summaryrefslogtreecommitdiffstats
path: root/contrib/bind9/doc/arm/Bv9ARM.ch04.html
blob: a316b1f58102da83cebb9bc6c2db4268002fd1ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
<!--
 - Copyright (C) 2004-2007 Internet Systems Consortium, Inc. ("ISC")
 - Copyright (C) 2000-2003 Internet Software Consortium.
 - 
 - Permission to use, copy, modify, and distribute this software for any
 - purpose with or without fee is hereby granted, provided that the above
 - copyright notice and this permission notice appear in all copies.
 - 
 - THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
 - REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
 - AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
 - INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
 - LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
 - OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 - PERFORMANCE OF THIS SOFTWARE.
-->
<!-- $Id: Bv9ARM.ch04.html,v 1.40.18.34 2007/01/30 00:23:45 marka Exp $ -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Chapter 4. Advanced DNS Features</title>
<meta name="generator" content="DocBook XSL Stylesheets V1.71.1">
<link rel="start" href="Bv9ARM.html" title="BIND 9 Administrator Reference Manual">
<link rel="up" href="Bv9ARM.html" title="BIND 9 Administrator Reference Manual">
<link rel="prev" href="Bv9ARM.ch03.html" title="Chapter 3. Name Server Configuration">
<link rel="next" href="Bv9ARM.ch05.html" title="Chapter 5. The BIND 9 Lightweight Resolver">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<div class="navheader">
<table width="100%" summary="Navigation header">
<tr><th colspan="3" align="center">Chapter 4. Advanced DNS Features</th></tr>
<tr>
<td width="20%" align="left">
<a accesskey="p" href="Bv9ARM.ch03.html">Prev</a> </td>
<th width="60%" align="center"> </th>
<td width="20%" align="right"> <a accesskey="n" href="Bv9ARM.ch05.html">Next</a>
</td>
</tr>
</table>
<hr>
</div>
<div class="chapter" lang="en">
<div class="titlepage"><div><div><h2 class="title">
<a name="Bv9ARM.ch04"></a>Chapter 4. Advanced DNS Features</h2></div></div></div>
<div class="toc">
<p><b>Table of Contents</b></p>
<dl>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#notify">Notify</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#dynamic_update">Dynamic Update</a></span></dt>
<dd><dl><dt><span class="sect2"><a href="Bv9ARM.ch04.html#journal">The journal file</a></span></dt></dl></dd>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#incremental_zone_transfers">Incremental Zone Transfers (IXFR)</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2570429">Split DNS</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#tsig">TSIG</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570949">Generate Shared Keys for Each Pair of Hosts</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571022">Copying the Shared Secret to Both Machines</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571033">Informing the Servers of the Key's Existence</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571141">Instructing the Server to Use the Key</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571198">TSIG Key Based Access Control</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571243">Errors</a></span></dt>
</dl></dd>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2571257">TKEY</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2571306">SIG(0)</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#DNSSEC">DNSSEC</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571579">Generating Keys</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571649">Signing the Zone</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571728">Configuring Servers</a></span></dt>
</dl></dd>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2571802">IPv6 Support in <acronym class="acronym">BIND</acronym> 9</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2572001">Address Lookups Using AAAA Records</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2572022">Address to Name Lookups Using Nibble Format</a></span></dt>
</dl></dd>
</dl>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="notify"></a>Notify</h2></div></div></div>
<p>
        <acronym class="acronym">DNS</acronym> NOTIFY is a mechanism that allows master
        servers to notify their slave servers of changes to a zone's data. In
        response to a <span><strong class="command">NOTIFY</strong></span> from a master server, the
        slave will check to see that its version of the zone is the
        current version and, if not, initiate a zone transfer.
      </p>
<p>
        For more information about <acronym class="acronym">DNS</acronym>
        <span><strong class="command">NOTIFY</strong></span>, see the description of the
        <span><strong class="command">notify</strong></span> option in <a href="Bv9ARM.ch06.html#boolean_options" title="Boolean Options">the section called &#8220;Boolean Options&#8221;</a> and
        the description of the zone option <span><strong class="command">also-notify</strong></span> in
        <a href="Bv9ARM.ch06.html#zone_transfers" title="Zone Transfers">the section called &#8220;Zone Transfers&#8221;</a>.  The <span><strong class="command">NOTIFY</strong></span>
        protocol is specified in RFC 1996.
      </p>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
        As a slave zone can also be a master to other slaves, named,
        by default, sends <span><strong class="command">NOTIFY</strong></span> messages for every zone
        it loads.  Specifying <span><strong class="command">notify master-only;</strong></span> will
        cause named to only send <span><strong class="command">NOTIFY</strong></span> for master
        zones that it loads.
      </div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="dynamic_update"></a>Dynamic Update</h2></div></div></div>
<p>
        Dynamic Update is a method for adding, replacing or deleting
        records in a master server by sending it a special form of DNS
        messages.  The format and meaning of these messages is specified
        in RFC 2136.
