/* set tab=4 * Read/dump CIS tuples. */ #include #include #include #include #include #include #include #include "readcis.h" static int read_attr(int fd, char *bp, int len); struct tuple_list *read_one_tuplelist(int, int, off_t); int ck_linktarget(int, off_t, int); void cis_info(struct cis *cp, unsigned char *p, int len); void device_desc(unsigned char *p, int len, struct dev_mem *dp); void config_map(struct cis *cp, unsigned char *p, int len); void cis_config(struct cis *cp, unsigned char *p, int len); struct tuple_info tuple_info[] = { { "Null tuple", 0x00, 0 }, { "Common memory descriptor", 0x01, 255 }, { "Checksum", 0x10, 5 }, { "Long link to attribute memory", 0x11, 4 }, { "Long link to common memory", 0x12, 4 }, { "Link target", 0x13, 3 }, { "No link", 0x14, 0 }, { "Version 1 info", 0x15, 255 }, { "Alternate language string", 0x16, 255 }, { "Attribute memory descriptor", 0x17, 255 }, { "JEDEC descr for common memory", 0x18, 255 }, { "JEDEC descr for attribute memory", 0x19, 255 }, { "Configuration map", 0x1A, 255 }, { "Configuration entry", 0x1B, 255 }, { "Other conditions for common memory", 0x1C, 255 }, { "Other conditions for attribute memory", 0x1D, 255 }, { "Geometry info for common memory", 0x1E, 255 }, { "Geometry info for attribute memory", 0x1F, 255 }, { "Manufacturer ID", 0x20, 4 }, { "Functional ID", 0x21, 255 }, { "Functional EXT", 0x22, 255 }, { "Software interleave", 0x23, 2 }, { "Version 2 Info", 0x40, 255 }, { "Data format", 0x41, 255 }, { "Geometry", 0x42, 4 }, { "Byte order", 0x43, 2 }, { "Card init date", 0x44, 4 }, { "Battery replacement", 0x45, 4 }, { "Organisation", 0x46, 255 }, { "Terminator", 0xFF, 255 }, { 0, 0, 0 } }; /* * After reading the tuples, decode the relevant ones. */ struct cis * readcis(int fd) { struct tuple_list *tl; struct tuple *tp; struct cis *cp; cp = xmalloc(sizeof(*cp)); cp->tlist = read_tuples(fd); if (cp->tlist == 0) return(NULL); for (tl = cp->tlist; tl; tl = tl->next) for (tp = tl->tuples; tp; tp = tp->next) { #if 0 printf("tuple code = 0x%02x, data is\n", tp->code); dump(tp->data, tp->length); #endif switch(tp->code) { case CIS_MEM_COMMON: /* 0x01 */ device_desc(tp->data, tp->length, &cp->common_mem); break; case CIS_INFO_V1: /* 0x15 */ cis_info(cp, tp->data, tp->length); break; case CIS_MEM_ATTR: /* 0x17 */ device_desc(tp->data, tp->length, &cp->attr_mem); break; case CIS_CONF_MAP: /* 0x1A */ config_map(cp, tp->data, tp->length); break; case CIS_CONFIG: /* 0x1B */ cis_config(cp, tp->data, tp->length); break; } } return(cp); } /* * free_cis - delete cis entry. */ void freecis(struct cis *cp) { struct cis_ioblk *io; struct cis_memblk *mem; struct cis_config *conf; struct tuple *tp; struct tuple_list *tl; while ((tl = cp->tlist) != 0) { cp->tlist = tl->next; while ((tp = tl->tuples) != 0) { tl->tuples = tp->next; if (tp->data) free(tp->data); } } while ((conf = cp->conf) != 0) { cp->conf = conf->next; while ((io = conf->io) != 0) { conf->io = io->next; free(io); } while ((mem = conf->mem) != 0) { conf->mem = mem->next; free(mem); } free(conf); } free(cp); } /* * Fills