);
if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
return XEXP (x, 0);
else
return x;
}
/* If the code changed, return a whole new comparison. */
if (new_code != code)
return gen_rtx_fmt_ee (new_code, mode, op0, op1);
/* Otherwise, keep this operation, but maybe change its operands.
This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
SUBST (XEXP (x, 0), op0);
SUBST (XEXP (x, 1), op1);
}
break;
case IF_THEN_ELSE:
return simplify_if_then_else (x);
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case ZERO_EXTEND:
case SIGN_EXTEND:
/* If we are processing SET_DEST, we are done. */
if (in_dest)
return x;
return expand_compound_operation (x);
case SET:
return simplify_set (x);
case AND:
case IOR:
case XOR:
return simplify_logical (x, last);
case ABS:
/* (abs (neg <foo>)) -> (abs <foo>) */
if (GET_CODE (XEXP (x, 0)) == NEG)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
/* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
do nothing. */
if (GET_MODE (XEXP (x, 0)) == VOIDmode)
break;
/* If operand is something known to be positive, ignore the ABS. */
if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
|| ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
== 0)))
return XEXP (x, 0);
/* If operand is known to be only -1 or 0, convert ABS to NEG. */
if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
return gen_rtx_NEG (mode, XEXP (x, 0));
break;
case FFS:
/* (ffs (*_extend <X>)) = (ffs <X>) */
if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
|| GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
case FLOAT:
/* (float (sign_extend <X>)) = (float <X>). */
if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
case ROTATE:
case ROTATERT:
/* If this is a shift by a constant amount, simplify it. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
return simplify_shift_const (x, code, mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)));
#ifdef SHIFT_COUNT_TRUNCATED
else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
SUBST (XEXP (x, 1),
force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
((HOST_WIDE_INT) 1
<< exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
- 1,
NULL_RTX, 0));
#endif
break;
case VEC_SELECT:
{
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
int len;
if (GET_CODE (op1) != PARALLEL)
abort ();
len = XVECLEN (op1, 0);
if (len == 1
&& GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
&& GET_CODE (op0) == VEC_CONCAT)
{
int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
/* Try to find the element in the VEC_CONCAT. */
for (;;)
{
if (GET_MODE (op0) == GET_MODE (x))
return op0;
if (GET_CODE (op0) == VEC_CONCAT)
{
HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
if (op0_size < offset)
op0 = XEXP (op0, 0);
else
{
offset -= op0_size;
op0 = XEXP (op0, 1);
}
}
else
break;
}
}
}
break;
default:
break;
}
return x;
}
/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
static rtx
simplify_if_then_else (x)
rtx x;
{
enum machine_mode mode = GET_MODE (x);
rtx cond = XEXP (x, 0);
rtx true_rtx = XEXP (x, 1);
rtx false_rtx = XEXP (x, 2);
enum rtx_code true_code = GET_CODE (cond);
int comparison_p = GET_RTX_CLASS (true_code) == '<';
rtx temp;
int i;
enum rtx_code false_code;
rtx reversed;
/* Simplify storing of the truth value. */
if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
/* Also when the truth value has to be reversed. */
if (comparison_p
&& true_rtx == const0_rtx && false_rtx == const_true_rtx
&& (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
XEXP (cond, 1))))
return reversed;
/* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
in it is being compared against certain values. Get the true and false
comparisons and see if that says anything about the value of each arm. */
if (comparison_p
&& ((false_code = combine_reversed_comparison_code (cond))
!= UNKNOWN)
&& GET_CODE (XEXP (cond, 0)) == REG)
{
HOST_WIDE_INT nzb;
rtx from = XEXP (cond, 0);
rtx true_val = XEXP (cond, 1);
rtx false_val = true_val;
int swapped = 0;
/* If FALSE_CODE is EQ, swap the codes and arms. */
if (false_code == EQ)
{
swapped = 1, true_code = EQ, false_code = NE;
temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
}
/* If we are comparing against zero and the expression being tested has
only a single bit that might be nonzero, that is its value when it is
not equal to zero. Similarly if it is known to be -1 or 0. */
if (true_code == EQ && true_val == const0_rtx
&& exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
false_code = EQ, false_val = GEN_INT (nzb);
else if (true_code == EQ && true_val == const0_rtx
&& (num_sign_bit_copies (from, GET_MODE (from))
== GET_MODE_BITSIZE (GET_MODE (from))))
false_code = EQ, false_val = constm1_rtx;
/* Now simplify an arm if we know the value of the register in the
branch and it is used in the arm. Be careful due to the potential
of locally-shared RTL. */
if (reg_mentioned_p (from, true_rtx))
true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
from, true_val),
pc_rtx, pc_rtx, 0, 0);
if (reg_mentioned_p (from, false_rtx))
false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
from, false_val),
pc_rtx, pc_rtx, 0, 0);
SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
true_rtx = XEXP (x, 1);
false_rtx = XEXP (x, 2);
true_code = GET_CODE (cond);
}
/* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
reversed, do so to avoid needing two sets of patterns for
subtract-and-branch insns. Similarly if we have a constant in the true
arm, the false arm is the same as the first operand of the comparison, or
the false arm is more complicated than the true arm. */
if (comparison_p
&& combine_reversed_comparison_code (cond) != UNKNOWN
&& (true_rtx == pc_rtx
|| (CONSTANT_P (true_rtx)
&& GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
|| true_rtx == const0_rtx
|| (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
&& GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
|| (GET_CODE (true_rtx) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
&& GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
|| reg_mentioned_p (true_rtx, false_rtx)
|| rtx_equal_p (false_rtx, XEXP (cond, 0))))
{
true_code = reversed_comparison_code (cond, NULL);
SUBST (XEXP (x, 0),
reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
XEXP (cond, 1)));
SUBST (XEXP (x, 1), false_rtx);
SUBST (XEXP (x, 2), true_rtx);
temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
cond = XEXP (x, 0);
/* It is possible that the conditional has been simplified out. */
true_code = GET_CODE (cond);
comparison_p = GET_RTX_CLASS (true_code) == '<';
}
/* If the two arms are identical, we don't need the comparison. */
if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
return true_rtx;
/* Convert a == b ? b : a to "a". */
if (true_code == EQ && ! side_effects_p (cond)
&& !HONOR_NANS (mode)
&& rtx_equal_p (XEXP (cond, 0), false_rtx)
&& rtx_equal_p (XEXP (cond, 1), true_rtx))
return false_rtx;
else if (true_code == NE && ! side_effects_p (cond)
&& !HONOR_NANS (mode)
&& rtx_equal_p (XEXP (cond, 0), true_rtx)
&& rtx_equal_p (XEXP (cond, 1), false_rtx))
return true_rtx;
/* Look for cases where we have (abs x) or (neg (abs X)). */
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_CODE (false_rtx) == NEG
&& rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
&& comparison_p
&& rtx_equal_p (true_rtx, XEXP (cond, 0))
&& ! side_effects_p (true_rtx))
switch (true_code)
{
case GT:
case GE:
return simplify_gen_unary (ABS, mode, true_rtx, mode);
case LT:
case LE:
return
simplify_gen_unary (NEG, mode,
simplify_gen_unary (ABS, mode, true_rtx, mode),
mode);
default:
break;
}
/* Look for MIN or MAX. */
if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
&& comparison_p
&& rtx_equal_p (XEXP (cond, 0), true_rtx)
&& rtx_equal_p (XEXP (cond, 1), false_rtx)
&& ! side_effects_p (cond))
switch (true_code)
{
case GE:
case GT:
return gen_binary (SMAX, mode, true_rtx, false_rtx);
case LE:
case LT:
return gen_binary (SMIN, mode, true_rtx, false_rtx);
case GEU:
case GTU:
return gen_binary (UMAX, mode, true_rtx, false_rtx);
case LEU:
case LTU:
return gen_binary (UMIN, mode, true_rtx, false_rtx);
default:
break;
}
/* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
second operand is zero, this can be done as (OP Z (mult COND C2)) where
C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
We can do this kind of thing in some cases when STORE_FLAG_VALUE is
neither 1 or -1, but it isn't worth checking for. */
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
&& comparison_p
&& GET_MODE_CLASS (mode) == MODE_INT
&& ! side_effects_p (x))
{
rtx t = make_compound_operation (true_rtx, SET);
rtx f = make_compound_operation (false_rtx, SET);
rtx cond_op0 = XEXP (cond, 0);
rtx cond_op1 = XEXP (cond, 1);
enum rtx_code op = NIL, extend_op = NIL;
enum machine_mode m = mode;
rtx z = 0, c1 = NULL_RTX;
if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
|| GET_CODE (t) == IOR || GET_CODE (t) == XOR
|| GET_CODE (t) == ASHIFT
|| GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
&& rtx_equal_p (XEXP (t, 0), f))
c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
/* If an identity-zero op is commutative, check whether there
would be a match if we swapped the operands. */
else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
|| GET_CODE (t) == XOR)
&& rtx_equal_p (XEXP (t, 1), f))
c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
else if (GET_CODE (t) == SIGN_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == MINUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
&& (num_sign_bit_copies (f, GET_MODE (f))
> (unsigned int)
(GET_MODE_BITSIZE (mode)
- GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
{
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = SIGN_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
else if (GET_CODE (t) == SIGN_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR)
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
&& (num_sign_bit_copies (f, GET_MODE (f))
> (unsigned int)
(GET_MODE_BITSIZE (mode)
- GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
{
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = SIGN_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
else if (GET_CODE (t) == ZERO_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == MINUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
&& ((nonzero_bits (f, GET_MODE (f))
& ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
== 0))
{
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = ZERO_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
else if (GET_CODE (t) == ZERO_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR)
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
&& ((nonzero_bits (f, GET_MODE (f))
& ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
== 0))
{
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = ZERO_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
if (z)
{
temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
pc_rtx, pc_rtx, 0, 0);
temp = gen_binary (MULT, m, temp,
gen_binary (MULT, m, c1, const_true_rtx));
temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
if (extend_op != NIL)
temp = simplify_gen_unary (extend_op, mode, temp, m);
return temp;
}
}
/* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
negation of a single bit, we can convert this operation to a shift. We
can actually do this more generally, but it doesn't seem worth it. */
if (true_code == NE && XEXP (cond, 1) == const0_rtx
&& false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
&& ((1 == nonzero_bits (XEXP (cond, 0), mode)
&& (i = exact_log2 (INTVAL (true_rtx))) >= 0)
|| ((num_sign_bit_copies (XEXP (cond, 0), mode)
== GET_MODE_BITSIZE (mode))
&& (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
return
simplify_shift_const (NULL_RTX, ASHIFT, mode,
gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
return x;
}
/* Simplify X, a SET expression. Return the new expression. */
static rtx
simplify_set (x)
rtx x;
{
rtx src = SET_SRC (x);
rtx dest = SET_DEST (x);
enum machine_mode mode
= GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
rtx other_insn;
rtx *cc_use;
/* (set (pc) (return)) gets written as (return). */
if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
return src;
/* Now that we know for sure which bits of SRC we are using, see if we can
simplify the expression for the object knowing that we only need the
low-order bits. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
SUBST (SET_SRC (x), src);
}
/* If we are setting CC0 or if the source is a COMPARE, look for the use of
the comparison result and try to simplify it unless we already have used
undobuf.other_insn. */
if ((GET_MODE_CLASS (mode) == MODE_CC
|| GET_CODE (src) == COMPARE
|| CC0_P (dest))
&& (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
&& (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
&& GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
&& rtx_equal_p (XEXP (*cc_use, 0), dest))
{
enum rtx_code old_code = GET_CODE (*cc_use);
enum rtx_code new_code;
rtx op0, op1, tmp;
int other_changed = 0;
enum machine_mode compare_mode = GET_MODE (dest);
enum machine_mode tmp_mode;
if (GET_CODE (src) == COMPARE)
op0 = XEXP (src, 0), op1 = XEXP (src, 1);
else
op0 = src, op1 = const0_rtx;
/* Check whether the comparison is known at compile time. */
if (GET_MODE (op0) != VOIDmode)
tmp_mode = GET_MODE (op0);
else if (GET_MODE (op1) != VOIDmode)
tmp_mode = GET_MODE (op1);
else
tmp_mode = compare_mode;
tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
if (tmp != NULL_RTX)
{
rtx pat = PATTERN (other_insn);
undobuf.other_insn = other_insn;
SUBST (*cc_use, tmp);
/* Attempt to simplify CC user. */
if (GET_CODE (pat) == SET)
{
rtx new = simplify_rtx (SET_SRC (pat));
if (new != NULL_RTX)
SUBST (SET_SRC (pat), new);
}
/* Convert X into a no-op move. */
SUBST (SET_DEST (x), pc_rtx);
SUBST (SET_SRC (x), pc_rtx);
return x;
}
/* Simplify our comparison, if possible. */
new_code = simplify_comparison (old_code, &op0, &op1);
#ifdef EXTRA_CC_MODES
/* If this machine has CC modes other than CCmode, check to see if we
need to use a different CC mode here. */
compare_mode = SELECT_CC_MODE (new_code, op0, op1);
#endif /* EXTRA_CC_MODES */
#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
/* If the mode changed, we have to change SET_DEST, the mode in the
compare, and the mode in the place SET_DEST is used. If SET_DEST is
a hard register, just build new versions with the proper mode. If it
is a pseudo, we lose unless it is only time we set the pseudo, in
which case we can safely change its mode. */
if (compare_mode != GET_MODE (dest))
{
unsigned int regno = REGNO (dest);
rtx new_dest = gen_rtx_REG (compare_mode, regno);
if (regno < FIRST_PSEUDO_REGISTER
|| (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
{
if (regno >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[regno], new_dest);
SUBST (SET_DEST (x), new_dest);
SUBST (XEXP (*cc_use, 0), new_dest);
other_changed = 1;
dest = new_dest;
}
}
#endif
/* If the code changed, we have to build a new comparison in
undobuf.other_insn. */
if (new_code != old_code)
{
unsigned HOST_WIDE_INT mask;
SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
dest, const0_rtx));
/* If the only change we made was to change an EQ into an NE or
vice versa, OP0 has only one bit that might be nonzero, and OP1
is zero, check if changing the user of the condition code will
produce a valid insn. If it won't, we can keep the original code
in that insn by surrounding our operation with an XOR. */
if (((old_code == NE && new_code == EQ)
|| (old_code == EQ && new_code == NE))
&& ! other_changed && op1 == const0_rtx
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
&& exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
{
rtx pat = PATTERN (other_insn), note = 0;
if ((recog_for_combine (&pat, other_insn, ¬e) < 0
&& ! check_asm_operands (pat)))
{
PUT_CODE (*cc_use, old_code);
other_insn = 0;
op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
}
}
other_changed = 1;
}
if (other_changed)
undobuf.other_insn = other_insn;
#ifdef HAVE_cc0
/* If we are now comparing against zero, change our source if
needed. If we do not use cc0, we always have a COMPARE. */
if (op1 == const0_rtx && dest == cc0_rtx)
{
SUBST (SET_SRC (x), op0);
src = op0;
}
else
#endif
/* Otherwise, if we didn't previously have a COMPARE in the
correct mode, we need one. */
if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
{
SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
src = SET_SRC (x);
}
else
{
/* Otherwise, update the COMPARE if needed. */
SUBST (XEXP (src, 0), op0);
SUBST (XEXP (src, 1), op1);
}
}
else
{
/* Get SET_SRC in a form where we have placed back any
compound expressions. Then do the checks below. */
src = make_compound_operation (src, SET);
SUBST (SET_SRC (x), src);
}
/* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
and X being a REG or (subreg (reg)), we may be able to convert this to
(set (subreg:m2 x) (op)).
We can always do this if M1 is narrower than M2 because that means that
we only care about the low bits of the result.
However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
perform a narrower operation than requested since the high-order bits will
be undefined. On machine where it is defined, this transformation is safe
as long as M1 and M2 have the same number of words. */
if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
&& (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
/ UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
#ifndef WORD_REGISTER_OPERATIONS
&& (GET_MODE_SIZE (GET_MODE (src))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
#endif
#ifdef CANNOT_CHANGE_MODE_CLASS
&& ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
&& REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
GET_MODE (SUBREG_REG (src)),
GET_MODE (src)))
#endif
&& (GET_CODE (dest) == REG
|| (GET_CODE (dest) == SUBREG
&& GET_CODE (SUBREG_REG (dest)) == REG)))
{
SUBST (SET_DEST (x),
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
dest));
SUBST (SET_SRC (x), SUBREG_REG (src));
src = SET_SRC (x), dest = SET_DEST (x);
}
#ifdef HAVE_cc0
/* If we have (set (cc0) (subreg ...)), we try to remove the subreg
in SRC. */
if (dest == cc0_rtx
&& GET_CODE (src) == SUBREG
&& subreg_lowpart_p (src)
&& (GET_MODE_BITSIZE (GET_MODE (src))
< GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
{
rtx inner = SUBREG_REG (src);
enum machine_mode inner_mode = GET_MODE (inner);
/* Here we make sure that we don't have a sign bit on. */
if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (inner, inner_mode)
< ((unsigned HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
{
SUBST (SET_SRC (x), inner);
src = SET_SRC (x);
}
}
#endif
#ifdef LOAD_EXTEND_OP
/* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
would require a paradoxical subreg. Replace the subreg with a
zero_extend to avoid the reload that would otherwise be required. */
if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
&& SUBREG_BYTE (src) == 0
&& (GET_MODE_SIZE (GET_MODE (src))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
&& GET_CODE (SUBREG_REG (src)) == MEM)
{
SUBST (SET_SRC (x),
gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
GET_MODE (src), SUBREG_REG (src)));
src = SET_SRC (x);
}
#endif
/* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
are comparing an item known to be 0 or -1 against 0, use a logical
operation instead. Check for one of the arms being an IOR of the other
arm with some value. We compute three terms to be IOR'ed together. In
practice, at most two will be nonzero. Then we do the IOR's. */
if (GET_CODE (dest) != PC
&& GET_CODE (src) == IF_THEN_ELSE
&& GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
&& (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
&& XEXP (XEXP (src, 0), 1) == const0_rtx
&& GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
#ifdef HAVE_conditional_move
&& ! can_conditionally_move_p (GET_MODE (src))
#endif
&& (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
GET_MODE (XEXP (XEXP (src, 0), 0)))
== GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
&& ! side_effects_p (src))
{
rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
? XEXP (src, 1) : XEXP (src, 2));
rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
? XEXP (src, 2) : XEXP (src, 1));
rtx term1 = const0_rtx, term2, term3;
if (GET_CODE (true_rtx) == IOR
&& rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
else if (GET_CODE (true_rtx) == IOR
&& rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
else if (GET_CODE (false_rtx) == IOR
&& rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
else if (GET_CODE (false_rtx) == IOR
&& rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
term2 = gen_binary (AND, GET_MODE (src),
XEXP (XEXP (src, 0), 0), true_rtx);
term3 = gen_binary (AND, GET_MODE (src),
simplify_gen_unary (NOT, GET_MODE (src),
XEXP (XEXP (src, 0), 0),
GET_MODE (src)),
false_rtx);
SUBST (SET_SRC (x),
gen_binary (IOR, GET_MODE (src),
gen_binary (IOR, GET_MODE (src), term1, term2),
term3));
src = SET_SRC (x);
}
/* If either SRC or DEST is a CLOBBER of (const_int 0), make this
whole thing fail. */
if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
return src;
else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
return dest;
else
/* Convert this into a field assignment operation, if possible. */
return make_field_assignment (x);
}
/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
result. LAST is nonzero if this is the last retry. */
static rtx
simplify_logical (x, last)
rtx x;
int last;
{
enum machine_mode mode = GET_MODE (x);
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
rtx reversed;
switch (GET_CODE (x))
{
case AND:
/* Convert (A ^ B) & A to A & (~B) since the latter is often a single
insn (and may simplify more). */
if (GET_CODE (op0) == XOR
&& rtx_equal_p (XEXP (op0, 0), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode,
simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
op1);
if (GET_CODE (op0) == XOR
&& rtx_equal_p (XEXP (op0, 1), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode,
simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
op1);
/* Similarly for (~(A ^ B)) & A. */
if (GET_CODE (op0) == NOT
&& GET_CODE (XEXP (op0, 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
if (GET_CODE (op0) == NOT
&& GET_CODE (XEXP (op0, 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
/* We can call simplify_and_const_int only if we don't lose
any (sign) bits when converting INTVAL (op1) to
"unsigned HOST_WIDE_INT". */
if (GET_CODE (op1) == CONST_INT
&& (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|| INTVAL (op1) > 0))
{
x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
/* If we have (ior (and (X C1) C2)) and the next restart would be
the last, simplify this by making C1 as small as possible
and then exit. */
if (last
&& GET_CODE (x) == IOR && GET_CODE (op0) == AND
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (op1) == CONST_INT)
return gen_binary (IOR, mode,
gen_binary (AND, mode, XEXP (op0, 0),
GEN_INT (INTVAL (XEXP (op0, 1))
& ~INTVAL (op1))), op1);
if (GET_CODE (x) != AND)
return x;
if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
|| GET_RTX_CLASS (GET_CODE (x)) == '2')
op0 = XEXP (x, 0), op1 = XEXP (x, 1);
}
/* Convert (A | B) & A to A. */
if (GET_CODE (op0) == IOR
&& (rtx_equal_p (XEXP (op0, 0), op1)
|| rtx_equal_p (XEXP (op0, 1), op1))
&& ! side_effects_p (XEXP (op0, 0))
&& ! side_effects_p (XEXP (op0, 1)))
return op1;
/* In the following group of tests (and those in case IOR below),
we start with some combination of logical operations and apply
the distributive law followed by the inverse distributive law.
Most of the time, this results in no change. However, if some of
the operands are the same or inverses of each other, simplifications
will result.
For example, (and (ior A B) (not B)) can occur as the result of
expanding a bit field assignment. When we apply the distributive
law to this, we get (ior (and (A (not B))) (and (B (not B)))),
which then simplifies to (and (A (not B))).
If we have (and (ior A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. */
if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
{
x = apply_distributive_law
(gen_binary (GET_CODE (op0), mode,
gen_binary (AND, mode, XEXP (op0, 0), op1),
gen_binary (AND, mode, XEXP (op0, 1),
copy_rtx (op1))));
if (GET_CODE (x) != AND)
return x;
}
if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
return apply_distributive_law
(gen_binary (GET_CODE (op1), mode,
gen_binary (AND, mode, XEXP (op1, 0), op0),
gen_binary (AND, mode, XEXP (op1, 1),
copy_rtx (op0))));
/* Similarly, taking advantage of the fact that
(and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
return apply_distributive_law
(gen_binary (XOR, mode,
gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
XEXP (op1, 1))));
else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
return apply_distributive_law
(gen_binary (XOR, mode,
gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
break;
case IOR:
/* (ior A C) is C if all bits of A that might be nonzero are on in C. */
if (GET_CODE (op1) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
return op1;
/* Convert (A & B) | A to A. */
if (GET_CODE (op0) == AND
&& (rtx_equal_p (XEXP (op0, 0), op1)
|| rtx_equal_p (XEXP (op0, 1), op1))
&& ! side_effects_p (XEXP (op0, 0))
&& ! side_effects_p (XEXP (op0, 1)))
return op1;
/* If we have (ior (and A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. */
if (GET_CODE (op0) == AND)
{
x = apply_distributive_law
(gen_binary (AND, mode,
gen_binary (IOR, mode, XEXP (op0, 0), op1),
gen_binary (IOR, mode, XEXP (op0, 1),
copy_rtx (op1))));
if (GET_CODE (x) != IOR)
return x;
}
if (GET_CODE (op1) == AND)
{
x = apply_distributive_law
(gen_binary (AND, mode,
gen_binary (IOR, mode, XEXP (op1, 0), op0),
gen_binary (IOR, mode, XEXP (op1, 1),
copy_rtx (op0))));
if (GET_CODE (x) != IOR)
return x;
}
/* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
mode size to (rotate A CX). */
if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
|| (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op1, 1)) == CONST_INT
&& (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
== GET_MODE_BITSIZE (mode)))
return gen_rtx_ROTATE (mode, XEXP (op0, 0),
(GET_CODE (op0) == ASHIFT
? XEXP (op0, 1) : XEXP (op1, 1)));
/* If OP0 is (ashiftrt (plus ...) C), it might actually be
a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
does not affect any of the bits in OP1, it can really be done
as a PLUS and we can associate. We do this by seeing if OP1
can be safely shifted left C bits. */
if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
&& GET_CODE (XEXP (op0, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
{
int count = INTVAL (XEXP (op0, 1));
HOST_WIDE_INT mask = INTVAL (op1) << count;
if (mask >> count == INTVAL (op1)
&& (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
{
SUBST (XEXP (XEXP (op0, 0), 1),
GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
return op0;
}
}
break;
case XOR:
/* If we are XORing two things that have no bits in common,
convert them into an IOR. This helps to detect rotation encoded
using those methods and possibly other simplifications. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode)
& nonzero_bits (op1, mode)) == 0)
return (gen_binary (IOR, mode, op0, op1));
/* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
(NOT y). */
{
int num_negated = 0;
if (GET_CODE (op0) == NOT)
num_negated++, op0 = XEXP (op0, 0);
if (GET_CODE (op1) == NOT)
num_negated++, op1 = XEXP (op1, 0);
if (num_negated == 2)
{
SUBST (XEXP (x, 0), op0);
SUBST (XEXP (x, 1), op1);
}
else if (num_negated == 1)
return
simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
mode);
}
/* Convert (xor (and A B) B) to (and (not A) B). The latter may
correspond to a machine insn or result in further simplifications
if B is a constant. */
if (GET_CODE (op0) == AND
&& rtx_equal_p (XEXP (op0, 1), op1)
&& ! side_effects_p (op1))
return gen_binary (AND, mode,
simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
op1);
else if (GET_CODE (op0) == AND
&& rtx_equal_p (XEXP (op0, 0), op1)
&& ! side_effects_p (op1))
return gen_binary (AND, mode,
simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
op1);
/* (xor (comparison foo bar) (const_int 1)) can become the reversed
comparison if STORE_FLAG_VALUE is 1. */
if (STORE_FLAG_VALUE == 1
&& op1 == const1_rtx
&& GET_RTX_CLASS (GET_CODE (op0)) == '<'
&& (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
XEXP (op0, 1))))
return reversed;
/* (lshiftrt foo C) where C is the number of bits in FOO minus 1
is (lt foo (const_int 0)), so we can perform the above
simplification if STORE_FLAG_VALUE is 1. */
if (STORE_FLAG_VALUE == 1
&& op1 == const1_rtx
&& GET_CODE (op0) == LSHIFTRT
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
/* (xor (comparison foo bar) (const_int sign-bit))
when STORE_FLAG_VALUE is the sign bit. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
== (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
&& op1 == const_true_rtx
&& GET_RTX_CLASS (GET_CODE (op0)) == '<'
&& (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
XEXP (op0, 1))))
return reversed;
break;
default:
abort ();
}
return x;
}
/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
operations" because they can be replaced with two more basic operations.