      </p>
<p>
        Dynamic update is enabled by
        including an <span><strong class="command">allow-update</strong></span> or
        <span><strong class="command">update-policy</strong></span> clause in the
        <span><strong class="command">zone</strong></span> statement.
      </p>
<p>
        Updating of secure zones (zones using DNSSEC) follows
        RFC 3007: RRSIG and NSEC records affected by updates are automatically
            regenerated by the server using an online zone key.
        Update authorization is based
        on transaction signatures and an explicit server policy.
      </p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="journal"></a>The journal file</h3></div></div></div>
<p>
          All changes made to a zone using dynamic update are stored
          in the zone's journal file.  This file is automatically created
          by the server when the first dynamic update takes place.
          The name of the journal file is formed by appending the extension
          <code class="filename">.jnl</code> to the name of the
          corresponding zone
          file unless specifically overridden.  The journal file is in a
          binary format and should not be edited manually.
        </p>
<p>
          The server will also occasionally write ("dump")
          the complete contents of the updated zone to its zone file.
          This is not done immediately after
          each dynamic update, because that would be too slow when a large
          zone is updated frequently.  Instead, the dump is delayed by
          up to 15 minutes, allowing additional updates to take place.
        </p>
<p>
          When a server is restarted after a shutdown or crash, it will replay
              the journal file to incorporate into the zone any updates that
          took
          place after the last zone dump.
        </p>
<p>
          Changes that result from incoming incremental zone transfers are
          also
          journalled in a similar way.
        </p>
<p>
          The zone files of dynamic zones cannot normally be edited by
          hand because they are not guaranteed to contain the most recent
          dynamic changes &#8212; those are only in the journal file.
          The only way to ensure that the zone file of a dynamic zone
          is up to date is to run <span><strong class="command">rndc stop</strong></span>.
        </p>
<p>
          If you have to make changes to a dynamic zone
          manually, the following procedure will work: Disable dynamic updates
              to the zone using
          <span><strong class="command">rndc freeze <em class="replaceable"><code>zone</code></em></strong></span>.
          This will also remove the zone's <code class="filename">.jnl</code> file
          and update the master file.  Edit the zone file.  Run
          <span><strong class="command">rndc thaw <em class="replaceable"><code>zone</code></em></strong></span>
          to reload the changed zone and re-enable dynamic updates.
        </p>
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="incremental_zone_transfers"></a>Incremental Zone Transfers (IXFR)</h2></div></div></div>
<p>
        The incremental zone transfer (IXFR) protocol is a way for
        slave servers to transfer only changed data, instead of having to
        transfer the entire zone. The IXFR protocol is specified in RFC
        1995. See <a href="Bv9ARM.ch09.html#proposed_standards">Proposed Standards</a>.
      </p>
<p>
        When acting as a master, <acronym class="acronym">BIND</acronym> 9
        supports IXFR for those zones
        where the necessary change history information is available. These
        include master zones maintained by dynamic update and slave zones
        whose data was obtained by IXFR.  For manually maintained master
        zones, and for slave zones obtained by performing a full zone
        transfer (AXFR), IXFR is supported only if the option
        <span><strong class="command">ixfr-from-differences</strong></span> is set
        to <strong class="userinput"><code>yes</code></strong>.
      </p>
<p>
        When acting as a slave, <acronym class="acronym">BIND</acronym> 9 will
        attempt to use IXFR unless
        it is explicitly disabled. For more information about disabling
        IXFR, see the description of the <span><strong class="command">request-ixfr</strong></span> clause
        of the <span><strong class="command">server</strong></span> statement.
      </p>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2570429"></a>Split DNS</h2></div></div></div>
<p>
        Setting up different views, or visibility, of the DNS space to
        internal and external resolvers is usually referred to as a
        <span class="emphasis"><em>Split DNS</em></span> setup. There are several
        reasons an organization would want to set up its DNS this way.
      </p>
<p>
        One common reason for setting up a DNS system this way is
        to hide "internal" DNS information from "external" clients on the
        Internet. There is some debate as to whether or not this is actually
        useful.
        Internal DNS information leaks out in many ways (via email headers,
        for example) and most savvy "attackers" can find the information
        they need using other means.
        However, since listing addresses of internal servers that
        external clients cannot possibly reach can result in
        connection delays and other annoyances, an organization may
        choose to use a Split DNS to present a consistant view of itself
        to the outside world.
      </p>
<p>
        Another common reason for setting up a Split DNS system is
        to allow internal networks that are behind filters or in RFC 1918
        space (reserved IP space, as documented in RFC 1918) to resolve DNS
        on the Internet. Split DNS can also be used to allow mail from outside
        back in to the internal network.
      </p>
<p>
        Here is an example of a split DNS setup:
      </p>
<p>
        Let's say a company named <span class="emphasis"><em>Example, Inc.</em></span>
        (<code class="literal">example.com</code>)
        has several corporate sites that have an internal network with
        reserved
        Internet Protocol (IP) space and an external demilitarized zone (DMZ),
        or "outside" section of a network, that is available to the public.
