summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/cfgloop.c
blob: 2bd0d4c44bf72a45902ed9167781164e534ad335 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
/* Natural loop discovery code for GNU compiler.
   Copyright (C) 2000, 2001 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"

static void flow_loops_cfg_dump		PARAMS ((const struct loops *,
						 FILE *));
static int flow_loop_nested_p		PARAMS ((struct loop *,
						 struct loop *));
static int flow_loop_entry_edges_find	PARAMS ((basic_block, const sbitmap,
						 edge **));
static int flow_loop_exit_edges_find	PARAMS ((const sbitmap, edge **));
static int flow_loop_nodes_find		PARAMS ((basic_block, basic_block,
						 sbitmap));
static void flow_loop_pre_header_scan	PARAMS ((struct loop *));
static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
						      const sbitmap *));
static void flow_loop_tree_node_add	PARAMS ((struct loop *,
						 struct loop *));
static void flow_loops_tree_build	PARAMS ((struct loops *));
static int flow_loop_level_compute	PARAMS ((struct loop *, int));
static int flow_loops_level_compute	PARAMS ((struct loops *));

/* Dump loop related CFG information.  */

static void
flow_loops_cfg_dump (loops, file)
     const struct loops *loops;
     FILE *file;
{
  int i;

  if (! loops->num || ! file || ! loops->cfg.dom)
    return;

  for (i = 0; i < n_basic_blocks; i++)
    {
      edge succ;

      fprintf (file, ";; %d succs { ", i);
      for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
	fprintf (file, "%d ", succ->dest->index);
      flow_nodes_print ("} dom", loops->cfg.dom[i], file);
    }

  /* Dump the DFS node order.  */
  if (loops->cfg.dfs_order)
    {
      fputs (";; DFS order: ", file);
      for (i = 0; i < n_basic_blocks; i++)
	fprintf (file, "%d ", loops->cfg.dfs_order[i]);

      fputs ("\n", file);
    }

  /* Dump the reverse completion node order.  */
  if (loops->cfg.rc_order)
    {
      fputs (";; RC order: ", file);
      for (i = 0; i < n_basic_blocks; i++)
	fprintf (file, "%d ", loops->cfg.rc_order[i]);

      fputs ("\n", file);
    }
}

/* Return non-zero if the nodes of LOOP are a subset of OUTER.  */

static int
flow_loop_nested_p (outer, loop)
     struct loop *outer;
     struct loop *loop;
{
  return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
}

/* Dump the loop information specified by LOOP to the stream FILE
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */

void
flow_loop_dump (loop, file, loop_dump_aux, verbose)
     const struct loop *loop;
     FILE *file;
     void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
     int verbose;
{
  if (! loop || ! loop->header)
    return;

  if (loop->first->head && loop->last->end)
    fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
	    loop->num, INSN_UID (loop->first->head),
	    INSN_UID (loop->last->end),
	    loop->shared ? " shared" : "", loop->invalid ? " invalid" : "");
  else
    fprintf (file, ";;\n;; Loop %d:%s%s\n", loop->num,
	     loop->shared ? " shared" : "", loop->invalid ? " invalid" : "");

  fprintf (file, ";;  header %d, latch %d, pre-header %d, first %d, last %d\n",
	   loop->header->index, loop->latch->index,
	   loop->pre_header ? loop->pre_header->index : -1,
	   loop->first->index, loop->last->index);
  fprintf (file, ";;  depth %d, level %d, outer %ld\n",
	   loop->depth, loop->level,
	   (long) (loop->outer ? loop->outer->num : -1));

  if (loop->pre_header_edges)
    flow_edge_list_print (";;  pre-header edges", loop->pre_header_edges,
			  loop->num_pre_header_edges, file);

  flow_edge_list_print (";;  entry edges", loop->entry_edges,
			loop->num_entries, file);
  fprintf (file, ";;  %d", loop->num_nodes);
  flow_nodes_print (" nodes", loop->nodes, file);
  flow_edge_list_print (";;  exit edges", loop->exit_edges,
			loop->num_exits, file);

  if (loop->exits_doms)
    flow_nodes_print (";;  exit doms", loop->exits_doms, file);

  if (loop_dump_aux)
    loop_dump_aux (loop, file, verbose);
}

/* Dump the loop information specified by LOOPS to the stream FILE,
   using auxiliary dump callback function LOOP_DUMP_AUX if non null.  */