ZERO_EXTEND is also considered "compound" because it can be replaced with
an AND operation, which is simpler, though only one operation.
The function expand_compound_operation is called with an rtx expression
and will convert it to the appropriate shifts and AND operations,
simplifying at each stage.
The function make_compound_operation is called to convert an expression
consisting of shifts and ANDs into the equivalent compound expression.
It is the inverse of this function, loosely speaking. */
static rtx
expand_compound_operation (x)
rtx x;
{
unsigned HOST_WIDE_INT pos = 0, len;
int unsignedp = 0;
unsigned int modewidth;
rtx tem;
switch (GET_CODE (x))
{
case ZERO_EXTEND:
unsignedp = 1;
case SIGN_EXTEND:
/* We can't necessarily use a const_int for a multiword mode;
it depends on implicitly extending the value.
Since we don't know the right way to extend it,
we can't tell whether the implicit way is right.
Even for a mode that is no wider than a const_int,
we can't win, because we need to sign extend one of its bits through
the rest of it, and we don't know which bit. */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
return x;
/* Return if (subreg:MODE FROM 0) is not a safe replacement for
(zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
reloaded. If not for that, MEM's would very rarely be safe.
Reject MODEs bigger than a word, because we might not be able
to reference a two-register group starting with an arbitrary register
(and currently gen_lowpart might crash for a SUBREG). */
if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
return x;
/* Reject MODEs that aren't scalar integers because turning vector
or complex modes into shifts causes problems. */
if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
return x;
len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
/* If the inner object has VOIDmode (the only way this can happen
is if it is an ASM_OPERANDS), we can't do anything since we don't
know how much masking to do. */
if (len == 0)
return x;
break;
case ZERO_EXTRACT:
unsignedp = 1;
case SIGN_EXTRACT:
/* If the operand is a CLOBBER, just return it. */
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
return XEXP (x, 0);
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| GET_CODE (XEXP (x, 2)) != CONST_INT
|| GET_MODE (XEXP (x, 0)) == VOIDmode)
return x;
/* Reject MODEs that aren't scalar integers because turning vector
or complex modes into shifts causes problems. */
if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
return x;
len = INTVAL (XEXP (x, 1));
pos = INTVAL (XEXP (x, 2));
/* If this goes outside the object being extracted, replace the object
with a (use (mem ...)) construct that only combine understands
and is used only for this purpose. */
if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
if (BITS_BIG_ENDIAN)
pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
break;
default:
return x;
}
/* Convert sign extension to zero extension, if we know that the high
bit is not set, as this is easier to optimize. It will be converted
back to cheaper alternative in make_extraction. */
if (GET_CODE (x) == SIGN_EXTEND
&& (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
& ~(((unsigned HOST_WIDE_INT)
GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
>> 1))
== 0)))
{
rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
return expand_compound_operation (temp);
}
/* We can optimize some special cases of ZERO_EXTEND. */
if (GET_CODE (x) == ZERO_EXTEND)
{
/* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
know that the last value didn't have any inappropriate bits
set. */
if (GET_CODE (XEXP (x, 0)) == TRUNCATE
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
return XEXP (XEXP (x, 0), 0);
/* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
&& subreg_lowpart_p (XEXP (x, 0))
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
return SUBREG_REG (XEXP (x, 0));
/* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
is a comparison and STORE_FLAG_VALUE permits. This is like
the first case, but it works even when GET_MODE (x) is larger
than HOST_WIDE_INT. */
if (GET_CODE (XEXP (x, 0)) == TRUNCATE
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
&& GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((HOST_WIDE_INT) STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
return XEXP (XEXP (x, 0), 0);
/* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
&& subreg_lowpart_p (XEXP (x, 0))
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((HOST_WIDE_INT) STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
return SUBREG_REG (XEXP (x, 0));
}
/* If we reach here, we want to return a pair of shifts. The inner
shift is a left shift of BITSIZE - POS - LEN bits. The outer
shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
logical depending on the value of UNSIGNEDP.
If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
converted into an AND of a shift.
We must check for the case where the left shift would have a negative
count. This can happen in a case like (x >> 31) & 255 on machines
that can't shift by a constant. On those machines, we would first
combine the shift with the AND to produce a variable-position
extraction. Then the constant of 31 would be substituted in to produce
a such a position. */
modewidth = GET_MODE_BITSIZE (GET_MODE (x));
if (modewidth + len >= pos)
tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
GET_MODE (x),
simplify_shift_const (NULL_RTX, ASHIFT,
GET_MODE (x),
XEXP (x, 0),
modewidth - pos - len),
modewidth - len);
else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
simplify_shift_const (NULL_RTX, LSHIFTRT,
GET_MODE (x),
XEXP (x, 0), pos),
((HOST_WIDE_INT) 1 << len) - 1);
else
/* Any other cases we can't handle. */
return x;
/* If we couldn't do this for some reason, return the original
expression. */
if (GET_CODE (tem) == CLOBBER)
return x;
return tem;
}
/* X is a SET which contains an assignment of one object into
a part of another (such as a bit-field assignment, STRICT_LOW_PART,
or certain SUBREGS). If possible, convert it into a series of
logical operations.
We half-heartedly support variable positions, but do not at all
support variable lengths. */
static rtx
expand_field_assignment (x)
rtx x;
{
rtx inner;
rtx pos; /* Always counts from low bit. */
int len;
rtx mask;
enum machine_mode compute_mode;
/* Loop until we find something we can't simplify. */
while (1)
{
if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
&& GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
{
inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
}
else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
{
inner = XEXP (SET_DEST (x), 0);
len = INTVAL (XEXP (SET_DEST (x), 1));
pos = XEXP (SET_DEST (x), 2);
/* If the position is constant and spans the width of INNER,
surround INNER with a USE to indicate this. */
if (GET_CODE (pos) == CONST_INT
&& INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
if (BITS_BIG_ENDIAN)
{
if (GET_CODE (pos) == CONST_INT)
pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
- INTVAL (pos));
else if (GET_CODE (pos) == MINUS
&& GET_CODE (XEXP (pos, 1)) == CONST_INT
&& (INTVAL (XEXP (pos, 1))
== GET_MODE_BITSIZE (GET_MODE (inner)) - len))
/* If position is ADJUST - X, new position is X. */
pos = XEXP (pos, 0);
else
pos = gen_binary (MINUS, GET_MODE (pos),
GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
- len),
pos);
}
}
/* A SUBREG between two modes that occupy the same numbers of words
can be done by moving the SUBREG to the source. */
else if (GET_CODE (SET_DEST (x)) == SUBREG
/* We need SUBREGs to compute nonzero_bits properly. */
&& nonzero_sign_valid
&& (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
{
x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
gen_lowpart_for_combine
(GET_MODE (SUBREG_REG (SET_DEST (x))),
SET_SRC (x)));
continue;
}
else
break;
while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
inner = SUBREG_REG (inner);
compute_mode = GET_MODE (inner);
/* Don't attempt bitwise arithmetic on non scalar integer modes. */
if (! SCALAR_INT_MODE_P (compute_mode))
{
enum machine_mode imode;
/* Don't do anything for vector or complex integral types. */
if (! FLOAT_MODE_P (compute_mode))
break;
/* Try to find an integral mode to pun with. */
imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
if (imode == BLKmode)
break;
compute_mode = imode;
inner = gen_lowpart_for_combine (imode, inner);
}
/* Compute a mask of LEN bits, if we can do this on the host machine. */
if (len < HOST_BITS_PER_WIDE_INT)
mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
else
break;
/* Now compute the equivalent expression. Make a copy of INNER
for the SET_DEST in case it is a MEM into which we will substitute;
we don't want shared RTL in that case. */
x = gen_rtx_SET
(VOIDmode, copy_rtx (inner),
gen_binary (IOR, compute_mode,
gen_binary (AND, compute_mode,
simplify_gen_unary (NOT, compute_mode,
gen_binary (ASHIFT,
compute_mode,
mask, pos),
compute_mode),
inner),
gen_binary (ASHIFT, compute_mode,
gen_binary (AND, compute_mode,
gen_lowpart_for_combine
(compute_mode, SET_SRC (x)),
mask),
pos)));
}
return x;
}
/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
it is an RTX that represents a variable starting position; otherwise,
POS is the (constant) starting bit position (counted from the LSB).
INNER may be a USE. This will occur when we started with a bitfield
that went outside the boundary of the object in memory, which is
allowed on most machines. To isolate this case, we produce a USE
whose mode is wide enough and surround the MEM with it. The only
code that understands the USE is this routine. If it is not removed,
it will cause the resulting insn not to match.
UNSIGNEDP is nonzero for an unsigned reference and zero for a
signed reference.
IN_DEST is nonzero if this is a reference in the destination of a
SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
be used.
IN_COMPARE is nonzero if we are in a COMPARE. This means that a
ZERO_EXTRACT should be built even for bits starting at bit 0.
MODE is the desired mode of the result (if IN_DEST == 0).
The result is an RTX for the extraction or NULL_RTX if the target
can't handle it. */
static rtx
make_extraction (mode, inner, pos, pos_rtx, len,
unsignedp, in_dest, in_compare)
enum machine_mode mode;
rtx inner;
HOST_WIDE_INT pos;
rtx pos_rtx;
unsigned HOST_WIDE_INT len;
int unsignedp;
int in_dest, in_compare;
{
/* This mode describes the size of the storage area
to fetch the overall value from. Within that, we
ignore the POS lowest bits, etc. */
enum machine_mode is_mode = GET_MODE (inner);
enum machine_mode inner_mode;
enum machine_mode wanted_inner_mode = byte_mode;
enum machine_mode wanted_inner_reg_mode = word_mode;
enum machine_mode pos_mode = word_mode;
enum machine_mode extraction_mode = word_mode;
enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
int spans_byte = 0;
rtx new = 0;
rtx orig_pos_rtx = pos_rtx;
HOST_WIDE_INT orig_pos;
/* Get some information about INNER and get the innermost object. */
if (GET_CODE (inner) == USE)
/* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
/* We don't need to adjust the position because we set up the USE
to pretend that it was a full-word object. */
spans_byte = 1, inner = XEXP (inner, 0);
else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
{
/* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
consider just the QI as the memory to extract from.
The subreg adds or removes high bits; its mode is
irrelevant to the meaning of this extraction,
since POS and LEN count from the lsb. */
if (GET_CODE (SUBREG_REG (inner)) == MEM)
is_mode = GET_MODE (SUBREG_REG (inner));
inner = SUBREG_REG (inner);
}
else if (GET_CODE (inner) == ASHIFT
&& GET_CODE (XEXP (inner, 1)) == CONST_INT
&& pos_rtx == 0 && pos == 0
&& len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
{
/* We're extracting the least significant bits of an rtx
(ashift X (const_int C)), where LEN > C. Extract the
least significant (LEN - C) bits of X, giving an rtx
whose mode is MODE, then shift it left C times. */
new = make_extraction (mode, XEXP (inner, 0),
0, 0, len - INTVAL (XEXP (inner, 1)),
unsignedp, in_dest, in_compare);
if (new != 0)
return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
}
inner_mode = GET_MODE (inner);
if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
pos = INTVAL (pos_rtx), pos_rtx = 0;
/* See if this can be done without an extraction. We never can if the
width of the field is not the same as that of some integer mode. For
registers, we can only avoid the extraction if the position is at the
low-order bit and this is either not in the destination or we have the
appropriate STRICT_LOW_PART operation available.
For MEM, we can avoid an extract if the field starts on an appropriate
boundary and we can change the mode of the memory reference. However,
we cannot directly access the MEM if we have a USE and the underlying
MEM is not TMODE. This combination means that MEM was being used in a
context where bits outside its mode were being referenced; that is only
valid in bit-field insns. */
if (tmode != BLKmode
&& ! (spans_byte && inner_mode != tmode)
&& ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
&& GET_CODE (inner) != MEM
&& (! in_dest
|| (GET_CODE (inner) == REG
&& have_insn_for (STRICT_LOW_PART, tmode))))
|| (GET_CODE (inner) == MEM && pos_rtx == 0
&& (pos
% (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
: BITS_PER_UNIT)) == 0
/* We can't do this if we are widening INNER_MODE (it
may not be aligned, for one thing). */
&& GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
&& (inner_mode == tmode
|| (! mode_dependent_address_p (XEXP (inner, 0))
&& ! MEM_VOLATILE_P (inner))))))
{
/* If INNER is a MEM, make a new MEM that encompasses just the desired
field. If the original and current mode are the same, we need not
adjust the offset. Otherwise, we do if bytes big endian.
If INNER is not a MEM, get a piece consisting of just the field
of interest (in this case POS % BITS_PER_WORD must be 0). */
if (GET_CODE (inner) == MEM)
{
HOST_WIDE_INT offset;
/* POS counts from lsb, but make OFFSET count in memory order. */
if (BYTES_BIG_ENDIAN)
offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
else
offset = pos / BITS_PER_UNIT;
new = adjust_address_nv (inner, tmode, offset);
}
else if (GET_CODE (inner) == REG)
{
/* We can't call gen_lowpart_for_combine here since we always want
a SUBREG and it would sometimes return a new hard register. */
if (tmode != inner_mode)
{
HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
final_word = ((GET_MODE_SIZE (inner_mode)
- GET_MODE_SIZE (tmode))
/ UNITS_PER_WORD) - final_word;
final_word *= UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN &&
GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
final_word += (GET_MODE_SIZE (inner_mode)
- GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
/* Avoid creating invalid subregs, for example when
simplifying (x>>32)&255. */
if (final_word >= GET_MODE_SIZE (inner_mode))
return NULL_RTX;
new = gen_rtx_SUBREG (tmode, inner, final_word);
}
else
new = inner;
}
else
new = force_to_mode (inner, tmode,
len >= HOST_BITS_PER_WIDE_INT
? ~(unsigned HOST_WIDE_INT) 0
: ((unsigned HOST_WIDE_INT) 1 << len) - 1,
NULL_RTX, 0);
/* If this extraction is going into the destination of a SET,
make a STRICT_LOW_PART unless we made a MEM. */
if (in_dest)
return (GET_CODE (new) == MEM ? new
: (GET_CODE (new) != SUBREG
? gen_rtx_CLOBBER (tmode, const0_rtx)
: gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
if (mode == tmode)
return new;
if (GET_CODE (new) == CONST_INT)
return gen_int_mode (INTVAL (new), mode);
/* If we know that no extraneous bits are set, and that the high
bit is not set, convert the extraction to the cheaper of
sign and zero extension, that are equivalent in these cases. */
if (flag_expensive_optimizations
&& (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
&& ((nonzero_bits (new, tmode)
& ~(((unsigned HOST_WIDE_INT)
GET_MODE_MASK (tmode))
>> 1))
== 0)))
{
rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
/* Prefer ZERO_EXTENSION, since it gives more information to
backends. */
if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
return temp;
return temp1;
}
/* Otherwise, sign- or zero-extend unless we already are in the
proper mode. */
return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
mode, new));
}
/* Unless this is a COMPARE or we have a funny memory reference,
don't do anything with zero-extending field extracts starting at
the low-order bit since they are simple AND operations. */
if (pos_rtx == 0 && pos == 0 && ! in_dest
&& ! in_compare && ! spans_byte && unsignedp)
return 0;
/* Unless we are allowed to span bytes or INNER is not MEM, reject this if
we would be spanning bytes or if the position is not a constant and the
length is not 1. In all other cases, we would only be going outside
our object in cases when an original shift would have been
undefined. */
if (! spans_byte && GET_CODE (inner) == MEM
&& ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
|| (pos_rtx != 0 && len != 1)))
return 0;
/* Get the mode to use should INNER not be a MEM, the mode for the position,
and the mode for the result. */
if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
{
wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
pos_mode = mode_for_extraction (EP_insv, 2);
extraction_mode = mode_for_extraction (EP_insv, 3);
}
if (! in_dest && unsignedp
&& mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
{
wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
pos_mode = mode_for_extraction (EP_extzv, 3);
extraction_mode = mode_for_extraction (EP_extzv, 0);
}
if (! in_dest && ! unsignedp
&& mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
{
wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
pos_mode = mode_for_extraction (EP_extv, 3);
extraction_mode = mode_for_extraction (EP_extv, 0);
}
/* Never narrow an object, since that might not be safe. */
if (mode != VOIDmode
&& GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
extraction_mode = mode;
if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
&& GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
pos_mode = GET_MODE (pos_rtx);
/* If this is not from memory, the desired mode is wanted_inner_reg_mode;
if we have to change the mode of memory and cannot, the desired mode is
EXTRACTION_MODE. */
if (GET_CODE (inner) != MEM)
wanted_inner_mode = wanted_inner_reg_mode;
else if (inner_mode != wanted_inner_mode
&& (mode_dependent_address_p (XEXP (inner, 0))
|| MEM_VOLATILE_P (inner)))
wanted_inner_mode = extraction_mode;
orig_pos = pos;
if (BITS_BIG_ENDIAN)
{
/* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
BITS_BIG_ENDIAN style. If position is constant, compute new
position. Otherwise, build subtraction.
Note that POS is relative to the mode of the original argument.
If it's a MEM we need to recompute POS relative to that.
However, if we're extracting from (or inserting into) a register,
we want to recompute POS relative to wanted_inner_mode. */
int width = (GET_CODE (inner) == MEM
? GET_MODE_BITSIZE (is_mode)
: GET_MODE_BITSIZE (wanted_inner_mode));
if (pos_rtx == 0)
pos = width - len - pos;
else
pos_rtx
= gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
/* POS may be less than 0 now, but we check for that below.
Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
}
/* If INNER has a wider mode, make it smaller. If this is a constant
extract, try to adjust the byte to point to the byte containing
the value. */
if (wanted_inner_mode != VOIDmode
&& GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
&& ((GET_CODE (inner) == MEM
&& (inner_mode == wanted_inner_mode
|| (! mode_dependent_address_p (XEXP (inner, 0))
&& ! MEM_VOLATILE_P (inner))))))
{
int offset = 0;
/* The computations below will be correct if the machine is big
endian in both bits and bytes or little endian in bits and bytes.
If it is mixed, we must adjust. */
/* If bytes are big endian and we had a paradoxical SUBREG, we must
adjust OFFSET to compensate. */
if (BYTES_BIG_ENDIAN
&& ! spans_byte
&& GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
/* If this is a constant position, we can move to the desired byte. */
if (pos_rtx == 0)
{
offset += pos / BITS_PER_UNIT;
pos %= GET_MODE_BITSIZE (wanted_inner_mode);
}
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
&& ! spans_byte
&& is_mode != wanted_inner_mode)
offset = (GET_MODE_SIZE (is_mode)
- GET_MODE_SIZE (wanted_inner_mode) - offset);
if (offset != 0 || inner_mode != wanted_inner_mode)
inner = adjust_address_nv (inner, wanted_inner_mode, offset);
}
/* If INNER is not memory, we can always get it into the proper mode. If we
are changing its mode, POS must be a constant and smaller than the size
of the new mode. */
else if (GET_CODE (inner) != MEM)
{
if (GET_MODE (inner) != wanted_inner_mode
&& (pos_rtx != 0
|| orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
return 0;
inner = force_to_mode (inner, wanted_inner_mode,
pos_rtx
|| len + orig_pos >= HOST_BITS_PER_WIDE_INT
? ~(unsigned HOST_WIDE_INT) 0
: ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
<< orig_pos),
NULL_RTX, 0);
}
/* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
have to zero extend. Otherwise, we can just use a SUBREG. */
if (pos_rtx != 0
&& GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
{
rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
/* If we know that no extraneous bits are set, and that the high
bit is not set, convert extraction to cheaper one - either
SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
cases. */
if (flag_expensive_optimizations
&& (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
&& ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
& ~(((unsigned HOST_WIDE_INT)
GET_MODE_MASK (GET_MODE (pos_rtx)))
>> 1))
== 0)))
{
rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
/* Prefer ZERO_EXTENSION, since it gives more information to
backends. */
if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
temp = temp1;
}
pos_rtx = temp;
}
else if (pos_rtx != 0
&& GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
/* Make POS_RTX unless we already have it and it is correct. If we don't
have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
be a CONST_INT. */
if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
pos_rtx = orig_pos_rtx;
else if (pos_rtx == 0)
pos_rtx = GEN_INT (pos);
/* Make the required operation. See if we can use existing rtx. */
new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
extraction_mode, inner, GEN_INT (len), pos_rtx);
if (! in_dest)
new = gen_lowpart_for_combine (mode, new);
return new;
}
/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
with any other operations in X. Return X without that shift if so. */
static rtx
extract_left_shift (x, count)
rtx x;
int count;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
rtx tem;
switch (code)
{
case ASHIFT:
/* This is the shift itself. If it is wide enough, we will return
either the value being shifted if the shift count is equal to
COUNT or a shift for the difference. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= count)
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)) - count);
break;
case NEG: case NOT:
if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
return simplify_gen_unary (code, mode, tem, mode);
break;
case PLUS: case IOR: case XOR: case AND:
/* If we can safely shift this constant and we find the inner shift,
make a new operation. */
if (GET_CODE (XEXP (x,1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
&& (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
return gen_binary (code, mode, tem,
GEN_INT (INTVAL (XEXP (x, 1)) >> count));
break;
default:
break;
}
return 0;
}
/* Look at the expression rooted at X. Look for expressions
equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
Form these expressions.
Return the new rtx, usually just X.
Also, for machines like the VAX that don't have logical shift insns,
try to convert logical to arithmetic shift operations in cases where
they are equivalent. This undoes the canonicalizations to logical
shifts done elsewhere.
We try, as much as possible, to re-use rtl expressions to save memory.
IN_CODE says what kind of expression we are processing. Normally, it is
SET. In a memory address (inside a MEM, PLUS or minus, the latter two
being kludges), it is MEM. When processing the arguments of a comparison
or a COMPARE against zero, it is COMPARE. */
static rtx
make_compound_operation (x, in_code)
rtx x;
enum rtx_code in_code;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
int mode_width = GET_MODE_BITSIZE (mode);
rtx rhs, lhs;
enum rtx_code next_code;
int i;
rtx new = 0;
rtx tem;
const char *fmt;
/* Select the code to be used in recursive calls. Once we are inside an
address, we stay there. If we have a comparison, set to COMPARE,
but once inside, go back to our default of SET. */
next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
: ((code == COMPARE || GET_RTX_CLASS (code) == '<')
&& XEXP (x, 1) == const0_rtx) ? COMPARE
: in_code == COMPARE ? SET : in_code);
/* Process depending on the code of this operation. If NEW is set
nonzero, it will be returned. */
switch (code)
{
case ASHIFT:
/* Convert shifts by constants into multiplications if inside
an address. */
if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
&& INTVAL (XEXP (x, 1)) >= 0)
{
new = make_compound_operation (XEXP (x, 0), next_code);
new = gen_rtx_MULT (mode, new,
GEN_INT ((HOST_WIDE_INT) 1
<< INTVAL (XEXP (x, 1))));
}
break;
case AND:
/* If the second operand is not a constant, we can't do anything
with it. */
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
break;
/* If the constant is a power of two minus one and the first operand
is a logical right shift, make an extraction. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
{
new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
0, in_code == COMPARE);
}
/* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
else if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
{
new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
next_code);
new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
0, in_code == COMPARE);
}
/* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
else if ((GET_CODE (XEXP (x, 0)) == XOR
|| GET_CODE (XEXP (x, 0)) == IOR)
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
{
/* Apply the distributive law, and then try to make extractions. */
new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
XEXP (x, 1)),
gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
XEXP (x, 1)));
new = make_compound_operation (new, in_code);
}
/* If we are have (and (rotate X C) M) and C is larger than the number
of bits in M, this is an extraction. */
else if (GET_CODE (XEXP (x, 0)) == ROTATE
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
&& i <= INTVAL (XEXP (XEXP (x, 0), 1)))
{
new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
new = make_extraction (mode, new,
(GET_MODE_BITSIZE (mode)
- INTVAL (XEXP (XEXP (x, 0), 1))),
NULL_RTX, i, 1, 0, in_code == COMPARE);
}
/* On machines without logical shifts, if the operand of the AND is
a logical shift and our mask turns off all the propagated sign
bits, we can replace the logical shift with an arithmetic shift. */
else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& !have_insn_for (LSHIFTRT, mode)
&& have_insn_for (ASHIFTRT, mode)
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
SUBST (XEXP (x, 0),
gen_rtx_ASHIFTRT (mode,
make_compound_operation
(XEXP (XEXP (x, 0), 0), next_code),
XEXP (XEXP (x, 0), 1)));
}
/* If the constant is one less than a power of two, this might be
representable by an extraction even if no shift is present.