      </p>
<p>
        <span class="emphasis"><em>Example, Inc.</em></span> wants its internal clients
        to be able to resolve external hostnames and to exchange mail with
        people on the outside. The company also wants its internal resolvers
        to have access to certain internal-only zones that are not available
        at all outside of the internal network.
      </p>
<p>
        In order to accomplish this, the company will set up two sets
        of name servers. One set will be on the inside network (in the
        reserved
        IP space) and the other set will be on bastion hosts, which are
        "proxy"
        hosts that can talk to both sides of its network, in the DMZ.
      </p>
<p>
        The internal servers will be configured to forward all queries,
        except queries for <code class="filename">site1.internal</code>, <code class="filename">site2.internal</code>, <code class="filename">site1.example.com</code>,
        and <code class="filename">site2.example.com</code>, to the servers
        in the
        DMZ. These internal servers will have complete sets of information
        for <code class="filename">site1.example.com</code>, <code class="filename">site2.example.com</code>,<span class="emphasis"><em></em></span> <code class="filename">site1.internal</code>,
        and <code class="filename">site2.internal</code>.
      </p>
<p>
        To protect the <code class="filename">site1.internal</code> and <code class="filename">site2.internal</code> domains,
        the internal name servers must be configured to disallow all queries
        to these domains from any external hosts, including the bastion
        hosts.
      </p>
<p>
        The external servers, which are on the bastion hosts, will
        be configured to serve the "public" version of the <code class="filename">site1</code> and <code class="filename">site2.example.com</code> zones.
        This could include things such as the host records for public servers
        (<code class="filename">www.example.com</code> and <code class="filename">ftp.example.com</code>),
        and mail exchange (MX)  records (<code class="filename">a.mx.example.com</code> and <code class="filename">b.mx.example.com</code>).
      </p>
<p>
        In addition, the public <code class="filename">site1</code> and <code class="filename">site2.example.com</code> zones
        should have special MX records that contain wildcard (`*') records
        pointing to the bastion hosts. This is needed because external mail
        servers do not have any other way of looking up how to deliver mail
        to those internal hosts. With the wildcard records, the mail will
        be delivered to the bastion host, which can then forward it on to
        internal hosts.
      </p>
<p>
        Here's an example of a wildcard MX record:
      </p>
<pre class="programlisting">*   IN MX 10 external1.example.com.</pre>
<p>
        Now that they accept mail on behalf of anything in the internal
        network, the bastion hosts will need to know how to deliver mail
        to internal hosts. In order for this to work properly, the resolvers
        on
        the bastion hosts will need to be configured to point to the internal
        name servers for DNS resolution.
      </p>
<p>
        Queries for internal hostnames will be answered by the internal
        servers, and queries for external hostnames will be forwarded back
        out to the DNS servers on the bastion hosts.
      </p>
<p>
        In order for all this to work properly, internal clients will
        need to be configured to query <span class="emphasis"><em>only</em></span> the internal
        name servers for DNS queries. This could also be enforced via
        selective
        filtering on the network.
      </p>
<p>
        If everything has been set properly, <span class="emphasis"><em>Example, Inc.</em></span>'s
        internal clients will now be able to:
      </p>
<div class="itemizedlist"><ul type="disc">
<li>
            Look up any hostnames in the <code class="literal">site1</code>
            and
            <code class="literal">site2.example.com</code> zones.
          </li>
<li>
            Look up any hostnames in the <code class="literal">site1.internal</code> and
            <code class="literal">site2.internal</code> domains.
          </li>
<li>Look up any hostnames on the Internet.</li>
<li>Exchange mail with both internal and external people.</li>
</ul></div>
<p>
        Hosts on the Internet will be able to:
      </p>
<div class="itemizedlist"><ul type="disc">
<li>
            Look up any hostnames in the <code class="literal">site1</code>
            and
            <code class="literal">site2.example.com</code> zones.
          </li>
<li>
            Exchange mail with anyone in the <code class="literal">site1</code> and
            <code class="literal">site2.example.com</code> zones.
          </li>
</ul></div>
<p>
        Here is an example configuration for the setup we just
        described above. Note that this is only configuration information;
        for information on how to configure your zone files, see <a href="Bv9ARM.ch03.html#sample_configuration" title="Sample Configurations">the section called &#8220;Sample Configurations&#8221;</a>.
      </p>
<p>
        Internal DNS server config:
      </p>
<pre class="programlisting">

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { <code class="varname">bastion-ips-go-here</code>; };

options {
    ...
    ...
    forward only;
    forwarders {                                // forward to external servers
        <code class="varname">bastion-ips-go-here</code>;
    };
    allow-transfer { none; };                   // sample allow-transfer (no one)
    allow-query { internals; externals; };      // restrict query access
    allow-recursion { internals; };             // restrict recursion
    ...