void
flow_loops_dump (loops, file, loop_dump_aux, verbose)
     const struct loops *loops;
     FILE *file;
     void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
     int verbose;
{
  int i, j;
  int num_loops;

  num_loops = loops->num;
  if (! num_loops || ! file)
    return;

  fprintf (file, ";; %d loops found, %d levels\n", num_loops, loops->levels);
  for (i = 0; i < num_loops; i++)
    {
      struct loop *loop = &loops->array[i];

      flow_loop_dump (loop, file, loop_dump_aux, verbose);
      if (loop->shared)
	for (j = 0; j < i; j++)
	  {
	    struct loop *oloop = &loops->array[j];

	    if (loop->header == oloop->header)
	      {
		int disjoint;
		int smaller;

		smaller = loop->num_nodes < oloop->num_nodes;

		/* If the union of LOOP and OLOOP is different than
		   the larger of LOOP and OLOOP then LOOP and OLOOP
		   must be disjoint.  */
		disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
						 smaller ? oloop : loop);
		fprintf (file,
			 ";; loop header %d shared by loops %d, %d %s\n",
			 loop->header->index, i, j,
			 disjoint ? "disjoint" : "nested");
	      }
	  }
    }

  if (verbose)
    flow_loops_cfg_dump (loops, file);
}

/* Free all the memory allocated for LOOPS.  */

void
flow_loops_free (loops)
     struct loops *loops;
{
  if (loops->array)
    {
      int i;

      if (! loops->num)
	abort ();

      /* Free the loop descriptors.  */
      for (i = 0; i < loops->num; i++)
	{
	  struct loop *loop = &loops->array[i];

	  if (loop->pre_header_edges)
	    free (loop->pre_header_edges);
	  if (loop->nodes)
	    sbitmap_free (loop->nodes);
	  if (loop->entry_edges)
	    free (loop->entry_edges);
	  if (loop->exit_edges)
	    free (loop->exit_edges);
	  if (loop->exits_doms)
	    sbitmap_free (loop->exits_doms);
	}

      free (loops->array);
      loops->array = NULL;

      if (loops->cfg.dom)
	sbitmap_vector_free (loops->cfg.dom);

      if (loops->cfg.dfs_order)
	free (loops->cfg.dfs_order);

      if (loops->shared_headers)
	sbitmap_free (loops->shared_headers);
    }
}

/* Find the entry edges into the loop with header HEADER and nodes
   NODES and store in ENTRY_EDGES array.  Return the number of entry
   edges from the loop.  */

static int
flow_loop_entry_edges_find (header, nodes, entry_edges)
     basic_block header;
     const sbitmap nodes;
     edge **entry_edges;
{
  edge e;
  int num_entries;

  *entry_edges = NULL;

  num_entries = 0;
  for (e = header->pred; e; e = e->pred_next)
    {
      basic_block src = e->src;

      if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
	num_entries++;
    }

  if (! num_entries)
    abort ();

  *entry_edges = (edge *) xmalloc (num_entries * sizeof (edge));

  num_entries = 0;
  for (e = header->pred; e; e = e->pred_next)
    {
      basic_block src = e->src;

      if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
	(*entry_edges)[num_entries++] = e;
    }

  return num_entries;
}

/* Find the exit edges from the loop using the bitmap of loop nodes
   NODES and store in EXIT_EDGES array.  Return the number of
   exit edges from the loop.  */

static int
flow_loop_exit_edges_find (nodes, exit_edges)
     const sbitmap nodes;
     edge **exit_edges;
{
  edge e;
  int node;
  int num_exits;

  *exit_edges = NULL;

  /* Check all nodes within the loop to see if there are any
     successors not in the loop.  Note that a node may have multiple
     exiting edges ?????  A node can have one jumping edge and one fallthru
     edge so only one of these can exit the loop.  */
  num_exits = 0;
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
    for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
      {
	basic_block dest = e->dest;

	if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
	    num_exits++;
      }
  });

  if (! num_exits)
    return 0;

  *exit_edges = (edge *) xmalloc (num_exits * sizeof (edge));

  /* Store all exiting edges into an array.  */
  num_exits = 0;
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
    for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
      {
	basic_block dest = e->dest;

	if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
	  (*exit_edges)[num_exits++] = e;
      }
  });

  return num_exits;
}

/* Find the nodes contained within the loop with header HEADER and
   latch LATCH and store in NODES.  Return the number of nodes within
   the loop.  */

static int
flow_loop_nodes_find (header, latch, nodes)
     basic_block header;
     basic_block latch;
     sbitmap nodes;
{
  basic_block *stack;
  int sp;
  int num_nodes = 0;

  stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
  sp = 0;