If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
we are in a COMPARE. */
else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
new = make_extraction (mode,
make_compound_operation (XEXP (x, 0),
next_code),
0, NULL_RTX, i, 1, 0, in_code == COMPARE);
/* If we are in a comparison and this is an AND with a power of two,
convert this into the appropriate bit extract. */
else if (in_code == COMPARE
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
new = make_extraction (mode,
make_compound_operation (XEXP (x, 0),
next_code),
i, NULL_RTX, 1, 1, 0, 1);
break;
case LSHIFTRT:
/* If the sign bit is known to be zero, replace this with an
arithmetic shift. */
if (have_insn_for (ASHIFTRT, mode)
&& ! have_insn_for (LSHIFTRT, mode)
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
{
new = gen_rtx_ASHIFTRT (mode,
make_compound_operation (XEXP (x, 0),
next_code),
XEXP (x, 1));
break;
}
/* ... fall through ... */
case ASHIFTRT:
lhs = XEXP (x, 0);
rhs = XEXP (x, 1);
/* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
this is a SIGN_EXTRACT. */
if (GET_CODE (rhs) == CONST_INT
&& GET_CODE (lhs) == ASHIFT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
&& INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
{
new = make_compound_operation (XEXP (lhs, 0), next_code);
new = make_extraction (mode, new,
INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
NULL_RTX, mode_width - INTVAL (rhs),
code == LSHIFTRT, 0, in_code == COMPARE);
break;
}
/* See if we have operations between an ASHIFTRT and an ASHIFT.
If so, try to merge the shifts into a SIGN_EXTEND. We could
also do this for some cases of SIGN_EXTRACT, but it doesn't
seem worth the effort; the case checked for occurs on Alpha. */
if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
&& ! (GET_CODE (lhs) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
&& GET_CODE (rhs) == CONST_INT
&& INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
&& (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
new = make_extraction (mode, make_compound_operation (new, next_code),
0, NULL_RTX, mode_width - INTVAL (rhs),
code == LSHIFTRT, 0, in_code == COMPARE);
break;
case SUBREG:
/* Call ourselves recursively on the inner expression. If we are
narrowing the object and it has a different RTL code from
what it originally did, do this SUBREG as a force_to_mode. */
tem = make_compound_operation (SUBREG_REG (x), in_code);
if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
&& subreg_lowpart_p (x))
{
rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
NULL_RTX, 0);
/* If we have something other than a SUBREG, we might have
done an expansion, so rerun ourselves. */
if (GET_CODE (newer) != SUBREG)
newer = make_compound_operation (newer, in_code);
return newer;
}
/* If this is a paradoxical subreg, and the new code is a sign or
zero extension, omit the subreg and widen the extension. If it
is a regular subreg, we can still get rid of the subreg by not
widening so much, or in fact removing the extension entirely. */
if ((GET_CODE (tem) == SIGN_EXTEND
|| GET_CODE (tem) == ZERO_EXTEND)
&& subreg_lowpart_p (x))
{
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
|| (GET_MODE_SIZE (mode) >
GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
{
if (! SCALAR_INT_MODE_P (mode))
break;
tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
}
else
tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
return tem;
}
break;
default:
break;
}
if (new)
{
x = gen_lowpart_for_combine (mode, new);
code = GET_CODE (x);
}
/* Now recursively process each operand of this operation. */
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
if (fmt[i] == 'e')
{
new = make_compound_operation (XEXP (x, i), next_code);
SUBST (XEXP (x, i), new);
}
return x;
}
/* Given M see if it is a value that would select a field of bits
within an item, but not the entire word. Return -1 if not.
Otherwise, return the starting position of the field, where 0 is the
low-order bit.
*PLEN is set to the length of the field. */
static int
get_pos_from_mask (m, plen)
unsigned HOST_WIDE_INT m;
unsigned HOST_WIDE_INT *plen;
{
/* Get the bit number of the first 1 bit from the right, -1 if none. */
int pos = exact_log2 (m & -m);
int len;
if (pos < 0)
return -1;
/* Now shift off the low-order zero bits and see if we have a power of
two minus 1. */
len = exact_log2 ((m >> pos) + 1);
if (len <= 0)
return -1;
*plen = len;
return pos;
}
/* See if X can be simplified knowing that we will only refer to it in
MODE and will only refer to those bits that are nonzero in MASK.
If other bits are being computed or if masking operations are done
that select a superset of the bits in MASK, they can sometimes be
ignored.
Return a possibly simplified expression, but always convert X to
MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
Also, if REG is nonzero and X is a register equal in value to REG,
replace X with REG.
If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
are all off in X. This is used when X will be complemented, by either
NOT, NEG, or XOR. */
static rtx
force_to_mode (x, mode, mask, reg, just_select)
rtx x;
enum machine_mode mode;
unsigned HOST_WIDE_INT mask;
rtx reg;
int just_select;
{
enum rtx_code code = GET_CODE (x);
int next_select = just_select || code == XOR || code == NOT || code == NEG;
enum machine_mode op_mode;
unsigned HOST_WIDE_INT fuller_mask, nonzero;
rtx op0, op1, temp;
/* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
code below will do the wrong thing since the mode of such an
expression is VOIDmode.
Also do nothing if X is a CLOBBER; this can happen if X was
the return value from a call to gen_lowpart_for_combine. */
if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
return x;
/* We want to perform the operation is its present mode unless we know
that the operation is valid in MODE, in which case we do the operation
in MODE. */
op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
&& have_insn_for (code, mode))
? mode : GET_MODE (x));
/* It is not valid to do a right-shift in a narrower mode
than the one it came in with. */
if ((code == LSHIFTRT || code == ASHIFTRT)
&& GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
op_mode = GET_MODE (x);
/* Truncate MASK to fit OP_MODE. */
if (op_mode)
mask &= GET_MODE_MASK (op_mode);
/* When we have an arithmetic operation, or a shift whose count we
do not know, we need to assume that all bit the up to the highest-order
bit in MASK will be needed. This is how we form such a mask. */
if (op_mode)
fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
? GET_MODE_MASK (op_mode)
: (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
- 1));
else
fuller_mask = ~(HOST_WIDE_INT) 0;
/* Determine what bits of X are guaranteed to be (non)zero. */
nonzero = nonzero_bits (x, mode);
/* If none of the bits in X are needed, return a zero. */
if (! just_select && (nonzero & mask) == 0)
x = const0_rtx;
/* If X is a CONST_INT, return a new one. Do this here since the
test below will fail. */
if (GET_CODE (x) == CONST_INT)
{
if (SCALAR_INT_MODE_P (mode))
return gen_int_mode (INTVAL (x) & mask, mode);
else
{
x = GEN_INT (INTVAL (x) & mask);
return gen_lowpart_common (mode, x);
}
}
/* If X is narrower than MODE and we want all the bits in X's mode, just
get X in the proper mode. */
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
&& (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
return gen_lowpart_for_combine (mode, x);
/* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
MASK are already known to be zero in X, we need not do anything. */
if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
return x;
switch (code)
{
case CLOBBER:
/* If X is a (clobber (const_int)), return it since we know we are
generating something that won't match. */
return x;
case USE:
/* X is a (use (mem ..)) that was made from a bit-field extraction that
spanned the boundary of the MEM. If we are now masking so it is
within that boundary, we don't need the USE any more. */
if (! BITS_BIG_ENDIAN
&& (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
break;
case SIGN_EXTEND:
case ZERO_EXTEND:
case ZERO_EXTRACT:
case SIGN_EXTRACT:
x = expand_compound_operation (x);
if (GET_CODE (x) != code)
return force_to_mode (x, mode, mask, reg, next_select);
break;
case REG:
if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
|| rtx_equal_p (reg, get_last_value (x))))
x = reg;
break;
case SUBREG:
if (subreg_lowpart_p (x)
/* We can ignore the effect of this SUBREG if it narrows the mode or
if the constant masks to zero all the bits the mode doesn't
have. */
&& ((GET_MODE_SIZE (GET_MODE (x))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|| (0 == (mask
& GET_MODE_MASK (GET_MODE (x))
& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
break;
case AND:
/* If this is an AND with a constant, convert it into an AND
whose constant is the AND of that constant with MASK. If it
remains an AND of MASK, delete it since it is redundant. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
mask & INTVAL (XEXP (x, 1)));
/* If X is still an AND, see if it is an AND with a mask that
is just some low-order bits. If so, and it is MASK, we don't
need it. */
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
&& ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
== mask))
x = XEXP (x, 0);
/* If it remains an AND, try making another AND with the bits
in the mode mask that aren't in MASK turned on. If the
constant in the AND is wide enough, this might make a
cheaper constant. */
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_MODE_MASK (GET_MODE (x)) != mask
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
{
HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
| (GET_MODE_MASK (GET_MODE (x)) & ~mask));
int width = GET_MODE_BITSIZE (GET_MODE (x));
rtx y;
/* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
number, sign extend it. */
if (width > 0 && width < HOST_BITS_PER_WIDE_INT
&& (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
cval |= (HOST_WIDE_INT) -1 << width;
y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
if (rtx_cost (y, SET) < rtx_cost (x, SET))
x = y;
}
break;
}
goto binop;
case PLUS:
/* In (and (plus FOO C1) M), if M is a mask that just turns off
low-order bits (as in an alignment operation) and FOO is already
aligned to that boundary, mask C1 to that boundary as well.
This may eliminate that PLUS and, later, the AND. */
{
unsigned int width = GET_MODE_BITSIZE (mode);
unsigned HOST_WIDE_INT smask = mask;
/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
number, sign extend it. */
if (width < HOST_BITS_PER_WIDE_INT
&& (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
smask |= (HOST_WIDE_INT) -1 << width;
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& exact_log2 (- smask) >= 0
&& (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
&& (INTVAL (XEXP (x, 1)) & ~smask) != 0)
return force_to_mode (plus_constant (XEXP (x, 0),
(INTVAL (XEXP (x, 1)) & smask)),
mode, smask, reg, next_select);
}
/* ... fall through ... */
case MULT:
/* For PLUS, MINUS and MULT, we need any bits less significant than the
most significant bit in MASK since carries from those bits will
affect the bits we are interested in. */
mask = fuller_mask;
goto binop;
case MINUS:
/* If X is (minus C Y) where C's least set bit is larger than any bit
in the mask, then we may replace with (neg Y). */
if (GET_CODE (XEXP (x, 0)) == CONST_INT
&& (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
& -INTVAL (XEXP (x, 0))))
> mask))
{
x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
GET_MODE (x));
return force_to_mode (x, mode, mask, reg, next_select);
}
/* Similarly, if C contains every bit in the fuller_mask, then we may
replace with (not Y). */
if (GET_CODE (XEXP (x, 0)) == CONST_INT
&& ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
== INTVAL (XEXP (x, 0))))
{
x = simplify_gen_unary (NOT, GET_MODE (x),
XEXP (x, 1), GET_MODE (x));
return force_to_mode (x, mode, mask, reg, next_select);
}
mask = fuller_mask;
goto binop;
case IOR:
case XOR:
/* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
operation which may be a bitfield extraction. Ensure that the
constant we form is not wider than the mode of X. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& ((INTVAL (XEXP (XEXP (x, 0), 1))
+ floor_log2 (INTVAL (XEXP (x, 1))))
< GET_MODE_BITSIZE (GET_MODE (x)))
&& (INTVAL (XEXP (x, 1))
& ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
{
temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
<< INTVAL (XEXP (XEXP (x, 0), 1)));
temp = gen_binary (GET_CODE (x), GET_MODE (x),
XEXP (XEXP (x, 0), 0), temp);
x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
XEXP (XEXP (x, 0), 1));
return force_to_mode (x, mode, mask, reg, next_select);
}
binop:
/* For most binary operations, just propagate into the operation and
change the mode if we have an operation of that mode. */
op0 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 0), mode, mask,
reg, next_select));
op1 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 1), mode, mask,
reg, next_select));
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
x = gen_binary (code, op_mode, op0, op1);
break;
case ASHIFT:
/* For left shifts, do the same, but just for the first operand.
However, we cannot do anything with shifts where we cannot
guarantee that the counts are smaller than the size of the mode
because such a count will have a different meaning in a
wider mode. */
if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
&& ! (GET_MODE (XEXP (x, 1)) != VOIDmode
&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
< (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
break;
/* If the shift count is a constant and we can do arithmetic in
the mode of the shift, refine which bits we need. Otherwise, use the
conservative form of the mask. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
&& GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
mask >>= INTVAL (XEXP (x, 1));
else
mask = fuller_mask;
op0 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 0), op_mode,
mask, reg, next_select));
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
x = gen_binary (code, op_mode, op0, XEXP (x, 1));
break;
case LSHIFTRT:
/* Here we can only do something if the shift count is a constant,
this shift constant is valid for the host, and we can do arithmetic
in OP_MODE. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
{
rtx inner = XEXP (x, 0);
unsigned HOST_WIDE_INT inner_mask;
/* Select the mask of the bits we need for the shift operand. */
inner_mask = mask << INTVAL (XEXP (x, 1));
/* We can only change the mode of the shift if we can do arithmetic
in the mode of the shift and INNER_MASK is no wider than the
width of OP_MODE. */
if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
|| (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
op_mode = GET_MODE (x);
inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
}
/* If we have (and (lshiftrt FOO C1) C2) where the combination of the
shift and AND produces only copies of the sign bit (C2 is one less
than a power of two), we can do this with just a shift. */
if (GET_CODE (x) == LSHIFTRT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
/* The shift puts one of the sign bit copies in the least significant
bit. */
&& ((INTVAL (XEXP (x, 1))
+ num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
>= GET_MODE_BITSIZE (GET_MODE (x)))
&& exact_log2 (mask + 1) >= 0
/* Number of bits left after the shift must be more than the mask
needs. */
&& ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
<= GET_MODE_BITSIZE (GET_MODE (x)))
/* Must be more sign bit copies than the mask needs. */
&& ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
>= exact_log2 (mask + 1)))
x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
- exact_log2 (mask + 1)));
goto shiftrt;
case ASHIFTRT:
/* If we are just looking for the sign bit, we don't need this shift at
all, even if it has a variable count. */
if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& (mask == ((unsigned HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
/* If this is a shift by a constant, get a mask that contains those bits
that are not copies of the sign bit. We then have two cases: If
MASK only includes those bits, this can be a logical shift, which may
allow simplifications. If MASK is a single-bit field not within
those bits, we are requesting a copy of the sign bit and hence can
shift the sign bit to the appropriate location. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
{
int i = -1;
/* If the considered data is wider than HOST_WIDE_INT, we can't
represent a mask for all its bits in a single scalar.
But we only care about the lower bits, so calculate these. */
if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
{
nonzero = ~(HOST_WIDE_INT) 0;
/* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
is the number of bits a full-width mask would have set.
We need only shift if these are fewer than nonzero can
hold. If not, we must keep all bits set in nonzero. */
if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
< HOST_BITS_PER_WIDE_INT)
nonzero >>= INTVAL (XEXP (x, 1))
+ HOST_BITS_PER_WIDE_INT
- GET_MODE_BITSIZE (GET_MODE (x)) ;
}
else
{
nonzero = GET_MODE_MASK (GET_MODE (x));
nonzero >>= INTVAL (XEXP (x, 1));
}
if ((mask & ~nonzero) == 0
|| (i = exact_log2 (mask)) >= 0)
{
x = simplify_shift_const
(x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
i < 0 ? INTVAL (XEXP (x, 1))
: GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
if (GET_CODE (x) != ASHIFTRT)
return force_to_mode (x, mode, mask, reg, next_select);
}
}
/* If MASK is 1, convert this to an LSHIFTRT. This can be done
even if the shift count isn't a constant. */
if (mask == 1)
x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
shiftrt:
/* If this is a zero- or sign-extension operation that just affects bits
we don't care about, remove it. Be sure the call above returned
something that is still a shift. */
if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& (INTVAL (XEXP (x, 1))
<= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
&& GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
reg, next_select);
break;
case ROTATE:
case ROTATERT:
/* If the shift count is constant and we can do computations
in the mode of X, compute where the bits we care about are.
Otherwise, we can't do anything. Don't change the mode of
the shift or propagate MODE into the shift, though. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0)
{
temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
GET_MODE (x), GEN_INT (mask),
XEXP (x, 1));
if (temp && GET_CODE(temp) == CONST_INT)
SUBST (XEXP (x, 0),
force_to_mode (XEXP (x, 0), GET_MODE (x),
INTVAL (temp), reg, next_select));
}
break;
case NEG:
/* If we just want the low-order bit, the NEG isn't needed since it
won't change the low-order bit. */
if (mask == 1)
return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
/* We need any bits less significant than the most significant bit in
MASK since carries from those bits will affect the bits we are
interested in. */
mask = fuller_mask;
goto unop;
case NOT:
/* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
same as the XOR case above. Ensure that the constant we form is not
wider than the mode of X. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
&& (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
< GET_MODE_BITSIZE (GET_MODE (x)))
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
{
temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
GET_MODE (x));
temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
return force_to_mode (x, mode, mask, reg, next_select);
}
/* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
use the full mask inside the NOT. */
mask = fuller_mask;
unop:
op0 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 0), mode, mask,
reg, next_select));
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
x = simplify_gen_unary (code, op_mode, op0, op_mode);
break;
case NE:
/* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
which is equal to STORE_FLAG_VALUE. */
if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
&& exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
&& nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
break;
case IF_THEN_ELSE:
/* We have no way of knowing if the IF_THEN_ELSE can itself be
written in a narrower mode. We play it safe and do not do so. */
SUBST (XEXP (x, 1),
gen_lowpart_for_combine (GET_MODE (x),
force_to_mode (XEXP (x, 1), mode,
mask, reg, next_select)));
SUBST (XEXP (x, 2),
gen_lowpart_for_combine (GET_MODE (x),
force_to_mode (XEXP (x, 2), mode,
mask, reg,next_select)));
break;
default:
break;
}
/* Ensure we return a value of the proper mode. */
return gen_lowpart_for_combine (mode, x);
}
/* Return nonzero if X is an expression that has one of two values depending on
whether some other value is zero or nonzero. In that case, we return the
value that is being tested, *PTRUE is set to the value if the rtx being
returned has a nonzero value, and *PFALSE is set to the other alternative.
If we return zero, we set *PTRUE and *PFALSE to X. */
static rtx
if_then_else_cond (x, ptrue, pfalse)
rtx x;
rtx *ptrue, *pfalse;
{
enum machine_mode mode = GET_MODE (x);
enum rtx_code code = GET_CODE (x);
rtx cond0, cond1, true0, true1, false0, false1;
unsigned HOST_WIDE_INT nz;
/* If we are comparing a value against zero, we are done. */
if ((code == NE || code == EQ)
&& GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
{
*ptrue = (code == NE) ? const_true_rtx : const0_rtx;
*pfalse = (code == NE) ? const0_rtx : const_true_rtx;
return XEXP (x, 0);
}
/* If this is a unary operation whose operand has one of two values, apply
our opcode to compute those values. */
else if (GET_RTX_CLASS (code) == '1'
&& (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
{
*ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
*pfalse = simplify_gen_unary (code, mode, false0,
GET_MODE (XEXP (x, 0)));
return cond0;
}
/* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
make can't possibly match and would suppress other optimizations. */
else if (code == COMPARE)
;
/* If this is a binary operation, see if either side has only one of two
values. If either one does or if both do and they are conditional on
the same value, compute the new true and false values. */
else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
|| GET_RTX_CLASS (code) == '<')
{
cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
if ((cond0 != 0 || cond1 != 0)
&& ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
{
/* If if_then_else_cond returned zero, then true/false are the
same rtl. We must copy one of them to prevent invalid rtl
sharing. */
if (cond0 == 0)
true0 = copy_rtx (true0);
else if (cond1 == 0)
true1 = copy_rtx (true1);
*ptrue = gen_binary (code, mode, true0, true1);
*pfalse = gen_binary (code, mode, false0, false1);
return cond0 ? cond0 : cond1;
}
/* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
operands is zero when the other is nonzero, and vice-versa,
and STORE_FLAG_VALUE is 1 or -1. */
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
&& (code == PLUS || code == IOR || code == XOR || code == MINUS
|| code == UMAX)
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
{
rtx op0 = XEXP (XEXP (x, 0), 1);
rtx op1 = XEXP (XEXP (x, 1), 1);
cond0 = XEXP (XEXP (x, 0), 0);
cond1 = XEXP (XEXP (x, 1), 0);
if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
&& GET_RTX_CLASS (GET_CODE (cond1)) == '<'
&& ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|| ((swap_condition (GET_CODE (cond0))
== combine_reversed_comparison_code (cond1))
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
&& ! side_effects_p (x))
{
*ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
*pfalse = gen_binary (MULT, mode,
(code == MINUS
? simplify_gen_unary (NEG, mode, op1,
mode)
: op1),
const_true_rtx);
return cond0;
}
}
/* Similarly for MULT, AND and UMIN, except that for these the result
is always zero. */
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
&& (code == MULT || code == AND || code == UMIN)
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
{
cond0 = XEXP (XEXP (x, 0), 0);
cond1 = XEXP (XEXP (x, 1), 0);
if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
&& GET_RTX_CLASS (GET_CODE (cond1)) == '<'
&& ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|| ((swap_condition (GET_CODE (cond0))
== combine_reversed_comparison_code (cond1))
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
&& ! side_effects_p (x))
{
*ptrue = *pfalse = const0_rtx;
return cond0;
}
}
}
else if (code == IF_THEN_ELSE)
{
/* If we have IF_THEN_ELSE already, extract the condition and
canonicalize it if it is NE or EQ. */
cond0 = XEXP (x, 0);
*ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
return XEXP (cond0, 0);
else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
{
*ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
return XEXP (cond0, 0);
}
else
return cond0;
}
/* If X is a SUBREG, we can narrow both the true and false values
if the inner expression, if there is a condition. */
else if (code == SUBREG
&& 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
&true0, &false0)))
{
*ptrue = simplify_gen_subreg (mode, true0,
GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
*pfalse = simplify_gen_subreg (mode, false0,
GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
return cond0;
}
/* If X is a constant, this isn't special and will cause confusions
if we treat it as such. Likewise if it is equivalent to a constant. */
else if (CONSTANT_P (x)
|| ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
;
/* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
will be least confusing to the rest of the compiler. */
else if (mode == BImode)
{
*ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
return x;
}
/* If X is known to be either 0 or -1, those are the true and
false values when testing X. */
else if (x == constm1_rtx || x == const0_rtx
|| (mode != VOIDmode
&& num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
{
*ptrue = constm1_rtx, *pfalse = const0_rtx;
return x;
}
/* Likewise for 0 or a single bit. */
else if (mode != VOIDmode
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
{
*ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
return x;
}
/* Otherwise fail; show no condition with true and false values the same. */
*ptrue = *pfalse = x;
return 0;
}
/* Return the value of expression X given the fact that condition COND
is known to be true when applied to REG as its first operand and VAL
as its second. X is known to not be shared and so can be modified in
place.
We only handle the simplest cases, and specifically those cases that
arise with IF_THEN_ELSE expressions. */
static rtx
known_cond (x, cond, reg, val)
rtx x;
enum rtx_code cond;
rtx reg, val;
{
enum rtx_code code = GET_CODE (x);
rtx temp;
const char *fmt;
int i, j;
if (side_effects_p (x))
return x;
/* If either operand of the condition is a floating point value,
then we have to avoid collapsing an EQ comparison. */
if (cond == EQ
&& rtx_equal_p (x, reg)
&& ! FLOAT_MODE_P (GET_MODE (x))
&& ! FLOAT_MODE_P (GET_MODE (val)))
return val;
if (cond == UNEQ && rtx_equal_p (x, reg))
return val;
/* If X is (abs REG) and we know something about REG's relationship
with zero, we may be able to simplify this. */
if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
switch (cond)
{
case GE: case GT: case EQ:
return XEXP (x, 0);
case LT: case LE:
return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
XEXP (x, 0),
GET_MODE (XEXP (x, 0)));
default:
break;
}
/* The only other cases we handle are MIN, MAX, and comparisons if the
operands are the same as REG and VAL. */
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
{
if (rtx_equal_p (XEXP (x, 0), val))
cond = swap_condition (cond), temp = val, val = reg, reg = temp;
if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
{
if (GET_RTX_CLASS (code) == '<')
{
if (comparison_dominates_p (cond, code))
return const_true_rtx;
code = combine_reversed_comparison_code (x);
if (code != UNKNOWN
&& comparison_dominates_p (cond, code))
return const0_rtx;
else
return x;
}
else if (code == SMAX || code == SMIN
|| code == UMIN || code == UMAX)
{
int unsignedp = (code == UMIN || code == UMAX);
/* Do not reverse the condition when it is NE or EQ.
This is because we cannot conclude anything about
the value of 'SMAX (x, y)' when x is not equal to y,
but we can when x equals y. */
if ((code == SMAX || code == UMAX)
&& ! (cond == EQ || cond == NE))
cond = reverse_condition (cond);
switch (cond)
{
case GE: case GT:
return unsignedp ? x : XEXP (x, 1);
case LE: case LT:
return unsignedp ? x : XEXP (x, 0);
case GEU: case GTU:
return unsignedp ? XEXP (x, 1) : x;
case LEU: case LTU:
return unsignedp ? XEXP (x, 0) : x;
default:
break;
}
}
}
}
else if (code == SUBREG)
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
if (SUBREG_REG (x) != r)
{
/* We must simplify subreg here, before we lose track of the
original inner_mode. */
new = simplify_subreg (GET_MODE (x), r,
inner_mode, SUBREG_BYTE (x));
if (new)
return new;
else
SUBST (SUBREG_REG (x), r);
}
return x;
}
/* We don't have to handle SIGN_EXTEND here, because even in the
case of replacing something with a modeless CONST_INT, a
CONST_INT is already (supposed to be) a valid sign extension for
its narrower mode, which implies it's already properly
sign-extended for the wider mode. Now, for ZERO_EXTEND, the
story is different. */
else if (code == ZERO_EXTEND)
{
enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
if (XEXP (x, 0) != r)
{
/* We must simplify the zero_extend here, before we lose
track of the original inner_mode. */
new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
r, inner_mode);
if (new)
return new;
else
SUBST (XEXP (x, 0), r);
}
return x;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
cond, reg, val));
}
return x;
}
/* See if X and Y are equal for the purposes of seeing if we can rewrite an
assignment as a field assignment. */
static int
rtx_equal_for_field_assignment_p (x, y)
rtx x;
rtx y;
{
if (x == y || rtx_equal_p (x, y))
return 1;
if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
return 0;
/* Check for a paradoxical SUBREG of a MEM compared with the MEM.
