/*- * Copyright (c) 1996 - 2001 Brian Somers * based on work by Toshiharu OHNO * Internet Initiative Japan, Inc (IIJ) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include /* memcpy() on some archs */ #include #include "layer.h" #include "defs.h" #include "command.h" #include "mbuf.h" #include "log.h" #include "timer.h" #include "fsm.h" #include "proto.h" #include "pred.h" #include "deflate.h" #include "throughput.h" #include "iplist.h" #include "slcompress.h" #include "lqr.h" #include "hdlc.h" #include "lcp.h" #include "ccp.h" #include "ncpaddr.h" #include "ipcp.h" #include "filter.h" #include "descriptor.h" #include "prompt.h" #include "link.h" #include "mp.h" #include "async.h" #include "physical.h" #ifndef NORADIUS #include "radius.h" #endif #ifndef NODES #include "mppe.h" #endif #include "ipv6cp.h" #include "ncp.h" #include "bundle.h" static void CcpSendConfigReq(struct fsm *); static void CcpSentTerminateReq(struct fsm *); static void CcpSendTerminateAck(struct fsm *, u_char); static void CcpDecodeConfig(struct fsm *, u_char *, u_char *, int, struct fsm_decode *); static void CcpLayerStart(struct fsm *); static void CcpLayerFinish(struct fsm *); static int CcpLayerUp(struct fsm *); static void CcpLayerDown(struct fsm *); static void CcpInitRestartCounter(struct fsm *, int); static int CcpRecvResetReq(struct fsm *); static void CcpRecvResetAck(struct fsm *, u_char); static struct fsm_callbacks ccp_Callbacks = { CcpLayerUp, CcpLayerDown, CcpLayerStart, CcpLayerFinish, CcpInitRestartCounter, CcpSendConfigReq, CcpSentTerminateReq, CcpSendTerminateAck, CcpDecodeConfig, CcpRecvResetReq, CcpRecvResetAck }; static const char * const ccp_TimerNames[] = {"CCP restart", "CCP openmode", "CCP stopped"}; static const char * protoname(int proto) { static char const * const cftypes[] = { /* Check out the latest ``Compression Control Protocol'' rfc (1962) */ "OUI", /* 0: OUI */ "PRED1", /* 1: Predictor type 1 */ "PRED2", /* 2: Predictor type 2 */ "PUDDLE", /* 3: Puddle Jumber */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "HWPPC", /* 16: Hewlett-Packard PPC */ "STAC", /* 17: Stac Electronics LZS (rfc1974) */ "MPPE", /* 18: Microsoft PPC (rfc2118) and */ /* Microsoft PPE (draft-ietf-pppext-mppe) */ "GAND", /* 19: Gandalf FZA (rfc1993) */ "V42BIS", /* 20: ARG->DATA.42bis compression */ "BSD", /* 21: BSD LZW Compress */ NULL, "LZS-DCP", /* 23: LZS-DCP Compression Protocol (rfc1967) */ "MAGNALINK/DEFLATE",/* 24: Magnalink Variable Resource (rfc1975) */ /* 24: Deflate (according to pppd-2.3.*) */ "DCE", /* 25: Data Circuit-Terminating Equip (rfc1976) */ "DEFLATE", /* 26: Deflate (rfc1979) */ }; if (proto < 0 || (unsigned)proto > sizeof cftypes / sizeof *cftypes || cftypes[proto] == NULL) { if (proto == -1) return "none"; return HexStr(proto, NULL, 0); } return cftypes[proto]; } /* We support these algorithms, and Req them in the given order */ static const struct ccp_algorithm * const algorithm[] = { &DeflateAlgorithm, &Pred1Algorithm, &PppdDeflateAlgorithm #ifndef NODES , &MPPEAlgorithm #endif }; #define NALGORITHMS (sizeof algorithm/sizeof algorithm[0]) int ccp_ReportStatus(struct cmdargs const *arg) { struct ccp_opt **o; struct link *l; struct ccp *ccp; int f; l = command_ChooseLink(arg); ccp = &l->ccp; prompt_Printf(arg->prompt, "%s: %s [%s]\n", l->name, ccp->fsm.name, State2Nam(ccp->fsm.state)); if (ccp->fsm.state == ST_OPENED) { prompt_Printf(arg->prompt, " My protocol = %s, His protocol = %s\n", protoname(ccp->my_proto), protoname(ccp->his_proto)); prompt_Printf(arg->prompt, " Output: %ld --> %ld, Input: %ld --> %ld\n", ccp->uncompout, ccp->compout, ccp->compin, ccp->uncompin); } if (ccp->in.algorithm != -1) prompt_Printf(arg->prompt, "\n Input Options: %s\n", (*algorithm[ccp->in.algorithm]->Disp)(&ccp->in.opt)); if (ccp->out.algorithm != -1) { o = &ccp->out.opt; for (f = 0; f < ccp->out.algorithm; f++) if (IsEnabled(ccp->cfg.neg[algorithm[f]->Neg])) o = &(*o)->next; prompt_Printf(arg->prompt, " Output Options: %s\n", (*algorithm[ccp->out.algorithm]->Disp)(&(*o)->val)); } prompt_Printf(arg->prompt, "\n Defaults: "); prompt_Printf(arg->prompt, "FSM retry = %us, max %u Config" " REQ%s, %u Term REQ%s\n", ccp->cfg.fsm.timeout, ccp->cfg.fsm.maxreq, ccp->cfg.fsm.maxreq == 1 ? "" : "s", ccp->cfg.fsm.maxtrm, ccp->cfg.fsm.maxtrm == 1 ? "" : "s"); prompt_Printf(arg->prompt, " deflate windows: "); prompt_Printf(arg->prompt, "incoming = %d, ", ccp->cfg.deflate.in.winsize); prompt_Printf(arg->prompt, "outgoing = %d\n", ccp->cfg.deflate.out.winsize); #ifndef NODES prompt_Printf(arg->prompt, " MPPE: "); if (ccp->cfg.mppe.keybits) prompt_Printf(arg->prompt, "%d bits, ", ccp->cfg.mppe.keybits); else prompt_Printf(arg->prompt, "any bits, "); switch (ccp->cfg.mppe.state) { case MPPE_STATEFUL: prompt_Printf(arg->prompt, "stateful"); break; case MPPE_STATELESS: prompt_Printf(arg->prompt, "stateless"); break; case MPPE_ANYSTATE: prompt_Printf(arg->prompt, "any state"); break; } prompt_Printf(arg->prompt, "%s\n", ccp->cfg.mppe.required ? ", required" : ""); #endif prompt_Printf(arg->prompt, "\n DEFLATE: %s\n", command_ShowNegval(ccp->cfg.neg[CCP_NEG_DEFLATE])); prompt_Printf(arg->prompt, " PREDICTOR1: %s\n", command_ShowNegval(ccp->cfg.neg[CCP_NEG_PRED1])); prompt_Printf(arg->prompt, " DEFLATE24: %s\n", command_ShowNegval(ccp->cfg.neg[CCP_NEG_DEFLATE24])); #ifndef NODES prompt_Printf(arg->prompt, " MPPE: %s\n", command_ShowNegval(ccp->cfg.neg[CCP_NEG_MPPE])); #endif return 0; } void ccp_SetupCallbacks(struct ccp *ccp) { ccp->fsm.fn = &ccp_Callbacks; ccp->fsm.FsmTimer.name = ccp_TimerNames[0]; ccp->fsm.OpenTimer.name = ccp_TimerNames[1]; ccp->fsm.StoppedTimer.name = ccp_TimerNames[2]; } void ccp_Init(struct ccp *ccp, struct bundle *bundle, struct link *l, const struct fsm_parent *parent) { /* Initialise ourselves */ fsm_Init(&ccp->fsm, "CCP", PROTO_CCP, 1, CCP_MAXCODE, LogCCP, bundle, l, parent, &ccp_Callbacks, ccp_TimerNames); ccp->cfg.deflate.in.winsize = 0; ccp->cfg.deflate.out.winsize = 15; ccp->cfg.fsm.timeout = DEF_FSMRETRY; ccp->cfg.fsm.maxreq = DEF_FSMTRIES; ccp->cfg.fsm.maxtrm = DEF_FSMTRIES; ccp->cfg.neg[CCP_NEG_DEFLATE] = NEG_ENABLED|NEG_ACCEPTED; ccp->cfg.neg[CCP_NEG_PRED1] = NEG_ENABLED|NEG_ACCEPTED; ccp->cfg.neg[CCP_NEG_DEFLATE24] = 0; #ifndef NODES ccp->cfg.mppe.keybits = 0; ccp->cfg.mppe.state = MPPE_ANYSTATE; ccp->cfg.mppe.required = 0; ccp->cfg.neg[CCP_NEG_MPPE] = NEG_ENABLED|NEG_ACCEPTED; #endif