    ...
};

zone "site1.example.com" {                      // sample master zone
  type master;
  file "m/site1.example.com";
  forwarders { };                               // do normal iterative
                                                // resolution (do not forward)
  allow-query { internals; externals; };
  allow-transfer { internals; };
};

zone "site2.example.com" {                      // sample slave zone
  type slave;
  file "s/site2.example.com";
  masters { 172.16.72.3; };
  forwarders { };
  allow-query { internals; externals; };
  allow-transfer { internals; };
};

zone "site1.internal" {
  type master;
  file "m/site1.internal";
  forwarders { };
  allow-query { internals; };
  allow-transfer { internals; }
};

zone "site2.internal" {
  type slave;
  file "s/site2.internal";
  masters { 172.16.72.3; };
  forwarders { };
  allow-query { internals };
  allow-transfer { internals; }
};
</pre>
<p>
        External (bastion host) DNS server config:
      </p>
<pre class="programlisting">
acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
  ...
  ...
  allow-transfer { none; };                     // sample allow-transfer (no one)
  allow-query { any; };                         // default query access
  allow-query-cache { internals; externals; };  // restrict cache access
  allow-recursion { internals; externals; };    // restrict recursion
  ...
  ...
};

zone "site1.example.com" {                      // sample slave zone
  type master;
  file "m/site1.foo.com";
  allow-transfer { internals; externals; };
};

zone "site2.example.com" {
  type slave;
  file "s/site2.foo.com";
  masters { another_bastion_host_maybe; };
  allow-transfer { internals; externals; }
};
</pre>
<p>
        In the <code class="filename">resolv.conf</code> (or equivalent) on
        the bastion host(s):
      </p>
<pre class="programlisting">
search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4
</pre>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="tsig"></a>TSIG</h2></div></div></div>
<p>
        This is a short guide to setting up Transaction SIGnatures
        (TSIG) based transaction security in <acronym class="acronym">BIND</acronym>. It describes changes
        to the configuration file as well as what changes are required for
        different features, including the process of creating transaction
        keys and using transaction signatures with <acronym class="acronym">BIND</acronym>.
      </p>
<p>
        <acronym class="acronym">BIND</acronym> primarily supports TSIG for server
        to server communication.
        This includes zone transfer, notify, and recursive query messages.
        Resolvers based on newer versions of <acronym class="acronym">BIND</acronym> 8 have limited support
        for TSIG.
      </p>
<p>
        TSIG can also be useful for dynamic update. A primary
        server for a dynamic zone should control access to the dynamic
        update service, but IP-based access control is insufficient.
        The cryptographic access control provided by TSIG
        is far superior. The <span><strong class="command">nsupdate</strong></span>
        program supports TSIG via the <code class="option">-k</code> and
        <code class="option">-y</code> command line options or inline by use
        of the <span><strong class="command">key</strong></span>.
      </p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2570949"></a>Generate Shared Keys for Each Pair of Hosts</h3></div></div></div>
<p>
          A shared secret is generated to be shared between <span class="emphasis"><em>host1</em></span> and <span class="emphasis"><em>host2</em></span>.
          An arbitrary key name is chosen: "host1-host2.". The key name must
          be the same on both hosts.
        </p>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="id2570966"></a>Automatic Generation</h4></div></div></div>
<p>
            The following command will generate a 128-bit (16 byte) HMAC-MD5
            key as described above. Longer keys are better, but shorter keys
            are easier to read. Note that the maximum key length is 512 bits;
            keys longer than that will be digested with MD5 to produce a
            128-bit key.
          </p>
<p>
            <strong class="userinput"><code>dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.</code></strong>
          </p>
<p>
            The key is in the file <code class="filename">Khost1-host2.+157+00000.private</code>.
            Nothing directly uses this file, but the base-64 encoded string
            following "<code class="literal">Key:</code>"
            can be extracted from the file and used as a shared secret:
          </p>
<pre class="programlisting">Key: La/E5CjG9O+os1jq0a2jdA==</pre>
<p>
            The string "<code class="literal">La/E5CjG9O+os1jq0a2jdA==</code>" can
            be used as the shared secret.
          </p>
</div>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="id2571004"></a>Manual Generation</h4></div></div></div>
<p>
            The shared secret is simply a random sequence of bits, encoded
            in base-64. Most ASCII strings are valid base-64 strings (assuming
            the length is a multiple of 4 and only valid characters are used),
            so the shared secret can be manually generated.
          </p>
<p>
            Also, a known string can be run through <span><strong class="command">mmencode</strong></span> or
            a similar program to generate base-64 encoded data.
          </p>
</div>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571022"></a>Copying the Shared Secret to Both Machines</h3></div></div></div>
<p>
          This is beyond the scope of DNS. A secure transport mechanism
          should be used. This could be secure FTP, ssh, telephone, etc.