Note that all SUBREGs of MEM are paradoxical; otherwise they
would have been rewritten. */
if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
&& GET_CODE (SUBREG_REG (y)) == MEM
&& rtx_equal_p (SUBREG_REG (y),
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
return 1;
if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
&& GET_CODE (SUBREG_REG (x)) == MEM
&& rtx_equal_p (SUBREG_REG (x),
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
return 1;
/* We used to see if get_last_value of X and Y were the same but that's
not correct. In one direction, we'll cause the assignment to have
the wrong destination and in the case, we'll import a register into this
insn that might have already have been dead. So fail if none of the
above cases are true. */
return 0;
}
/* See if X, a SET operation, can be rewritten as a bit-field assignment.
Return that assignment if so.
We only handle the most common cases. */
static rtx
make_field_assignment (x)
rtx x;
{
rtx dest = SET_DEST (x);
rtx src = SET_SRC (x);
rtx assign;
rtx rhs, lhs;
HOST_WIDE_INT c1;
HOST_WIDE_INT pos;
unsigned HOST_WIDE_INT len;
rtx other;
enum machine_mode mode;
/* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
a clear of a one-bit field. We will have changed it to
(and (rotate (const_int -2) POS) DEST), so check for that. Also check
for a SUBREG. */
if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
&& GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
&& INTVAL (XEXP (XEXP (src, 0), 0)) == -2
&& rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
{
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
1, 1, 1, 0);
if (assign != 0)
return gen_rtx_SET (VOIDmode, assign, const0_rtx);
return x;
}
else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (src, 0))
&& (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
&& GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
&& INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
&& rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
{
assign = make_extraction (VOIDmode, dest, 0,
XEXP (SUBREG_REG (XEXP (src, 0)), 1),
1, 1, 1, 0);
if (assign != 0)
return gen_rtx_SET (VOIDmode, assign, const0_rtx);
return x;
}
/* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
one-bit field. */
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
&& XEXP (XEXP (src, 0), 0) == const1_rtx
&& rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
{
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
1, 1, 1, 0);
if (assign != 0)
return gen_rtx_SET (VOIDmode, assign, const1_rtx);
return x;
}
/* The other case we handle is assignments into a constant-position
field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
a mask that has all one bits except for a group of zero bits and
OTHER is known to have zeros where C1 has ones, this is such an
assignment. Compute the position and length from C1. Shift OTHER
to the appropriate position, force it to the required mode, and
make the extraction. Check for the AND in both operands. */
if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
return x;
rhs = expand_compound_operation (XEXP (src, 0));
lhs = expand_compound_operation (XEXP (src, 1));
if (GET_CODE (rhs) == AND
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
&& rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
else if (GET_CODE (lhs) == AND
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
&& rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
else
return x;
pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
|| GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
|| (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
return x;
assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
if (assign == 0)
return x;
/* The mode to use for the source is the mode of the assignment, or of
what is inside a possible STRICT_LOW_PART. */
mode = (GET_CODE (assign) == STRICT_LOW_PART
? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
/* Shift OTHER right POS places and make it the source, restricting it
to the proper length and mode. */
src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
GET_MODE (src), other, pos),
mode,
GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
? ~(unsigned HOST_WIDE_INT) 0
: ((unsigned HOST_WIDE_INT) 1 << len) - 1,
dest, 0);
return gen_rtx_SET (VOIDmode, assign, src);
}
/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
if so. */
static rtx
apply_distributive_law (x)
rtx x;
{
enum rtx_code code = GET_CODE (x);
rtx lhs, rhs, other;
rtx tem;
enum rtx_code inner_code;
/* Distributivity is not true for floating point.
It can change the value. So don't do it.
-- rms and moshier@world.std.com. */
if (FLOAT_MODE_P (GET_MODE (x)))
return x;
/* The outer operation can only be one of the following: */
if (code != IOR && code != AND && code != XOR
&& code != PLUS && code != MINUS)
return x;
lhs = XEXP (x, 0), rhs = XEXP (x, 1);
/* If either operand is a primitive we can't do anything, so get out
fast. */
if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
|| GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
return x;
lhs = expand_compound_operation (lhs);
rhs = expand_compound_operation (rhs);
inner_code = GET_CODE (lhs);
if (inner_code != GET_CODE (rhs))
return x;
/* See if the inner and outer operations distribute. */
switch (inner_code)
{
case LSHIFTRT:
case ASHIFTRT:
case AND:
case IOR:
/* These all distribute except over PLUS. */
if (code == PLUS || code == MINUS)
return x;
break;
case MULT:
if (code != PLUS && code != MINUS)
return x;
break;
case ASHIFT:
/* This is also a multiply, so it distributes over everything. */
break;
case SUBREG:
/* Non-paradoxical SUBREGs distributes over all operations, provided
the inner modes and byte offsets are the same, this is an extraction
of a low-order part, we don't convert an fp operation to int or
vice versa, and we would not be converting a single-word
operation into a multi-word operation. The latter test is not
required, but it prevents generating unneeded multi-word operations.
Some of the previous tests are redundant given the latter test, but
are retained because they are required for correctness.
We produce the result slightly differently in this case. */
if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
|| SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
|| ! subreg_lowpart_p (lhs)
|| (GET_MODE_CLASS (GET_MODE (lhs))
!= GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
|| (GET_MODE_SIZE (GET_MODE (lhs))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
|| GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
return x;
tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
SUBREG_REG (lhs), SUBREG_REG (rhs));
return gen_lowpart_for_combine (GET_MODE (x), tem);
default:
return x;
}
/* Set LHS and RHS to the inner operands (A and B in the example
above) and set OTHER to the common operand (C in the example).
These is only one way to do this unless the inner operation is
commutative. */
if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
else if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
else if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
else
return x;
/* Form the new inner operation, seeing if it simplifies first. */
tem = gen_binary (code, GET_MODE (x), lhs, rhs);
/* There is one exception to the general way of distributing:
(a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
if (code == XOR && inner_code == IOR)
{
inner_code = AND;
other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
}
/* We may be able to continuing distributing the result, so call
ourselves recursively on the inner operation before forming the
outer operation, which we return. */
return gen_binary (inner_code, GET_MODE (x),
apply_distributive_law (tem), other);
}
/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
in MODE.
Return an equivalent form, if different from X. Otherwise, return X. If
X is zero, we are to always construct the equivalent form. */
static rtx
simplify_and_const_int (x, mode, varop, constop)
rtx x;
enum machine_mode mode;
rtx varop;
unsigned HOST_WIDE_INT constop;
{
unsigned HOST_WIDE_INT nonzero;
int i;
/* Simplify VAROP knowing that we will be only looking at some of the
bits in it.
Note by passing in CONSTOP, we guarantee that the bits not set in
CONSTOP are not significant and will never be examined. We must
ensure that is the case by explicitly masking out those bits
before returning. */
varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
/* If VAROP is a CLOBBER, we will fail so return it. */
if (GET_CODE (varop) == CLOBBER)
return varop;
/* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
to VAROP and return the new constant. */
if (GET_CODE (varop) == CONST_INT)
return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
/* See what bits may be nonzero in VAROP. Unlike the general case of
a call to nonzero_bits, here we don't care about bits outside
MODE. */
nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
/* Turn off all bits in the constant that are known to already be zero.
Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
which is tested below. */
constop &= nonzero;
/* If we don't have any bits left, return zero. */
if (constop == 0)
return const0_rtx;
/* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
a power of two, we can replace this with an ASHIFT. */
if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
&& (i = exact_log2 (constop)) >= 0)
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
/* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
or XOR, then try to apply the distributive law. This may eliminate
operations if either branch can be simplified because of the AND.
It may also make some cases more complex, but those cases probably
won't match a pattern either with or without this. */
if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
return
gen_lowpart_for_combine
(mode,
apply_distributive_law
(gen_binary (GET_CODE (varop), GET_MODE (varop),
simplify_and_const_int (NULL_RTX, GET_MODE (varop),
XEXP (varop, 0), constop),
simplify_and_const_int (NULL_RTX, GET_MODE (varop),
XEXP (varop, 1), constop))));
/* If VAROP is PLUS, and the constant is a mask of low bite, distribute
the AND and see if one of the operands simplifies to zero. If so, we
may eliminate it. */
if (GET_CODE (varop) == PLUS
&& exact_log2 (constop + 1) >= 0)
{
rtx o0, o1;
o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
if (o0 == const0_rtx)
return o1;
if (o1 == const0_rtx)
return o0;
}
/* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
if we already had one (just check for the simplest cases). */
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (XEXP (x, 0)) == mode
&& SUBREG_REG (XEXP (x, 0)) == varop)
varop = XEXP (x, 0);
else
varop = gen_lowpart_for_combine (mode, varop);
/* If we can't make the SUBREG, try to return what we were given. */
if (GET_CODE (varop) == CLOBBER)
return x ? x : varop;
/* If we are only masking insignificant bits, return VAROP. */
if (constop == nonzero)
x = varop;
else
{
/* Otherwise, return an AND. */
constop = trunc_int_for_mode (constop, mode);
/* See how much, if any, of X we can use. */
if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
x = gen_binary (AND, mode, varop, GEN_INT (constop));
else
{
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
SUBST (XEXP (x, 1), GEN_INT (constop));
SUBST (XEXP (x, 0), varop);
}
}
return x;
}
#define nonzero_bits_with_known(X, MODE) \
cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
It avoids exponential behavior in nonzero_bits1 when X has
identical subexpressions on the first or the second level. */
static unsigned HOST_WIDE_INT
cached_nonzero_bits (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned HOST_WIDE_INT known_ret;
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
nonzero_bits1 on X with the subexpressions as KNOWN_X and the
precomputed value for the subexpression as KNOWN_RET. */
if (GET_RTX_CLASS (GET_CODE (x)) == '2'
|| GET_RTX_CLASS (GET_CODE (x)) == 'c')
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return nonzero_bits1 (x, mode, x0, mode,
nonzero_bits_with_known (x0, mode));
/* Check the second level. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return nonzero_bits1 (x, mode, x1, mode,
nonzero_bits_with_known (x1, mode));
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return nonzero_bits1 (x, mode, x0, mode,
nonzero_bits_with_known (x0, mode));
}
return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
}
/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
We don't let nonzero_bits recur into num_sign_bit_copies, because that
is less useful. We can't allow both, because that results in exponential
run time recursion. There is a nullstone testcase that triggered
this. This macro avoids accidental uses of num_sign_bit_copies. */
#define cached_num_sign_bit_copies()
/* Given an expression, X, compute which bits in X can be nonzero.
We don't care about bits outside of those defined in MODE.
For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
a shift, AND, or zero_extract, we can do better. */
static unsigned HOST_WIDE_INT
nonzero_bits1 (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned HOST_WIDE_INT known_ret;
{
unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
unsigned HOST_WIDE_INT inner_nz;
enum rtx_code code;
unsigned int mode_width = GET_MODE_BITSIZE (mode);
rtx tem;
/* For floating-point values, assume all bits are needed. */
if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
return nonzero;
/* If X is wider than MODE, use its mode instead. */
if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
{
mode = GET_MODE (x);
nonzero = GET_MODE_MASK (mode);
mode_width = GET_MODE_BITSIZE (mode);
}
if (mode_width > HOST_BITS_PER_WIDE_INT)
/* Our only callers in this case look for single bit values. So
just return the mode mask. Those tests will then be false. */
return nonzero;
#ifndef WORD_REGISTER_OPERATIONS
/* If MODE is wider than X, but both are a single word for both the host
and target machines, we can compute this from which bits of the
object might be nonzero in its own mode, taking into account the fact
that on many CISC machines, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero. */
if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
&& GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
{
nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
return nonzero;
}
#endif
code = GET_CODE (x);
switch (code)
{
case REG:
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
/* If pointers extend unsigned and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be zero. */
if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
&& REG_POINTER (x))
nonzero &= GET_MODE_MASK (ptr_mode);
#endif
/* Include declared information about alignment of pointers. */
/* ??? We don't properly preserve REG_POINTER changes across
pointer-to-integer casts, so we can't trust it except for
things that we know must be pointers. See execute/960116-1.c. */
if ((x == stack_pointer_rtx
|| x == frame_pointer_rtx
|| x == arg_pointer_rtx)
&& REGNO_POINTER_ALIGN (REGNO (x)))
{
unsigned HOST_WIDE_INT alignment
= REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
#ifdef PUSH_ROUNDING
/* If PUSH_ROUNDING is defined, it is possible for the
stack to be momentarily aligned only to that amount,
so we pick the least alignment. */
if (x == stack_pointer_rtx && PUSH_ARGS)
alignment = MIN (PUSH_ROUNDING (1), alignment);
#endif
nonzero &= ~(alignment - 1);
}
/* If X is a register whose nonzero bits value is current, use it.
Otherwise, if X is a register whose value we can find, use that
value. Otherwise, use the previously-computed global nonzero bits
for this register. */
if (reg_last_set_value[REGNO (x)] != 0
&& (reg_last_set_mode[REGNO (x)] == mode
|| (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
&& GET_MODE_CLASS (mode) == MODE_INT))
&& (reg_last_set_label[REGNO (x)] == label_tick
|| (REGNO (x) >= FIRST_PSEUDO_REGISTER
&& REG_N_SETS (REGNO (x)) == 1
&& ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
REGNO (x))))
&& INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
tem = get_last_value (x);
if (tem)
{
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
/* If X is narrower than MODE and TEM is a non-negative
constant that would appear negative in the mode of X,
sign-extend it for use in reg_nonzero_bits because some
machines (maybe most) will actually do the sign-extension
and this is the conservative approach.
??? For 2.5, try to tighten up the MD files in this regard
instead of this kludge. */
if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
&& GET_CODE (tem) == CONST_INT
&& INTVAL (tem) > 0
&& 0 != (INTVAL (tem)
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
tem = GEN_INT (INTVAL (tem)
| ((HOST_WIDE_INT) (-1)
<< GET_MODE_BITSIZE (GET_MODE (x))));
#endif
return nonzero_bits_with_known (tem, mode) & nonzero;
}
else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
{
unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
/* We don't know anything about the upper bits. */
mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
return nonzero & mask;
}
else
return nonzero;
case CONST_INT:
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
/* If X is negative in MODE, sign-extend the value. */
if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
&& 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
#endif
return INTVAL (x);
case MEM:
#ifdef LOAD_EXTEND_OP
/* In many, if not most, RISC machines, reading a byte from memory
zeros the rest of the register. Noticing that fact saves a lot
of extra zero-extends. */
if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
nonzero &= GET_MODE_MASK (GET_MODE (x));
#endif
break;
case EQ: case NE:
case UNEQ: case LTGT:
case GT: case GTU: case UNGT:
case LT: case LTU: case UNLT:
case GE: case GEU: case UNGE:
case LE: case LEU: case UNLE:
case UNORDERED: case ORDERED:
/* If this produces an integer result, we know which bits are set.
Code here used to clear bits outside the mode of X, but that is
now done above. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
nonzero = STORE_FLAG_VALUE;
break;
case NEG:
#if 0
/* Disabled to avoid exponential mutual recursion between nonzero_bits
and num_sign_bit_copies. */
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
== GET_MODE_BITSIZE (GET_MODE (x)))
nonzero = 1;
#endif
if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
break;
case ABS:
#if 0
/* Disabled to avoid exponential mutual recursion between nonzero_bits
and num_sign_bit_copies. */
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
== GET_MODE_BITSIZE (GET_MODE (x)))
nonzero = 1;
#endif
break;
case TRUNCATE:
nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
& GET_MODE_MASK (mode));
break;
case ZERO_EXTEND:
nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
break;
case SIGN_EXTEND:
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
Otherwise, show all the bits in the outer mode but not the inner
may be nonzero. */
inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
{
inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
if (inner_nz
& (((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
inner_nz |= (GET_MODE_MASK (mode)
& ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
}
nonzero &= inner_nz;
break;
case AND:
nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
& nonzero_bits_with_known (XEXP (x, 1), mode));
break;
case XOR: case IOR:
case UMIN: case UMAX: case SMIN: case SMAX:
{
unsigned HOST_WIDE_INT nonzero0 =
nonzero_bits_with_known (XEXP (x, 0), mode);
/* Don't call nonzero_bits for the second time if it cannot change
anything. */
if ((nonzero & nonzero0) != nonzero)
nonzero &= (nonzero0
| nonzero_bits_with_known (XEXP (x, 1), mode));
}
break;
case PLUS: case MINUS:
case MULT:
case DIV: case UDIV:
case MOD: case UMOD:
/* We can apply the rules of arithmetic to compute the number of
high- and low-order zero bits of these operations. We start by
computing the width (position of the highest-order nonzero bit)
and the number of low-order zero bits for each value. */
{
unsigned HOST_WIDE_INT nz0 =
nonzero_bits_with_known (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT nz1 =
nonzero_bits_with_known (XEXP (x, 1), mode);
int width0 = floor_log2 (nz0) + 1;
int width1 = floor_log2 (nz1) + 1;
int low0 = floor_log2 (nz0 & -nz0);
int low1 = floor_log2 (nz1 & -nz1);
HOST_WIDE_INT op0_maybe_minusp
= (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
HOST_WIDE_INT op1_maybe_minusp
= (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
unsigned int result_width = mode_width;
int result_low = 0;
switch (code)
{
case PLUS:
result_width = MAX (width0, width1) + 1;
result_low = MIN (low0, low1);
break;
case MINUS:
result_low = MIN (low0, low1);
break;
case MULT:
result_width = width0 + width1;
result_low = low0 + low1;
break;
case DIV:
if (width1 == 0)
break;
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = width0;
break;
case UDIV:
if (width1 == 0)
break;
result_width = width0;
break;
case MOD:
if (width1 == 0)
break;
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
case UMOD:
if (width1 == 0)
break;
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
default:
abort ();
}
if (result_width < mode_width)
nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
if (result_low > 0)
nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
#ifdef POINTERS_EXTEND_UNSIGNED
/* If pointers extend unsigned and this is an addition or subtraction
to a pointer in Pmode, all the bits above ptr_mode are known to be
zero. */
if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
&& (code == PLUS || code == MINUS)
&& GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
nonzero &= GET_MODE_MASK (ptr_mode);
#endif
}
break;
case ZERO_EXTRACT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
break;
case SUBREG:
/* If this is a SUBREG formed for a promoted variable that has
been zero-extended, we know that at least the high-order bits
are zero, though others might be too. */
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
nonzero = (GET_MODE_MASK (GET_MODE (x))
& nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
/* If the inner mode is a single word for both the host and target
machines, we can compute this from which bits of the inner
object might be nonzero. */
if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
<= HOST_BITS_PER_WIDE_INT))
{
nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
/* If this is a typical RISC machine, we only have to worry
about the way loads are extended. */
if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
? (((nonzero
& (((unsigned HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
!= 0))
: LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
|| GET_CODE (SUBREG_REG (x)) != MEM)
#endif
{
/* On many CISC machines, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero. */
if (GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
nonzero |= (GET_MODE_MASK (GET_MODE (x))
& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
}
}
break;
case ASHIFTRT:
case LSHIFTRT:
case ASHIFT:
case ROTATE:
/* The nonzero bits are in two classes: any bits within MODE
that aren't in GET_MODE (x) are always significant. The rest of the
nonzero bits are those that are significant in the operand of
the shift when shifted the appropriate number of bits. This
shows that high-order bits are cleared by the right shift and
low-order bits by left shifts. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
{
enum machine_mode inner_mode = GET_MODE (x);
unsigned int width = GET_MODE_BITSIZE (inner_mode);
int count = INTVAL (XEXP (x, 1));
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
unsigned HOST_WIDE_INT op_nonzero =
nonzero_bits_with_known (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
unsigned HOST_WIDE_INT outer = 0;
if (mode_width > width)
outer = (op_nonzero & nonzero & ~mode_mask);
if (code == LSHIFTRT)
inner >>= count;
else if (code == ASHIFTRT)
{
inner >>= count;
/* If the sign bit may have been nonzero before the shift, we
need to mark all the places it could have been copied to
by the shift as possibly nonzero. */
if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
}
else if (code == ASHIFT)
inner <<= count;
else
inner = ((inner << (count % width)
| (inner >> (width - (count % width)))) & mode_mask);
nonzero &= (outer | inner);
}
break;
case FFS:
/* This is at most the number of bits in the mode. */
nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
break;
case IF_THEN_ELSE:
nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
| nonzero_bits_with_known (XEXP (x, 2), mode));
break;
default:
break;
}
return nonzero;
}
/* See the macro definition above. */
#undef cached_num_sign_bit_copies
#define num_sign_bit_copies_with_known(X, M) \
cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
/* The function cached_num_sign_bit_copies is a wrapper around
num_sign_bit_copies1. It avoids exponential behavior in
num_sign_bit_copies1 when X has identical subexpressions on the
first or the second level. */
static unsigned int
cached_num_sign_bit_copies (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned int known_ret;
{
if (x == known_x && mode == known_mode)
return known_ret;
/* Try to find identical subexpressions. If found call
num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
the precomputed value for the subexpression as KNOWN_RET. */
if (GET_RTX_CLASS (GET_CODE (x)) == '2'
|| GET_RTX_CLASS (GET_CODE (x)) == 'c')
{
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* Check the first level. */
if (x0 == x1)
return
num_sign_bit_copies1 (x, mode, x0, mode,
num_sign_bit_copies_with_known (x0, mode));
/* Check the second level. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return
num_sign_bit_copies1 (x, mode, x1, mode,
num_sign_bit_copies_with_known (x1, mode));
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return
num_sign_bit_copies1 (x, mode, x0, mode,
num_sign_bit_copies_with_known (x0, mode));
}
return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
}
/* Return the number of bits at the high-order end of X that are known to
be equal to the sign bit. X will be used in mode MODE; if MODE is
VOIDmode, X will be used in its own mode. The returned value will always
be between 1 and the number of bits in MODE. */
static unsigned int
num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret)
rtx x;
enum machine_mode mode;
rtx known_x;
enum machine_mode known_mode;
unsigned int known_ret;
{
enum rtx_code code = GET_CODE (x);
unsigned int bitwidth;
int num0, num1, result;
unsigned HOST_WIDE_INT nonzero;
rtx tem;
/* If we weren't given a mode, use the mode of X. If the mode is still
VOIDmode, we don't know anything. Likewise if one of the modes is
floating-point. */
if (mode == VOIDmode)
mode = GET_MODE (x);
if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
return 1;
bitwidth = GET_MODE_BITSIZE (mode);
/* For a smaller object, just ignore the high bits. */
if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
{
num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
return MAX (1,
num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
}
if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
{
#ifndef WORD_REGISTER_OPERATIONS
/* If this machine does not do all register operations on the entire
register and MODE is wider than the mode of X, we can say nothing
at all about the high-order bits. */
return 1;
#else
/* Likewise on machines that do, if the mode of the object is smaller
than a word and loads of that size don't sign extend, we can say
nothing about the high order bits. */
if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
#ifdef LOAD_EXTEND_OP
&& LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
#endif
)
return 1;
#endif
}
switch (code)
{
case REG:
#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
/* If pointers extend signed and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be sign bit copies. */
if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
&& REG_POINTER (x))
return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
#endif
if (reg_last_set_value[REGNO (x)] != 0
&& reg_last_set_mode[REGNO (x)] == mode
&& (reg_last_set_label[REGNO (x)] == label_tick
|| (REGNO (x) >= FIRST_PSEUDO_REGISTER
&& REG_N_SETS (REGNO (x)) == 1
&& ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
REGNO (x))))
&& INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
return reg_last_set_sign_bit_copies[REGNO (x)];
tem = get_last_value (x);
if (tem != 0)
return num_sign_bit_copies_with_known (tem, mode);
if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
&& GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
return reg_sign_bit_copies[REGNO (x)];
break;
case MEM:
#ifdef LOAD_EXTEND_OP
/* Some RISC machines sign-extend all loads of smaller than a word. */
if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
return MAX (1, ((int) bitwidth
- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
#endif
break;
case CONST_INT:
/* If the constant is negative, take its 1's complement and remask.