  /* Start with only the loop header in the set of loop nodes.  */
  sbitmap_zero (nodes);
  SET_BIT (nodes, header->index);
  num_nodes++;
  header->loop_depth++;

  /* Push the loop latch on to the stack.  */
  if (! TEST_BIT (nodes, latch->index))
    {
      SET_BIT (nodes, latch->index);
      latch->loop_depth++;
      num_nodes++;
      stack[sp++] = latch;
    }

  while (sp)
    {
      basic_block node;
      edge e;

      node = stack[--sp];
      for (e = node->pred; e; e = e->pred_next)
	{
	  basic_block ancestor = e->src;

	  /* If each ancestor not marked as part of loop, add to set of
	     loop nodes and push on to stack.  */
	  if (ancestor != ENTRY_BLOCK_PTR
	      && ! TEST_BIT (nodes, ancestor->index))
	    {
	      SET_BIT (nodes, ancestor->index);
	      ancestor->loop_depth++;
	      num_nodes++;
	      stack[sp++] = ancestor;
	    }
	}
    }
  free (stack);
  return num_nodes;
}

/* Find the root node of the loop pre-header extended basic block and
   the edges along the trace from the root node to the loop header.  */

static void
flow_loop_pre_header_scan (loop)
     struct loop *loop;
{
  int num;
  basic_block ebb;
  edge e;

  loop->num_pre_header_edges = 0;
  if (loop->num_entries != 1)
    return;

  ebb = loop->entry_edges[0]->src;
  if (ebb == ENTRY_BLOCK_PTR)
    return;

  /* Count number of edges along trace from loop header to
     root of pre-header extended basic block.  Usually this is
     only one or two edges.  */
  for (num = 1; ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next;
       num++)
    ebb = ebb->pred->src;

  loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge));
  loop->num_pre_header_edges = num;

  /* Store edges in order that they are followed.  The source of the first edge
     is the root node of the pre-header extended basic block and the
     destination of the last last edge is the loop header.  */
  for (e = loop->entry_edges[0]; num; e = e->src->pred)
    loop->pre_header_edges[--num] = e;
}

/* Return the block for the pre-header of the loop with header
   HEADER where DOM specifies the dominator information.  Return NULL if
   there is no pre-header.  */

static basic_block
flow_loop_pre_header_find (header, dom)
     basic_block header;
     const sbitmap *dom;
{
  basic_block pre_header;
  edge e;

  /* If block p is a predecessor of the header and is the only block
     that the header does not dominate, then it is the pre-header.  */
  pre_header = NULL;
  for (e = header->pred; e; e = e->pred_next)
    {
      basic_block node = e->src;

      if (node != ENTRY_BLOCK_PTR
	  && ! TEST_BIT (dom[node->index], header->index))
	{
	  if (pre_header == NULL)
	    pre_header = node;
	  else
	    {
	      /* There are multiple edges into the header from outside
		 the loop so there is no pre-header block.  */
	      pre_header = NULL;
	      break;
	    }
	}
    }

  return pre_header;
}

/* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
   previously added.  The insertion algorithm assumes that the loops
   are added in the order found by a depth first search of the CFG.  */

static void
flow_loop_tree_node_add (prevloop, loop)
     struct loop *prevloop;
     struct loop *loop;
{

  if (flow_loop_nested_p (prevloop, loop))
    {
      prevloop->inner = loop;
      loop->outer = prevloop;
      return;
    }

  for (; prevloop->outer; prevloop = prevloop->outer)
    if (flow_loop_nested_p (prevloop->outer, loop))
      {
	prevloop->next = loop;
	loop->outer = prevloop->outer;
	return;
      }

  prevloop->next = loop;
  loop->outer = NULL;
}

/* Build the loop hierarchy tree for LOOPS.  */

static void
flow_loops_tree_build (loops)
     struct loops *loops;
{
  int i;
  int num_loops;

  num_loops = loops->num;
  if (! num_loops)
    return;

  /* Root the loop hierarchy tree with the first loop found.
     Since we used a depth first search this should be the
     outermost loop.  */
  loops->tree_root = &loops->array[0];
  loops->tree_root->outer = loops->tree_root->inner
    = loops->tree_root->next = NULL;

  /* Add the remaining loops to the tree.  */
  for (i = 1; i < num_loops; i++)
    flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
}