ccp_Setup(ccp); } void ccp_Setup(struct ccp *ccp) { /* Set ourselves up for a startup */ ccp->fsm.open_mode = 0; ccp->his_proto = ccp->my_proto = -1; ccp->reset_sent = ccp->last_reset = -1; ccp->in.algorithm = ccp->out.algorithm = -1; ccp->in.state = ccp->out.state = NULL; ccp->in.opt.hdr.id = -1; ccp->out.opt = NULL; ccp->his_reject = ccp->my_reject = 0; ccp->uncompout = ccp->compout = 0; ccp->uncompin = ccp->compin = 0; } /* * Is ccp *REQUIRED* ? * We ask each of the configured ccp protocols if they're required and * return TRUE if they are. * * It's not possible for the peer to reject a required ccp protocol * without our state machine bringing the supporting lcp layer down. * * If ccp is required but not open, the NCP layer should not push * any data into the link. */ int ccp_Required(struct ccp *ccp) { unsigned f; for (f = 0; f < NALGORITHMS; f++) if (IsEnabled(ccp->cfg.neg[algorithm[f]->Neg]) && (*algorithm[f]->Required)(&ccp->fsm)) return 1; return 0; } /* * Report whether it's possible to increase a packet's size after * compression (and by how much). */ int ccp_MTUOverhead(struct ccp *ccp) { if (ccp->fsm.state == ST_OPENED && ccp->out.algorithm >= 0) return algorithm[ccp->out.algorithm]->o.MTUOverhead; return 0; } static void CcpInitRestartCounter(struct fsm *fp, int what) { /* Set fsm timer load */ struct ccp *ccp = fsm2ccp(fp); fp->FsmTimer.load = ccp->cfg.fsm.timeout * SECTICKS; switch (what) { case FSM_REQ_TIMER: fp->restart = ccp->cfg.fsm.maxreq; break; case FSM_TRM_TIMER: fp->restart = ccp->cfg.fsm.maxtrm; break; default: fp->restart = 1; break; } } static void CcpSendConfigReq(struct fsm *fp) { /* Send config REQ please */ struct ccp *ccp = fsm2ccp(fp); struct ccp_opt **o; u_char *cp, buff[100]; unsigned f; int alloc; cp = buff; o = &ccp->out.opt; alloc = ccp->his_reject == 0 && ccp->out.opt == NULL; ccp->my_proto = -1; ccp->out.algorithm = -1; for (f = 0; f < NALGORITHMS; f++) if (IsEnabled(ccp->cfg.neg[algorithm[f]->Neg]) && !REJECTED(ccp, algorithm[f]->id) && (*algorithm[f]->Usable)(fp)) { if (!alloc) for (o = &ccp->out.opt; *o != NULL; o = &(*o)->next) if ((*o)->val.hdr.id == algorithm[f]->id && (*o)->algorithm == (int)f) break; if (alloc || *o == NULL) { if ((*o = (struct ccp_opt *)malloc(sizeof(struct ccp_opt))) == NULL) { log_Printf(LogERROR, "%s: Not enough memory for CCP REQ !\n", fp->link->name); break; } (*o)->val.hdr.id = algorithm[f]->id; (*o)->val.hdr.len = 2; (*o)->next = NULL; (*o)->algorithm = f; (*algorithm[f]->o.OptInit)(fp->bundle, &(*o)->val, &ccp->cfg); } if (cp + (*o)->val.hdr.len > buff + sizeof buff) { log_Printf(LogERROR, "%s: CCP REQ buffer overrun !\n", fp->link->name); break; } memcpy(cp, &(*o)->val, (*o)->val.hdr.len); cp += (*o)->val.hdr.len; ccp->my_proto = (*o)->val.hdr.id; ccp->out.algorithm = f; if (alloc) o = &(*o)->next; } fsm_Output(fp, CODE_CONFIGREQ, fp->reqid, buff, cp - buff, MB_CCPOUT); } void ccp_SendResetReq(struct fsm *fp) { /* We can't read our input - ask peer to reset */ struct ccp *ccp = fsm2ccp(fp); ccp->reset_sent = fp->reqid; ccp->last_reset = -1; fsm_Output(fp, CODE_RESETREQ, fp->reqid, NULL, 0, MB_CCPOUT); } static void CcpSentTerminateReq(struct fsm *fp __unused) { /* Term REQ just sent by FSM */ } static void CcpSendTerminateAck(struct fsm *fp, u_char id) { /* Send Term ACK please */ fsm_Output(fp, CODE_TERMACK, id, NULL, 0, MB_CCPOUT); } static int CcpRecvResetReq(struct fsm *fp) { /* Got a reset REQ, reset outgoing dictionary */ struct ccp *ccp = fsm2ccp(fp); if (ccp->out.state == NULL) return 1; return (*algorithm[ccp->out.algorithm]->o.Reset)(ccp->out.state); } static void CcpLayerStart(struct fsm *fp) { /* We're about to start up ! */ struct ccp *ccp = fsm2ccp(fp); log_Printf(LogCCP, "%s: LayerStart.\n", fp->link->name); fp->more.reqs = fp->more.naks = fp->more.rejs = ccp->cfg.fsm.maxreq * 3; } static void CcpLayerDown(struct fsm *fp) { /* About to come down */ struct ccp *ccp = fsm2ccp(fp); struct ccp_opt *next; log_Printf(LogCCP, "%s: LayerDown.\n", fp->link->name); if (ccp->in.state != NULL) { (*algorithm[ccp->in.algorithm]->i.Term)(ccp->in.state); ccp->in.state = NULL; ccp->in.algorithm = -1; } if (ccp->out.state != NULL) { (*algorithm[ccp->out.algorithm]->o.Term)(ccp->out.state); ccp->out.state = NULL; ccp->out.algorithm = -1; } ccp->his_reject = ccp->my_reject = 0; while (ccp->out.opt) { next = ccp->out.opt->next; free(ccp->out.opt); ccp->out.opt = next; } ccp_Setup(ccp); } static void CcpLayerFinish(struct fsm *fp) { /* We're now down */ struct ccp *ccp = fsm2ccp(fp); struct ccp_opt *next; log_Printf(LogCCP, "%s: LayerFinish.\n", fp->link->name); /* * Nuke options that may be left over from sending a REQ but never * coming up. */ while (ccp->out.opt) { next = ccp->out.opt->next; free(ccp->out.opt); ccp->out.opt = next; } if (ccp_Required(ccp)) { if (fp->link->lcp.fsm.state == ST_OPENED) log_Printf(LogLCP, "%s: Closing due to CCP completion\n", fp->link->name); fsm_Close(&fp->link->lcp.fsm); } } /* Called when CCP has reached the OPEN state */ static int CcpLayerUp(struct fsm *fp) { /* We're now up */ struct ccp *ccp = fsm2ccp(fp); struct ccp_opt **o; unsigned f, fail; for (f = fail = 0; f < NALGORITHMS; f++) if (IsEnabled(ccp->cfg.neg[algorithm[f]->Neg]) && (*algorithm[f]->Required)(&ccp->fsm) && (ccp->in.algorithm != (int)f || ccp->out.algorithm != (int)f)) { /* Blow it all away - we haven't negotiated a required algorithm */ log_Printf(LogWARN, "%s: Failed to negotiate (required) %s\n", fp->link->name, protoname(algorithm[f]->id)); fail = 1; } if (fail) { ccp->his_proto = ccp->my_proto = -1; fsm_Close(fp); fsm_Close(&fp->link->lcp.fsm); return 0; } log_Printf(LogCCP, "%s: LayerUp.\n", fp->link->name); if (ccp->in.state == NULL && ccp->in.algorithm >= 0 && ccp->in.algorithm < (int)NALGORITHMS) { ccp->in.state = (*algorithm[ccp->in.algorithm]->i.Init) (fp->bundle, &ccp->in.opt); if (ccp->in.state == NULL) { log_Printf(LogERROR, "%s: %s (in) initialisation failure\n", fp->link->name, protoname(ccp->his_proto)); ccp->his_proto = ccp->my_proto = -1; fsm_Close(fp); return 0; } } o = &ccp->out.opt; if (ccp->out.algorithm > 0) for (f = 0; f < (unsigned)ccp->out.algorithm; f++) if (IsEnabled(ccp->cfg.neg[algorithm[f]->Neg])) o = &(*o)->next; if (ccp->out.state == NULL && ccp->out.algorithm >= 0 && ccp->out.algorithm < (int)NALGORITHMS) { ccp->out.state = (*algorithm[ccp->out.algorithm]->o.Init) (fp->bundle, &(*o)->val); if (ccp->out.state == NULL) { log_Printf(LogERROR, "%s: %s (out) initialisation failure\n", fp->link->name, protoname(ccp->my_proto)); ccp->his_proto = ccp->my_proto = -1; fsm_Close(fp); return 0; } } fp->more.reqs = fp->more.naks = fp->more.rejs = ccp->cfg.fsm.maxreq * 3; log_Printf(LogCCP, "%s: Out = %s[%d], In = %s[%d]\n", fp->link->name, protoname(ccp->my_proto), ccp->my_proto, protoname(ccp->his_proto), ccp->his_proto); return 1; } static void CcpDecodeConfig(struct fsm *fp, u_char *cp, u_char *end, int mode_type, struct fsm_decode *dec) { /* Deal with incoming data */ struct ccp *ccp = fsm2ccp(fp); int f; const char *disp; struct fsm_opt *opt; if (mode_type == MODE_REQ) ccp->in.algorithm = -1; /* In case we've received two REQs in a row */ while (end >= cp + sizeof(opt->hdr)) { if ((opt = fsm_readopt(&cp)) == NULL) break; for (f = NALGORITHMS-1; f > -1; f--) if (algorithm[f]->id == opt->hdr.id) break; disp = f == -1 ? "" : (*algorithm[f]->Disp)(opt); if (disp == NULL) disp = ""; log_Printf(LogCCP, " %s[%d] %s\n", protoname(opt->hdr.id), opt->hdr.len, disp); if (f == -1) { /* Don't understand that :-( */ if (mode_type == MODE_REQ) { ccp->my_reject |= (1 << opt->hdr.id); fsm_rej(dec, opt); } } else { struct ccp_opt *o; switch (mode_type) { case MODE_REQ: if (IsAccepted(ccp->cfg.neg[algorithm[f]->Neg]) && (*algorithm[f]->Usable)(fp) && ccp->in.algorithm == -1) { memcpy(&ccp->in.opt, opt, opt->hdr.len); switch ((*algorithm[f]->i.Set)(fp->bundle, &ccp->in.opt, &ccp->cfg)) { case MODE_REJ: fsm_rej(dec, &ccp->in.opt); break; case MODE_NAK: fsm_nak(dec, &ccp->in.opt); break; case MODE_ACK: fsm_ack(dec, &ccp->in.opt); ccp->his_proto = opt->hdr.id; ccp->in.algorithm = (int)f; /* This one'll do :-) */ break; } } else { fsm_rej(dec, opt); } break; case MODE_NAK: for (o = ccp->out.opt; o != NULL; o = o->next) if (o->val.hdr.id == opt->hdr.id) break; if (o == NULL) log_Printf(LogCCP, "%s: Warning: Ignoring peer NAK of unsent" " option\n", fp->link->name); else { memcpy(&o->val, opt, opt->hdr.len); if ((*algorithm[f]->o.Set)(fp->bundle, &o->val, &ccp->cfg) == MODE_ACK) ccp->my_proto = algorithm[f]->id; else { ccp->his_reject |= (1 << opt->hdr.id); ccp->my_proto = -1; if (algorithm[f]->Required(fp)) { log_Printf(LogWARN, "%s: Cannot understand peers (required)" " %s negotiation\n", fp->link->name, protoname(algorithm[f]->id)); fsm_Close(&fp->link->lcp.fsm); } } } break; case MODE_REJ: ccp->his_reject |= (1 << opt->hdr.id); ccp->my_proto = -1; if (algorithm[f]->Required(fp)) { log_Printf(LogWARN, "%s: Peer rejected (required) %s negotiation\n", fp->link->name, protoname(algorithm[f]->id)); fsm_Close(&fp->link->lcp.fsm); } break; } } } if (mode_type != MODE_NOP) { fsm_opt_normalise(dec); if (dec->rejend != dec->rej || dec->nakend != dec->nak) { if (ccp->in.state == NULL) { ccp->his_proto = -1; ccp->in.algorithm = -1; } } } } extern struct mbuf * ccp_Input(struct bundle *bundle, struct link *l, struct mbuf *bp) { /* Got PROTO_CCP from link */ m_settype(bp, MB_CCPIN); if (bundle_Phase(bundle) == PHASE_NETWORK) fsm_Input(&l->ccp.fsm, bp); else { if (bundle_Phase(bundle) < PHASE_NETWORK) log_Printf(LogCCP, "%s: Error: Unexpected CCP in phase %s (ignored)\n", l->ccp.fsm.link->name, bundle_PhaseName(bundle)); m_freem(bp); } return NULL; } static void CcpRecvResetAck(struct fsm *fp, u_char id) { /* Got a reset ACK, reset incoming dictionary */ struct ccp *ccp = fsm2ccp(fp); if (ccp->reset_sent != -1) { if (id != ccp->reset_sent) { log_Printf(LogCCP, "%s: Incorrect ResetAck (id %d, not %d)" " ignored\n", fp->link->name, id, ccp->reset_sent); return; } /* Whaddaya know - a correct reset ack */ } else if (id == ccp->last_reset) log_Printf(LogCCP, "%s: Duplicate ResetAck (resetting again)\n", fp->link->name); else { log_Printf(LogCCP, "%s: Unexpected ResetAck (id %d) ignored\n", fp->link->name, id); return; } ccp->last_reset = ccp->reset_sent; ccp->reset_sent = -1; if (ccp->in.state != NULL) (*algorithm[ccp->in.algorithm]->i.Reset)(ccp->in.state); } static struct mbuf * ccp_LayerPush(struct bundle *b __unused, struct link *l, struct mbuf *bp, int pri, u_short *proto) { if (PROTO_COMPRESSIBLE(*proto)) { if (l->ccp.fsm.state != ST_OPENED) { if (ccp_Required(&l->ccp)) { /* The NCP layer shouldn't have let this happen ! */ log_Printf(LogERROR, "%s: Unexpected attempt to use an unopened and" " required CCP layer\n", l->name); m_freem(bp); bp = NULL; } } else if (l->ccp.out.state != NULL) { bp = (*algorithm[l->ccp.out.algorithm]->o.Write) (l->ccp.out.state, &l->ccp, l, pri, proto, bp); switch (*proto) { case PROTO_ICOMPD: m_settype(bp, MB_ICOMPDOUT); break; case PROTO_COMPD: m_settype(bp, MB_COMPDOUT); break; } } } return bp; } static struct mbuf * ccp_LayerPull(struct bundle *b __unused, struct link *l, struct mbuf *bp, u_short *proto) { /* * If proto isn't PROTO_[I]COMPD, we still want to pass it to the * decompression routines so that the dictionary's updated */ if (l->ccp.fsm.state == ST_OPENED) { if (*proto == PROTO_COMPD || *proto == PROTO_ICOMPD) { /* Decompress incoming data */ if (l->ccp.reset_sent != -1) /* Send another REQ and put the packet in the bit bucket */ fsm_Output(&l->ccp.fsm, CODE_RESETREQ, l->ccp.reset_sent, NULL, 0, MB_CCPOUT); else if (l->ccp.in.state != NULL) { bp = (*algorithm[l->ccp.in.algorithm]->i.Read) (l->ccp.in.state, &l->ccp, proto, bp); switch (*proto) { case PROTO_ICOMPD: m_settype(bp, MB_ICOMPDIN); break; case PROTO_COMPD: m_settype(bp, MB_COMPDIN); break; } return bp; } m_freem(bp); bp = NULL; } else if (PROTO_COMPRESSIBLE(*proto) && l->ccp.in.state != NULL) { /* Add incoming Network Layer traffic to our dictionary */ (*algorithm[l->ccp.in.algorithm]->i.DictSetup) (l->ccp.in.state, &l->ccp, *proto, bp); } } return bp; } u_short ccp_Proto(struct ccp *ccp) { return !link2physical(ccp->fsm.link) || !ccp->fsm.bundle->ncp.mp.active ? PROTO_COMPD : PROTO_ICOMPD; } int ccp_SetOpenMode(struct ccp *ccp) { int f; for (f = 0; f < CCP_NEG_TOTAL; f++) if (IsEnabled(ccp->cfg.neg[f])) { ccp->fsm.open_mode = 0; return 1; } ccp->fsm.open_mode = OPEN_PASSIVE; /* Go straight to ST_STOPPED ? */ for (f = 0; f < CCP_NEG_TOTAL; f++) if (IsAccepted(ccp->cfg.neg[f])) return 1; return 0; /* No CCP at all */ } int ccp_DefaultUsable(struct fsm *fp __unused) { return 1; } int ccp_DefaultRequired(struct fsm *fp __unused) { return 0; } struct layer ccplayer = { LAYER_CCP, "ccp", ccp_LayerPush, ccp_LayerPull };