Then see how many zero bits we have. */
nonzero = INTVAL (x) & GET_MODE_MASK (mode);
if (bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
nonzero = (~nonzero) & GET_MODE_MASK (mode);
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
case SUBREG:
/* If this is a SUBREG for a promoted object that is sign-extended
and we are looking at it in a wider mode, we know that at least the
high-order bits are known to be sign bit copies. */
if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
{
num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
return MAX ((int) bitwidth
- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
num0);
}
/* For a smaller object, just ignore the high bits. */
if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
{
num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- bitwidth)));
}
#ifdef WORD_REGISTER_OPERATIONS
#ifdef LOAD_EXTEND_OP
/* For paradoxical SUBREGs on machines where all register operations
affect the entire register, just look inside. Note that we are
passing MODE to the recursive call, so the number of sign bit copies
will remain relative to that mode, not the inner mode. */
/* This works only if loads sign extend. Otherwise, if we get a
reload for the inner part, it may be loaded from the stack, and
then we lose all sign bit copies that existed before the store
to the stack. */
if ((GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
&& GET_CODE (SUBREG_REG (x)) == MEM)
return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
#endif
#endif
break;
case SIGN_EXTRACT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
break;
case SIGN_EXTEND:
return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
+ num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
case TRUNCATE:
/* For a smaller object, just ignore the high bits. */
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- bitwidth)));
case NOT:
return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
case ROTATE: case ROTATERT:
/* If we are rotating left by a number of bits less than the number
of sign bit copies, we can just subtract that amount from the
number. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < (int) bitwidth)
{
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
: (int) bitwidth - INTVAL (XEXP (x, 1))));
}
break;
case NEG:
/* In general, this subtracts one sign bit copy. But if the value
is known to be positive, the number of sign bit copies is the
same as that of the input. Finally, if the input has just one bit
that might be nonzero, all the bits are copies of the sign bit. */
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return num0 > 1 ? num0 - 1 : 1;
nonzero = nonzero_bits (XEXP (x, 0), mode);
if (nonzero == 1)
return bitwidth;
if (num0 > 1
&& (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
num0--;
return num0;
case IOR: case AND: case XOR:
case SMIN: case SMAX: case UMIN: case UMAX:
/* Logical operations will preserve the number of sign-bit copies.
MIN and MAX operations always return one of the operands. */
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
return MIN (num0, num1);
case PLUS: case MINUS:
/* For addition and subtraction, we can have a 1-bit carry. However,
if we are subtracting 1 from a positive number, there will not
be such a carry. Furthermore, if the positive number is known to
be 0 or 1, we know the result is either -1 or 0. */
if (code == PLUS && XEXP (x, 1) == constm1_rtx
&& bitwidth <= HOST_BITS_PER_WIDE_INT)
{
nonzero = nonzero_bits (XEXP (x, 0), mode);
if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
return (nonzero == 1 || nonzero == 0 ? bitwidth
: bitwidth - floor_log2 (nonzero) - 1);
}
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
result = MAX (1, MIN (num0, num1) - 1);
#ifdef POINTERS_EXTEND_UNSIGNED
/* If pointers extend signed and this is an addition or subtraction
to a pointer in Pmode, all the bits above ptr_mode are known to be
sign bit copies. */
if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
&& (code == PLUS || code == MINUS)
&& GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
- GET_MODE_BITSIZE (ptr_mode) + 1),
result);
#endif
return result;
case MULT:
/* The number of bits of the product is the sum of the number of
bits of both terms. However, unless one of the terms if known
to be positive, we must allow for an additional bit since negating
a negative number can remove one sign bit copy. */
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
if (result > 0
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (((nonzero_bits (XEXP (x, 0), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
&& ((nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
result--;
return MAX (1, result);
case UDIV:
/* The result must be <= the first operand. If the first operand
has the high bit set, we know nothing about the number of sign
bit copies. */
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
else if ((nonzero_bits (XEXP (x, 0), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
return 1;
else
return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
case UMOD:
/* The result must be <= the second operand. */
return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
case DIV:
/* Similar to unsigned division, except that we have to worry about
the case where the divisor is negative, in which case we have
to add 1. */
result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
result--;
return result;
case MOD:
result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
if (result > 1
&& (bitwidth > HOST_BITS_PER_WIDE_INT
|| (nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
result--;
return result;
case ASHIFTRT:
/* Shifts by a constant add to the number of bits equal to the
sign bit. */
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) > 0)
num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
return num0;
case ASHIFT:
/* Left shifts destroy copies. */
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) < 0
|| INTVAL (XEXP (x, 1)) >= (int) bitwidth)
return 1;
num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
return MAX (1, num0 - INTVAL (XEXP (x, 1)));
case IF_THEN_ELSE:
num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
return MIN (num0, num1);
case EQ: case NE: case GE: case GT: case LE: case LT:
case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
case GEU: case GTU: case LEU: case LTU:
case UNORDERED: case ORDERED:
/* If the constant is negative, take its 1's complement and remask.
Then see how many zero bits we have. */
nonzero = STORE_FLAG_VALUE;
if (bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
nonzero = (~nonzero) & GET_MODE_MASK (mode);
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
break;
default:
break;
}
/* If we haven't been able to figure it out by one of the above rules,
see if some of the high-order bits are known to be zero. If so,
count those bits and return one less than that amount. If we can't
safely compute the mask for this mode, always return BITWIDTH. */
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
nonzero = nonzero_bits (x, mode);
return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
? 1 : bitwidth - floor_log2 (nonzero) - 1);
}
/* Return the number of "extended" bits there are in X, when interpreted
as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
unsigned quantities, this is the number of high-order zero bits.
For signed quantities, this is the number of copies of the sign bit
minus 1. In both case, this function returns the number of "spare"
bits. For example, if two quantities for which this function returns
at least 1 are added, the addition is known not to overflow.
This function will always return 0 unless called during combine, which
implies that it must be called from a define_split. */
unsigned int
extended_count (x, mode, unsignedp)
rtx x;
enum machine_mode mode;
int unsignedp;
{
if (nonzero_sign_valid == 0)
return 0;
return (unsignedp
? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
- floor_log2 (nonzero_bits (x, mode)))
: 0)
: num_sign_bit_copies (x, mode) - 1);
}
/* This function is called from `simplify_shift_const' to merge two
outer operations. Specifically, we have already found that we need
to perform operation *POP0 with constant *PCONST0 at the outermost
position. We would now like to also perform OP1 with constant CONST1
(with *POP0 being done last).
Return 1 if we can do the operation and update *POP0 and *PCONST0 with
the resulting operation. *PCOMP_P is set to 1 if we would need to
complement the innermost operand, otherwise it is unchanged.
MODE is the mode in which the operation will be done. No bits outside
the width of this mode matter. It is assumed that the width of this mode
is smaller than or equal to HOST_BITS_PER_WIDE_INT.
If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
result is simply *PCONST0.
If the resulting operation cannot be expressed as one operation, we
return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
static int
merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
enum rtx_code *pop0;
HOST_WIDE_INT *pconst0;
enum rtx_code op1;
HOST_WIDE_INT const1;
enum machine_mode mode;
int *pcomp_p;
{
enum rtx_code op0 = *pop0;
HOST_WIDE_INT const0 = *pconst0;
const0 &= GET_MODE_MASK (mode);
const1 &= GET_MODE_MASK (mode);
/* If OP0 is an AND, clear unimportant bits in CONST1. */
if (op0 == AND)
const1 &= const0;
/* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
if OP0 is SET. */
if (op1 == NIL || op0 == SET)
return 1;
else if (op0 == NIL)
op0 = op1, const0 = const1;
else if (op0 == op1)
{
switch (op0)
{
case AND:
const0 &= const1;
break;
case IOR:
const0 |= const1;
break;
case XOR:
const0 ^= const1;
break;
case PLUS:
const0 += const1;
break;
case NEG:
op0 = NIL;
break;
default:
break;
}
}
/* Otherwise, if either is a PLUS or NEG, we can't do anything. */
else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
return 0;
/* If the two constants aren't the same, we can't do anything. The
remaining six cases can all be done. */
else if (const0 != const1)
return 0;
else
switch (op0)
{
case IOR:
if (op1 == AND)
/* (a & b) | b == b */
op0 = SET;
else /* op1 == XOR */
/* (a ^ b) | b == a | b */
{;}
break;
case XOR:
if (op1 == AND)
/* (a & b) ^ b == (~a) & b */
op0 = AND, *pcomp_p = 1;
else /* op1 == IOR */
/* (a | b) ^ b == a & ~b */
op0 = AND, *pconst0 = ~const0;
break;
case AND:
if (op1 == IOR)
/* (a | b) & b == b */
op0 = SET;
else /* op1 == XOR */
/* (a ^ b) & b) == (~a) & b */
*pcomp_p = 1;
break;
default:
break;
}
/* Check for NO-OP cases. */
const0 &= GET_MODE_MASK (mode);
if (const0 == 0
&& (op0 == IOR || op0 == XOR || op0 == PLUS))
op0 = NIL;
else if (const0 == 0 && op0 == AND)
op0 = SET;
else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
&& op0 == AND)
op0 = NIL;
/* ??? Slightly redundant with the above mask, but not entirely.
Moving this above means we'd have to sign-extend the mode mask
for the final test. */
const0 = trunc_int_for_mode (const0, mode);
*pop0 = op0;
*pconst0 = const0;
return 1;
}
/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
The result of the shift is RESULT_MODE. X, if nonzero, is an expression
that we started with.
The shift is normally computed in the widest mode we find in VAROP, as
long as it isn't a different number of words than RESULT_MODE. Exceptions
are ASHIFTRT and ROTATE, which are always done in their original mode, */
static rtx
simplify_shift_const (x, code, result_mode, varop, orig_count)
rtx x;
enum rtx_code code;
enum machine_mode result_mode;
rtx varop;
int orig_count;
{
enum rtx_code orig_code = code;
unsigned int count;
int signed_count;
enum machine_mode mode = result_mode;
enum machine_mode shift_mode, tmode;
unsigned int mode_words
= (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
/* We form (outer_op (code varop count) (outer_const)). */
enum rtx_code outer_op = NIL;
HOST_WIDE_INT outer_const = 0;
rtx const_rtx;
int complement_p = 0;
rtx new;
/* Make sure and truncate the "natural" shift on the way in. We don't
want to do this inside the loop as it makes it more difficult to
combine shifts. */
#ifdef SHIFT_COUNT_TRUNCATED
if (SHIFT_COUNT_TRUNCATED)
orig_count &= GET_MODE_BITSIZE (mode) - 1;
#endif
/* If we were given an invalid count, don't do anything except exactly
what was requested. */
if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
{
if (x)
return x;
return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
}
count = orig_count;
/* Unless one of the branches of the `if' in this loop does a `continue',
we will `break' the loop after the `if'. */
while (count != 0)
{
/* If we have an operand of (clobber (const_int 0)), just return that
value. */
if (GET_CODE (varop) == CLOBBER)
return varop;
/* If we discovered we had to complement VAROP, leave. Making a NOT
here would cause an infinite loop. */
if (complement_p)
break;
/* Convert ROTATERT to ROTATE. */
if (code == ROTATERT)
{
unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
code = ROTATE;
if (VECTOR_MODE_P (result_mode))
count = bitsize / GET_MODE_NUNITS (result_mode) - count;
else
count = bitsize - count;
}
/* We need to determine what mode we will do the shift in. If the
shift is a right shift or a ROTATE, we must always do it in the mode
it was originally done in. Otherwise, we can do it in MODE, the
widest mode encountered. */
shift_mode
= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
? result_mode : mode);
/* Handle cases where the count is greater than the size of the mode
minus 1. For ASHIFT, use the size minus one as the count (this can
occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
take the count modulo the size. For other shifts, the result is
zero.
Since these shifts are being produced by the compiler by combining
multiple operations, each of which are defined, we know what the
result is supposed to be. */
if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
{
if (code == ASHIFTRT)
count = GET_MODE_BITSIZE (shift_mode) - 1;
else if (code == ROTATE || code == ROTATERT)
count %= GET_MODE_BITSIZE (shift_mode);
else
{
/* We can't simply return zero because there may be an
outer op. */
varop = const0_rtx;
count = 0;
break;
}
}
/* An arithmetic right shift of a quantity known to be -1 or 0
is a no-op. */
if (code == ASHIFTRT
&& (num_sign_bit_copies (varop, shift_mode)
== GET_MODE_BITSIZE (shift_mode)))
{
count = 0;
break;
}
/* If we are doing an arithmetic right shift and discarding all but
the sign bit copies, this is equivalent to doing a shift by the
bitsize minus one. Convert it into that shift because it will often
allow other simplifications. */
if (code == ASHIFTRT
&& (count + num_sign_bit_copies (varop, shift_mode)
>= GET_MODE_BITSIZE (shift_mode)))
count = GET_MODE_BITSIZE (shift_mode) - 1;
/* We simplify the tests below and elsewhere by converting
ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
`make_compound_operation' will convert it to an ASHIFTRT for
those machines (such as VAX) that don't have an LSHIFTRT. */
if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
&& code == ASHIFTRT
&& ((nonzero_bits (varop, shift_mode)
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
== 0))
code = LSHIFTRT;
switch (GET_CODE (varop))
{
case SIGN_EXTEND:
case ZERO_EXTEND:
case SIGN_EXTRACT:
case ZERO_EXTRACT:
new = expand_compound_operation (varop);
if (new != varop)
{
varop = new;
continue;
}
break;
case MEM:
/* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
minus the width of a smaller mode, we can do this with a
SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& ! mode_dependent_address_p (XEXP (varop, 0))
&& ! MEM_VOLATILE_P (varop)
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
MODE_INT, 1)) != BLKmode)
{
new = adjust_address_nv (varop, tmode,
BYTES_BIG_ENDIAN ? 0
: count / BITS_PER_UNIT);
varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
: ZERO_EXTEND, mode, new);
count = 0;
continue;
}
break;
case USE:
/* Similar to the case above, except that we can only do this if
the resulting mode is the same as that of the underlying
MEM and adjust the address depending on the *bits* endianness
because of the way that bit-field extract insns are defined. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
MODE_INT, 1)) != BLKmode
&& tmode == GET_MODE (XEXP (varop, 0)))
{
if (BITS_BIG_ENDIAN)
new = XEXP (varop, 0);
else
{
new = copy_rtx (XEXP (varop, 0));
SUBST (XEXP (new, 0),
plus_constant (XEXP (new, 0),
count / BITS_PER_UNIT));
}
varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
: ZERO_EXTEND, mode, new);
count = 0;
continue;
}
break;
case SUBREG:
/* If VAROP is a SUBREG, strip it as long as the inner operand has
the same number of words as what we've seen so far. Then store
the widest mode in MODE. */
if (subreg_lowpart_p (varop)
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
> GET_MODE_SIZE (GET_MODE (varop)))
&& (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
== mode_words)
{
varop = SUBREG_REG (varop);
if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
mode = GET_MODE (varop);
continue;
}
break;
case MULT:
/* Some machines use MULT instead of ASHIFT because MULT
is cheaper. But it is still better on those machines to
merge two shifts into one. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
{
varop
= gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
continue;
}
break;
case UDIV:
/* Similar, for when divides are cheaper. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
{
varop
= gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
continue;
}
break;
case ASHIFTRT:
/* If we are extracting just the sign bit of an arithmetic
right shift, that shift is not needed. However, the sign
bit of a wider mode may be different from what would be
interpreted as the sign bit in a narrower mode, so, if
the result is narrower, don't discard the shift. */
if (code == LSHIFTRT
&& count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
&& (GET_MODE_BITSIZE (result_mode)
>= GET_MODE_BITSIZE (GET_MODE (varop))))
{
varop = XEXP (varop, 0);
continue;
}
/* ... fall through ... */
case LSHIFTRT:
case ASHIFT:
case ROTATE:
/* Here we have two nested shifts. The result is usually the
AND of a new shift with a mask. We compute the result below. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& INTVAL (XEXP (varop, 1)) >= 0
&& INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
enum rtx_code first_code = GET_CODE (varop);
unsigned int first_count = INTVAL (XEXP (varop, 1));
unsigned HOST_WIDE_INT mask;
rtx mask_rtx;
/* We have one common special case. We can't do any merging if
the inner code is an ASHIFTRT of a smaller mode. However, if
we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
we can convert it to
(ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
This simplifies certain SIGN_EXTEND operations. */
if (code == ASHIFT && first_code == ASHIFTRT
&& count == (unsigned int)
(GET_MODE_BITSIZE (result_mode)
- GET_MODE_BITSIZE (GET_MODE (varop))))
{
/* C3 has the low-order C1 bits zero. */
mask = (GET_MODE_MASK (mode)
& ~(((HOST_WIDE_INT) 1 << first_count) - 1));
varop = simplify_and_const_int (NULL_RTX, result_mode,
XEXP (varop, 0), mask);
varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
varop, count);
count = first_count;
code = ASHIFTRT;
continue;
}
/* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
than C1 high-order bits equal to the sign bit, we can convert
this to either an ASHIFT or an ASHIFTRT depending on the
two counts.
We cannot do this if VAROP's mode is not SHIFT_MODE. */
if (code == ASHIFTRT && first_code == ASHIFT
&& GET_MODE (varop) == shift_mode
&& (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
> first_count))
{
varop = XEXP (varop, 0);
signed_count = count - first_count;
if (signed_count < 0)
count = -signed_count, code = ASHIFT;
else
count = signed_count;
continue;
}
/* There are some cases we can't do. If CODE is ASHIFTRT,
we can only do this if FIRST_CODE is also ASHIFTRT.
We can't do the case when CODE is ROTATE and FIRST_CODE is
ASHIFTRT.
If the mode of this shift is not the mode of the outer shift,
we can't do this if either shift is a right shift or ROTATE.
Finally, we can't do any of these if the mode is too wide
unless the codes are the same.
Handle the case where the shift codes are the same
first. */
if (code == first_code)
{
if (GET_MODE (varop) != result_mode
&& (code == ASHIFTRT || code == LSHIFTRT
|| code == ROTATE))
break;
count += first_count;
varop = XEXP (varop, 0);
continue;
}
if (code == ASHIFTRT
|| (code == ROTATE && first_code == ASHIFTRT)
|| GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
|| (GET_MODE (varop) != result_mode
&& (first_code == ASHIFTRT || first_code == LSHIFTRT
|| first_code == ROTATE
|| code == ROTATE)))
break;
/* To compute the mask to apply after the shift, shift the
nonzero bits of the inner shift the same way the
outer shift will. */
mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
mask_rtx
= simplify_binary_operation (code, result_mode, mask_rtx,
GEN_INT (count));
/* Give up if we can't compute an outer operation to use. */
if (mask_rtx == 0
|| GET_CODE (mask_rtx) != CONST_INT
|| ! merge_outer_ops (&outer_op, &outer_const, AND,
INTVAL (mask_rtx),
result_mode, &complement_p))
break;
/* If the shifts are in the same direction, we add the
counts. Otherwise, we subtract them. */
signed_count = count;
if ((code == ASHIFTRT || code == LSHIFTRT)
== (first_code == ASHIFTRT || first_code == LSHIFTRT))
signed_count += first_count;
else
signed_count -= first_count;
/* If COUNT is positive, the new shift is usually CODE,
except for the two exceptions below, in which case it is
FIRST_CODE. If the count is negative, FIRST_CODE should
always be used */
if (signed_count > 0
&& ((first_code == ROTATE && code == ASHIFT)
|| (first_code == ASHIFTRT && code == LSHIFTRT)))
code = first_code, count = signed_count;
else if (signed_count < 0)
code = first_code, count = -signed_count;
else
count = signed_count;
varop = XEXP (varop, 0);
continue;
}
/* If we have (A << B << C) for any shift, we can convert this to
(A << C << B). This wins if A is a constant. Only try this if
B is not a constant. */
else if (GET_CODE (varop) == code
&& GET_CODE (XEXP (varop, 1)) != CONST_INT
&& 0 != (new
= simplify_binary_operation (code, mode,
XEXP (varop, 0),
GEN_INT (count))))
{
varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
count = 0;
continue;
}
break;
case NOT:
/* Make this fit the case below. */
varop = gen_rtx_XOR (mode, XEXP (varop, 0),
GEN_INT (GET_MODE_MASK (mode)));
continue;
case IOR:
case AND:
case XOR:
/* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
with C the size of VAROP - 1 and the shift is logical if
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
we have an (le X 0) operation. If we have an arithmetic shift
and STORE_FLAG_VALUE is 1 or we have a logical shift with
STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
&& XEXP (XEXP (varop, 0), 1) == constm1_rtx
&& (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
&& (code == LSHIFTRT || code == ASHIFTRT)
&& count == (unsigned int)
(GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
{
count = 0;
varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
const0_rtx);
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
varop = gen_rtx_NEG (GET_MODE (varop), varop);
continue;
}
/* If we have (shift (logical)), move the logical to the outside
to allow it to possibly combine with another logical and the
shift to combine with another shift. This also canonicalizes to
what a ZERO_EXTRACT looks like. Also, some machines have
(and (shift)) insns. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& (new = simplify_binary_operation (code, result_mode,
XEXP (varop, 1),
GEN_INT (count))) != 0
&& GET_CODE (new) == CONST_INT
&& merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
INTVAL (new), result_mode, &complement_p))
{
varop = XEXP (varop, 0);
continue;
}
/* If we can't do that, try to simplify the shift in each arm of the
logical expression, make a new logical expression, and apply
the inverse distributive law. */
{
rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
XEXP (varop, 0), count);
rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
XEXP (varop, 1), count);
varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
varop = apply_distributive_law (varop);
count = 0;
}
break;
case EQ:
/* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
says that the sign bit can be tested, FOO has mode MODE, C is
GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
that may be nonzero. */
if (code == LSHIFTRT
&& XEXP (varop, 1) == const0_rtx
&& GET_MODE (XEXP (varop, 0)) == result_mode
&& count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
&& ((STORE_FLAG_VALUE
& ((HOST_WIDE_INT) 1
< (GET_MODE_BITSIZE (result_mode) - 1))))
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1
&& merge_outer_ops (&outer_op, &outer_const, XOR,
(HOST_WIDE_INT) 1, result_mode,
&complement_p))
{
varop = XEXP (varop, 0);
count = 0;
continue;
}
break;
case NEG:
/* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
than the number of bits in the mode is equivalent to A. */
if (code == LSHIFTRT
&& count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1)
{
varop = XEXP (varop, 0);
count = 0;
continue;
}
/* NEG commutes with ASHIFT since it is multiplication. Move the
NEG outside to allow shifts to combine. */
if (code == ASHIFT
&& merge_outer_ops (&outer_op, &outer_const, NEG,
(HOST_WIDE_INT) 0, result_mode,
&complement_p))
{
varop = XEXP (varop, 0);
continue;
}
break;
case PLUS:
/* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
is one less than the number of bits in the mode is
equivalent to (xor A 1). */
if (code == LSHIFTRT
&& count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
&& XEXP (varop, 1) == constm1_rtx
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1
&& merge_outer_ops (&outer_op, &outer_const, XOR,
(HOST_WIDE_INT) 1, result_mode,
&complement_p))
{
count = 0;
varop = XEXP (varop, 0);
continue;
}
/* If we have (xshiftrt (plus FOO BAR) C), and the only bits
that might be nonzero in BAR are those being shifted out and those
bits are known zero in FOO, we can replace the PLUS with FOO.
Similarly in the other operand order. This code occurs when
we are computing the size of a variable-size array. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& count < HOST_BITS_PER_WIDE_INT
&& nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
&& (nonzero_bits (XEXP (varop, 1), result_mode)
& nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
{
varop = XEXP (varop, 0);
continue;
}
else if ((code == ASHIFTRT || code == LSHIFTRT)
&& count < HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
&& 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
>> count)
&& 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
& nonzero_bits (XEXP (varop, 1),
result_mode)))
{
varop = XEXP (varop, 1);
continue;
}
/* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
if (code == ASHIFT
&& GET_CODE (XEXP (varop, 1)) == CONST_INT
&& (new = simplify_binary_operation (ASHIFT, result_mode,
XEXP (varop, 1),
GEN_INT (count))) != 0
&& GET_CODE (new) == CONST_INT
&& merge_outer_ops (&outer_op, &outer_const, PLUS,
INTVAL (new), result_mode, &complement_p))
{
varop = XEXP (varop, 0);
continue;
}
break;
case MINUS:
/* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
with C the size of VAROP - 1 and the shift is logical if
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
we have a (gt X 0) operation. If the shift is arithmetic with
STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
we have a (neg (gt X 0)) operation. */
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
&& GET_CODE (XEXP (varop, 0)) == ASHIFTRT
&& count == (unsigned int)
(GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
&& (code == LSHIFTRT || code == ASHIFTRT)
&& GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
== count
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
{
count = 0;
varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
const0_rtx);
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
varop = gen_rtx_NEG (GET_MODE (varop), varop);
continue;
}
break;
case TRUNCATE:
/* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
if the truncate does not affect the value. */
if (code == LSHIFTRT
&& GET_CODE (XEXP (varop, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (varop, 0), 1))
>= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
- GET_MODE_BITSIZE (GET_MODE (varop)))))
{
rtx varop_inner = XEXP (varop, 0);
varop_inner
= gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
XEXP (varop_inner, 0),
GEN_INT
(count + INTVAL (XEXP (varop_inner, 1))));
varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
count = 0;
continue;
}
break;
default:
break;
}
break;
}
/* We need to determine what mode to do the shift in. If the shift is
a right shift or ROTATE, we must always do it in the mode it was
originally done in. Otherwise, we can do it in MODE, the widest mode
encountered. The code we care about is that of the shift that will
actually be done, not the shift that was originally requested. */
shift_mode
= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
? result_mode : mode);
/* We have now finished analyzing the shift. The result should be
a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
OUTER_OP is non-NIL, it is an operation that needs to be applied
to the result of the shift. OUTER_CONST is the relevant constant,
but we must turn off all bits turned off in the shift.