/* Helper function to compute loop nesting depth and enclosed loop level
   for the natural loop specified by LOOP at the loop depth DEPTH.
   Returns the loop level.  */

static int
flow_loop_level_compute (loop, depth)
     struct loop *loop;
     int depth;
{
  struct loop *inner;
  int level = 1;

  if (! loop)
    return 0;

  /* Traverse loop tree assigning depth and computing level as the
     maximum level of all the inner loops of this loop.  The loop
     level is equivalent to the height of the loop in the loop tree
     and corresponds to the number of enclosed loop levels (including
     itself).  */
  for (inner = loop->inner; inner; inner = inner->next)
    {
      int ilevel = flow_loop_level_compute (inner, depth + 1) + 1;

      level = MAX (ilevel, level);
    }

  loop->level = level;
  loop->depth = depth;
  return level;
}

/* Compute the loop nesting depth and enclosed loop level for the loop
   hierarchy tree specified by LOOPS.  Return the maximum enclosed loop
   level.  */

static int
flow_loops_level_compute (loops)
     struct loops *loops;
{
  int levels = 0;
  struct loop *loop;
  int level;

  /* Traverse all the outer level loops.  */
  for (loop = loops->tree_root; loop; loop = loop->next)
    {
      level = flow_loop_level_compute (loop, 1);
      levels = MAX (levels, level);
    }

  return levels;
}

/* Scan a single natural loop specified by LOOP collecting information
   about it specified by FLAGS.  */

int
flow_loop_scan (loops, loop, flags)
     struct loops *loops;
     struct loop *loop;
     int flags;
{
  /* Determine prerequisites.  */
  if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
    flags |= LOOP_EXIT_EDGES;

  if (flags & LOOP_ENTRY_EDGES)
    /* Find edges which enter the loop header.  Note that the entry edges
       should only enter the header of a natural loop.  */
    loop->num_entries = flow_loop_entry_edges_find (loop->header, loop->nodes,
						    &loop->entry_edges);

  if (flags & LOOP_EXIT_EDGES)
    /* Find edges which exit the loop.  */
    loop->num_exits
      = flow_loop_exit_edges_find (loop->nodes, &loop->exit_edges);

  if (flags & LOOP_EXITS_DOMS)
    {
      int j;

      /* Determine which loop nodes dominate all the exits
	 of the loop.  */
      loop->exits_doms = sbitmap_alloc (n_basic_blocks);
      sbitmap_copy (loop->exits_doms, loop->nodes);
      for (j = 0; j < loop->num_exits; j++)
	sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
			 loops->cfg.dom[loop->exit_edges[j]->src->index]);

      /* The header of a natural loop must dominate
	 all exits.  */
      if (! TEST_BIT (loop->exits_doms, loop->header->index))
	abort ();
    }

  if (flags & LOOP_PRE_HEADER)
    {
      /* Look to see if the loop has a pre-header node.  */
      loop->pre_header
	= flow_loop_pre_header_find (loop->header, loops->cfg.dom);

      /* Find the blocks within the extended basic block of
	 the loop pre-header.  */
      flow_loop_pre_header_scan (loop);
    }

  return 1;
}

/* Find all the natural loops in the function and save in LOOPS structure and
   recalculate loop_depth information in basic block structures.  FLAGS
   controls which loop information is collected.  Return the number of natural
   loops found.  */

int
flow_loops_find (loops, flags)
     struct loops *loops;
     int flags;
{
  int i;
  int b;
  int num_loops;
  edge e;
  sbitmap headers;
  sbitmap *dom;
  int *dfs_order;
  int *rc_order;

  /* This function cannot be repeatedly called with different
     flags to build up the loop information.  The loop tree
     must always be built if this function is called.  */
  if (! (flags & LOOP_TREE))
    abort ();

  memset (loops, 0, sizeof *loops);

  /* Taking care of this degenerate case makes the rest of
     this code simpler.  */
  if (n_basic_blocks == 0)
    return 0;

  dfs_order = NULL;
  rc_order = NULL;

  /* Compute the dominators.  */
  dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  calculate_dominance_info (NULL, dom, CDI_DOMINATORS);

  /* Count the number of loop edges (back edges).  This should be the
     same as the number of natural loops.  */
  num_loops = 0;
  for (b = 0; b < n_basic_blocks; b++)
    {
      basic_block header;

      header = BASIC_BLOCK (b);
      header->loop_depth = 0;

      for (e = header->pred; e; e = e->pred_next)
	{
	  basic_block latch = e->src;

