/*- * Copyright (c) 2005-2007, Joseph Koshy * Copyright (c) 2007 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by A. Joseph Koshy under * sponsorship from the FreeBSD Foundation and Google, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Transform a hwpmc(4) log into human readable form, and into * gprof(1) compatible profiles. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pmcstat.h" #define min(A,B) ((A) < (B) ? (A) : (B)) #define max(A,B) ((A) > (B) ? (A) : (B)) #define PMCSTAT_ALLOCATE 1 /* * PUBLIC INTERFACES * * pmcstat_initialize_logging() initialize this module, called first * pmcstat_shutdown_logging() orderly shutdown, called last * pmcstat_open_log() open an eventlog for processing * pmcstat_process_log() print/convert an event log * pmcstat_close_log() finish processing an event log * * IMPLEMENTATION NOTES * * We correlate each 'callchain' or 'sample' entry seen in the event * log back to an executable object in the system. Executable objects * include: * - program executables, * - shared libraries loaded by the runtime loader, * - dlopen()'ed objects loaded by the program, * - the runtime loader itself, * - the kernel and kernel modules. * * Each process that we know about is treated as a set of regions that * map to executable objects. Processes are described by * 'pmcstat_process' structures. Executable objects are tracked by * 'pmcstat_image' structures. The kernel and kernel modules are * common to all processes (they reside at the same virtual addresses * for all processes). Individual processes can have their text * segments and shared libraries loaded at process-specific locations. * * A given executable object can be in use by multiple processes * (e.g., libc.so) and loaded at a different address in each. * pmcstat_pcmap structures track per-image mappings. * * The sample log could have samples from multiple PMCs; we * generate one 'gmon.out' profile per PMC. * * IMPLEMENTATION OF GMON OUTPUT * * Each executable object gets one 'gmon.out' profile, per PMC in * use. Creation of 'gmon.out' profiles is done lazily. The * 'gmon.out' profiles generated for a given sampling PMC are * aggregates of all the samples for that particular executable * object. * * IMPLEMENTATION OF SYSTEM-WIDE CALLGRAPH OUTPUT * * Each active pmcid has its own callgraph structure, described by a * 'struct pmcstat_callgraph'. Given a process id and a list of pc * values, we map each pc value to a tuple (image, symbol), where * 'image' denotes an executable object and 'symbol' is the closest * symbol that precedes the pc value. Each pc value in the list is * also given a 'rank' that reflects its depth in the call stack. */ typedef const void *pmcstat_interned_string; /* * 'pmcstat_pmcrecord' is a mapping from PMC ids to human-readable * names. */ struct pmcstat_pmcrecord { LIST_ENTRY(pmcstat_pmcrecord) pr_next; pmc_id_t pr_pmcid; pmcstat_interned_string pr_pmcname; }; static LIST_HEAD(,pmcstat_pmcrecord) pmcstat_pmcs = LIST_HEAD_INITIALIZER(pmcstat_pmcs); /* * struct pmcstat_gmonfile tracks a given 'gmon.out' file. These * files are mmap()'ed in as needed. */ struct pmcstat_gmonfile { LIST_ENTRY(pmcstat_gmonfile) pgf_next; /* list of entries */ int pgf_overflow; /* whether a count overflowed */ pmc_id_t pgf_pmcid; /* id of the associated pmc */ size_t pgf_nbuckets; /* #buckets in this gmon.out */ unsigned int pgf_nsamples; /* #samples in this gmon.out */ pmcstat_interned_string pgf_name; /* pathname of gmon.out file */ size_t pgf_ndatabytes; /* number of bytes mapped */ void *pgf_gmondata; /* pointer to mmap'ed data */ FILE *pgf_file; /* used when writing gmon arcs */ }; /* * A 'pmcstat_image' structure describes an executable program on * disk. 'pi_execpath' is a cookie representing the pathname of * the executable. 'pi_start' and 'pi_end' are the least and greatest * virtual addresses for the text segments in the executable. * 'pi_gmonlist' contains a linked list of gmon.out files associated * with this image. */ enum pmcstat_image_type { PMCSTAT_IMAGE_UNKNOWN = 0, /* never looked at the image */ PMCSTAT_IMAGE_INDETERMINABLE, /* can't tell what the image is */ PMCSTAT_IMAGE_ELF32, /* ELF 32 bit object */ PMCSTAT_IMAGE_ELF64, /* ELF 64 bit object */ PMCSTAT_IMAGE_AOUT /* AOUT object */ }; struct pmcstat_image { LIST_ENTRY(pmcstat_image) pi_next; /* hash link */ TAILQ_ENTRY(pmcstat_image) pi_lru; /* LRU list */ pmcstat_interned_string pi_execpath; /* cookie */ pmcstat_interned_string pi_samplename; /* sample path name */ pmcstat_interned_string pi_fullpath; /* path to FS object */ enum pmcstat_image_type pi_type; /* executable type */ /* * Executables have pi_start and pi_end; these are zero * for shared libraries. */ uintfptr_t pi_start; /* start address (inclusive) */ uintfptr_t pi_end; /* end address (exclusive) */ uintfptr_t pi_entry; /* entry address */ uintfptr_t pi_vaddr; /* virtual address where loaded */ int pi_isdynamic; /* whether a dynamic object */ int pi_iskernelmodule; pmcstat_interned_string pi_dynlinkerpath; /* path in .interp */ /* All symbols associated with this object. */ struct pmcstat_symbol *pi_symbols; size_t pi_symcount; /* * An image can be associated with one or more gmon.out files; * one per PMC. */ LIST_HEAD(,pmcstat_gmonfile) pi_gmlist; }; /* * All image descriptors are kept in a hash table. */ static LIST_HEAD(,pmcstat_image) pmcstat_image_hash[PMCSTAT_NHASH]; /* * A 'pmcstat_pcmap' structure maps a virtual address range to an * underlying 'pmcstat_image' descriptor. */ struct pmcstat_pcmap { TAILQ_ENTRY(pmcstat_pcmap) ppm_next; uintfptr_t ppm_lowpc; uintfptr_t ppm_highpc; struct pmcstat_image *ppm_image; }; /* * A 'pmcstat_process' structure models processes. Each process is * associated with a set of pmcstat_pcmap structures that map * addresses inside it to executable objects. This set is implemented * as a list, kept sorted in ascending order of mapped addresses. * * 'pp_pid' holds the pid of the process. When a process exits, the * 'pp_isactive' field is set to zero, but the process structure is * not immediately reclaimed because there may still be samples in the * log for this process. */ struct pmcstat_process { LIST_ENTRY(pmcstat_process) pp_next; /* hash-next */ pid_t pp_pid; /* associated pid */ int pp_isactive; /* whether active */ uintfptr_t pp_entryaddr; /* entry address */ TAILQ_HEAD(,pmcstat_pcmap) pp_map; /* address range map */ }; /* * All process descriptors are kept in a hash table. */ static LIST_HEAD(,pmcstat_process) pmcstat_process_hash[PMCSTAT_NHASH]; static struct pmcstat_process *pmcstat_kernproc; /* kernel 'process' */ /* * Each function symbol tracked by pmcstat(8). */ struct pmcstat_symbol { pmcstat_interned_string ps_name; uint64_t ps_start; uint64_t ps_end; }; /* * Each call graph node is tracked by a pmcstat_cgnode struct. */ struct pmcstat_cgnode { struct pmcstat_image *pcg_image; uintfptr_t pcg_func; uint32_t pcg_count; uint32_t pcg_nchildren; LIST_ENTRY(pmcstat_cgnode) pcg_sibling; LIST_HEAD(,pmcstat_cgnode) pcg_children; }; struct pmcstat_cgnode_hash { struct pmcstat_cgnode *pch_cgnode; uint32_t pch_pmcid; LIST_ENTRY(pmcstat_cgnode_hash) pch_next; }; static int pmcstat_cgnode_hash_count; static pmcstat_interned_string pmcstat_previous_filename_printed; /* * The toplevel CG nodes (i.e., with rank == 0) are placed in a hash table. */ static LIST_HEAD(,pmcstat_cgnode_hash) pmcstat_cgnode_hash[PMCSTAT_NHASH]; /* Misc. statistics */ static struct pmcstat_stats { int ps_exec_aout; /* # a.out executables seen */ int ps_exec_elf; /* # elf executables seen */ int ps_exec_errors; /* # errors processing executables */ int ps_exec_indeterminable; /* # unknown executables seen */ int ps_samples_total; /* total number of samples processed */ int ps_samples_skipped; /* #samples filtered out for any reason */ int ps_samples_unknown_offset; /* #samples of rank 0 not in a map */ int ps_samples_indeterminable; /* #samples in indeterminable images */ int ps_callchain_dubious_frames;/* #dubious frame pointers seen */ } pmcstat_stats; /* * Prototypes */ static void pmcstat_gmon_create_file(struct pmcstat_gmonfile *_pgf, struct pmcstat_image *_image); static pmcstat_interned_string pmcstat_gmon_create_name(const char *_sd, struct pmcstat_image *_img, pmc_id_t _pmcid); static void pmcstat_gmon_map_file(struct pmcstat_gmonfile *_pgf); static void pmcstat_gmon_unmap_file(struct pmcstat_gmonfile *_pgf); static void pmcstat_image_determine_type(struct pmcstat_image *_image, struct pmcstat_args *_a); static struct pmcstat_gmonfile *pmcstat_image_find_gmonfile(struct pmcstat_image *_i, pmc_id_t _id); static struct pmcstat_image *pmcstat_image_from_path(pmcstat_interned_string _path, int _iskernelmodule); static void pmcstat_image_get_aout_params(struct pmcstat_image *_image, struct pmcstat_args *_a); static void pmcstat_image_get_elf_params(struct pmcstat_image *_image, struct pmcstat_args *_a); static void pmcstat_image_increment_bucket(struct pmcstat_pcmap *_pcm, uintfptr_t _pc, pmc_id_t _pmcid, struct pmcstat_args *_a); static void pmcstat_image_link(struct pmcstat_process *_pp, struct pmcstat_image *_i, uintfptr_t _lpc); static void pmcstat_pmcid_add(pmc_id_t _pmcid, pmcstat_interned_string _name, struct pmcstat_args *_a); static const char *pmcstat_pmcid_to_name(pmc_id_t _pmcid); static void pmcstat_process_aout_exec(struct pmcstat_process *_pp, struct pmcstat_image *_image, uintfptr_t _entryaddr, struct pmcstat_args *_a); static void pmcstat_process_elf_exec(struct pmcstat_process *_pp, struct pmcstat_image *_image, uintfptr_t _entryaddr, struct pmcstat_args *_a); static void pmcstat_process_exec(struct pmcstat_process *_pp, pmcstat_interned_string _path, uintfptr_t _entryaddr, struct pmcstat_args *_ao); static struct pmcstat_process *pmcstat_process_lookup(pid_t _pid, int _allocate); static struct pmcstat_pcmap *pmcstat_process_find_map( struct pmcstat_process *_p, uintfptr_t _pc); static int pmcstat_string_compute_hash(const char *_string); static void pmcstat_string_initialize(void); static pmcstat_interned_string pmcstat_string_intern(const char *_s); static pmcstat_interned_string pmcstat_string_lookup(const char *_s); static int pmcstat_string_lookup_hash(pmcstat_interned_string _is); static void pmcstat_string_shutdown(void); static const char *pmcstat_string_unintern(pmcstat_interned_string _is); /* * A simple implementation of interned strings. Each interned string * is assigned a unique address, so that subsequent string compares * can be done by a simple pointer comparision instead of using * strcmp(). This speeds up hash table lookups and saves memory if * duplicate strings are the norm. */ struct pmcstat_string { LIST_ENTRY(pmcstat_string) ps_next; /* hash link */ int ps_len; int ps_hash; char *ps_string; }; static LIST_HEAD(,pmcstat_string) pmcstat_string_hash[PMCSTAT_NHASH]; /* * Compute a 'hash' value for a string. */ static int pmcstat_string_compute_hash(const char *s) { int hash; for (hash = 0; *s; s++) hash ^= *s; return (hash & PMCSTAT_HASH_MASK); } /* * Intern a copy of string 's', and return a pointer to the * interned structure. */ static pmcstat_interned_string pmcstat_string_intern(const char *s) { struct pmcstat_string *ps; const struct pmcstat_string *cps; int hash, len; if ((cps = pmcstat_string_lookup(s)) != NULL) return (cps); hash = pmcstat_string_compute_hash(s); len = strlen(s); if ((ps = malloc(sizeof(*ps))) == NULL) err(EX_OSERR, "ERROR: Could not intern string"); ps->ps_len = len; ps->ps_hash = hash; ps->ps_string = strdup(s); LIST_INSERT_HEAD(&pmcstat_string_hash[hash], ps, ps_next); return ((pmcstat_interned_string) ps); } static const char * pmcstat_string_unintern(pmcstat_interned_string str) { const char *s; s = ((const struct pmcstat_string *) str)->ps_string; return (s); } static pmcstat_interned_string pmcstat_string_lookup(const char *s) { struct pmcstat_string *ps; int hash, len; hash = pmcstat_string_compute_hash(s); len = strlen(s); LIST_FOREACH(ps, &pmcstat_string_hash[hash], ps_next) if (ps->ps_len == len && ps->ps_hash == hash && strcmp(ps->ps_string, s) == 0) return (ps); return (NULL); } static int pmcstat_string_lookup_hash(pmcstat_interned_string s) { const struct pmcstat_string *ps; ps = (const struct pmcstat_string *) s; return (ps->ps_hash); } /* * Initialize the string interning facility. */ static void pmcstat_string_initialize(void) { int i; for (i = 0; i < PMCSTAT_NHASH; i++) LIST_INIT(&pmcstat_string_hash[i]); } /* * Destroy the string table, free'ing up space. */ static void pmcstat_string_shutdown(void) { int i; struct pmcstat_string *ps, *pstmp; for (i = 0; i < PMCSTAT_NHASH; i++) LIST_FOREACH_SAFE(ps, &pmcstat_string_hash[i], ps_next, pstmp) { LIST_REMOVE(ps, ps_next); free(ps->ps_string); free(ps); } } /* * Create a gmon.out file and size it. */ static void pmcstat_gmon_create_file(struct pmcstat_gmonfile *pgf, struct pmcstat_image *image) { int fd; size_t count; struct gmonhdr gm; const char *pathname; char buffer[DEFAULT_BUFFER_SIZE]; pathname = pmcstat_string_unintern(pgf->pgf_name); if ((fd = open(pathname, O_RDWR|O_NOFOLLOW|O_CREAT, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) err(EX_OSERR, "ERROR: Cannot open \"%s\"", pathname); gm.lpc = image->pi_start; gm.hpc = image->pi_end; gm.ncnt = (pgf->pgf_nbuckets * sizeof(HISTCOUNTER)) + sizeof(struct gmonhdr); gm.version = GMONVERSION; gm.profrate = 0; /* use ticks */ gm.histcounter_type = 0; /* compatibility with moncontrol() */ gm.spare[0] = gm.spare[1] = 0; /* Write out the gmon header */ if (write(fd, &gm, sizeof(gm)) < 0) goto error; /* Zero fill the samples[] array */ (void) memset(buffer, 0, sizeof(buffer)); count = pgf->pgf_ndatabytes - sizeof(struct gmonhdr); while (count > sizeof(buffer)) { if (write(fd, &buffer, sizeof(buffer)) < 0) goto error; count -= sizeof(buffer); } if (write(fd, &buffer, count) < 0) goto error; (void) close(fd); return; error: err(EX_OSERR, "ERROR: Cannot write \"%s\"", pathname); } /* * Determine the full pathname of a gmon.out file for a given * (image,pmcid) combination. Return the interned string. */ pmcstat_interned_string pmcstat_gmon_create_name(const char *samplesdir, struct pmcstat_image *image, pmc_id_t pmcid) { const char *pmcname; char fullpath[PATH_MAX]; pmcname = pmcstat_pmcid_to_name(pmcid); (void) snprintf(fullpath, sizeof(fullpath), "%s/%s/%s", samplesdir, pmcname, pmcstat_string_unintern(image->pi_samplename)); return (pmcstat_string_intern(fullpath)); } /* * Mmap in a gmon.out file for processing. */ static void pmcstat_gmon_map_file(struct pmcstat_gmonfile *pgf) { int fd; const char *pathname; pathname = pmcstat_string_unintern(pgf->pgf_name); /* the gmon.out file must already exist */ if ((fd = open(pathname, O_RDWR | O_NOFOLLOW, 0)) < 0) err(EX_OSERR, "ERROR: cannot open \"%s\"", pathname); pgf->pgf_gmondata = mmap(NULL, pgf->pgf_ndatabytes, PROT_READ|PROT_WRITE, MAP_NOSYNC|MAP_SHARED, fd, 0); if (pgf->pgf_gmondata == MAP_FAILED) err(EX_OSERR, "ERROR: cannot map \"%s\"", pathname); (void) close(fd); } /* * Unmap a gmon.out file after sync'ing its data to disk. */ static void pmcstat_gmon_unmap_file(struct pmcstat_gmonfile *pgf) { (void) msync(pgf->pgf_gmondata, pgf->pgf_ndatabytes, MS_SYNC); (void) munmap(pgf->pgf_gmondata, pgf->pgf_ndatabytes); pgf->pgf_gmondata = NULL; } static void pmcstat_gmon_append_arc(struct pmcstat_image *image, pmc_id_t pmcid, uintptr_t rawfrom, uintptr_t rawto, uint32_t count) { struct rawarc arc; /* from */ const char *pathname; struct pmcstat_gmonfile *pgf; if ((pgf = pmcstat_image_find_gmonfile(image, pmcid)) == NULL) return; if (pgf->pgf_file == NULL) { pathname = pmcstat_string_unintern(pgf->pgf_name); if ((pgf->pgf_file = fopen(pathname, "a")) == NULL) return; } arc.raw_frompc = rawfrom + image->pi_vaddr; arc.raw_selfpc = rawto + image->pi_vaddr; arc.raw_count = count; (void) fwrite(&arc, sizeof(arc), 1, pgf->pgf_file); } static struct pmcstat_gmonfile * pmcstat_image_find_gmonfile(struct pmcstat_image *image, pmc_id_t pmcid) { struct pmcstat_gmonfile *pgf; LIST_FOREACH(pgf, &image->pi_gmlist, pgf_next) if (pgf->pgf_pmcid == pmcid) return (pgf); return (NULL); } /* * Determine whether a given executable image is an A.OUT object, and * if so, fill in its parameters from the text file. * Sets image->pi_type. */ static void pmcstat_image_get_aout_params(struct pmcstat_image *image, struct pmcstat_args *a) { int fd; ssize_t nbytes; struct exec ex; const char *path; char buffer[PATH_MAX]; path = pmcstat_string_unintern(image->pi_execpath); assert(path != NULL); if (image->pi_iskernelmodule) errx(EX_SOFTWARE, "ERROR: a.out kernel modules are " "unsupported \"%s\"", path); (void) snprintf(buffer, sizeof(buffer), "%s%s", a->pa_fsroot, path); if ((fd = open(buffer, O_RDONLY, 0)) < 0 || (nbytes = read(fd, &ex, sizeof(ex))) < 0) { warn("WARNING: Cannot determine type of \"%s\"", path); image->pi_type = PMCSTAT_IMAGE_INDETERMINABLE; if (fd != -1) (void) close(fd); return; } (void) close(fd); if ((unsigned) nbytes != sizeof(ex) || N_BADMAG(ex)) return; image->pi_type = PMCSTAT_IMAGE_AOUT; /* TODO: the rest of a.out processing */ return; } /* * Helper function. */ static int pmcstat_symbol_compare(const void *a, const void *b) { const struct pmcstat_symbol *sym1, *sym2; sym1 = (const struct pmcstat_symbol *) a; sym2 = (const struct pmcstat_symbol *) b; if (sym1->ps_end <= sym2->ps_start) return (-1); if (sym1->ps_start >= sym2->ps_end) return (1); return (0); } /* * Map an address to a symbol in an image. */ static struct pmcstat_symbol * pmcstat_symbol_search(struct pmcstat_image *image, uintfptr_t addr) { struct pmcstat_symbol sym; if (image->pi_symbols == NULL) return (NULL); sym.ps_name = NULL; sym.ps_start = addr; sym.ps_end = addr + 1; return (bsearch((void *) &sym, image->pi_symbols, image->pi_symcount, sizeof(struct pmcstat_symbol), pmcstat_symbol_compare)); } /* * Add the list of symbols in the given section to the list associated * with the object. */ static void pmcstat_image_add_symbols(struct pmcstat_image *image, Elf *e, Elf_Scn *scn, GElf_Shdr *sh) { int firsttime; size_t n, newsyms, nshsyms, nfuncsyms; struct pmcstat_symbol *symptr; char *fnname; GElf_Sym sym; Elf_Data *data; if ((data = elf_getdata(scn, NULL)) == NULL) return; /* * Determine the number of functions named in this * section. */ nshsyms = sh->sh_size / sh->sh_entsize; for (n = nfuncsyms = 0; n < nshsyms; n++) { if (gelf_getsym(data, (int) n, &sym) != &sym) return; if (GELF_ST_TYPE(sym.st_info) == STT_FUNC) nfuncsyms++; } if (nfuncsyms == 0) return; /* * Allocate space for the new entries. */ firsttime = image->pi_symbols == NULL; symptr = realloc(image->pi_symbols, sizeof(*symptr) * (image->pi_symcount + nfuncsyms)); if (symptr == image->pi_symbols) /* realloc() failed. */ return; image->pi_symbols = symptr; /* * Append new symbols to the end of the current table. */ symptr += image->pi_symcount; for (n = newsyms = 0; n < nshsyms; n++) { if (gelf_getsym(data, (int) n, &sym) != &sym) return; if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) continue; if (!firsttime && pmcstat_symbol_search(image, sym.st_value)) continue; /* We've seen this symbol already. */ if ((fnname = elf_strptr(e, sh->sh_link, sym.st_name)) == NULL) continue; symptr->ps_name = pmcstat_string_intern(fnname); symptr->ps_start = sym.st_value - image->pi_vaddr; symptr->ps_end = symptr->ps_start + sym.st_size; symptr++; newsyms++; } image->pi_symcount += newsyms; assert(newsyms <= nfuncsyms); /* * Return space to the system if there were duplicates. */ if (newsyms < nfuncsyms) image->pi_symbols = realloc(image->pi_symbols, sizeof(*symptr) * image->pi_symcount); /* * Keep the list of symbols sorted. */ qsort(image->pi_symbols, image->pi_symcount, sizeof(*symptr), pmcstat_symbol_compare); /* * Deal with function symbols that have a size of 'zero' by * making them extend to the next higher address. These * symbols are usually defined in assembly code. */ for (symptr = image->pi_symbols; symptr < image->pi_symbols + (image->pi_symcount - 1); symptr++) if (symptr->ps_start == symptr->ps_end) symptr->ps_end = (symptr+1)->ps_start; } /* * Examine an ELF file to determine the size of its text segment. * Sets image->pi_type if anything conclusive can be determined about * this image. */ static void pmcstat_image_get_elf_params(struct pmcstat_image *image, struct pmcstat_args *a) { int fd; size_t i, nph, nsh; const char *path, *elfbase; uintfptr_t minva, maxva; Elf *e; Elf_Scn *scn; GElf_Ehdr eh; GElf_Phdr ph; GElf_Shdr sh; enum pmcstat_image_type image_type; char buffer[PATH_MAX]; assert(image->pi_type == PMCSTAT_IMAGE_UNKNOWN); image->pi_start = minva = ~(uintfptr_t) 0; image->pi_end = maxva = (uintfptr_t) 0; image->pi_type = image_type = PMCSTAT_IMAGE_INDETERMINABLE; image->pi_isdynamic = 0; image->pi_dynlinkerpath = NULL; image->pi_vaddr = 0; path = pmcstat_string_unintern(image->pi_execpath); assert(path != NULL); /* * Look for kernel modules under FSROOT/KERNELPATH/NAME, * and user mode executable objects under FSROOT/PATHNAME. */ if (image->pi_iskernelmodule) (void) snprintf(buffer, sizeof(buffer), "%s%s/%s", a->pa_fsroot, a->pa_kernel, path); else (void) snprintf(buffer, sizeof(buffer), "%s%s", a->pa_fsroot, path); e = NULL; if ((fd = open(buffer, O_RDONLY, 0)) < 0 || (e = elf_begin(fd, ELF_C_READ, NULL)) == NULL || (elf_kind(e) != ELF_K_ELF)) { warnx("WARNING: Cannot determine the type of \"%s\".", buffer); goto done; } if (gelf_getehdr(e, &eh) != &eh) { warnx("WARNING: Cannot retrieve the ELF Header for " "\"%s\": %s.", buffer, elf_errmsg(-1)); goto done; } if (eh.e_type != ET_EXEC && eh.e_type != ET_DYN && !(image->pi_iskernelmodule && eh.e_type == ET_REL)) { warnx("WARNING: \"%s\" is of an unsupported ELF type.", buffer); goto done; } image_type = eh.e_ident[EI_CLASS] == ELFCLASS32 ? PMCSTAT_IMAGE_ELF32 : PMCSTAT_IMAGE_ELF64; /* * Determine the virtual address where an executable would be * loaded. Additionally, for dynamically linked executables, * save the pathname to the runtime linker. */ if (eh.e_type == ET_EXEC) { if (elf_getphnum(e, &nph) == 0) { warnx("WARNING: Could not determine the number of " "program headers in \"%s\": %s.", buffer, elf_errmsg(-1)); goto done; } for (i = 0; i < eh.e_phnum; i++) { if (gelf_getphdr(e, i, &ph) != &ph) { warnx("WARNING: Retrieval of PHDR entry #%ju " "in \"%s\" failed: %s.", (uintmax_t) i, buffer, elf_errmsg(-1)); goto done; } switch (ph.p_type) { case PT_DYNAMIC: image->pi_isdynamic = 1; break; case PT_INTERP: if ((elfbase = elf_rawfile(e, NULL)) == NULL) { warnx("WARNING: Cannot retrieve the " "interpreter for \"%s\": %s.", buffer, elf_errmsg(-1)); goto done; } image->pi_dynlinkerpath = pmcstat_string_intern(elfbase + ph.p_offset); break; case PT_LOAD: if (ph.p_offset == 0) image->pi_vaddr = ph.p_vaddr; break; } } } /* * Get the min and max VA associated with this ELF object. */ if (elf_getshnum(e, &nsh) == 0) { warnx("WARNING: Could not determine the number of sections " "for \"%s\": %s.", buffer, elf_errmsg(-1)); goto done; } for (i = 0; i < nsh; i++) { if ((scn = elf_getscn(e, i)) == NULL || gelf_getshdr(scn, &sh) != &sh) { warnx("WARNING: Could not retrieve section header " "#%ju in \"%s\": %s.", (uintmax_t) i, buffer, elf_errmsg(-1)); goto done; } if (sh.sh_flags & SHF_EXECINSTR) { minva = min(minva, sh.sh_addr); maxva = max(maxva, sh.sh_addr + sh.sh_size); } if (sh.sh_type == SHT_SYMTAB || sh.sh_type == SHT_DYNSYM) pmcstat_image_add_symbols(image, e, scn, &sh); } image->pi_start = minva; image->pi_end = maxva; image->pi_type = image_type; image->pi_fullpath = pmcstat_string_intern(buffer); done: (void) elf_end(e); if (fd >= 0) (void) close(fd); return; } /* * Given an image descriptor, determine whether it is an ELF, or AOUT. * If no handler claims the image, set its type to 'INDETERMINABLE'. */ static void pmcstat_image_determine_type(struct pmcstat_image *image, struct pmcstat_args *a) { assert(image->pi_type == PMCSTAT_IMAGE_UNKNOWN); /* Try each kind of handler in turn */ if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN) pmcstat_image_get_elf_params(image, a); if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN) pmcstat_image_get_aout_params(image, a); /* * Otherwise, remember that we tried to determine * the object's type and had failed. */ if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN) image->pi_type = PMCSTAT_IMAGE_INDETERMINABLE; } /* * Locate an image descriptor given an interned path, adding a fresh * descriptor to the cache if necessary. This function also finds a * suitable name for this image's sample file. * * We defer filling in the file format specific parts of the image * structure till the time we actually see a sample that would fall * into this image. */ static struct pmcstat_image * pmcstat_image_from_path(pmcstat_interned_string internedpath, int iskernelmodule) { int count, hash, nlen; struct pmcstat_image *pi; char *sn; char name[NAME_MAX]; hash = pmcstat_string_lookup_hash(internedpath); /* First, look for an existing entry. */ LIST_FOREACH(pi, &pmcstat_image_hash[hash], pi_next) if (pi->pi_execpath == internedpath && pi->pi_iskernelmodule == iskernelmodule) return (pi); /* * Allocate a new entry and place it at the head of the hash * and LRU lists. */ pi = malloc(sizeof(*pi)); if (pi == NULL) return (NULL); pi->pi_type = PMCSTAT_IMAGE_UNKNOWN; pi->pi_execpath = internedpath; pi->pi_start = ~0; pi->pi_end = 0; pi->pi_entry = 0; pi->pi_vaddr = 0; pi->pi_isdynamic = 0; pi->pi_iskernelmodule = iskernelmodule; pi->pi_dynlinkerpath = NULL; pi->pi_symbols = NULL; pi->pi_symcount = 0; /* * Look for a suitable name for the sample files associated * with this image: if `basename(path)`+".gmon" is available, * we use that, otherwise we try iterating through * `basename(path)`+ "~" + NNN + ".gmon" till we get a free * entry. */ if ((sn = basename(pmcstat_string_unintern(internedpath))) == NULL) err(EX_OSERR, "ERROR: Cannot process \"%s\"", pmcstat_string_unintern(internedpath)); nlen = strlen(sn); nlen = min(nlen, (int) (sizeof(name) - sizeof(".gmon"))); snprintf(name, sizeof(name), "%.*s.gmon", nlen, sn); /* try use the unabridged name first */ if (pmcstat_string_lookup(name) == NULL) pi->pi_samplename = pmcstat_string_intern(name); else { /* * Otherwise use a prefix from the original name and * upto 3 digits. */ nlen = strlen(sn); nlen = min(nlen, (int) (sizeof(name)-sizeof("~NNN.gmon"))); count = 0; do { if (++count > 999) errx(EX_CANTCREAT, "ERROR: cannot create a " "gmon file for \"%s\"", name); snprintf(name, sizeof(name), "%.*s~%3.3d.gmon", nlen, sn, count); if (pmcstat_string_lookup(name) == NULL) { pi->pi_samplename = pmcstat_string_intern(name); count = 0; } } while (count > 0); } LIST_INIT(&pi->pi_gmlist); LIST_INSERT_HEAD(&pmcstat_image_hash[hash], pi, pi_next); return (pi); } /* * Increment the bucket in the gmon.out file corresponding to 'pmcid' * and 'pc'. */ static void pmcstat_image_increment_bucket(struct pmcstat_pcmap *map, uintfptr_t pc, pmc_id_t pmcid, struct pmcstat_args *a) { struct pmcstat_image *image; struct pmcstat_gmonfile *pgf; uintfptr_t bucket; HISTCOUNTER *hc; assert(pc >= map->ppm_lowpc && pc < map->ppm_highpc); image = map->ppm_image; /* * If this is the first time we are seeing a sample for * this executable image, try determine its parameters. */ if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN) pmcstat_image_determine_type(image, a); assert(image->pi_type != PMCSTAT_IMAGE_UNKNOWN); /* Ignore samples in images that we know nothing about. */ if (image->pi_type == PMCSTAT_IMAGE_INDETERMINABLE) { pmcstat_stats.ps_samples_indeterminable++; return; } /* * Find the gmon file corresponding to 'pmcid', creating it if * needed. */ pgf = pmcstat_image_find_gmonfile(image, pmcid); if (pgf == NULL) { if ((pgf = calloc(1, sizeof(*pgf))) == NULL) err(EX_OSERR, "ERROR:"); pgf->pgf_gmondata = NULL; /* mark as unmapped */ pgf->pgf_name = pmcstat_gmon_create_name(a->pa_samplesdir, image, pmcid); pgf->pgf_pmcid = pmcid; assert(image->pi_end > image->pi_start); pgf->pgf_nbuckets = (image->pi_end - image->pi_start) / FUNCTION_ALIGNMENT; /* see */ pgf->pgf_ndatabytes = sizeof(struct gmonhdr) + pgf->pgf_nbuckets * sizeof(HISTCOUNTER); pgf->pgf_nsamples = 0; pgf->pgf_file = NULL; pmcstat_gmon_create_file(pgf, image); LIST_INSERT_HEAD(&image->pi_gmlist, pgf, pgf_next); } /* * Map the gmon file in if needed. It may have been mapped * out under memory pressure. */ if (pgf->pgf_gmondata == NULL) pmcstat_gmon_map_file(pgf); assert(pgf->pgf_gmondata != NULL); /* * */ bucket = (pc - map->ppm_lowpc) / FUNCTION_ALIGNMENT; assert(bucket < pgf->pgf_nbuckets); hc = (HISTCOUNTER *) ((uintptr_t) pgf->pgf_gmondata + sizeof(struct gmonhdr)); /* saturating add */ if (hc[bucket] < 0xFFFFU) /* XXX tie this to sizeof(HISTCOUNTER) */ hc[bucket]++; else /* mark that an overflow occurred */ pgf->pgf_overflow = 1; pgf->pgf_nsamples++; } /* * Record the fact that PC values from 'start' to 'end' come from * image 'image'. */ static void pmcstat_image_link(struct pmcstat_process *pp, struct pmcstat_image *image, uintfptr_t start) { struct pmcstat_pcmap *pcm, *pcmnew; uintfptr_t offset; assert(image->pi_type != PMCSTAT_IMAGE_UNKNOWN && image->pi_type != PMCSTAT_IMAGE_INDETERMINABLE); if ((pcmnew = malloc(sizeof(*pcmnew))) == NULL) err(EX_OSERR, "ERROR: Cannot create a map entry"); /* * Adjust the map entry to only cover the text portion * of the object. */ offset = start - image->pi_vaddr; pcmnew->ppm_lowpc = image->pi_start + offset; pcmnew->ppm_highpc = image->pi_end + offset; pcmnew->ppm_image = image; assert(pcmnew->ppm_lowpc < pcmnew->ppm_highpc); /* Overlapped mmap()'s are assumed to never occur. */ TAILQ_FOREACH(pcm, &pp->pp_map, ppm_next) if (pcm->ppm_lowpc >= pcmnew->ppm_highpc) break; if (pcm == NULL) TAILQ_INSERT_TAIL(&pp->pp_map, pcmnew, ppm_next); else TAILQ_INSERT_BEFORE(pcm, pcmnew, ppm_next); } /* * Unmap images in the range [start..end) associated with process * 'pp'. */ static void pmcstat_image_unmap(struct pmcstat_process *pp, uintfptr_t start, uintfptr_t end) { struct pmcstat_pcmap *pcm, *pcmtmp, *pcmnew; assert(pp != NULL); assert(start < end); /* * Cases: * - we could have the range completely in the middle of an * existing pcmap; in this case we have to split the pcmap * structure into two (i.e., generate a 'hole'). * - we could have the range covering multiple pcmaps; these * will have to be removed. * - we could have either 'start' or 'end' falling in the * middle of a pcmap; in this case shorten the entry. */ TAILQ_FOREACH_SAFE(pcm, &pp->pp_map, ppm_next, pcmtmp) { assert(pcm->ppm_lowpc < pcm->ppm_highpc); if (pcm->ppm_highpc <= start) continue; if (pcm->ppm_lowpc >= end) return; if (pcm->ppm_lowpc >= start && pcm->ppm_highpc <= end) { /* * The current pcmap is completely inside the * unmapped range: remove it entirely. */ TAILQ_REMOVE(&pp->pp_map, pcm, ppm_next); free(pcm); } else if (pcm->ppm_lowpc < start && pcm->ppm_highpc > end) { /* * Split this pcmap into two; curtail the * current map to end at [start-1], and start * the new one at [end]. */ if ((pcmnew = malloc(sizeof(*pcmnew))) == NULL) err(EX_OSERR, "ERROR: Cannot split a map " "entry"); pcmnew->ppm_image = pcm->ppm_image; pcmnew->ppm_lowpc = end; pcmnew->ppm_highpc = pcm->ppm_highpc; pcm->ppm_highpc = start; TAILQ_INSERT_AFTER(&pp->pp_map, pcm, pcmnew, ppm_next); return; } else if (pcm->ppm_lowpc < start && pcm->ppm_highpc <= end) pcm->ppm_highpc = start; else if (pcm->ppm_lowpc >= start && pcm->ppm_highpc > end) pcm->ppm_lowpc = end; else assert(0); } } /* * Add a {pmcid,name} mapping. */ static void pmcstat_pmcid_add(pmc_id_t pmcid, pmcstat_interned_string ps, struct pmcstat_args *a) { struct pmcstat_pmcrecord *pr; struct stat st; char fullpath[PATH_MAX]; /* Replace an existing name for the PMC. */ LIST_FOREACH(pr, &pmcstat_pmcs, pr_next) if (pr->pr_pmcid == pmcid) { pr->pr_pmcname = ps; return; } /* * Otherwise, allocate a new descriptor and create the * appropriate directory to hold gmon.out files. */ if ((pr = malloc(sizeof(*pr))) == NULL) err(EX_OSERR, "ERROR: Cannot allocate pmc record"); pr->pr_pmcid = pmcid; pr->pr_pmcname = ps; LIST_INSERT_HEAD(&pmcstat_pmcs, pr, pr_next); (void) snprintf(fullpath, sizeof(fullpath), "%s/%s", a->pa_samplesdir, pmcstat_string_unintern(ps)); /* If the path name exists, it should be a directory */ if (stat(fullpath, &st) == 0 && S_ISDIR(st.st_mode)) return; if (mkdir(fullpath, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) < 0) err(EX_OSERR, "ERROR: Cannot create directory \"%s\"", fullpath); } /* * Given a pmcid in use, find its human-readable name. */ static const char * pmcstat_pmcid_to_name(pmc_id_t pmcid) { struct pmcstat_pmcrecord *pr; char fullpath[PATH_MAX]; LIST_FOREACH(pr, &pmcstat_pmcs, pr_next) if (pr->pr_pmcid == pmcid) return (pmcstat_string_unintern(pr->pr_pmcname)); /* create a default name and add this entry */ if ((pr = malloc(sizeof(*pr))) == NULL) err(EX_OSERR, "ERROR: "); pr->pr_pmcid = pmcid; (void) snprintf(fullpath, sizeof(fullpath), "%X", (unsigned int) pmcid); pr->pr_pmcname = pmcstat_string_intern(fullpath); LIST_INSERT_HEAD(&pmcstat_pmcs, pr, pr_next); return (pmcstat_string_unintern(pr->pr_pmcname)); } /* * Associate an AOUT image with a process. */ static void pmcstat_process_aout_exec(struct pmcstat_process *pp, struct pmcstat_image *image, uintfptr_t entryaddr, struct pmcstat_args *a) { (void) pp; (void) image; (void) entryaddr; (void) a; /* TODO Implement a.out handling */ } /* * Associate an ELF image with a process. */ static void pmcstat_process_elf_exec(struct pmcstat_process *pp, struct pmcstat_image *image, uintfptr_t entryaddr, struct pmcstat_args *a) { uintmax_t libstart; struct pmcstat_image *rtldimage; assert(image->pi_type == PMCSTAT_IMAGE_ELF32 || image->pi_type == PMCSTAT_IMAGE_ELF64); /* Create a map entry for the base executable. */ pmcstat_image_link(pp, image, image->pi_vaddr); /* * For dynamically linked executables we need to determine * where the dynamic linker was mapped to for this process, * Subsequent executable objects that are mapped in by the * dynamic linker will be tracked by log events of type * PMCLOG_TYPE_MAP_IN. */ if (image->pi_isdynamic) { /* * The runtime loader gets loaded just after the maximum * possible heap address. Like so: * * [ TEXT DATA BSS HEAP -->*RTLD SHLIBS <--STACK] * ^ ^ * 0 VM_MAXUSER_ADDRESS * * The exact address where the loader gets mapped in * will vary according to the size of the executable * and the limits on the size of the process'es data * segment at the time of exec(). The entry address * recorded at process exec time corresponds to the * 'start' address inside the dynamic linker. From * this we can figure out the address where the * runtime loader's file object had been mapped to. */ rtldimage = pmcstat_image_from_path(image->pi_dynlinkerpath, 0); if (rtldimage == NULL) { warnx("WARNING: Cannot find image for \"%s\".", pmcstat_string_unintern(image->pi_dynlinkerpath)); pmcstat_stats.ps_exec_errors++; return; } if (rtldimage->pi_type == PMCSTAT_IMAGE_UNKNOWN) pmcstat_image_get_elf_params(rtldimage, a); if (rtldimage->pi_type != PMCSTAT_IMAGE_ELF32 && rtldimage->pi_type != PMCSTAT_IMAGE_ELF64) { warnx("WARNING: rtld not an ELF object \"%s\".", pmcstat_string_unintern(image->pi_dynlinkerpath)); return; } libstart = entryaddr - rtldimage->pi_entry; pmcstat_image_link(pp, rtldimage, libstart); } } /* * Find the process descriptor corresponding to a PID. If 'allocate' * is zero, we return a NULL if a pid descriptor could not be found or * a process descriptor process. If 'allocate' is non-zero, then we * will attempt to allocate a fresh process descriptor. Zombie * process descriptors are only removed if a fresh allocation for the * same PID is requested. */ static struct pmcstat_process * pmcstat_process_lookup(pid_t pid, int allocate) { uint32_t hash; struct pmcstat_pcmap *ppm, *ppmtmp; struct pmcstat_process *pp, *pptmp; hash = (uint32_t) pid & PMCSTAT_HASH_MASK; /* simplicity wins */ LIST_FOREACH_SAFE(pp, &pmcstat_process_hash[hash], pp_next, pptmp) if (pp->pp_pid == pid) { /* Found a descriptor, check and process zombies */ if (allocate && pp->pp_isactive == 0) { /* remove maps */ TAILQ_FOREACH_SAFE(ppm, &pp->pp_map, ppm_next, ppmtmp) { TAILQ_REMOVE(&pp->pp_map, ppm, ppm_next); free(ppm); } /* remove process entry */ LIST_REMOVE(pp, pp_next); free(pp); break; } return (pp); } if (!allocate) return (NULL); if ((pp = malloc(sizeof(*pp))) == NULL) err(EX_OSERR, "ERROR: Cannot allocate pid descriptor"); pp->pp_pid = pid; pp->pp_isactive = 1; TAILQ_INIT(&pp->pp_map); LIST_INSERT_HEAD(&pmcstat_process_hash[hash], pp, pp_next); return (pp); } /* * Associate an image and a process. */ static void pmcstat_process_exec(struct pmcstat_process *pp, pmcstat_interned_string path, uintfptr_t entryaddr, struct pmcstat_args *a) { struct pmcstat_image *image; if ((image = pmcstat_image_from_path(path, 0)) == NULL) { pmcstat_stats.ps_exec_errors++; return; } if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN) pmcstat_image_determine_type(image, a); assert(image->pi_type != PMCSTAT_IMAGE_UNKNOWN); switch (image->pi_type) { case PMCSTAT_IMAGE_ELF32: case PMCSTAT_IMAGE_ELF64: pmcstat_stats.ps_exec_elf++; pmcstat_process_elf_exec(pp, image, entryaddr, a); break; case PMCSTAT_IMAGE_AOUT: pmcstat_stats.ps_exec_aout++; pmcstat_process_aout_exec(pp, image, entryaddr, a); break; case PMCSTAT_IMAGE_INDETERMINABLE: pmcstat_stats.ps_exec_indeterminable++; break; default: err(EX_SOFTWARE, "ERROR: Unsupported executable type for " "\"%s\"", pmcstat_string_unintern(path)); } } /* * Find the map entry associated with process 'p' at PC value 'pc'. */ static struct pmcstat_pcmap * pmcstat_process_find_map(struct pmcstat_process *p, uintfptr_t pc) { struct pmcstat_pcmap *ppm; TAILQ_FOREACH(ppm, &p->pp_map, ppm_next) { if (pc >= ppm->ppm_lowpc && pc < ppm->ppm_highpc) return (ppm); if (pc < ppm->ppm_lowpc) return (NULL); } return (NULL); } static struct pmcstat_cgnode * pmcstat_cgnode_allocate(struct pmcstat_image *image, uintfptr_t pc) { struct pmcstat_cgnode *cg; if ((cg = malloc(sizeof(*cg))) == NULL) err(EX_OSERR, "ERROR: Cannot allocate callgraph node"); cg->pcg_image = image; cg->pcg_func = pc; cg->pcg_count = 0; cg->pcg_nchildren = 0; LIST_INIT(&cg->pcg_children); return (cg); } /* * Free a node and its children. */ static void pmcstat_cgnode_free(struct pmcstat_cgnode *cg) { struct pmcstat_cgnode *cgc, *cgtmp; LIST_FOREACH_SAFE(cgc, &cg->pcg_children, pcg_sibling, cgtmp) pmcstat_cgnode_free(cgc); free(cg); } /* * Look for a callgraph node associated with pmc `pmcid' in the global * hash table that corresponds to the given `pc' value in the process * `pp'. */ static struct pmcstat_cgnode * pmcstat_cgnode_hash_lookup_pc(struct pmcstat_process *pp, uint32_t pmcid, uintfptr_t pc, int usermode) { struct pmcstat_pcmap *ppm; struct pmcstat_symbol *sym; struct pmcstat_image *image; struct pmcstat_cgnode *cg; struct pmcstat_cgnode_hash *h; uintfptr_t loadaddress; unsigned int i, hash; ppm = pmcstat_process_find_map(usermode ? pp : pmcstat_kernproc, pc); if (ppm == NULL) return (NULL); image = ppm->ppm_image; loadaddress = ppm->ppm_lowpc + image->pi_vaddr - image->pi_start; pc -= loadaddress; /* Convert to an offset in the image. */ /* * Try determine the function at this offset. If we can't * find a function round