If we were passed a value for X, see if we can use any pieces of
it. If not, make new rtx. */
if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
const_rtx = XEXP (x, 1);
else
const_rtx = GEN_INT (count);
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (XEXP (x, 0)) == shift_mode
&& SUBREG_REG (XEXP (x, 0)) == varop)
varop = XEXP (x, 0);
else if (GET_MODE (varop) != shift_mode)
varop = gen_lowpart_for_combine (shift_mode, varop);
/* If we can't make the SUBREG, try to return what we were given. */
if (GET_CODE (varop) == CLOBBER)
return x ? x : varop;
new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
if (new != 0)
x = new;
else
x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
/* If we have an outer operation and we just made a shift, it is
possible that we could have simplified the shift were it not
for the outer operation. So try to do the simplification
recursively. */
if (outer_op != NIL && GET_CODE (x) == code
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)));
/* If we were doing an LSHIFTRT in a wider mode than it was originally,
turn off all the bits that the shift would have turned off. */
if (orig_code == LSHIFTRT && result_mode != shift_mode)
x = simplify_and_const_int (NULL_RTX, shift_mode, x,
GET_MODE_MASK (result_mode) >> orig_count);
/* Do the remainder of the processing in RESULT_MODE. */
x = gen_lowpart_for_combine (result_mode, x);
/* If COMPLEMENT_P is set, we have to complement X before doing the outer
operation. */
if (complement_p)
x =simplify_gen_unary (NOT, result_mode, x, result_mode);
if (outer_op != NIL)
{
if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
outer_const = trunc_int_for_mode (outer_const, result_mode);
if (outer_op == AND)
x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
else if (outer_op == SET)
/* This means that we have determined that the result is
equivalent to a constant. This should be rare. */
x = GEN_INT (outer_const);
else if (GET_RTX_CLASS (outer_op) == '1')
x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
else
x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
}
return x;
}
/* Like recog, but we receive the address of a pointer to a new pattern.
We try to match the rtx that the pointer points to.
If that fails, we may try to modify or replace the pattern,
storing the replacement into the same pointer object.
Modifications include deletion or addition of CLOBBERs.
PNOTES is a pointer to a location where any REG_UNUSED notes added for
the CLOBBERs are placed.
The value is the final insn code from the pattern ultimately matched,
or -1. */
static int
recog_for_combine (pnewpat, insn, pnotes)
rtx *pnewpat;
rtx insn;
rtx *pnotes;
{
rtx pat = *pnewpat;
int insn_code_number;
int num_clobbers_to_add = 0;
int i;
rtx notes = 0;
rtx dummy_insn;
/* If PAT is a PARALLEL, check to see if it contains the CLOBBER
we use to indicate that something didn't match. If we find such a
thing, force rejection. */
if (GET_CODE (pat) == PARALLEL)
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
&& XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
return -1;
/* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
instruction for pattern recognition. */
dummy_insn = shallow_copy_rtx (insn);
PATTERN (dummy_insn) = pat;
REG_NOTES (dummy_insn) = 0;
insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
/* If it isn't, there is the possibility that we previously had an insn
that clobbered some register as a side effect, but the combined
insn doesn't need to do that. So try once more without the clobbers
unless this represents an ASM insn. */
if (insn_code_number < 0 && ! check_asm_operands (pat)
&& GET_CODE (pat) == PARALLEL)
{
int pos;
for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
{
if (i != pos)
SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
pos++;
}
SUBST_INT (XVECLEN (pat, 0), pos);
if (pos == 1)
pat = XVECEXP (pat, 0, 0);
PATTERN (dummy_insn) = pat;
insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
}
/* Recognize all noop sets, these will be killed by followup pass. */
if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
/* If we had any clobbers to add, make a new pattern than contains
them. Then check to make sure that all of them are dead. */
if (num_clobbers_to_add)
{
rtx newpat = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (GET_CODE (pat) == PARALLEL
? (XVECLEN (pat, 0)
+ num_clobbers_to_add)
: num_clobbers_to_add + 1));
if (GET_CODE (pat) == PARALLEL)
for (i = 0; i < XVECLEN (pat, 0); i++)
XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
else
XVECEXP (newpat, 0, 0) = pat;
add_clobbers (newpat, insn_code_number);
for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
i < XVECLEN (newpat, 0); i++)
{
if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
&& ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
return -1;
notes = gen_rtx_EXPR_LIST (REG_UNUSED,
XEXP (XVECEXP (newpat, 0, i), 0), notes);
}
pat = newpat;
}
*pnewpat = pat;
*pnotes = notes;
return insn_code_number;
}
/* Like gen_lowpart but for use by combine. In combine it is not possible
to create any new pseudoregs. However, it is safe to create
invalid memory addresses, because combine will try to recognize
them and all they will do is make the combine attempt fail.
If for some reason this cannot do its job, an rtx
(clobber (const_int 0)) is returned.
An insn containing that will not be recognized. */
#undef gen_lowpart
static rtx
gen_lowpart_for_combine (mode, x)
enum machine_mode mode;
rtx x;
{
rtx result;
if (GET_MODE (x) == mode)
return x;
/* We can only support MODE being wider than a word if X is a
constant integer or has a mode the same size. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& ! ((GET_MODE (x) == VOIDmode
&& (GET_CODE (x) == CONST_INT
|| GET_CODE (x) == CONST_DOUBLE))
|| GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
/* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
won't know what to do. So we will strip off the SUBREG here and
process normally. */
if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
{
x = SUBREG_REG (x);
if (GET_MODE (x) == mode)
return x;
}
result = gen_lowpart_common (mode, x);
#ifdef CANNOT_CHANGE_MODE_CLASS
if (result != 0
&& GET_CODE (result) == SUBREG
&& GET_CODE (SUBREG_REG (result)) == REG
&& REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
* MAX_MACHINE_MODE
+ GET_MODE (result));
#endif
if (result)
return result;
if (GET_CODE (x) == MEM)
{
int offset = 0;
/* Refuse to work on a volatile memory ref or one with a mode-dependent
address. */
if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
/* If we want to refer to something bigger than the original memref,
generate a perverse subreg instead. That will force a reload
of the original memref X. */
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
return gen_rtx_SUBREG (mode, x, 0);
if (WORDS_BIG_ENDIAN)
offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
if (BYTES_BIG_ENDIAN)
{
/* Adjust the address so that the address-after-the-data is
unchanged. */
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
}
return adjust_address_nv (x, mode, offset);
}
/* If X is a comparison operator, rewrite it in a new mode. This
probably won't match, but may allow further simplifications. */
else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
/* If we couldn't simplify X any other way, just enclose it in a
SUBREG. Normally, this SUBREG won't match, but some patterns may
include an explicit SUBREG or we may simplify it further in combine. */
else
{
int offset = 0;
rtx res;
enum machine_mode sub_mode = GET_MODE (x);
offset = subreg_lowpart_offset (mode, sub_mode);
if (sub_mode == VOIDmode)
{
sub_mode = int_mode_for_mode (mode);
x = gen_lowpart_common (sub_mode, x);
}
res = simplify_gen_subreg (mode, x, sub_mode, offset);
if (res)
return res;
return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
}
}
/* These routines make binary and unary operations by first seeing if they
fold; if not, a new expression is allocated. */
static rtx
gen_binary (code, mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
rtx op0, op1;
{
rtx result;
rtx tem;
if (GET_RTX_CLASS (code) == 'c'
&& swap_commutative_operands_p (op0, op1))
tem = op0, op0 = op1, op1 = tem;
if (GET_RTX_CLASS (code) == '<')
{
enum machine_mode op_mode = GET_MODE (op0);
/* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
just (REL_OP X Y). */
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
{
op1 = XEXP (op0, 1);
op0 = XEXP (op0, 0);
op_mode = GET_MODE (op0);
}
if (op_mode == VOIDmode)
op_mode = GET_MODE (op1);
result = simplify_relational_operation (code, op_mode, op0, op1);
}
else
result = simplify_binary_operation (code, mode, op0, op1);
if (result)
return result;
/* Put complex operands first and constants second. */
if (GET_RTX_CLASS (code) == 'c'
&& swap_commutative_operands_p (op0, op1))
return gen_rtx_fmt_ee (code, mode, op1, op0);
/* If we are turning off bits already known off in OP0, we need not do
an AND. */
else if (code == AND && GET_CODE (op1) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
return op0;
return gen_rtx_fmt_ee (code, mode, op0, op1);
}
/* Simplify a comparison between *POP0 and *POP1 where CODE is the
comparison code that will be tested.
The result is a possibly different comparison code to use. *POP0 and
*POP1 may be updated.
It is possible that we might detect that a comparison is either always
true or always false. However, we do not perform general constant
folding in combine, so this knowledge isn't useful. Such tautologies
should have been detected earlier. Hence we ignore all such cases. */
static enum rtx_code
simplify_comparison (code, pop0, pop1)
enum rtx_code code;
rtx *pop0;
rtx *pop1;
{
rtx op0 = *pop0;
rtx op1 = *pop1;
rtx tem, tem1;
int i;
enum machine_mode mode, tmode;
/* Try a few ways of applying the same transformation to both operands. */
while (1)
{
#ifndef WORD_REGISTER_OPERATIONS
/* The test below this one won't handle SIGN_EXTENDs on these machines,
so check specially. */
if (code != GTU && code != GEU && code != LTU && code != LEU
&& GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
&& GET_CODE (XEXP (op1, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
&& GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
&& (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op1, 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
&& (INTVAL (XEXP (op0, 1))
== (GET_MODE_BITSIZE (GET_MODE (op0))
- (GET_MODE_BITSIZE
(GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
{
op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
}
#endif
/* If both operands are the same constant shift, see if we can ignore the
shift. We can if the shift is a rotate or if the bits shifted out of
this shift are known to be zero for both inputs and if the type of
comparison is compatible with the shift. */
if (GET_CODE (op0) == GET_CODE (op1)
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
&& ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
|| ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
&& (code != GT && code != LT && code != GE && code != LE))
|| (GET_CODE (op0) == ASHIFTRT
&& (code != GTU && code != LTU
&& code != GEU && code != LEU)))
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
&& XEXP (op0, 1) == XEXP (op1, 1))
{
enum machine_mode mode = GET_MODE (op0);
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
int shift_count = INTVAL (XEXP (op0, 1));
if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
mask &= (mask >> shift_count) << shift_count;
else if (GET_CODE (op0) == ASHIFT)
mask = (mask & (mask << shift_count)) >> shift_count;
if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
&& (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
else
break;
}
/* If both operands are AND's of a paradoxical SUBREG by constant, the
SUBREGs are of the same mode, and, in both cases, the AND would
be redundant if the comparison was done in the narrower mode,
do the comparison in the narrower mode (e.g., we are AND'ing with 1
and the operand's possibly nonzero bits are 0xffffff01; in that case
if we only care about QImode, we don't need the AND). This case
occurs if the output mode of an scc insn is not SImode and
STORE_FLAG_VALUE == 1 (e.g., the 386).
Similarly, check for a case where the AND's are ZERO_EXTEND
operations from some narrower mode even though a SUBREG is not
present. */
else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op1, 1)) == CONST_INT)
{
rtx inner_op0 = XEXP (op0, 0);
rtx inner_op1 = XEXP (op1, 0);
HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
int changed = 0;
if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (inner_op0))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
&& (GET_MODE (SUBREG_REG (inner_op0))
== GET_MODE (SUBREG_REG (inner_op1)))
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
<= HOST_BITS_PER_WIDE_INT)
&& (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
GET_MODE (SUBREG_REG (inner_op0)))))
&& (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
GET_MODE (SUBREG_REG (inner_op1))))))
{
op0 = SUBREG_REG (inner_op0);
op1 = SUBREG_REG (inner_op1);
/* The resulting comparison is always unsigned since we masked
off the original sign bit. */
code = unsigned_condition (code);
changed = 1;
}
else if (c0 == c1)
for (tmode = GET_CLASS_NARROWEST_MODE
(GET_MODE_CLASS (GET_MODE (op0)));
tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
{
op0 = gen_lowpart_for_combine (tmode, inner_op0);
op1 = gen_lowpart_for_combine (tmode, inner_op1);
code = unsigned_condition (code);
changed = 1;
break;
}
if (! changed)
break;
}
/* If both operands are NOT, we can strip off the outer operation
and adjust the comparison code for swapped operands; similarly for
NEG, except that this must be an equality comparison. */
else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
|| (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
&& (code == EQ || code == NE)))
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
else
break;
}
/* If the first operand is a constant, swap the operands and adjust the
comparison code appropriately, but don't do this if the second operand
is already a constant integer. */
if (swap_commutative_operands_p (op0, op1))
{
tem = op0, op0 = op1, op1 = tem;
code = swap_condition (code);
}
/* We now enter a loop during which we will try to simplify the comparison.
For the most part, we only are concerned with comparisons with zero,
but some things may really be comparisons with zero but not start
out looking that way. */
while (GET_CODE (op1) == CONST_INT)
{
enum machine_mode mode = GET_MODE (op0);
unsigned int mode_width = GET_MODE_BITSIZE (mode);
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
int equality_comparison_p;
int sign_bit_comparison_p;
int unsigned_comparison_p;
HOST_WIDE_INT const_op;
/* We only want to handle integral modes. This catches VOIDmode,
CCmode, and the floating-point modes. An exception is that we
can handle VOIDmode if OP0 is a COMPARE or a comparison
operation. */
if (GET_MODE_CLASS (mode) != MODE_INT
&& ! (mode == VOIDmode
&& (GET_CODE (op0) == COMPARE
|| GET_RTX_CLASS (GET_CODE (op0)) == '<')))
break;
/* Get the constant we are comparing against and turn off all bits
not on in our mode. */
const_op = INTVAL (op1);
if (mode != VOIDmode)
const_op = trunc_int_for_mode (const_op, mode);
op1 = GEN_INT (const_op);
/* If we are comparing against a constant power of two and the value
being compared can only have that single bit nonzero (e.g., it was
`and'ed with that bit), we can replace this with a comparison
with zero. */
if (const_op
&& (code == EQ || code == NE || code == GE || code == GEU
|| code == LT || code == LTU)
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& exact_log2 (const_op) >= 0
&& nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
{
code = (code == EQ || code == GE || code == GEU ? NE : EQ);
op1 = const0_rtx, const_op = 0;
}
/* Similarly, if we are comparing a value known to be either -1 or
0 with -1, change it to the opposite comparison against zero. */
if (const_op == -1
&& (code == EQ || code == NE || code == GT || code == LE
|| code == GEU || code == LTU)
&& num_sign_bit_copies (op0, mode) == mode_width)
{
code = (code == EQ || code == LE || code == GEU ? NE : EQ);
op1 = const0_rtx, const_op = 0;
}
/* Do some canonicalizations based on the comparison code. We prefer
comparisons against zero and then prefer equality comparisons.
If we can reduce the size of a constant, we will do that too. */
switch (code)
{
case LT:
/* < C is equivalent to <= (C - 1) */
if (const_op > 0)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = LE;
/* ... fall through to LE case below. */
}
else
break;
case LE:
/* <= C is equivalent to < (C + 1); we do this for C < 0 */
if (const_op < 0)
{
const_op += 1;
op1 = GEN_INT (const_op);
code = LT;
}
/* If we are doing a <= 0 comparison on a value known to have
a zero sign bit, we can replace this with == 0. */
else if (const_op == 0
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode)
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
code = EQ;
break;
case GE:
/* >= C is equivalent to > (C - 1). */
if (const_op > 0)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = GT;
/* ... fall through to GT below. */
}
else
break;
case GT:
/* > C is equivalent to >= (C + 1); we do this for C < 0. */
if (const_op < 0)
{
const_op += 1;
op1 = GEN_INT (const_op);
code = GE;
}
/* If we are doing a > 0 comparison on a value known to have
a zero sign bit, we can replace this with != 0. */
else if (const_op == 0
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode)
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
code = NE;
break;
case LTU:
/* < C is equivalent to <= (C - 1). */
if (const_op > 0)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = LEU;
/* ... fall through ... */
}
/* (unsigned) < 0x80000000 is equivalent to >= 0. */
else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
&& (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
{
const_op = 0, op1 = const0_rtx;
code = GE;
break;
}
else
break;
case LEU:
/* unsigned <= 0 is equivalent to == 0 */
if (const_op == 0)
code = EQ;
/* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
&& (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
{
const_op = 0, op1 = const0_rtx;
code = GE;
}
break;
case GEU:
/* >= C is equivalent to < (C - 1). */
if (const_op > 1)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = GTU;
/* ... fall through ... */
}
/* (unsigned) >= 0x80000000 is equivalent to < 0. */
else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
&& (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
{
const_op = 0, op1 = const0_rtx;
code = LT;
break;
}
else
break;
case GTU:
/* unsigned > 0 is equivalent to != 0 */
if (const_op == 0)
code = NE;
/* (unsigned) > 0x7fffffff is equivalent to < 0. */
else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
&& (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
{
const_op = 0, op1 = const0_rtx;
code = LT;
}
break;
default:
break;
}
/* Compute some predicates to simplify code below. */
equality_comparison_p = (code == EQ || code == NE);
sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
|| code == GEU);
/* If this is a sign bit comparison and we can do arithmetic in
MODE, say that we will only be needing the sign bit of OP0. */
if (sign_bit_comparison_p
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
op0 = force_to_mode (op0, mode,
((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (mode) - 1)),
NULL_RTX, 0);
/* Now try cases based on the opcode of OP0. If none of the cases
does a "continue", we exit this loop immediately after the
switch. */
switch (GET_CODE (op0))
{
case ZERO_EXTRACT:
/* If we are extracting a single bit from a variable position in
a constant that has only a single bit set and are comparing it
with zero, we can convert this into an equality comparison
between the position and the location of the single bit. */
if (GET_CODE (XEXP (op0, 0)) == CONST_INT
&& XEXP (op0, 1) == const1_rtx
&& equality_comparison_p && const_op == 0
&& (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
{
if (BITS_BIG_ENDIAN)
{
enum machine_mode new_mode
= mode_for_extraction (EP_extzv, 1);
if (new_mode == MAX_MACHINE_MODE)
i = BITS_PER_WORD - 1 - i;
else
{
mode = new_mode;
i = (GET_MODE_BITSIZE (mode) - 1 - i);
}
}
op0 = XEXP (op0, 2);
op1 = GEN_INT (i);
const_op = i;
/* Result is nonzero iff shift count is equal to I. */
code = reverse_condition (code);
continue;
}
/* ... fall through ... */
case SIGN_EXTRACT:
tem = expand_compound_operation (op0);
if (tem != op0)
{
op0 = tem;
continue;
}
break;
case NOT:
/* If testing for equality, we can take the NOT of the constant. */
if (equality_comparison_p
&& (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* If just looking at the sign bit, reverse the sense of the
comparison. */
if (sign_bit_comparison_p)
{
op0 = XEXP (op0, 0);
code = (code == GE ? LT : GE);
continue;
}
break;
case NEG:
/* If testing for equality, we can take the NEG of the constant. */
if (equality_comparison_p
&& (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* The remaining cases only apply to comparisons with zero. */
if (const_op != 0)
break;
/* When X is ABS or is known positive,
(neg X) is < 0 if and only if X != 0. */
if (sign_bit_comparison_p
&& (GET_CODE (XEXP (op0, 0)) == ABS
|| (mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (op0, 0), mode)
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
{
op0 = XEXP (op0, 0);
code = (code == LT ? NE : EQ);
continue;
}
/* If we have NEG of something whose two high-order bits are the
same, we know that "(-a) < 0" is equivalent to "a > 0". */
if (num_sign_bit_copies (op0, mode) >= 2)
{
op0 = XEXP (op0, 0);
code = swap_condition (code);
continue;
}
break;
case ROTATE:
/* If we are testing equality and our count is a constant, we
can perform the inverse operation on our RHS. */
if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (tem = simplify_binary_operation (ROTATERT, mode,
op1, XEXP (op0, 1))) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* If we are doing a < 0 or >= 0 comparison, it means we are testing
a particular bit. Convert it to an AND of a constant of that
bit. This will be converted into a ZERO_EXTRACT. */
if (const_op == 0 && sign_bit_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
{
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
((HOST_WIDE_INT) 1
<< (mode_width - 1
- INTVAL (XEXP (op0, 1)))));
code = (code == LT ? NE : EQ);
continue;
}
/* Fall through. */
case ABS:
/* ABS is ignorable inside an equality comparison with zero. */
if (const_op == 0 && equality_comparison_p)
{
op0 = XEXP (op0, 0);
continue;
}
break;
case SIGN_EXTEND:
/* Can simplify (compare (zero/sign_extend FOO) CONST)
to (compare FOO CONST) if CONST fits in FOO's mode and we
are either testing inequality or have an unsigned comparison
with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
if (! unsigned_comparison_p
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((unsigned HOST_WIDE_INT) const_op
< (((unsigned HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
{
op0 = XEXP (op0, 0);
continue;
}
break;
case SUBREG:
/* Check for the case where we are comparing A - C1 with C2,
both constants are smaller than 1/2 the maximum positive
value in MODE, and the comparison is equality or unsigned.
In that case, if A is either zero-extended to MODE or has
sufficient sign bits so that the high-order bit in MODE
is a copy of the sign in the inner mode, we can prove that it is
safe to do the operation in the wider mode. This simplifies
many range checks. */
if (mode_width <= HOST_BITS_PER_WIDE_INT
&& subreg_lowpart_p (op0)
&& GET_CODE (SUBREG_REG (op0)) == PLUS
&& GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
&& INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
&& (-INTVAL (XEXP (SUBREG_REG (op0), 1))
< (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
&& (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
&& (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
GET_MODE (SUBREG_REG (op0)))
& ~GET_MODE_MASK (mode))
|| (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
GET_MODE (SUBREG_REG (op0)))
> (unsigned int)
(GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
- GET_MODE_BITSIZE (mode)))))
{
op0 = SUBREG_REG (op0);
continue;
}
/* If the inner mode is narrower and we are extracting the low part,
we can treat the SUBREG as if it were a ZERO_EXTEND. */
if (subreg_lowpart_p (op0)
&& GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
/* Fall through */ ;
else
break;
/* ... fall through ... */
case ZERO_EXTEND:
if ((unsigned_comparison_p || equality_comparison_p)
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((unsigned HOST_WIDE_INT) const_op
< GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
{
op0 = XEXP (op0, 0);
continue;
}
break;
case PLUS:
/* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
this for equality comparisons due to pathological cases involving
overflows. */
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (MINUS, mode,
op1, XEXP (op0, 1))))
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
&& GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
{
op0 = XEXP (XEXP (op0, 0), 0);
code = (code == LT ? EQ : NE);
continue;
}
break;
case MINUS:
/* We used to optimize signed comparisons against zero, but that
was incorrect. Unsigned comparisons against zero (GTU, LEU)
arrive here as equality comparisons, or (GEU, LTU) are
optimized away. No need to special-case them. */
/* (eq (minus A B) C) -> (eq A (plus B C)) or
(eq B (minus A C)), whichever simplifies. We can only do
this for equality comparisons due to pathological cases involving
overflows. */
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (PLUS, mode,
XEXP (op0, 1), op1)))
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (MINUS, mode,
XEXP (op0, 0), op1)))
{
op0 = XEXP (op0, 1);
op1 = tem;
continue;
}
/* The sign bit of (minus (ashiftrt X C) X), where C is the number
of bits in X minus 1, is one iff X > 0. */
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
== mode_width - 1
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
{
op0 = XEXP (op0, 1);
code = (code == GE ? LE : GT);
continue;
}
break;
case XOR:
/* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
if C is zero or B is a constant. */
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (XOR, mode,
XEXP (op0, 1), op1)))
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
break;
case EQ: case NE:
case UNEQ: case LTGT:
case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
case UNORDERED: case ORDERED:
/* We can't do anything if OP0 is a condition code value, rather
than an actual data value. */
if (const_op != 0
#ifdef HAVE_cc0
|| XEXP (op0, 0) == cc0_rtx
#endif
|| GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
break;
/* Get the two operands being compared. */
if (GET_CODE (XEXP (op0, 0)) == COMPARE)
tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
else
tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
/* Check for the cases where we simply want the result of the
earlier test or the opposite of that result. */
if (code == NE || code == EQ
|| (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& (STORE_FLAG_VALUE
& (((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
&& (code == LT || code == GE)))
{
enum rtx_code new_code;
if (code == LT || code == NE)
new_code = GET_CODE (op0);
else
new_code = combine_reversed_comparison_code (op0);
if (new_code != UNKNOWN)
{
code = new_code;
op0 = tem;
op1 = tem1;
continue;
}
}
break;
case IOR:
/* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
iff X <= 0. */
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
&& XEXP (XEXP (op0, 0), 1) == constm1_rtx
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
{
op0 = XEXP (op0, 1);
code = (code == GE ? GT : LE);
continue;
}
break;
case AND:
/* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
will be converted to a ZERO_EXTRACT later. */
if (const_op == 0 && equality_comparison_p
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
&& XEXP (XEXP (op0, 0), 0) == const1_rtx)
{
op0 = simplify_and_const_int
(op0, mode, gen_rtx_LSHIFTRT (mode,
XEXP (op0, 1),
XEXP (XEXP (op0, 0), 1)),
(HOST_WIDE_INT) 1);
continue;
}
/* If we are comparing (and (lshiftrt X C1) C2) for equality with
zero and X is a comparison and C1 and C2 describe only bits set
in STORE_FLAG_VALUE, we can compare with X. */
if (const_op == 0 && equality_comparison_p
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
{
mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
<< INTVAL (XEXP (XEXP (op0, 0), 1)));
if ((~STORE_FLAG_VALUE & mask) == 0
&& (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
|| ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
&& GET_RTX_CLASS (GET_CODE (tem)) == '<')))
{
op0 = XEXP (XEXP (op0, 0), 0);
continue;
}
}
/* If we are doing an equality comparison of an AND of a bit equal
to the sign bit, replace this with a LT or GE comparison of
the underlying value. */
if (equality_comparison_p
&& const_op == 0
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
== (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
{
op0 = XEXP (op0, 0);
code = (code == EQ ? GE : LT);
continue;
}
/* If this AND operation is really a ZERO_EXTEND from a narrower
mode, the constant fits within that mode, and this is either an
equality or unsigned comparison, try to do this comparison in
the narrower mode. */
if ((equality_comparison_p || unsigned_comparison_p)
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (i = exact_log2 ((INTVAL (XEXP (op0, 1))
& GET_MODE_MASK (mode))
+ 1)) >= 0
&& const_op >> i == 0
&& (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
{
op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
continue;
}
/* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
in both M1 and M2 and the SUBREG is either paradoxical or
represents the low part, permute the SUBREG and the AND and
try again. */
if (GET_CODE (XEXP (op0, 0)) == SUBREG
/* Require an integral mode, to avoid creating something like
(AND:SF ...). */
&& SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
&& (0
#ifdef WORD_REGISTER_OPERATIONS
|| ((mode_width
> (GET_MODE_BITSIZE
(GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
&& mode_width <= BITS_PER_WORD)
#endif
|| ((mode_width
<= (GET_MODE_BITSIZE
(GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
&& subreg_lowpart_p (XEXP (op0, 0))))
#ifndef WORD_REGISTER_OPERATIONS
/* It is unsafe to commute the AND into the SUBREG if the SUBREG
is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
As originally written the upper bits have a defined value
due to the AND operation. However, if we commute the AND
inside the SUBREG then they no longer have defined values
and the meaning of the code has been changed. */
&& (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
#endif
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
<= HOST_BITS_PER_WIDE_INT)
&& (INTVAL (XEXP (op0, 1)) & ~mask) == 0
&& 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
& INTVAL (XEXP (op0, 1)))
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
&& ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
!= GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
{
op0
= gen_lowpart_for_combine
(mode,
gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
continue;
}
/* Convert (ne (and (lshiftrt (not X)) 1) 0) to
(eq (and (lshiftrt X) 1) 0). */
if (const_op == 0 && equality_comparison_p
&& XEXP (op0, 1) == const1_rtx
&& GET_CODE (XEXP (op0, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
{
op0 = simplify_and_const_int
(op0, mode,
gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
XEXP (XEXP (op0, 0), 1)),
(HOST_WIDE_INT) 1);
code = (code == NE ? EQ : NE);
continue;
}
break;
case ASHIFT:
/* If we have (compare (ashift FOO N) (const_int C)) and
the high order N bits of FOO (N+1 if an inequality comparison)
are known to be zero, we can do this by comparing FOO with C
shifted right N bits so long as the low-order N bits of C are
zero. */
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
< HOST_BITS_PER_WIDE_INT)
&& ((const_op
& (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (op0, 0), mode)
& ~(mask >> (INTVAL (XEXP (op0, 1))
+ ! equality_comparison_p))) == 0)
{
/* We must perform a logical shift, not an arithmetic one,
as we want the top N bits of C to be zero. */
unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
temp >>= INTVAL (XEXP (op0, 1));
op1 = gen_int_mode (temp, mode);
op0 = XEXP (op0, 0);
continue;
}
/* If we are doing a sign bit comparison, it means we are testing
a particular bit. Convert it to the appropriate AND. */
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
{
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
((HOST_WIDE_INT) 1
<< (mode_width - 1
- INTVAL (XEXP (op0, 1)))));
code = (code == LT ? NE : EQ);
continue;
}
/* If this an equality comparison with zero and we are shifting
the low bit to the sign bit, we can convert this to an AND of the
low-order bit. */
if (const_op == 0 && equality_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
== mode_width - 1)
{
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
(HOST_WIDE_INT) 1);
continue;
}
break;
case ASHIFTRT:
/* If this is an equality comparison with zero, we can do this
as a logical shift, which might be much simpler. */
if (equality_comparison_p && const_op == 0
&& GET_CODE (XEXP (op0, 1)) == CONST_INT)
{
op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
XEXP (op0, 0),
INTVAL (XEXP (op0, 1)));
continue;
}
/* If OP0 is a sign extension and CODE is not an unsigned comparison,
do the comparison in a narrower mode. */
if (! unsigned_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
&& XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
&& (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
MODE_INT, 1)) != BLKmode
&& (((unsigned HOST_WIDE_INT) const_op
+ (GET_MODE_MASK (tmode) >> 1) + 1)
<= GET_MODE_MASK (tmode)))
{
op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
continue;
}
/* Likewise if OP0 is a PLUS of a sign extension with a
constant, which is usually represented with the PLUS
between the shifts. */
if (! unsigned_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
&& XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
&& (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
MODE_INT, 1)) != BLKmode
&& (((unsigned HOST_WIDE_INT) const_op
+ (GET_MODE_MASK (tmode) >> 1) + 1)
<= GET_MODE_MASK (tmode)))
{
rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
rtx add_const = XEXP (XEXP (op0, 0), 1);
rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
XEXP (op0, 1));
op0 = gen_binary (PLUS, tmode,
gen_lowpart_for_combine (tmode, inner),
new_const);
continue;
}
/* ... fall through ... */
case LSHIFTRT:
/* If we have (compare (xshiftrt FOO N) (const_int C)) and
the low order N bits of FOO are known to be zero, we can do this
by comparing FOO with C shifted left N bits so long as no
overflow occurs. */
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (op0, 0), mode)
& (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
&& (((unsigned HOST_WIDE_INT) const_op
+ (GET_CODE (op0) != LSHIFTRT
? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
+ 1)
: 0))
<= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
{
/* If the shift was logical, then we must make the condition
unsigned. */
if (GET_CODE (op0) == LSHIFTRT)
code = unsigned_condition (code);
const_op <<= INTVAL (XEXP (op0, 1));
op1 = GEN_INT (const_op);
op0 = XEXP (op0, 0);
continue;
}
/* If we are using this shift to extract just the sign bit, we
can replace this with an LT or GE comparison. */
if (const_op == 0
&& (equality_comparison_p || sign_bit_comparison_p)
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
== mode_width - 1)
{
op0 = XEXP (op0, 0);
code = (code == NE || code == GT ? LT : GE);
continue;
}
break;
default:
break;
}
break;
}
/* Now make any compound operations involved in this comparison. Then,
check for an outmost SUBREG on OP0 that is not doing anything or is
paradoxical. The latter transformation must only be performed when
it is known that the "extra" bits will be the same in op0 and op1 or
that they don't matter. There are three cases to consider:
1. SUBREG_REG (op0) is a register. In this case the bits are don't
care bits and we can assume they have any convenient value. So
making the transformation is safe.