	  /* Look for back edges where a predecessor is dominated
	     by this block.  A natural loop has a single entry
	     node (header) that dominates all the nodes in the
	     loop.  It also has single back edge to the header
	     from a latch node.  Note that multiple natural loops
	     may share the same header.  */
	  if (b != header->index)
	    abort ();

	  if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
	    num_loops++;
	}
    }

  if (num_loops)
    {
      /* Compute depth first search order of the CFG so that outer
	 natural loops will be found before inner natural loops.  */
      dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
      rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
      flow_depth_first_order_compute (dfs_order, rc_order);

      /* Save CFG derived information to avoid recomputing it.  */
      loops->cfg.dom = dom;
      loops->cfg.dfs_order = dfs_order;
      loops->cfg.rc_order = rc_order;

      /* Allocate loop structures.  */
      loops->array
	= (struct loop *) xcalloc (num_loops, sizeof (struct loop));

      headers = sbitmap_alloc (n_basic_blocks);
      sbitmap_zero (headers);

      loops->shared_headers = sbitmap_alloc (n_basic_blocks);
      sbitmap_zero (loops->shared_headers);

      /* Find and record information about all the natural loops
	 in the CFG.  */
      num_loops = 0;
      for (b = n_basic_blocks - 1; b >= 0; b--)
	{
	  basic_block latch;

	  /* Search the nodes of the CFG in reverse completion order
	     so that we can find outer loops first.  */
	  latch = BASIC_BLOCK (rc_order[b]);

	  /* Look for all the possible headers for this latch block.  */
	  for (e = latch->succ; e; e = e->succ_next)
	    {
	      basic_block header = e->dest;

	      /* Look for forward edges where this block is dominated by
		 a successor of this block.  A natural loop has a single
		 entry node (header) that dominates all the nodes in the
		 loop.  It also has single back edge to the header from a
		 latch node.  Note that multiple natural loops may share
		 the same header.  */
	      if (header != EXIT_BLOCK_PTR
		  && TEST_BIT (dom[latch->index], header->index))
		{
		  struct loop *loop;

		  loop = loops->array + num_loops;

		  loop->header = header;
		  loop->latch = latch;
		  loop->num = num_loops;

		  num_loops++;
		}
	    }
	}

      for (i = 0; i < num_loops; i++)
	{
	  struct loop *loop = &loops->array[i];

	  /* Keep track of blocks that are loop headers so
	     that we can tell which loops should be merged.  */
	  if (TEST_BIT (headers, loop->header->index))
	    SET_BIT (loops->shared_headers, loop->header->index);
	  SET_BIT (headers, loop->header->index);

	  /* Find nodes contained within the loop.  */
	  loop->nodes = sbitmap_alloc (n_basic_blocks);
	  loop->num_nodes
	    = flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);

	  /* Compute first and last blocks within the loop.
	     These are often the same as the loop header and
	     loop latch respectively, but this is not always
	     the case.  */
	  loop->first
	    = BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
	  loop->last
	    = BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));

	  flow_loop_scan (loops, loop, flags);
	}

      /* Natural loops with shared headers may either be disjoint or
	 nested.  Disjoint loops with shared headers cannot be inner
	 loops and should be merged.  For now just mark loops that share
	 headers.  */
      for (i = 0; i < num_loops; i++)
	if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
	  loops->array[i].shared = 1;

      sbitmap_free (headers);
    }
  else
    sbitmap_vector_free (dom);

  loops->num = num_loops;

  /* Build the loop hierarchy tree.  */
  flow_loops_tree_build (loops);

  /* Assign the loop nesting depth and enclosed loop level for each
     loop.  */
  loops->levels = flow_loops_level_compute (loops);

  return num_loops;
}

/* Update the information regarding the loops in the CFG
   specified by LOOPS.  */

int
flow_loops_update (loops, flags)
     struct loops *loops;
     int flags;
{
  /* One day we may want to update the current loop data.  For now
     throw away the old stuff and rebuild what we need.  */
  if (loops->array)
    flow_loops_free (loops);

  return flow_loops_find (loops, flags);
}

/* Return non-zero if edge E enters header of LOOP from outside of LOOP.  */

int
flow_loop_outside_edge_p (loop, e)
     const struct loop *loop;
     edge e;
{
  if (e->dest != loop->header)
    abort ();

  return (e->src == ENTRY_BLOCK_PTR)
    || ! TEST_BIT (loop->nodes, e->src->index);
}
OpenPOWER on IntegriCloud