leave the `pc' value alone. */ if ((sym = pmcstat_symbol_search(image, pc)) != NULL) pc = sym->ps_start; for (hash = i = 0; i < sizeof(uintfptr_t); i++) hash += (pc >> i) & 0xFF; hash &= PMCSTAT_HASH_MASK; cg = NULL; LIST_FOREACH(h, &pmcstat_cgnode_hash[hash], pch_next) { if (h->pch_pmcid != pmcid) continue; cg = h->pch_cgnode; assert(cg != NULL); if (cg->pcg_image == image && cg->pcg_func == pc) return (cg); } /* * We haven't seen this (pmcid, pc) tuple yet, so allocate a * new callgraph node and a new hash table entry for it. */ cg = pmcstat_cgnode_allocate(image, pc); if ((h = malloc(sizeof(*h))) == NULL) err(EX_OSERR, "ERROR: Could not allocate callgraph node"); h->pch_pmcid = pmcid; h->pch_cgnode = cg; LIST_INSERT_HEAD(&pmcstat_cgnode_hash[hash], h, pch_next); pmcstat_cgnode_hash_count++; return (cg); } /* * Compare two callgraph nodes for sorting. */ static int pmcstat_cgnode_compare(const void *a, const void *b) { const struct pmcstat_cgnode *const *pcg1, *const *pcg2, *cg1, *cg2; pcg1 = (const struct pmcstat_cgnode *const *) a; cg1 = *pcg1; pcg2 = (const struct pmcstat_cgnode *const *) b; cg2 = *pcg2; /* Sort in reverse order */ if (cg1->pcg_count < cg2->pcg_count) return (1); if (cg1->pcg_count > cg2->pcg_count) return (-1); return (0); } /* * Find (allocating if a needed) a callgraph node in the given * parent with the same (image, pcoffset) pair. */ static struct pmcstat_cgnode * pmcstat_cgnode_find(struct pmcstat_cgnode *parent, struct pmcstat_image *image, uintfptr_t pcoffset) { struct pmcstat_cgnode *child; LIST_FOREACH(child, &parent->pcg_children, pcg_sibling) { if (child->pcg_image == image && child->pcg_func == pcoffset) return (child); } /* * Allocate a new structure. */ child = pmcstat_cgnode_allocate(image, pcoffset); /* * Link it into the parent. */ LIST_INSERT_HEAD(&parent->pcg_children, child, pcg_sibling); parent->pcg_nchildren++; return (child); } /* * Print one callgraph node. The output format is: * * indentation %(parent's samples) #nsamples function@object */ static void pmcstat_cgnode_print(struct pmcstat_args *a, struct pmcstat_cgnode *cg, int depth, uint32_t total) { uint32_t n; const char *space; struct pmcstat_symbol *sym; struct pmcstat_cgnode **sortbuffer, **cgn, *pcg; space = " "; if (depth > 0) (void) fprintf(a->pa_graphfile, "%*s", depth, space); if (cg->pcg_count == total) (void) fprintf(a->pa_graphfile, "100.0%% "); else (void) fprintf(a->pa_graphfile, "%05.2f%% ", 100.0 * cg->pcg_count / total); n = fprintf(a->pa_graphfile, " [%u] ", cg->pcg_count); /* #samples is a 12 character wide field. */ if (n < 12) (void) fprintf(a->pa_graphfile, "%*s", 12 - n, space); if (depth > 0) (void) fprintf(a->pa_graphfile, "%*s", depth, space); sym = pmcstat_symbol_search(cg->pcg_image, cg->pcg_func); if (sym) (void) fprintf(a->pa_graphfile, "%s", pmcstat_string_unintern(sym->ps_name)); else (void) fprintf(a->pa_graphfile, "%p", (void *) (cg->pcg_image->pi_vaddr + cg->pcg_func)); if (pmcstat_previous_filename_printed != cg->pcg_image->pi_fullpath) { pmcstat_previous_filename_printed = cg->pcg_image->pi_fullpath; (void) fprintf(a->pa_graphfile, " @ %s\n", pmcstat_string_unintern( pmcstat_previous_filename_printed)); } else (void) fprintf(a->pa_graphfile, "\n"); if (cg->pcg_nchildren == 0) return; if ((sortbuffer = (struct pmcstat_cgnode **) malloc(sizeof(struct pmcstat_cgnode *) * cg->pcg_nchildren)) == NULL) err(EX_OSERR, "ERROR: Cannot print callgraph"); cgn = sortbuffer; LIST_FOREACH(pcg, &cg->pcg_children, pcg_sibling) *cgn++ = pcg; assert(cgn - sortbuffer == (int) cg->pcg_nchildren); qsort(sortbuffer, cg->pcg_nchildren, sizeof(struct pmcstat_cgnode *), pmcstat_cgnode_compare); for (cgn = sortbuffer, n = 0; n < cg->pcg_nchildren; n++, cgn++) pmcstat_cgnode_print(a, *cgn, depth+1, cg->pcg_count); free(sortbuffer); } /* * Record a callchain. */ static void pmcstat_record_callchain(struct pmcstat_process *pp, uint32_t pmcid, uint32_t nsamples, uintfptr_t *cc, int usermode, struct pmcstat_args *a) { uintfptr_t pc, loadaddress; uint32_t n; struct pmcstat_image *image; struct pmcstat_pcmap *ppm; struct pmcstat_symbol *sym; struct pmcstat_cgnode *parent, *child; /* * Find the callgraph node recorded in the global hash table * for this (pmcid, pc). */ pc = cc[0]; parent = pmcstat_cgnode_hash_lookup_pc(pp, pmcid, pc, usermode); if (parent == NULL) { pmcstat_stats.ps_callchain_dubious_frames++; return; } parent->pcg_count++; /* * For each return address in the call chain record, subject * to the maximum depth desired. * - Find the image associated with the sample. Stop if there * there is no valid image at that address. * - Find the function that overlaps the return address. * - If found: use the start address of the function. * If not found (say an object's symbol table is not present or * is incomplete), round down to th gprof bucket granularity. * - Convert return virtual address to an offset in the image. * - Look for a child with the same {offset,image} tuple, * inserting one if needed. * - Increment the count of occurrences of the child. */ for (n = 1; n < (uint32_t) a->pa_graphdepth && n < nsamples; n++, parent = child) { pc = cc[n]; ppm = pmcstat_process_find_map(usermode ? pp : pmcstat_kernproc, pc); if (ppm == NULL) return; image = ppm->ppm_image; loadaddress = ppm->ppm_lowpc + image->pi_vaddr - image->pi_start; pc -= loadaddress; if ((sym = pmcstat_symbol_search(image, pc)) != NULL) pc = sym->ps_start; child = pmcstat_cgnode_find(parent, image, pc); child->pcg_count++; } } /* * Printing a callgraph for a PMC. */ static void pmcstat_callgraph_print_for_pmcid(struct pmcstat_args *a, struct pmcstat_pmcrecord *pmcr) { int n, nentries; uint32_t nsamples, pmcid; struct pmcstat_cgnode **sortbuffer, **cgn; struct pmcstat_cgnode_hash *pch; /* * We pull out all callgraph nodes in the top-level hash table * with a matching PMC id. We then sort these based on the * frequency of occurrence. Each callgraph node is then * printed. */ nsamples = 0; pmcid = pmcr->pr_pmcid; if ((sortbuffer = (struct pmcstat_cgnode **) malloc(sizeof(struct pmcstat_cgnode *) * pmcstat_cgnode_hash_count)) == NULL) err(EX_OSERR, "ERROR: Cannot sort callgraph"); cgn = sortbuffer; memset(sortbuffer, 0xFF, pmcstat_cgnode_hash_count * sizeof(struct pmcstat_cgnode **)); for (n = 0; n < PMCSTAT_NHASH; n++) LIST_FOREACH(pch, &pmcstat_cgnode_hash[n], pch_next) if (pch->pch_pmcid == pmcid) { nsamples += pch->pch_cgnode->pcg_count; *cgn++ = pch->pch_cgnode; } nentries = cgn - sortbuffer; assert(nentries <= pmcstat_cgnode_hash_count); if (nentries == 0) return; qsort(sortbuffer, nentries, sizeof(struct pmcstat_cgnode *), pmcstat_cgnode_compare); (void) fprintf(a->pa_graphfile, "@ %s [%u samples]\n\n", pmcstat_string_unintern(pmcr->pr_pmcname), nsamples); for (cgn = sortbuffer, n = 0; n < nentries; n++, cgn++) { pmcstat_previous_filename_printed = NULL; pmcstat_cgnode_print(a, *cgn, 0, nsamples); (void) fprintf(a->pa_graphfile, "\n"); } free(sortbuffer); } /* * Print out callgraphs. */ static void pmcstat_callgraph_print(struct pmcstat_args *a) { struct pmcstat_pmcrecord *pmcr; LIST_FOREACH(pmcr, &pmcstat_pmcs, pr_next) pmcstat_callgraph_print_for_pmcid(a, pmcr); } static void pmcstat_cgnode_do_gmon_arcs(struct pmcstat_cgnode *cg, pmc_id_t pmcid) { struct pmcstat_cgnode *cgc; /* * Look for child nodes that belong to the same image. */ LIST_FOREACH(cgc, &cg->pcg_children, pcg_sibling) { if (cgc->pcg_image == cg->pcg_image) pmcstat_gmon_append_arc(cg->pcg_image, pmcid, cgc->pcg_func, cg->pcg_func, cgc->pcg_count); if (cgc->pcg_nchildren > 0) pmcstat_cgnode_do_gmon_arcs(cgc, pmcid); } } static void pmcstat_callgraph_do_gmon_arcs_for_pmcid(pmc_id_t pmcid) { int n; struct pmcstat_cgnode_hash *pch; for (n = 0; n < PMCSTAT_NHASH; n++) LIST_FOREACH(pch, &pmcstat_cgnode_hash[n], pch_next) if (pch->pch_pmcid == pmcid && pch->pch_cgnode->pcg_nchildren > 