        </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571033"></a>Informing the Servers of the Key's Existence</h3></div></div></div>
<p>
          Imagine <span class="emphasis"><em>host1</em></span> and <span class="emphasis"><em>host 2</em></span>
          are
          both servers. The following is added to each server's <code class="filename">named.conf</code> file:
        </p>
<pre class="programlisting">
key host1-host2. {
  algorithm hmac-md5;
  secret "La/E5CjG9O+os1jq0a2jdA==";
};
</pre>
<p>
          The algorithm, hmac-md5, is the only one supported by <acronym class="acronym">BIND</acronym>.
          The secret is the one generated above. Since this is a secret, it
          is recommended that either <code class="filename">named.conf</code> be non-world
          readable, or the key directive be added to a non-world readable
          file that is included by
          <code class="filename">named.conf</code>.
        </p>
<p>
          At this point, the key is recognized. This means that if the
          server receives a message signed by this key, it can verify the
          signature. If the signature is successfully verified, the
          response is signed by the same key.
        </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571141"></a>Instructing the Server to Use the Key</h3></div></div></div>
<p>
          Since keys are shared between two hosts only, the server must
          be told when keys are to be used. The following is added to the <code class="filename">named.conf</code> file
          for <span class="emphasis"><em>host1</em></span>, if the IP address of <span class="emphasis"><em>host2</em></span> is
          10.1.2.3:
        </p>
<pre class="programlisting">
server 10.1.2.3 {
  keys { host1-host2. ;};
};
</pre>
<p>
          Multiple keys may be present, but only the first is used.
          This directive does not contain any secrets, so it may be in a
          world-readable
          file.
        </p>
<p>
          If <span class="emphasis"><em>host1</em></span> sends a message that is a request
          to that address, the message will be signed with the specified key. <span class="emphasis"><em>host1</em></span> will
          expect any responses to signed messages to be signed with the same
          key.
        </p>
<p>
          A similar statement must be present in <span class="emphasis"><em>host2</em></span>'s
          configuration file (with <span class="emphasis"><em>host1</em></span>'s address) for <span class="emphasis"><em>host2</em></span> to
          sign request messages to <span class="emphasis"><em>host1</em></span>.
        </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571198"></a>TSIG Key Based Access Control</h3></div></div></div>
<p>
          <acronym class="acronym">BIND</acronym> allows IP addresses and ranges
          to be specified in ACL
          definitions and
          <span><strong class="command">allow-{ query | transfer | update }</strong></span>
          directives.
          This has been extended to allow TSIG keys also. The above key would
          be denoted <span><strong class="command">key host1-host2.</strong></span>
        </p>
<p>
          An example of an allow-update directive would be:
        </p>
<pre class="programlisting">
allow-update { key host1-host2. ;};
</pre>
<p>
          This allows dynamic updates to succeed only if the request
          was signed by a key named
          "<span><strong class="command">host1-host2.</strong></span>".
        </p>
<p>
          You may want to read about the more
          powerful <span><strong class="command">update-policy</strong></span> statement in <a href="Bv9ARM.ch06.html#dynamic_update_policies" title="Dynamic Update Policies">the section called &#8220;Dynamic Update Policies&#8221;</a>.
        </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571243"></a>Errors</h3></div></div></div>
<p>
          The processing of TSIG signed messages can result in
          several errors. If a signed message is sent to a non-TSIG aware
          server, a FORMERR (format error) will be returned, since the server will not
          understand the record. This is a result of misconfiguration,
          since the server must be explicitly configured to send a TSIG
          signed message to a specific server.
        </p>
<p>
          If a TSIG aware server receives a message signed by an
          unknown key, the response will be unsigned with the TSIG
          extended error code set to BADKEY. If a TSIG aware server
          receives a message with a signature that does not validate, the
          response will be unsigned with the TSIG extended error code set
          to BADSIG. If a TSIG aware server receives a message with a time
          outside of the allowed range, the response will be signed with
          the TSIG extended error code set to BADTIME, and the time values
          will be adjusted so that the response can be successfully
          verified. In any of these cases, the message's rcode is set to
          NOTAUTH (not authenticated).
        </p>
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2571257"></a>TKEY</h2></div></div></div>
<p><span><strong class="command">TKEY</strong></span>
        is a mechanism for automatically generating a shared secret
        between two hosts.  There are several "modes" of
        <span><strong class="command">TKEY</strong></span> that specify how the key is generated
        or assigned.  <acronym class="acronym">BIND</acronym> 9 implements only one of
        these modes, the Diffie-Hellman key exchange.  Both hosts are
        required to have a Diffie-Hellman KEY record (although this
        record is not required to be present in a zone).  The
        <span><strong class="command">TKEY</strong></span> process must use signed messages,
        signed either by TSIG or SIG(0).  The result of
        <span><strong class="command">TKEY</strong></span> is a shared secret that can be used to
        sign messages with TSIG.  <span><strong class="command">TKEY</strong></span> can also be
        used to delete shared secrets that it had previously
        generated.