2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
In this case the upper bits of op0 are undefined. We should not make
the simplification in that case as we do not know the contents of
those bits.
3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
NIL. In that case we know those bits are zeros or ones. We must
also be sure that they are the same as the upper bits of op1.
We can never remove a SUBREG for a non-equality comparison because
the sign bit is in a different place in the underlying object. */
op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
op1 = make_compound_operation (op1, SET);
if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
/* Case 3 above, to sometimes allow (subreg (mem x)), isn't
implemented. */
&& GET_CODE (SUBREG_REG (op0)) == REG
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
&& (code == NE || code == EQ))
{
if (GET_MODE_SIZE (GET_MODE (op0))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
{
op0 = SUBREG_REG (op0);
op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
}
else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
<= HOST_BITS_PER_WIDE_INT)
&& (nonzero_bits (SUBREG_REG (op0),
GET_MODE (SUBREG_REG (op0)))
& ~GET_MODE_MASK (GET_MODE (op0))) == 0)
{
tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
& ~GET_MODE_MASK (GET_MODE (op0))) == 0)
op0 = SUBREG_REG (op0), op1 = tem;
}
}
/* We now do the opposite procedure: Some machines don't have compare
insns in all modes. If OP0's mode is an integer mode smaller than a
word and we can't do a compare in that mode, see if there is a larger
mode for which we can do the compare. There are a number of cases in
which we can use the wider mode. */
mode = GET_MODE (op0);
if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
&& ! have_insn_for (COMPARE, mode))
for (tmode = GET_MODE_WIDER_MODE (mode);
(tmode != VOIDmode
&& GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
tmode = GET_MODE_WIDER_MODE (tmode))
if (have_insn_for (COMPARE, tmode))
{
int zero_extended;
/* If the only nonzero bits in OP0 and OP1 are those in the
narrower mode and this is an equality or unsigned comparison,
we can use the wider mode. Similarly for sign-extended
values, in which case it is true for all comparisons. */
zero_extended = ((code == EQ || code == NE
|| code == GEU || code == GTU
|| code == LEU || code == LTU)
&& (nonzero_bits (op0, tmode)
& ~GET_MODE_MASK (mode)) == 0
&& ((GET_CODE (op1) == CONST_INT
|| (nonzero_bits (op1, tmode)
& ~GET_MODE_MASK (mode)) == 0)));
if (zero_extended
|| ((num_sign_bit_copies (op0, tmode)
> (unsigned int) (GET_MODE_BITSIZE (tmode)
- GET_MODE_BITSIZE (mode)))
&& (num_sign_bit_copies (op1, tmode)
> (unsigned int) (GET_MODE_BITSIZE (tmode)
- GET_MODE_BITSIZE (mode)))))
{
/* If OP0 is an AND and we don't have an AND in MODE either,
make a new AND in the proper mode. */
if (GET_CODE (op0) == AND
&& !have_insn_for (AND, mode))
op0 = gen_binary (AND, tmode,
gen_lowpart_for_combine (tmode,
XEXP (op0, 0)),
gen_lowpart_for_combine (tmode,
XEXP (op0, 1)));
op0 = gen_lowpart_for_combine (tmode, op0);
if (zero_extended && GET_CODE (op1) == CONST_INT)
op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
op1 = gen_lowpart_for_combine (tmode, op1);
break;
}
/* If this is a test for negative, we can make an explicit
test of the sign bit. */
if (op1 == const0_rtx && (code == LT || code == GE)
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
op0 = gen_binary (AND, tmode,
gen_lowpart_for_combine (tmode, op0),
GEN_INT ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (mode) - 1)));
code = (code == LT) ? NE : EQ;
break;
}
}
#ifdef CANONICALIZE_COMPARISON
/* If this machine only supports a subset of valid comparisons, see if we
can convert an unsupported one into a supported one. */
CANONICALIZE_COMPARISON (code, op0, op1);
#endif
*pop0 = op0;
*pop1 = op1;
return code;
}
/* Like jump.c' reversed_comparison_code, but use combine infrastructure for
searching backward. */
static enum rtx_code
combine_reversed_comparison_code (exp)
rtx exp;
{
enum rtx_code code1 = reversed_comparison_code (exp, NULL);
rtx x;
if (code1 != UNKNOWN
|| GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
return code1;
/* Otherwise try and find where the condition codes were last set and
use that. */
x = get_last_value (XEXP (exp, 0));
if (!x || GET_CODE (x) != COMPARE)
return UNKNOWN;
return reversed_comparison_code_parts (GET_CODE (exp),
XEXP (x, 0), XEXP (x, 1), NULL);
}
/* Return comparison with reversed code of EXP and operands OP0 and OP1.
Return NULL_RTX in case we fail to do the reversal. */
static rtx
reversed_comparison (exp, mode, op0, op1)
rtx exp, op0, op1;
enum machine_mode mode;
{
enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
if (reversed_code == UNKNOWN)
return NULL_RTX;
else
return gen_binary (reversed_code, mode, op0, op1);
}
/* Utility function for following routine. Called when X is part of a value
being stored into reg_last_set_value. Sets reg_last_set_table_tick
for each register mentioned. Similar to mention_regs in cse.c */
static void
update_table_tick (x)
rtx x;
{
enum rtx_code code = GET_CODE (x);
const char *fmt = GET_RTX_FORMAT (code);
int i;
if (code == REG)
{
unsigned int regno = REGNO (x);
unsigned int endregno
= regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
unsigned int r;
for (r = regno; r < endregno; r++)
reg_last_set_table_tick[r] = label_tick;
return;
}
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
/* Note that we can't have an "E" in values stored; see
get_last_value_validate. */
if (fmt[i] == 'e')
{
/* Check for identical subexpressions. If x contains
identical subexpression we only have to traverse one of
them. */
if (i == 0
&& (GET_RTX_CLASS (code) == '2'
|| GET_RTX_CLASS (code) == 'c'))
{
/* Note that at this point x1 has already been
processed. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* If x0 and x1 are identical then there is no need to
process x0. */
if (x0 == x1)
break;
/* If x0 is identical to a subexpression of x1 then while
processing x1, x0 has already been processed. Thus we
are done with x. */
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
break;
/* If x1 is identical to a subexpression of x0 then we
still have to process the rest of x0. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
{
update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
break;
}
}
update_table_tick (XEXP (x, i));
}
}
/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
are saying that the register is clobbered and we no longer know its
value. If INSN is zero, don't update reg_last_set; this is only permitted
with VALUE also zero and is used to invalidate the register. */
static void
record_value_for_reg (reg, insn, value)
rtx reg;
rtx insn;
rtx value;
{
unsigned int regno = REGNO (reg);
unsigned int endregno
= regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
unsigned int i;
/* If VALUE contains REG and we have a previous value for REG, substitute
the previous value. */
if (value && insn && reg_overlap_mentioned_p (reg, value))
{
rtx tem;
/* Set things up so get_last_value is allowed to see anything set up to
our insn. */
subst_low_cuid = INSN_CUID (insn);
tem = get_last_value (reg);
/* If TEM is simply a binary operation with two CLOBBERs as operands,
it isn't going to be useful and will take a lot of time to process,
so just use the CLOBBER. */
if (tem)
{
if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
|| GET_RTX_CLASS (GET_CODE (tem)) == 'c')
&& GET_CODE (XEXP (tem, 0)) == CLOBBER
&& GET_CODE (XEXP (tem, 1)) == CLOBBER)
tem = XEXP (tem, 0);
value = replace_rtx (copy_rtx (value), reg, tem);
}
}
/* For each register modified, show we don't know its value, that
we don't know about its bitwise content, that its value has been
updated, and that we don't know the location of the death of the
register. */
for (i = regno; i < endregno; i++)
{
if (insn)
reg_last_set[i] = insn;
reg_last_set_value[i] = 0;
reg_last_set_mode[i] = 0;
reg_last_set_nonzero_bits[i] = 0;
reg_last_set_sign_bit_copies[i] = 0;
reg_last_death[i] = 0;
}
/* Mark registers that are being referenced in this value. */
if (value)
update_table_tick (value);
/* Now update the status of each register being set.
If someone is using this register in this block, set this register
to invalid since we will get confused between the two lives in this
basic block. This makes using this register always invalid. In cse, we
scan the table to invalidate all entries using this register, but this
is too much work for us. */
for (i = regno; i < endregno; i++)
{
reg_last_set_label[i] = label_tick;
if (value && reg_last_set_table_tick[i] == label_tick)
reg_last_set_invalid[i] = 1;
else
reg_last_set_invalid[i] = 0;
}
/* The value being assigned might refer to X (like in "x++;"). In that
case, we must replace it with (clobber (const_int 0)) to prevent
infinite loops. */
if (value && ! get_last_value_validate (&value, insn,
reg_last_set_label[regno], 0))
{
value = copy_rtx (value);
if (! get_last_value_validate (&value, insn,
reg_last_set_label[regno], 1))
value = 0;
}
/* For the main register being modified, update the value, the mode, the
nonzero bits, and the number of sign bit copies. */
reg_last_set_value[regno] = value;
if (value)
{
enum machine_mode mode = GET_MODE (reg);
subst_low_cuid = INSN_CUID (insn);
reg_last_set_mode[regno] = mode;
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
mode = nonzero_bits_mode;
reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
reg_last_set_sign_bit_copies[regno]
= num_sign_bit_copies (value, GET_MODE (reg));
}
}
/* Called via note_stores from record_dead_and_set_regs to handle one
SET or CLOBBER in an insn. DATA is the instruction in which the
set is occurring. */
static void
record_dead_and_set_regs_1 (dest, setter, data)
rtx dest, setter;
void *data;
{
rtx record_dead_insn = (rtx) data;
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (GET_CODE (dest) == REG)
{
/* If we are setting the whole register, we know its value. Otherwise
show that we don't know the value. We can handle SUBREG in
some cases. */
if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
else if (GET_CODE (setter) == SET
&& GET_CODE (SET_DEST (setter)) == SUBREG
&& SUBREG_REG (SET_DEST (setter)) == dest
&& GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
&& subreg_lowpart_p (SET_DEST (setter)))
record_value_for_reg (dest, record_dead_insn,
gen_lowpart_for_combine (GET_MODE (dest),
SET_SRC (setter)));
else
record_value_for_reg (dest, record_dead_insn, NULL_RTX);
}
else if (GET_CODE (dest) == MEM
/* Ignore pushes, they clobber nothing. */
&& ! push_operand (dest, GET_MODE (dest)))
mem_last_set = INSN_CUID (record_dead_insn);
}
/* Update the records of when each REG was most recently set or killed
for the things done by INSN. This is the last thing done in processing
INSN in the combiner loop.
We update reg_last_set, reg_last_set_value, reg_last_set_mode,
reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
and also the similar information mem_last_set (which insn most recently
modified memory) and last_call_cuid (which insn was the most recent
subroutine call). */
static void
record_dead_and_set_regs (insn)
rtx insn;
{
rtx link;
unsigned int i;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
{
if (REG_NOTE_KIND (link) == REG_DEAD
&& GET_CODE (XEXP (link, 0)) == REG)
{
unsigned int regno = REGNO (XEXP (link, 0));
unsigned int endregno
= regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
: 1);
for (i = regno; i < endregno; i++)
reg_last_death[i] = insn;
}
else if (REG_NOTE_KIND (link) == REG_INC)
record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
}
if (GET_CODE (insn) == CALL_INSN)
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
{
reg_last_set_value[i] = 0;
reg_last_set_mode[i] = 0;
reg_last_set_nonzero_bits[i] = 0;
reg_last_set_sign_bit_copies[i] = 0;
reg_last_death[i] = 0;
}
last_call_cuid = mem_last_set = INSN_CUID (insn);
/* Don't bother recording what this insn does. It might set the
return value register, but we can't combine into a call
pattern anyway, so there's no point trying (and it may cause
a crash, if e.g. we wind up asking for last_set_value of a
SUBREG of the return value register). */
return;
}
note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
}
/* If a SUBREG has the promoted bit set, it is in fact a property of the
register present in the SUBREG, so for each such SUBREG go back and
adjust nonzero and sign bit information of the registers that are
known to have some zero/sign bits set.
This is needed because when combine blows the SUBREGs away, the
information on zero/sign bits is lost and further combines can be
missed because of that. */
static void
record_promoted_value (insn, subreg)
rtx insn;
rtx subreg;
{
rtx links, set;
unsigned int regno = REGNO (SUBREG_REG (subreg));
enum machine_mode mode = GET_MODE (subreg);
if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
return;
for (links = LOG_LINKS (insn); links;)
{
insn = XEXP (links, 0);
set = single_set (insn);
if (! set || GET_CODE (SET_DEST (set)) != REG
|| REGNO (SET_DEST (set)) != regno
|| GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
{
links = XEXP (links, 1);
continue;
}
if (reg_last_set[regno] == insn)
{
if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
}
if (GET_CODE (SET_SRC (set)) == REG)
{
regno = REGNO (SET_SRC (set));
links = LOG_LINKS (insn);
}
else
break;
}
}
/* Scan X for promoted SUBREGs. For each one found,
note what it implies to the registers used in it. */
static void
check_promoted_subreg (insn, x)
rtx insn;
rtx x;
{
if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
&& GET_CODE (SUBREG_REG (x)) == REG)
record_promoted_value (insn, x);
else
{
const char *format = GET_RTX_FORMAT (GET_CODE (x));
int i, j;
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
switch (format[i])
{
case 'e':
check_promoted_subreg (insn, XEXP (x, i));
break;
case 'V':
case 'E':
if (XVEC (x, i) != 0)
for (j = 0; j < XVECLEN (x, i); j++)
check_promoted_subreg (insn, XVECEXP (x, i, j));
break;
}
}
}
/* Utility routine for the following function. Verify that all the registers
mentioned in *LOC are valid when *LOC was part of a value set when
label_tick == TICK. Return 0 if some are not.
If REPLACE is nonzero, replace the invalid reference with
(clobber (const_int 0)) and return 1. This replacement is useful because
we often can get useful information about the form of a value (e.g., if
it was produced by a shift that always produces -1 or 0) even though
we don't know exactly what registers it was produced from. */
static int
get_last_value_validate (loc, insn, tick, replace)
rtx *loc;
rtx insn;
int tick;
int replace;
{
rtx x = *loc;
const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
int len = GET_RTX_LENGTH (GET_CODE (x));
int i;
if (GET_CODE (x) == REG)
{
unsigned int regno = REGNO (x);
unsigned int endregno
= regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
unsigned int j;
for (j = regno; j < endregno; j++)
if (reg_last_set_invalid[j]
/* If this is a pseudo-register that was only set once and not
live at the beginning of the function, it is always valid. */
|| (! (regno >= FIRST_PSEUDO_REGISTER
&& REG_N_SETS (regno) == 1
&& (! REGNO_REG_SET_P
(ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
&& reg_last_set_label[j] > tick))
{
if (replace)
*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
return replace;
}
return 1;
}
/* If this is a memory reference, make sure that there were
no stores after it that might have clobbered the value. We don't
have alias info, so we assume any store invalidates it. */
else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
&& INSN_CUID (insn) <= mem_last_set)
{
if (replace)
*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
return replace;
}
for (i = 0; i < len; i++)
{
if (fmt[i] == 'e')
{
/* Check for identical subexpressions. If x contains
identical subexpression we only have to traverse one of
them. */
if (i == 1
&& (GET_RTX_CLASS (GET_CODE (x)) == '2'
|| GET_RTX_CLASS (GET_CODE (x)) == 'c'))
{
/* Note that at this point x0 has already been checked
and found valid. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* If x0 and x1 are identical then x is also valid. */
if (x0 == x1)
return 1;
/* If x1 is identical to a subexpression of x0 then
while checking x0, x1 has already been checked. Thus
it is valid and so as x. */
if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
|| GET_RTX_CLASS (GET_CODE (x0)) == 'c')
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
return 1;
/* If x0 is identical to a subexpression of x1 then x is
valid iff the rest of x1 is valid. */
if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
|| GET_RTX_CLASS (GET_CODE (x1)) == 'c')
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
return
get_last_value_validate (&XEXP (x1,
x0 == XEXP (x1, 0) ? 1 : 0),
insn, tick, replace);
}
if (get_last_value_validate (&XEXP (x, i), insn, tick,
replace) == 0)
return 0;
}
/* Don't bother with these. They shouldn't occur anyway. */
else if (fmt[i] == 'E')
return 0;
}
/* If we haven't found a reason for it to be invalid, it is valid. */
return 1;
}
/* Get the last value assigned to X, if known. Some registers
in the value may be replaced with (clobber (const_int 0)) if their value
is known longer known reliably. */
static rtx
get_last_value (x)
rtx x;
{
unsigned int regno;
rtx value;
/* If this is a non-paradoxical SUBREG, get the value of its operand and
then convert it to the desired mode. If this is a paradoxical SUBREG,
we cannot predict what values the "extra" bits might have. */
if (GET_CODE (x) == SUBREG
&& subreg_lowpart_p (x)
&& (GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& (value = get_last_value (SUBREG_REG (x))) != 0)
return gen_lowpart_for_combine (GET_MODE (x), value);
if (GET_CODE (x) != REG)
return 0;
regno = REGNO (x);
value = reg_last_set_value[regno];
/* If we don't have a value, or if it isn't for this basic block and
it's either a hard register, set more than once, or it's a live
at the beginning of the function, return 0.
Because if it's not live at the beginning of the function then the reg
is always set before being used (is never used without being set).
And, if it's set only once, and it's always set before use, then all
uses must have the same last value, even if it's not from this basic
block. */
if (value == 0
|| (reg_last_set_label[regno] != label_tick
&& (regno < FIRST_PSEUDO_REGISTER
|| REG_N_SETS (regno) != 1
|| (REGNO_REG_SET_P
(ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
return 0;
/* If the value was set in a later insn than the ones we are processing,
we can't use it even if the register was only set once. */
if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
return 0;
/* If the value has all its registers valid, return it. */
if (get_last_value_validate (&value, reg_last_set[regno],
reg_last_set_label[regno], 0))
return value;
/* Otherwise, make a copy and replace any invalid register with
(clobber (const_int 0)). If that fails for some reason, return 0. */
value = copy_rtx (value);
if (get_last_value_validate (&value, reg_last_set[regno],
reg_last_set_label[regno], 1))
return value;
return 0;
}
/* Return nonzero if expression X refers to a REG or to memory
that is set in an instruction more recent than FROM_CUID. */
static int
use_crosses_set_p (x, from_cuid)
rtx x;
int from_cuid;
{
const char *fmt;
int i;
enum rtx_code code = GET_CODE (x);
if (code == REG)
{
unsigned int regno = REGNO (x);
unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
#ifdef PUSH_ROUNDING
/* Don't allow uses of the stack pointer to be moved,
because we don't know whether the move crosses a push insn. */
if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
return 1;
#endif
for (; regno < endreg; regno++)
if (reg_last_set[regno]
&& INSN_CUID (reg_last_set[regno]) > from_cuid)
return 1;
return 0;
}
if (code == MEM && mem_last_set > from_cuid)
return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
return 1;
}
else if (fmt[i] == 'e'
&& use_crosses_set_p (XEXP (x, i), from_cuid))
return 1;
}
return 0;
}
/* Define three variables used for communication between the following
routines. */
static unsigned int reg_dead_regno, reg_dead_endregno;
static int reg_dead_flag;
/* Function called via note_stores from reg_dead_at_p.
If DEST is within [reg_dead_regno, reg_dead_endregno), set
reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
static void
reg_dead_at_p_1 (dest, x, data)
rtx dest;
rtx x;
void *data ATTRIBUTE_UNUSED;
{
unsigned int regno, endregno;
if (GET_CODE (dest) != REG)
return;
regno = REGNO (dest);
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
if (reg_dead_endregno > regno && reg_dead_regno < endregno)
reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
}
/* Return nonzero if REG is known to be dead at INSN.