1) pmcstat_cgnode_do_gmon_arcs(pch->pch_cgnode, pmcid); } static void pmcstat_callgraph_do_gmon_arcs(void) { struct pmcstat_pmcrecord *pmcr; LIST_FOREACH(pmcr, &pmcstat_pmcs, pr_next) pmcstat_callgraph_do_gmon_arcs_for_pmcid(pmcr->pr_pmcid); } /* * Convert a hwpmc(4) log to profile information. A system-wide * callgraph is generated if FLAG_DO_CALLGRAPHS is set. gmon.out * files usable by gprof(1) are created if FLAG_DO_GPROF is set. */ static int pmcstat_analyze_log(struct pmcstat_args *a) { uint32_t cpu, cpuflags; uintfptr_t pc, newpc; pid_t pid; struct pmcstat_image *image; struct pmcstat_symbol *sym; struct pmcstat_process *pp, *ppnew; struct pmcstat_pcmap *ppm, *ppmtmp; struct pmclog_ev ev; pmcstat_interned_string image_path; assert(a->pa_flags & FLAG_DO_ANALYSIS); if (elf_version(EV_CURRENT) == EV_NONE) err(EX_UNAVAILABLE, "Elf library intialization failed"); while (pmclog_read(a->pa_logparser, &ev) == 0) { assert(ev.pl_state == PMCLOG_OK); switch (ev.pl_type) { case PMCLOG_TYPE_INITIALIZE: if ((ev.pl_u.pl_i.pl_version & 0xFF000000) != PMC_VERSION_MAJOR << 24 && a->pa_verbosity > 0) warnx("WARNING: Log version 0x%x does not " "match compiled version 0x%x.", ev.pl_u.pl_i.pl_version, PMC_VERSION_MAJOR); break; case PMCLOG_TYPE_MAP_IN: /* * Introduce an address range mapping for a * userland process or the kernel (pid == -1). * * We always allocate a process descriptor so * that subsequent samples seen for this * address range are mapped to the current * object being mapped in. */ pid = ev.pl_u.pl_mi.pl_pid; if (pid == -1) pp = pmcstat_kernproc; else pp = pmcstat_process_lookup(pid, PMCSTAT_ALLOCATE); assert(pp != NULL); image_path = pmcstat_string_intern(ev.pl_u.pl_mi. pl_pathname); image = pmcstat_image_from_path(image_path, pid == -1); if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN) pmcstat_image_determine_type(image, a); if (image->pi_type != PMCSTAT_IMAGE_INDETERMINABLE) pmcstat_image_link(pp, image, ev.pl_u.pl_mi.pl_start); break; case PMCLOG_TYPE_MAP_OUT: /* * Remove an address map. */ pid = ev.pl_u.pl_mo.pl_pid; if (pid == -1) pp = pmcstat_kernproc; else pp = pmcstat_process_lookup(pid, 0); if (pp == NULL) /* unknown process */ break; pmcstat_image_unmap(pp, ev.pl_u.pl_mo.pl_start, ev.pl_u.pl_mo.pl_end); break; case PMCLOG_TYPE_PCSAMPLE: /* * Note: the `PCSAMPLE' log entry is not * generated by hpwmc(4) after version 2. */ /* * We bring in the gmon file for the image * currently associated with the PMC & pid * pair and increment the appropriate entry * bin inside this. */ pmcstat_stats.ps_samples_total++; pc = ev.pl_u.pl_s.pl_pc; pp = pmcstat_process_lookup(ev.pl_u.pl_s.pl_pid, PMCSTAT_ALLOCATE); if ((ppm = pmcstat_process_find_map(pp, pc)) == NULL && (ppm = pmcstat_process_find_map(pmcstat_kernproc, pc)) == NULL) { /* unknown process,offset pair */ pmcstat_stats.ps_samples_unknown_offset++; break; } pmcstat_image_increment_bucket(ppm, pc, ev.pl_u.pl_s.pl_pmcid, a); break; case PMCLOG_TYPE_CALLCHAIN: pmcstat_stats.ps_samples_total++; cpuflags = ev.pl_u.pl_cc.pl_cpuflags; cpu = PMC_CALLCHAIN_CPUFLAGS_TO_CPU(cpuflags); /* Filter on the CPU id. */ if ((a->pa_cpumask & (1 << cpu)) == 0) { pmcstat_stats.ps_samples_skipped++; break; } pp = pmcstat_process_lookup(ev.pl_u.pl_cc.pl_pid, PMCSTAT_ALLOCATE); if ((a->pa_flags & FLAG_WANTS_MAPPINGS) == 0) pmcstat_record_callchain(pp, ev.pl_u.pl_cc.pl_pmcid, ev.pl_u.pl_cc.pl_npc, ev.pl_u.pl_cc.pl_pc, PMC_CALLCHAIN_CPUFLAGS_TO_USERMODE(cpuflags), a); if ((a->pa_flags & (FLAG_DO_GPROF | FLAG_WANTS_MAPPINGS)) == 0) break; pc = ev.pl_u.pl_cc.pl_pc[0]; if (PMC_CALLCHAIN_CPUFLAGS_TO_USERMODE(cpuflags) == 0) pp = pmcstat_kernproc; ppm = pmcstat_process_find_map(pp, pc); if (ppm == NULL) { /* Unknown offset. */ pmcstat_stats.ps_samples_unknown_offset++; break; } if (a->pa_flags & FLAG_WANTS_MAPPINGS) { image = ppm->ppm_image; newpc = pc - (ppm->ppm_lowpc + (image->pi_vaddr - image->pi_start)); sym = pmcstat_symbol_search(image, newpc); if (sym == NULL) break; fprintf(a->pa_graphfile, "%p %s 0x%jx 0x%jx\n", (void *)pc, pmcstat_string_unintern(sym->ps_name), (uintmax_t)(sym->ps_start + image->pi_vaddr), (uintmax_t)(sym->ps_end + image->pi_vaddr)); break; } pmcstat_image_increment_bucket(ppm, pc, ev.pl_u.pl_cc.pl_pmcid, a); break; case PMCLOG_TYPE_PMCALLOCATE: /* * Record the association pmc id between this * PMC and its name. */ pmcstat_pmcid_add(ev.pl_u.pl_a.pl_pmcid, pmcstat_string_intern(ev.pl_u.pl_a.pl_evname), a); break; case PMCLOG_TYPE_PROCEXEC: /* * Change the executable image associated with * a process. */ pp = pmcstat_process_lookup(ev.pl_u.pl_x.pl_pid, PMCSTAT_ALLOCATE); /* delete the current process map */ TAILQ_FOREACH_SAFE(ppm, &pp->pp_map, ppm_next, ppmtmp) { TAILQ_REMOVE(&pp->pp_map, ppm, ppm_next); free(ppm); } /* associate this process image */ image_path = pmcstat_string_intern( ev.pl_u.pl_x.pl_pathname); assert(image_path != NULL); pmcstat_process_exec(pp, image_path, ev.pl_u.pl_x.pl_entryaddr, a); break; case PMCLOG_TYPE_PROCEXIT: /* * Due to the way the log is generated, the * last few samples corresponding to a process * may appear in the log after the process * exit event is recorded. Thus we keep the * process' descriptor and associated data * structures around, but mark the process as * having exited. */ pp = pmcstat_process_lookup(ev.pl_u.pl_e.pl_pid, 0); if (pp == NULL) break; pp->pp_isactive = 0; /* mark as a zombie */ break; case PMCLOG_TYPE_SYSEXIT: pp = pmcstat_process_lookup(ev.pl_u.pl_se.pl_pid, 0); if (pp == NULL) break; pp->pp_isactive = 0; /* make a zombie */ break; case PMCLOG_TYPE_PROCFORK: /* * Allocate a process descriptor for the new * (child) process. */ ppnew = pmcstat_process_lookup(ev.pl_u.pl_f.pl_newpid, PMCSTAT_ALLOCATE); /* * If we had been tracking the parent, clone * its address maps. */ pp = pmcstat_process_lookup(ev.pl_u.pl_f.pl_oldpid, 0); if (pp == NULL) break; TAILQ_FOREACH(ppm, &pp->pp_map, ppm_next) pmcstat_image_link(ppnew, ppm->ppm_image, ppm->ppm_lowpc); break; default: /* other types of entries are not relevant */ break; } } if (ev.pl_state == PMCLOG_EOF) return (PMCSTAT_FINISHED); else if (ev.pl_state == PMCLOG_REQUIRE_DATA) return (PMCSTAT_RUNNING); err(EX_DATAERR, "ERROR: event parsing failed (record %jd, " "offset 0x%jx)", (uintmax_t) ev.pl_count + 1, ev.pl_offset); } /* * Print log entries as text. */ static int pmcstat_print_log(struct pmcstat_args *a) { struct pmclog_ev ev; uint32_t npc; while (pmclog_read(a->pa_logparser, &ev) == 0) { assert(ev.pl_state == PMCLOG_OK); switch (ev.pl_type) { case PMCLOG_TYPE_CALLCHAIN: PMCSTAT_PRINT_ENTRY(a, "callchain", "%d 0x%x %d %d %c", ev.pl_u.pl_cc.pl_pid, ev.pl_u.pl_cc.pl_pmcid, PMC_CALLCHAIN_CPUFLAGS_TO_CPU(ev.pl_u.pl_cc. \ pl_cpuflags), ev.pl_u.pl_cc.pl_npc, PMC_CALLCHAIN_CPUFLAGS_TO_USERMODE(ev.pl_u.pl_cc.\ pl_cpuflags) ? 'u' : 's'); for (npc = 0; npc < ev.pl_u.pl_cc.pl_npc; npc++) PMCSTAT_PRINT_ENTRY(a, "...", "%p", (void *) ev.pl_u.pl_cc.pl_pc[npc]); break; case PMCLOG_TYPE_CLOSELOG: PMCSTAT_PRINT_ENTRY(a,"closelog",); break; case PMCLOG_TYPE_DROPNOTIFY: PMCSTAT_PRINT_ENTRY(a,"drop",); break; case PMCLOG_TYPE_INITIALIZE: PMCSTAT_PRINT_ENTRY(a,"initlog","0x%x \"%s\"", ev.pl_u.pl_i.pl_version, pmc_name_of_cputype(ev.pl_u.pl_i.pl_arch)); if ((ev.pl_u.pl_i.pl_version & 0xFF000000) != PMC_VERSION_MAJOR << 24 && a->pa_verbosity > 0) warnx("WARNING: Log version 0x%x != expected " "version 0x%x.", ev.pl_u.pl_i.pl_version, PMC_VERSION); break; case PMCLOG_TYPE_MAP_IN: PMCSTAT_PRINT_ENTRY(a,"map-in","%d %p \"%s\"", ev.pl_u.pl_mi.pl_pid, (void *) ev.pl_u.pl_mi.pl_start, ev.pl_u.pl_mi.pl_pathname); break; case PMCLOG_TYPE_MAP_OUT: PMCSTAT_PRINT_ENTRY(a,"map-out","%d %p %p", ev.pl_u.pl_mo.pl_pid, (void *) ev.pl_u.pl_mo.pl_start, (void *) ev.pl_u.pl_mo.pl_end); break; case PMCLOG_TYPE_PCSAMPLE: PMCSTAT_PRINT_ENTRY(a,"sample","0x%x %d %p %c", ev.pl_u.pl_s.pl_pmcid, ev.pl_u.pl_s.pl_pid, (void *) ev.pl_u.pl_s.pl_pc, ev.pl_u.pl_s.pl_usermode ? 