      </p>
<p>
        The <span><strong class="command">TKEY</strong></span> process is initiated by a
        client
        or server by sending a signed <span><strong class="command">TKEY</strong></span>
        query
        (including any appropriate KEYs) to a TKEY-aware server.  The
        server response, if it indicates success, will contain a
        <span><strong class="command">TKEY</strong></span> record and any appropriate keys.
        After
        this exchange, both participants have enough information to
        determine the shared secret; the exact process depends on the
        <span><strong class="command">TKEY</strong></span> mode.  When using the
        Diffie-Hellman
        <span><strong class="command">TKEY</strong></span> mode, Diffie-Hellman keys are
        exchanged,
        and the shared secret is derived by both participants.
      </p>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2571306"></a>SIG(0)</h2></div></div></div>
<p>
        <acronym class="acronym">BIND</acronym> 9 partially supports DNSSEC SIG(0)
            transaction signatures as specified in RFC 2535 and RFC2931.
        SIG(0)
        uses public/private keys to authenticate messages.  Access control
        is performed in the same manner as TSIG keys; privileges can be
        granted or denied based on the key name.
      </p>
<p>
        When a SIG(0) signed message is received, it will only be
        verified if the key is known and trusted by the server; the server
        will not attempt to locate and/or validate the key.
      </p>
<p>
        SIG(0) signing of multiple-message TCP streams is not
        supported.
      </p>
<p>
        The only tool shipped with <acronym class="acronym">BIND</acronym> 9 that
        generates SIG(0) signed messages is <span><strong class="command">nsupdate</strong></span>.
      </p>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="DNSSEC"></a>DNSSEC</h2></div></div></div>
<p>
        Cryptographic authentication of DNS information is possible
        through the DNS Security (<span class="emphasis"><em>DNSSEC-bis</em></span>) extensions,
        defined in RFC 4033, RFC 4034 and RFC 4035.
        This section describes the creation and use of DNSSEC signed zones.
      </p>
<p>
        In order to set up a DNSSEC secure zone, there are a series
        of steps which must be followed.  <acronym class="acronym">BIND</acronym>
        9 ships
        with several tools
        that are used in this process, which are explained in more detail
        below.  In all cases, the <code class="option">-h</code> option prints a
        full list of parameters.  Note that the DNSSEC tools require the
        keyset files to be in the working directory or the
        directory specified by the <code class="option">-d</code> option, and
        that the tools shipped with BIND 9.2.x and earlier are not compatible
        with the current ones.
      </p>
<p>
        There must also be communication with the administrators of
        the parent and/or child zone to transmit keys.  A zone's security
        status must be indicated by the parent zone for a DNSSEC capable
        resolver to trust its data.  This is done through the presence
        or absence of a <code class="literal">DS</code> record at the
        delegation
        point.
      </p>
<p>
        For other servers to trust data in this zone, they must
        either be statically configured with this zone's zone key or the
        zone key of another zone above this one in the DNS tree.
      </p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571579"></a>Generating Keys</h3></div></div></div>
<p>
          The <span><strong class="command">dnssec-keygen</strong></span> program is used to
          generate keys.
        </p>
<p>
          A secure zone must contain one or more zone keys.  The
          zone keys will sign all other records in the zone, as well as
          the zone keys of any secure delegated zones.  Zone keys must
          have the same name as the zone, a name type of
          <span><strong class="command">ZONE</strong></span>, and must be usable for
          authentication.
          It is recommended that zone keys use a cryptographic algorithm
          designated as "mandatory to implement" by the IETF; currently
          the only one is RSASHA1.
        </p>
<p>
          The following command will generate a 768-bit RSASHA1 key for
          the <code class="filename">child.example</code> zone:
        </p>
<p>
          <strong class="userinput"><code>dnssec-keygen -a RSASHA1 -b 768 -n ZONE child.example.</code></strong>
        </p>
<p>
          Two output files will be produced:
          <code class="filename">Kchild.example.+005+12345.key</code> and
          <code class="filename">Kchild.example.+005+12345.private</code>
          (where
          12345 is an example of a key tag).  The key file names contain
          the key name (<code class="filename">child.example.</code>),
          algorithm (3
          is DSA, 1 is RSAMD5, 5 is RSASHA1, etc.), and the key tag (12345 in
          this case).
          The private key (in the <code class="filename">.private</code>
          file) is
          used to generate signatures, and the public key (in the
          <code class="filename">.key</code> file) is used for signature
          verification.
        </p>
<p>
          To generate another key with the same properties (but with
          a different key tag), repeat the above command.
        </p>
<p>
          The public keys should be inserted into the zone file by
          including the <code class="filename">.key</code> files using
          <span><strong class="command">$INCLUDE</strong></span> statements.
        </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571649"></a>Signing the Zone</h3></div></div></div>
<p>
          The <span><strong class="command">dnssec-signzone</strong></span> program is used
          to
          sign a zone.