We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
referencing REG, it is dead. If we hit a SET referencing REG, it is
live. Otherwise, see if it is live or dead at the start of the basic
block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
must be assumed to be always live. */
static int
reg_dead_at_p (reg, insn)
rtx reg;
rtx insn;
{
basic_block block;
unsigned int i;
/* Set variables for reg_dead_at_p_1. */
reg_dead_regno = REGNO (reg);
reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (reg_dead_regno,
GET_MODE (reg))
: 1);
reg_dead_flag = 0;
/* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
{
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
if (TEST_HARD_REG_BIT (newpat_used_regs, i))
return 0;
}
/* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
beginning of function. */
for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
insn = prev_nonnote_insn (insn))
{
note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
if (reg_dead_flag)
return reg_dead_flag == 1 ? 1 : 0;
if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
return 1;
}
/* Get the basic block that we were in. */
if (insn == 0)
block = ENTRY_BLOCK_PTR->next_bb;
else
{
FOR_EACH_BB (block)
if (insn == block->head)
break;
if (block == EXIT_BLOCK_PTR)
return 0;
}
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
if (REGNO_REG_SET_P (block->global_live_at_start, i))
return 0;
return 1;
}
/* Note hard registers in X that are used. This code is similar to
that in flow.c, but much simpler since we don't care about pseudos. */
static void
mark_used_regs_combine (x)
rtx x;
{
RTX_CODE code = GET_CODE (x);
unsigned int regno;
int i;
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case CONST_VECTOR:
case PC:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case ASM_INPUT:
#ifdef HAVE_cc0
/* CC0 must die in the insn after it is set, so we don't need to take
special note of it here. */
case CC0:
#endif
return;
case CLOBBER:
/* If we are clobbering a MEM, mark any hard registers inside the
address as used. */
if (GET_CODE (XEXP (x, 0)) == MEM)
mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
return;
case REG:
regno = REGNO (x);
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
if (regno < FIRST_PSEUDO_REGISTER)
{
unsigned int endregno, r;
/* None of this applies to the stack, frame or arg pointers. */
if (regno == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|| regno == HARD_FRAME_POINTER_REGNUM
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
|| regno == FRAME_POINTER_REGNUM)
return;
endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
for (r = regno; r < endregno; r++)
SET_HARD_REG_BIT (newpat_used_regs, r);
}
return;
case SET:
{
/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
the address. */
rtx testreg = SET_DEST (x);
while (GET_CODE (testreg) == SUBREG
|| GET_CODE (testreg) == ZERO_EXTRACT
|| GET_CODE (testreg) == SIGN_EXTRACT
|| GET_CODE (testreg) == STRICT_LOW_PART)
testreg = XEXP (testreg, 0);
if (GET_CODE (testreg) == MEM)
mark_used_regs_combine (XEXP (testreg, 0));
mark_used_regs_combine (SET_SRC (x));
}
return;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
mark_used_regs_combine (XEXP (x, i));
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
mark_used_regs_combine (XVECEXP (x, i, j));
}
}
}
}
/* Remove register number REGNO from the dead registers list of INSN.
Return the note used to record the death, if there was one. */
rtx
remove_death (regno, insn)
unsigned int regno;
rtx insn;
{
rtx note = find_regno_note (insn, REG_DEAD, regno);
if (note)
{
REG_N_DEATHS (regno)--;
remove_note (insn, note);
}
return note;
}
/* For each register (hardware or pseudo) used within expression X, if its
death is in an instruction with cuid between FROM_CUID (inclusive) and
TO_INSN (exclusive), put a REG_DEAD note for that register in the
list headed by PNOTES.
That said, don't move registers killed by maybe_kill_insn.
This is done when X is being merged by combination into TO_INSN. These
notes will then be distributed as needed. */
static void
move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
rtx x;
rtx maybe_kill_insn;
int from_cuid;
rtx to_insn;
rtx *pnotes;
{
const char *fmt;
int len, i;
enum rtx_code code = GET_CODE (x);
if (code == REG)
{
unsigned int regno = REGNO (x);
rtx where_dead = reg_last_death[regno];
rtx before_dead, after_dead;
/* Don't move the register if it gets killed in between from and to. */
if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
&& ! reg_referenced_p (x, maybe_kill_insn))
return;
/* WHERE_DEAD could be a USE insn made by combine, so first we
make sure that we have insns with valid INSN_CUID values. */
before_dead = where_dead;
while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
before_dead = PREV_INSN (before_dead);
after_dead = where_dead;
while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
after_dead = NEXT_INSN (after_dead);
if (before_dead && after_dead
&& INSN_CUID (before_dead) >= from_cuid
&& (INSN_CUID (after_dead) < INSN_CUID (to_insn)
|| (where_dead != after_dead
&& INSN_CUID (after_dead) == INSN_CUID (to_insn))))
{
rtx note = remove_death (regno, where_dead);
/* It is possible for the call above to return 0. This can occur
when reg_last_death points to I2 or I1 that we combined with.
In that case make a new note.
We must also check for the case where X is a hard register
and NOTE is a death note for a range of hard registers
including X. In that case, we must put REG_DEAD notes for
the remaining registers in place of NOTE. */
if (note != 0 && regno < FIRST_PSEUDO_REGISTER
&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
> GET_MODE_SIZE (GET_MODE (x))))
{
unsigned int deadregno = REGNO (XEXP (note, 0));
unsigned int deadend
= (deadregno + HARD_REGNO_NREGS (deadregno,
GET_MODE (XEXP (note, 0))));
unsigned int ourend
= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
unsigned int i;
for (i = deadregno; i < deadend; i++)
if (i < regno || i >= ourend)
REG_NOTES (where_dead)
= gen_rtx_EXPR_LIST (REG_DEAD,
regno_reg_rtx[i],
REG_NOTES (where_dead));
}
/* If we didn't find any note, or if we found a REG_DEAD note that
covers only part of the given reg, and we have a multi-reg hard
register, then to be safe we must check for REG_DEAD notes
for each register other than the first. They could have
their own REG_DEAD notes lying around. */
else if ((note == 0
|| (note != 0
&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
< GET_MODE_SIZE (GET_MODE (x)))))
&& regno < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
{
unsigned int ourend
= regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
unsigned int i, offset;
rtx oldnotes = 0;
if (note)
offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
else
offset = 1;
for (i = regno + offset; i < ourend; i++)
move_deaths (regno_reg_rtx[i],
maybe_kill_insn, from_cuid, to_insn, &oldnotes);
}
if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
{
XEXP (note, 1) = *pnotes;
*pnotes = note;
}
else
*pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
REG_N_DEATHS (regno)++;
}
return;
}
else if (GET_CODE (x) == SET)
{
rtx dest = SET_DEST (x);
move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
/* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
that accesses one word of a multi-word item, some
piece of everything register in the expression is used by
this insn, so remove any old death. */
/* ??? So why do we test for equality of the sizes? */
if (GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART
|| (GET_CODE (dest) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (dest))
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
{
move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
return;
}
/* If this is some other SUBREG, we know it replaces the entire
value, so use that as the destination. */
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
/* If this is a MEM, adjust deaths of anything used in the address.
For a REG (the only other possibility), the entire value is
being replaced so the old value is not used in this insn. */
if (GET_CODE (dest) == MEM)
move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
to_insn, pnotes);
return;
}
else if (GET_CODE (x) == CLOBBER)
return;
len = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < len; i++)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
to_insn, pnotes);
}
else if (fmt[i] == 'e')
move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
}
}
/* Return 1 if X is the target of a bit-field assignment in BODY, the
pattern of an insn. X must be a REG. */
static int
reg_bitfield_target_p (x, body)
rtx x;
rtx body;
{
int i;
if (GET_CODE (body) == SET)
{
rtx dest = SET_DEST (body);
rtx target;
unsigned int regno, tregno, endregno, endtregno;
if (GET_CODE (dest) == ZERO_EXTRACT)
target = XEXP (dest, 0);
else if (GET_CODE (dest) == STRICT_LOW_PART)
target = SUBREG_REG (XEXP (dest, 0));
else
return 0;
if (GET_CODE (target) == SUBREG)
target = SUBREG_REG (target);
if (GET_CODE (target) != REG)
return 0;
tregno = REGNO (target), regno = REGNO (x);
if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
return target == x;
endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
return endregno > tregno && regno < endtregno;
}
else if (GET_CODE (body) == PARALLEL)
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
return 1;
return 0;
}
/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
as appropriate. I3 and I2 are the insns resulting from the combination
insns including FROM (I2 may be zero).
ELIM_I2 and ELIM_I1 are either zero or registers that we know will
not need REG_DEAD notes because they are being substituted for. This
saves searching in the most common cases.
Each note in the list is either ignored or placed on some insns, depending
on the type of note. */
static void
distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
rtx notes;
rtx from_insn;
rtx i3, i2;
rtx elim_i2, elim_i1;
{
rtx note, next_note;
rtx tem;
for (note = notes; note; note = next_note)
{
rtx place = 0, place2 = 0;
/* If this NOTE references a pseudo register, ensure it references
the latest copy of that register. */
if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
&& REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
next_note = XEXP (note, 1);
switch (REG_NOTE_KIND (note))
{
case REG_BR_PROB:
case REG_BR_PRED:
/* Doesn't matter much where we put this, as long as it's somewhere.
It is preferable to keep these notes on branches, which is most
likely to be i3. */
place = i3;
break;
case REG_VTABLE_REF:
/* ??? Should remain with *a particular* memory load. Given the
nature of vtable data, the last insn seems relatively safe. */
place = i3;
break;
case REG_NON_LOCAL_GOTO:
if (GET_CODE (i3) == JUMP_INSN)
place = i3;
else if (i2 && GET_CODE (i2) == JUMP_INSN)
place = i2;
else
abort ();
break;
case REG_EH_REGION:
/* These notes must remain with the call or trapping instruction. */
if (GET_CODE (i3) == CALL_INSN)
place = i3;
else if (i2 && GET_CODE (i2) == CALL_INSN)
place = i2;
else if (flag_non_call_exceptions)
{
if (may_trap_p (i3))
place = i3;
else if (i2 && may_trap_p (i2))
place = i2;
/* ??? Otherwise assume we've combined things such that we
can now prove that the instructions can't trap. Drop the
note in this case. */
}
else
abort ();
break;
case REG_NORETURN:
case REG_SETJMP:
/* These notes must remain with the call. It should not be
possible for both I2 and I3 to be a call. */
if (GET_CODE (i3) == CALL_INSN)
place = i3;
else if (i2 && GET_CODE (i2) == CALL_INSN)
place = i2;
else
abort ();
break;
case REG_UNUSED:
/* Any clobbers for i3 may still exist, and so we must process
REG_UNUSED notes from that insn.
Any clobbers from i2 or i1 can only exist if they were added by
recog_for_combine. In that case, recog_for_combine created the
necessary REG_UNUSED notes. Trying to keep any original
REG_UNUSED notes from these insns can cause incorrect output
if it is for the same register as the original i3 dest.
In that case, we will notice that the register is set in i3,
and then add a REG_UNUSED note for the destination of i3, which
is wrong. However, it is possible to have REG_UNUSED notes from
i2 or i1 for register which were both used and clobbered, so
we keep notes from i2 or i1 if they will turn into REG_DEAD
notes. */
/* If this register is set or clobbered in I3, put the note there
unless there is one already. */
if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
{
if (from_insn != i3)
break;
if (! (GET_CODE (XEXP (note, 0)) == REG
? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
: find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
place = i3;
}
/* Otherwise, if this register is used by I3, then this register
now dies here, so we must put a REG_DEAD note here unless there
is one already. */
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
&& ! (GET_CODE (XEXP (note, 0)) == REG
? find_regno_note (i3, REG_DEAD,
REGNO (XEXP (note, 0)))
: find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
{
PUT_REG_NOTE_KIND (note, REG_DEAD);
place = i3;
}
break;
case REG_EQUAL:
case REG_EQUIV:
case REG_NOALIAS:
/* These notes say something about results of an insn. We can
only support them if they used to be on I3 in which case they
remain on I3. Otherwise they are ignored.
If the note refers to an expression that is not a constant, we
must also ignore the note since we cannot tell whether the
equivalence is still true. It might be possible to do
slightly better than this (we only have a problem if I2DEST
or I1DEST is present in the expression), but it doesn't
seem worth the trouble. */
if (from_insn == i3
&& (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
place = i3;
break;
case REG_INC:
case REG_NO_CONFLICT:
/* These notes say something about how a register is used. They must
be present on any use of the register in I2 or I3. */
if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
place = i3;
if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
{
if (place)
place2 = i2;
else
place = i2;
}
break;
case REG_LABEL:
/* This can show up in several ways -- either directly in the
pattern, or hidden off in the constant pool with (or without?)
a REG_EQUAL note. */
/* ??? Ignore the without-reg_equal-note problem for now. */
if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
|| ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
&& GET_CODE (XEXP (tem, 0)) == LABEL_REF
&& XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
place = i3;
if (i2
&& (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
|| ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
&& GET_CODE (XEXP (tem, 0)) == LABEL_REF
&& XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
{
if (place)
place2 = i2;
else
place = i2;
}
/* Don't attach REG_LABEL note to a JUMP_INSN which has
JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
{
if (JUMP_LABEL (place) != XEXP (note, 0))
abort ();
if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
LABEL_NUSES (JUMP_LABEL (place))--;
place = 0;
}
if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
{
if (JUMP_LABEL (place2) != XEXP (note, 0))
abort ();
if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
LABEL_NUSES (JUMP_LABEL (place2))--;
place2 = 0;
}
break;
case REG_NONNEG:
case REG_WAS_0:
/* These notes say something about the value of a register prior
to the execution of an insn. It is too much trouble to see
if the note is still correct in all situations. It is better
to simply delete it. */
break;
case REG_RETVAL:
/* If the insn previously containing this note still exists,
put it back where it was. Otherwise move it to the previous
insn. Adjust the corresponding REG_LIBCALL note. */
if (GET_CODE (from_insn) != NOTE)
place = from_insn;
else
{
tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
place = prev_real_insn (from_insn);
if (tem && place)
XEXP (tem, 0) = place;
/* If we're deleting the last remaining instruction of a
libcall sequence, don't add the notes. */
else if (XEXP (note, 0) == from_insn)
tem = place = 0;
}
break;
case REG_LIBCALL:
/* This is handled similarly to REG_RETVAL. */
if (GET_CODE (from_insn) != NOTE)
place = from_insn;
else
{
tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
place = next_real_insn (from_insn);
if (tem && place)
XEXP (tem, 0) = place;
/* If we're deleting the last remaining instruction of a
libcall sequence, don't add the notes. */
else if (XEXP (note, 0) == from_insn)
tem = place = 0;
}
break;
case REG_DEAD:
/* If the register is used as an input in I3, it dies there.
Similarly for I2, if it is nonzero and adjacent to I3.
If the register is not used as an input in either I3 or I2
and it is not one of the registers we were supposed to eliminate,
there are two possibilities. We might have a non-adjacent I2
or we might have somehow eliminated an additional register
from a computation. For example, we might have had A & B where
we discover that B will always be zero. In this case we will
eliminate the reference to A.
In both cases, we must search to see if we can find a previous
use of A and put the death note there. */
if (from_insn
&& GET_CODE (from_insn) == CALL_INSN
&& find_reg_fusage (from_insn, USE, XEXP (note, 0)))
place = from_insn;
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
place = i3;
else if (i2 != 0 && next_nonnote_insn (i2) == i3
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
place = i2;
if (rtx_equal_p (XEXP (note, 0), elim_i2)
|| rtx_equal_p (XEXP (note, 0), elim_i1))
break;
if (place == 0)
{
basic_block bb = this_basic_block;
for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
{
if (! INSN_P (tem))
{
if (tem == bb->head)
break;
continue;
}
/* If the register is being set at TEM, see if that is all
TEM is doing. If so, delete TEM. Otherwise, make this
into a REG_UNUSED note instead. */
if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
{
rtx set = single_set (tem);
rtx inner_dest = 0;
#ifdef HAVE_cc0
rtx cc0_setter = NULL_RTX;
#endif
if (set != 0)
for (inner_dest = SET_DEST (set);
(GET_CODE (inner_dest) == STRICT_LOW_PART
|| GET_CODE (inner_dest) == SUBREG
|| GET_CODE (inner_dest) == ZERO_EXTRACT);
inner_dest = XEXP (inner_dest, 0))
;
/* Verify that it was the set, and not a clobber that
modified the register.
CC0 targets must be careful to maintain setter/user
pairs. If we cannot delete the setter due to side
effects, mark the user with an UNUSED note instead
of deleting it. */
if (set != 0 && ! side_effects_p (SET_SRC (set))
&& rtx_equal_p (XEXP (note, 0), inner_dest)
#ifdef HAVE_cc0
&& (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
|| ((cc0_setter = prev_cc0_setter (tem)) != NULL
&& sets_cc0_p (PATTERN (cc0_setter)) > 0))
#endif
)
{
/* Move the notes and links of TEM elsewhere.
This might delete other dead insns recursively.
First set the pattern to something that won't use
any register. */
PATTERN (tem) = pc_rtx;
distribute_notes (REG_NOTES (tem), tem, tem,
NULL_RTX, NULL_RTX, NULL_RTX);
distribute_links (LOG_LINKS (tem));
PUT_CODE (tem, NOTE);
NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (tem) = 0;
#ifdef HAVE_cc0
/* Delete the setter too. */
if (cc0_setter)
{
PATTERN (cc0_setter) = pc_rtx;
distribute_notes (REG_NOTES (cc0_setter),
cc0_setter, cc0_setter,
NULL_RTX, NULL_RTX, NULL_RTX);
distribute_links (LOG_LINKS (cc0_setter));
PUT_CODE (cc0_setter, NOTE);
NOTE_LINE_NUMBER (cc0_setter)
= NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (cc0_setter) = 0;
}
#endif
}
/* If the register is both set and used here, put the
REG_DEAD note here, but place a REG_UNUSED note
here too unless there already is one. */
else if (reg_referenced_p (XEXP (note, 0),
PATTERN (tem)))
{
place = tem;
if (! find_regno_note (tem, REG_UNUSED,
REGNO (XEXP (note, 0))))
REG_NOTES (tem)
= gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
REG_NOTES (tem));
}
else
{
PUT_REG_NOTE_KIND (note, REG_UNUSED);
/* If there isn't already a REG_UNUSED note, put one
here. */
if (! find_regno_note (tem, REG_UNUSED,
REGNO (XEXP (note, 0))))
place = tem;
break;
}
}
else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
|| (GET_CODE (tem) == CALL_INSN
&& find_reg_fusage (tem, USE, XEXP (note, 0))))
{
place = tem;
/* If we are doing a 3->2 combination, and we have a
register which formerly died in i3 and was not used
by i2, which now no longer dies in i3 and is used in
i2 but does not die in i2, and place is between i2
and i3, then we may need to move a link from place to
i2. */
if (i2 && INSN_UID (place) <= max_uid_cuid
&& INSN_CUID (place) > INSN_CUID (i2)
&& from_insn
&& INSN_CUID (from_insn) > INSN_CUID (i2)
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
{
rtx links = LOG_LINKS (place);
LOG_LINKS (place) = 0;
distribute_links (links);
}
break;
}
if (tem == bb->head)
break;
}
/* We haven't found an insn for the death note and it
is still a REG_DEAD note, but we have hit the beginning
of the block. If the existing life info says the reg
was dead, there's nothing left to do. Otherwise, we'll
need to do a global life update after combine. */
if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
&& REGNO_REG_SET_P (bb->global_live_at_start,
REGNO (XEXP (note, 0))))
{
SET_BIT (refresh_blocks, this_basic_block->index);
need_refresh = 1;
}
}
/* If the register is set or already dead at PLACE, we needn't do
anything with this note if it is still a REG_DEAD note.
We can here if it is set at all, not if is it totally replace,
which is what `dead_or_set_p' checks, so also check for it being
set partially. */
if (place && REG_NOTE_KIND (note) == REG_DEAD)
{
unsigned int regno = REGNO (XEXP (note, 0));
/* Similarly, if the instruction on which we want to place
the note is a noop, we'll need do a global live update
after we remove them in delete_noop_moves. */
if (noop_move_p (place))
{
SET_BIT (refresh_blocks, this_basic_block->index);
need_refresh = 1;
}
if (dead_or_set_p (place, XEXP (note, 0))
|| reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
{
/* Unless the register previously died in PLACE, clear
reg_last_death. [I no longer understand why this is
being done.] */
if (reg_last_death[regno] != place)
reg_last_death[regno] = 0;
place = 0;
}
else
reg_last_death[regno] = place;
/* If this is a death note for a hard reg that is occupying
multiple registers, ensure that we are still using all
parts of the object. If we find a piece of the object
that is unused, we must arrange for an appropriate REG_DEAD
note to be added for it. However, we can't just emit a USE
and tag the note to it, since the register might actually
be dead; so we recourse, and the recursive call then finds
the previous insn that used this register. */
if (place && regno < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
{
unsigned int endregno
= regno + HARD_REGNO_NREGS (regno,
GET_MODE (XEXP (note, 0)));
int all_used = 1;
unsigned int i;
for (i = regno; i < endregno; i++)
if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
&& ! find_regno_fusage (place, USE, i))
|| dead_or_set_regno_p (place, i))
all_used = 0;
if (! all_used)
{
/* Put only REG_DEAD notes for pieces that are
not already dead or set. */
for (i = regno; i < endregno;
i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
{
rtx piece = regno_reg_rtx[i];
basic_block bb = this_basic_block;
if (! dead_or_set_p (place, piece)
&& ! reg_bitfield_target_p (piece,
PATTERN (place)))
{
rtx new_note
= gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
distribute_notes (new_note, place, place,
NULL_RTX, NULL_RTX, NULL_RTX);
}
else if (! refers_to_regno_p (i, i + 1,
PATTERN (place), 0)
&& ! find_regno_fusage (place, USE, i))
for (tem = PREV_INSN (place); ;
tem = PREV_INSN (tem))
{
if (! INSN_P (tem))
{
if (tem == bb->head)
{
SET_BIT (refresh_blocks,
this_basic_block->index);
need_refresh = 1;
break;
}
continue;
}
if (dead_or_set_p (tem, piece)
|| reg_bitfield_target_p (piece,
PATTERN (tem)))
{
REG_NOTES (tem)
= gen_rtx_EXPR_LIST (REG_UNUSED, piece,
REG_NOTES (tem));
break;
}
}
}
place = 0;
}
}
}
break;
default:
/* Any other notes should not be present at this point in the
compilation. */
abort ();
}
if (place)
{
XEXP (note, 1) = REG_NOTES (place);
REG_NOTES (place) = note;
}
else if ((REG_NOTE_KIND (note) == REG_DEAD
|| REG_NOTE_KIND (note) == REG_UNUSED)
&& GET_CODE (XEXP (note, 0)) == REG)
REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
if (place2)
{
if ((REG_NOTE_KIND (note) == REG_DEAD
|| REG_NOTE_KIND (note) == REG_UNUSED)
&& GET_CODE (XEXP (note, 0)) == REG)
REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
REG_NOTE_KIND (note),
XEXP (note, 0),
REG_NOTES (place2));
}
}
}
/* Similarly to above, distribute the LOG_LINKS that used to be present on
I3, I2, and I1 to new locations. This is also called in one case to
add a link pointing at I3 when I3's destination is changed. */
static void
distribute_links (links)
rtx links;
{
rtx link, next_link;
for (link = links; link; link = next_link)
{
rtx place = 0;
rtx insn;
rtx set, reg;
next_link = XEXP (link, 1);
/* If the insn that this link points to is a NOTE or isn't a single
set, ignore it. In the latter case, it isn't clear what we
can do other than ignore the link, since we can't tell which
register it was for. Such links wouldn't be used by combine
anyway.
It is not possible for the destination of the target of the link to
have been changed by combine. The only potential of this is if we
replace I3, I2, and I1 by I3 and I2. But in that case the
destination of I2 also remains unchanged. */
if (GET_CODE (XEXP (link, 0)) == NOTE
|| (set = single_set (XEXP (link, 0))) == 0)
continue;
reg = SET_DEST (set);
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
|| GET_CODE (reg) == SIGN_EXTRACT
|| GET_CODE (reg) == STRICT_LOW_PART)
reg = XEXP (reg, 0);
/* A LOG_LINK is defined as being placed on the first insn that uses
a register and points to the insn that sets the register. Start
searching at the next insn after the target of the link and stop
when we reach a set of the register or the end of the basic block.
Note that this correctly handles the link that used to point from
I3 to I2. Also note that not much searching is typically done here
since most links don't point very far away. */
for (insn = NEXT_INSN (XEXP (link, 0));
(insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
|| this_basic_block->next_bb->head != insn));
insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
{
if (reg_referenced_p (reg, PATTERN (insn)))
place = insn;
break;
}
else if (GET_CODE (insn) == CALL_INSN
&& find_reg_fusage (insn, USE, reg))
{
place = insn;
break;
}
/* If we found a place to put the link, place it there unless there
is already a link to the same insn as LINK at that point. */
if (place)
{
rtx link2;
for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
if (XEXP (link2, 0) == XEXP (link, 0))
break;
if (link2 == 0)
{
XEXP (link, 1) = LOG_LINKS (place);
LOG_LINKS (place) = link;
/* Set added_links_insn to the earliest insn we added a
link to. */
if (added_links_insn == 0
|| INSN_CUID (added_links_insn) > INSN_CUID (place))
added_links_insn = place;
}
}
}
}
/* Compute INSN_CUID for INSN, which is an insn made by combine. */
static int
insn_cuid (insn)
rtx insn;
{
while (insn != 0 && INSN_UID (insn) > max_uid_cuid
&& GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
insn = NEXT_INSN (insn);
if (INSN_UID (insn) > max_uid_cuid)
abort ();
return INSN_CUID (insn);
}
void
dump_combine_stats (file)
FILE *file;
{
fnotice
(file,
";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
combine_attempts, combine_merges, combine_extras, combine_successes);
}
void
dump_combine_total_stats (file)
FILE *file;
{
fnotice
(file,
"\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
total_attempts, total_merges, total_extras, total_successes);
}
|