'u' : 's'); break; case PMCLOG_TYPE_PMCALLOCATE: PMCSTAT_PRINT_ENTRY(a,"allocate","0x%x \"%s\" 0x%x", ev.pl_u.pl_a.pl_pmcid, ev.pl_u.pl_a.pl_evname, ev.pl_u.pl_a.pl_flags); break; case PMCLOG_TYPE_PMCATTACH: PMCSTAT_PRINT_ENTRY(a,"attach","0x%x %d \"%s\"", ev.pl_u.pl_t.pl_pmcid, ev.pl_u.pl_t.pl_pid, ev.pl_u.pl_t.pl_pathname); break; case PMCLOG_TYPE_PMCDETACH: PMCSTAT_PRINT_ENTRY(a,"detach","0x%x %d", ev.pl_u.pl_d.pl_pmcid, ev.pl_u.pl_d.pl_pid); break; case PMCLOG_TYPE_PROCCSW: PMCSTAT_PRINT_ENTRY(a,"cswval","0x%x %d %jd", ev.pl_u.pl_c.pl_pmcid, ev.pl_u.pl_c.pl_pid, ev.pl_u.pl_c.pl_value); break; case PMCLOG_TYPE_PROCEXEC: PMCSTAT_PRINT_ENTRY(a,"exec","0x%x %d %p \"%s\"", ev.pl_u.pl_x.pl_pmcid, ev.pl_u.pl_x.pl_pid, (void *) ev.pl_u.pl_x.pl_entryaddr, ev.pl_u.pl_x.pl_pathname); break; case PMCLOG_TYPE_PROCEXIT: PMCSTAT_PRINT_ENTRY(a,"exitval","0x%x %d %jd", ev.pl_u.pl_e.pl_pmcid, ev.pl_u.pl_e.pl_pid, ev.pl_u.pl_e.pl_value); break; case PMCLOG_TYPE_PROCFORK: PMCSTAT_PRINT_ENTRY(a,"fork","%d %d", ev.pl_u.pl_f.pl_oldpid, ev.pl_u.pl_f.pl_newpid); break; case PMCLOG_TYPE_USERDATA: PMCSTAT_PRINT_ENTRY(a,"userdata","0x%x", ev.pl_u.pl_u.pl_userdata); break; case PMCLOG_TYPE_SYSEXIT: PMCSTAT_PRINT_ENTRY(a,"exit","%d", ev.pl_u.pl_se.pl_pid); break; default: fprintf(a->pa_printfile, "unknown event (type %d).\n", ev.pl_type); } } if (ev.pl_state == PMCLOG_EOF) return (PMCSTAT_FINISHED); else if (ev.pl_state == PMCLOG_REQUIRE_DATA) return (PMCSTAT_RUNNING); errx(EX_DATAERR, "ERROR: event parsing failed " "(record %jd, offset 0x%jx).", (uintmax_t) ev.pl_count + 1, ev.pl_offset); /*NOTREACHED*/ } /* * Public Interfaces. */ /* * Close a logfile, after first flushing all in-module queued data. */ int pmcstat_close_log(struct pmcstat_args *a) { if (pmc_flush_logfile() < 0 || pmc_configure_logfile(-1) < 0) err(EX_OSERR, "ERROR: logging failed"); a->pa_flags &= ~(FLAG_HAS_OUTPUT_LOGFILE | FLAG_HAS_PIPE); return (a->pa_flags & FLAG_HAS_PIPE ? PMCSTAT_EXITING : PMCSTAT_FINISHED); } /* * Open a log file, for reading or writing. * * The function returns the fd of a successfully opened log or -1 in * case of failure. */ int pmcstat_open_log(const char *path, int mode) { int error, fd; size_t hlen; const char *p, *errstr; struct addrinfo hints, *res, *res0; char hostname[MAXHOSTNAMELEN]; errstr = NULL; fd = -1; /* * If 'path' is "-" then open one of stdin or stdout depending * on the value of 'mode'. * * If 'path' contains a ':' and does not start with a '/' or '.', * and is being opened for writing, treat it as a "host:port" * specification and open a network socket. * * Otherwise, treat 'path' as a file name and open that. */ if (path[0] == '-' && path[1] == '\0') fd = (mode == PMCSTAT_OPEN_FOR_READ) ? 0 : 1; else if (mode == PMCSTAT_OPEN_FOR_WRITE && path[0] != '/' && path[0] != '.' && strchr(path, ':') != NULL) { p = strrchr(path, ':'); hlen = p - path; if (p == path || hlen >= sizeof(hostname)) { errstr = strerror(EINVAL); goto done; } assert(hlen < sizeof(hostname)); (void) strncpy(hostname, path, hlen); hostname[hlen] = '\0'; (void) memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; if ((error = getaddrinfo(hostname, p+1, &hints, &res0)) != 0) { errstr = gai_strerror(error); goto done; } fd = -1; for (res = res0; res; res = res->ai_next) { if ((fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol)) < 0) { errstr = strerror(errno); continue; } if (connect(fd, res->ai_addr, res->ai_addrlen) < 0) { errstr = strerror(errno); (void) close(fd); fd = -1; continue; } errstr = NULL; break; } freeaddrinfo(res0); } else if ((fd = open(path, mode == PMCSTAT_OPEN_FOR_READ ? O_RDONLY : (O_WRONLY|O_CREAT|O_TRUNC), S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) errstr = strerror(errno); done: if (errstr) errx(EX_OSERR, "ERROR: Cannot open \"%s\" for %s: %s.", path, (mode == PMCSTAT_OPEN_FOR_READ ? "reading" : "writing"), errstr); return (fd); } /* * Process a log file in offline analysis mode. */ int pmcstat_process_log(struct pmcstat_args *a) { /* * If analysis has not been asked for, just print the log to * the current output file. */ if (a->pa_flags & FLAG_DO_PRINT) return (pmcstat_print_log(a)); else return (pmcstat_analyze_log(a)); } /* * Initialize module. */ void pmcstat_initialize_logging(struct pmcstat_args *a) { int i; (void) a; /* use a convenient format for 'ldd' output */ if (setenv("LD_TRACE_LOADED_OBJECTS_FMT1","%o \"%p\" %x\n",1) != 0) err(EX_OSERR, "ERROR: Cannot setenv"); /* Initialize hash tables */ pmcstat_string_initialize(); for (i = 0; i < PMCSTAT_NHASH; i++) { LIST_INIT(&pmcstat_image_hash[i]); LIST_INIT(&pmcstat_process_hash[i]); } /* * Create a fake 'process' entry for the kernel with pid -1. * hwpmc(4) will subsequently inform us about where the kernel * and any loaded kernel modules are mapped. */ if ((pmcstat_kernproc = pmcstat_process_lookup((pid_t) -1, PMCSTAT_ALLOCATE)) == NULL) err(EX_OSERR, "ERROR: Cannot initialize logging"); } /* * Shutdown module. */ void pmcstat_shutdown_logging(struct pmcstat_args *a) { int i; FILE *mf; struct pmcstat_gmonfile *pgf, *pgftmp; struct pmcstat_image *pi, *pitmp; struct pmcstat_process *pp, *pptmp; struct pmcstat_cgnode_hash *pch, *pchtmp; /* determine where to send the map file */ mf = NULL; if (a->pa_mapfilename != NULL) mf = (strcmp(a->pa_mapfilename, "-") == 0) ? a->pa_printfile : fopen(a->pa_mapfilename, "w"); if (mf == NULL && a->pa_flags & FLAG_DO_GPROF && a->pa_verbosity >= 2) mf = a->pa_printfile; if (mf) (void) fprintf(mf, "MAP:\n"); if (a->pa_flags & FLAG_DO_CALLGRAPHS) pmcstat_callgraph_print(a); /* * Sync back all gprof flat profile data. */ for (i = 0; i < PMCSTAT_NHASH; i++) { LIST_FOREACH(pi, &pmcstat_image_hash[i], pi_next) { if (mf) (void) fprintf(mf, " \"%s\" => \"%s\"", pmcstat_string_unintern(pi->pi_execpath), pmcstat_string_unintern( pi->pi_samplename)); /* flush gmon.out data to disk */ LIST_FOREACH(pgf, &pi->pi_gmlist, pgf_next) { pmcstat_gmon_unmap_file(pgf); if (mf) (void) fprintf(mf, " %s/%d", pmcstat_pmcid_to_name( pgf->pgf_pmcid), pgf->pgf_nsamples); if (pgf->pgf_overflow && a->pa_verbosity >= 1) warnx("WARNING: profile \"%s\" " "overflowed.", pmcstat_string_unintern( pgf->pgf_name)); } if (mf) (void) fprintf(mf, "\n"); } } /* * Compute arcs and add these to the gprof files. */ if (a->pa_flags & FLAG_DO_GPROF && a->pa_graphdepth > 1) pmcstat_callgraph_do_gmon_arcs(); /* * Free memory. */ for (i = 0; i < PMCSTAT_NHASH; i++) { LIST_FOREACH_SAFE(pch, &pmcstat_cgnode_hash[i], pch_next, pchtmp) { pmcstat_cgnode_free(pch->pch_cgnode); free(pch); } } for (i = 0; i < PMCSTAT_NHASH; i++) { LIST_FOREACH_SAFE(pi, &pmcstat_image_hash[i], pi_next, pitmp) { LIST_FOREACH_SAFE(pgf, &pi->pi_gmlist, pgf_next, pgftmp) { if (pgf->pgf_file) (void) fclose(pgf->pgf_file); LIST_REMOVE(pgf, pgf_next); free(pgf); } if (pi->pi_symbols) free(pi->pi_symbols); LIST_REMOVE(pi, pi_next); free(pi); } LIST_FOREACH_SAFE(pp, &pmcstat_process_hash[i], pp_next, pptmp) { LIST_REMOVE(pp, pp_next); free(pp); } } pmcstat_string_shutdown(); /* * Print errors unless -q was specified. Print all statistics * if verbosity > 1. */ #define PRINT(N,V,A) do { \ if (pmcstat_stats.ps_##V || (A)->pa_verbosity >= 2) \ (void) fprintf((A)->pa_printfile, " %-40s %d\n",\ N, pmcstat_stats.ps_##V); \ } while (0) if (a->pa_verbosity >= 1 && a->pa_flags & FLAG_DO_GPROF) { (void) fprintf(a->pa_printfile, "CONVERSION STATISTICS:\n"); PRINT("#exec/a.out", exec_aout, a); PRINT("#exec/elf", exec_elf, a); PRINT("#exec/unknown", exec_indeterminable, a); PRINT("#exec handling errors", exec_errors, a); PRINT("#samples/total", samples_total, a); PRINT("#samples/unclaimed", samples_unknown_offset, a); PRINT("#samples/unknown-object", samples_indeterminable, a); PRINT("#callchain/dubious-frames", callchain_dubious_frames, a); } if (mf) (void) fclose(mf); }