        </p>
<p>
          Any <code class="filename">keyset</code> files corresponding
          to secure subzones should be present.  The zone signer will
          generate <code class="literal">NSEC</code> and <code class="literal">RRSIG</code>
          records for the zone, as well as <code class="literal">DS</code>
          for
          the child zones if <code class="literal">'-d'</code> is specified.
                If <code class="literal">'-d'</code> is not specified, then
          DS RRsets for
          the secure child zones need to be added manually.
        </p>
<p>
          The following command signs the zone, assuming it is in a
          file called <code class="filename">zone.child.example</code>.  By
                default, all zone keys which have an available private key are
                used to generate signatures.
        </p>
<p>
          <strong class="userinput"><code>dnssec-signzone -o child.example zone.child.example</code></strong>
        </p>
<p>
          One output file is produced:
          <code class="filename">zone.child.example.signed</code>.  This
          file
          should be referenced by <code class="filename">named.conf</code>
          as the
          input file for the zone.
        </p>
<p><span><strong class="command">dnssec-signzone</strong></span>
          will also produce a keyset and dsset files and optionally a
          dlvset file.  These are used to provide the parent zone
          administators with the <code class="literal">DNSKEYs</code> (or their
          corresponding <code class="literal">DS</code> records) that are the
          secure entry point to the zone.
        </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571728"></a>Configuring Servers</h3></div></div></div>
<p>
          To enable <span><strong class="command">named</strong></span> to respond appropriately
          to DNS requests from DNSSEC aware clients,
          <span><strong class="command">dnssec-enable</strong></span> must be set to yes.
        </p>
<p>
          To enable <span><strong class="command">named</strong></span> to validate answers from
          other servers both <span><strong class="command">dnssec-enable</strong></span> and
          <span><strong class="command">dnssec-validate</strong></span> must be set and some
          <span><strong class="command">trusted-keys</strong></span> must be configured
          into <code class="filename">named.conf</code>.
        </p>
<p>
          <span><strong class="command">trusted-keys</strong></span> are copies of DNSKEY RRs
          for zones that are used to form the first link in the
          cryptographic chain of trust.  All keys listed in
          <span><strong class="command">trusted-keys</strong></span> (and corresponding zones)
          are deemed to exist and only the listed keys will be used
          to validated the DNSKEY RRset that they are from.
        </p>
<p>
          <span><strong class="command">trusted-keys</strong></span> are described in more detail
          later in this document.
        </p>
<p>
          Unlike <acronym class="acronym">BIND</acronym> 8, <acronym class="acronym">BIND</acronym>
          9 does not verify signatures on load, so zone keys for
          authoritative zones do not need to be specified in the
          configuration file.
        </p>
<p>
          After DNSSEC gets established, a typical DNSSEC configuration
          will look something like the following.  It has a one or
          more public keys for the root.  This allows answers from
          outside the organization to be validated.  It will also
          have several keys for parts of the namespace the organization
          controls.  These are here to ensure that named is immune
          to compromises in the DNSSEC components of the security
          of parent zones.
        </p>
<pre class="programlisting">
trusted-keys {

        /* Root Key */
"." 257 3 3 "BNY4wrWM1nCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwSJxrGkxJWoZu6I7PzJu/
             E9gx4UC1zGAHlXKdE4zYIpRhaBKnvcC2U9mZhkdUpd1Vso/HAdjNe8LmMlnzY3
             zy2Xy4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ln5ZApjYghf+6fElrmLkdaz
             MQ2OCnACR817DF4BBa7UR/beDHyp5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M
             /lUUVRbkeg1IPJSidmK3ZyCllh4XSKbje/45SKucHgnwU5jefMtq66gKodQj+M
             iA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ97S+LKUTpQcq27R7AT3/V5hRQxScI
             Nqwcz4jYqZD2fQdgxbcDTClU0CRBdiieyLMNzXG3";

/* Key for our organization's forward zone */
example.com. 257 3 5 "AwEAAaxPMcR2x0HbQV4WeZB6oEDX+r0QM65KbhTjrW1ZaARmPhEZZe
                      3Y9ifgEuq7vZ/zGZUdEGNWy+JZzus0lUptwgjGwhUS1558Hb4JKUbb
                      OTcM8pwXlj0EiX3oDFVmjHO444gLkBO UKUf/mC7HvfwYH/Be22GnC
                      lrinKJp1Og4ywzO9WglMk7jbfW33gUKvirTHr25GL7STQUzBb5Usxt
                      8lgnyTUHs1t3JwCY5hKZ6CqFxmAVZP20igTixin/1LcrgX/KMEGd/b
                      iuvF4qJCyduieHukuY3H4XMAcR+xia2 nIUPvm/oyWR8BW/hWdzOvn
                      SCThlHf3xiYleDbt/o1OTQ09A0=";

/* Key for our reverse zone. */
2.0.192.IN-ADDRPA.NET. 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwcxOdNax071L18QqZnQQQA
                                VVr+iLhGTnNGp3HoWQLUIzKrJVZ3zggy3WwNT6kZo6c0
                                tszYqbtvchmgQC8CzKojM/W16i6MG/ea fGU3siaOdS0
                                yOI6BgPsw+YZdzlYMaIJGf4M4dyoKIhzdZyQ2bYQrjyQ
                                4LB0lC7aOnsMyYKHHYeRv PxjIQXmdqgOJGq+vsevG06
                                zW+1xgYJh9rCIfnm1GX/KMgxLPG2vXTD/RnLX+D3T3UL
                                7HJYHJhAZD5L59VvjSPsZJHeDCUyWYrvPZesZDIRvhDD
                                52SKvbheeTJUm6EhkzytNN2SN96QRk8j/iI8ib";
};

options {
        ...
        dnssec-enable yes;
        dnssec-validation yes;
};
</pre>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
          None of the keys listed in this example are valid.  In particular,
          the root key is not valid.
        </div>
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2571802"></a>IPv6 Support in <acronym class="acronym">BIND</acronym> 9</h2></div></div></div>
<p>
        <acronym class="acronym">BIND</acronym> 9 fully supports all currently
        defined forms of IPv6
        name to address and address to name lookups.  It will also use
        IPv6 addresses to make queries when running on an IPv6 capable
        system.
      </p>
<p>
        For forward lookups, <acronym class="acronym">BIND</acronym> 9 supports
        only AAAA records.  RFC 3363 deprecated the use of A6 records,
        and client-side support for A6 records was accordingly removed
        from <acronym class="acronym">BIND</acronym> 9.
        However, authoritative <acronym class="acronym">BIND</acronym> 9 name servers still
        load zone files containing A6 records correctly, answer queries
        for A6 records, and accept zone transfer for a zone containing A6
        records.
      </p>
<p>
        For IPv6 reverse lookups, <acronym class="acronym">BIND</acronym> 9 supports
        the traditional "nibble" format used in the
        <span class="emphasis"><em>ip6.arpa</em></span> domain, as well as the older, deprecated
        <span class="emphasis"><em>ip6.int</em></span> domain.
        Older versions of <acronym class="acronym">BIND</acronym> 9 
        supported the "binary label" (also known as "bitstring") format,
        but support of binary labels has been completely removed per
        RFC 3363.
        Many applications in <acronym class="acronym">BIND</acronym> 9 do not understand
        the binary label format at all any more, and will return an
        error if given.
        In particular, an authoritative <acronym class="acronym">BIND</acronym> 9
        name server will not load a zone file containing binary labels.
      </p>
<p>
        For an overview of the format and structure of IPv6 addresses,
        see <a href="Bv9ARM.ch09.html#ipv6addresses" title="IPv6 addresses (AAAA)">the section called &#8220;IPv6 addresses (AAAA)&#8221;</a>.
      </p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2572001"></a>Address Lookups Using AAAA Records</h3></div></div></div>
<p>
          The IPv6 AAAA record is a parallel to the IPv4 A record,
          and, unlike the deprecated A6 record, specifies the entire
          IPv6 address in a single record.  For example,
        </p>
<pre class="programlisting">
$ORIGIN example.com.
host            3600    IN      AAAA    2001:db8::1
</pre>
<p>
          Use of IPv4-in-IPv6 mapped addresses is not recommended.
          If a host has an IPv4 address, use an A record, not
          a AAAA, with <code class="literal">::ffff:192.168.42.1</code> as
          the address.
        </p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2572022"></a>Address to Name Lookups Using Nibble Format</h3></div></div></div>
<p>
          When looking up an address in nibble format, the address
          components are simply reversed, just as in IPv4, and
          <code class="literal">ip6.arpa.</code> is appended to the
          resulting name.
          For example, the following would provide reverse name lookup for
          a host with address
          <code class="literal">2001:db8::1</code>.
        </p>
<pre class="programlisting">
$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0   14400 IN      PTR     host.example.com.
</pre>
</div>
</div>
</div>
<div class="navfooter">
<hr>
<table width="100%" summary="Navigation footer">
<tr>
<td width="40%" align="left">
<a accesskey="p" href="Bv9ARM.ch03.html">Prev</a> </td>
<td width="20%" align="center"> </td>
<td width="40%" align="right"> <a accesskey="n" href="Bv9ARM.ch05.html">Next</a>
</td>
</tr>
<tr>
<td width="40%" align="left" valign="top">Chapter 3. Name Server Configuration </td>
<td width="20%" align="center"><a accesskey="h" href="Bv9ARM.html">Home</a></td>
<td width="40%" align="right" valign="top"> Chapter 5. The <acronym class="acronym">BIND</acronym> 9 Lightweight Resolver</td>
</tr>
</table>
</div>
</body>
</html>
OpenPOWER on IntegriCloud