in CIS version data. */ void cis_info(struct cis *cp, unsigned char *p, int len) { cp->maj_v = *p++; cp->min_v = *p++; strncpy(cp->manuf, p, MAXSTR-1); while (*p++) ; strncpy(cp->vers, p, MAXSTR-1); while (*p++) ; strncpy(cp->add_info1, p, MAXSTR-1); while (*p++) ; strncpy(cp->add_info2, p, MAXSTR-1); } /* * device_desc - decode device descriptor. */ void device_desc(unsigned char *p, int len, struct dev_mem *dp) { while (len > 0 && *p != 0xFF) { dp->valid = 1; dp->type = (*p & 0xF0) >> 4; dp->wps = !!(*p & 0x8); dp->speed = *p & 7; p++; if (*p != 0xFF) { dp->addr = *p >> 3; dp->units = *p & 7; } p++; len -= 2; } } /* * configuration map of card control register. */ void config_map(struct cis *cp, unsigned char *p, int len) { unsigned char *p1; int i; union { unsigned long l; unsigned char b[4]; }u; p1 = p + 1; cp->last_config = *p1++ & 0x3F; u.l = 0; for (i = 0 ; i <= (*p & 3); i++) u.b[i] = *p1++; cp->reg_addr = u.l; cp->ccrs = *p1; } /* * CIS config entry - Decode and build configuration entry. */ void cis_config(struct cis *cp, unsigned char *p, int len) { int x; int i, j; union { unsigned long l; unsigned char b[4]; }u; struct cis_config *conf, *last; struct cis_memblk *mem; unsigned char feat; struct cis_memblk *lastmem = 0; conf = xmalloc(sizeof(*conf)); if ((last = cp->conf) !=0) { while (last->next) last = last->next; last->next = conf; } else cp->conf = conf; conf->id = *p & 0x3F; if (*p & 0x40) cp->def_config = conf; if (*p++ & 0x80) p++; feat = *p++; for (i = 0; i < CIS_FEAT_POWER(feat); i++) { unsigned char parms = *p++; conf->pwr = 1; for (j = 0; j < 8; j++) if (parms & (1 << j)) while (*p++ & 0x80) ; } if (feat & CIS_FEAT_TIMING) { conf->timing = 1; i = *p++; if (CIS_WAIT_SCALE(i) != 3) p++; if (CIS_READY_SCALE(i) != 7) p++; if (CIS_RESERVED_SCALE(i) != 7) p++; } if (feat & CIS_FEAT_I_O) { conf->iospace = 1; if (CIS_IO_RANGE & *p) conf->io_blks = CIS_IO_BLKS(p[1])+1; conf->io_addr = CIS_IO_ADDR(*p); conf->io_bus = (*p >> 5) & 3; if (*p++ & CIS_IO_RANGE) { struct cis_ioblk *io, *last = 0; i = CIS_IO_ADSZ(*p); j = CIS_IO_BLKSZ(*p++); for (x = 0; x < conf->io_blks; x++) { io = xmalloc(sizeof(*io)); if (last) last->next = io; else conf->io = io; last = io; u.l = 0; switch(i) { case 0: break; case 1: u.b[0] = *p++; break; case 2: u.b[0] = *p++; u.b[1] = *p++; break; case 3: u.b[0] = *p++; u.b[1] = *p++; u.b[2] = *p++; u.b[3] = *p++; break; } io->addr = u.l; u.l = 0; switch(j) { case 0: break; case 1: u.b[0] = *p++; u.l++; break; case 2: u.b[0] = *p++; u.b[1] = *p++; u.l++; break; case 3: u.b[0] = *p++; u.b[1] = *p++; u.b[2] = *p++; u.b[3] = *p++; u.l++; break; } io->size = u.l; } } } if (feat & CIS_FEAT_IRQ) { conf->irq = 1; conf->irqlevel = *p & 0xF; conf->irq_flags = *p & 0xF0; if (*p++ & CIS_IRQ_MASK) { conf->irq_mask = (p[1] << 8) | p[0]; p += 2; } } switch(CIS_FEAT_MEMORY(feat)) { case 0: break; case 1: conf->memspace = 1; conf->mem = xmalloc(sizeof(*conf->mem)); conf->mem->length = ((p[1] << 8) | p[0])<<8; break; case 2: conf->memspace = 1; conf->mem = xmalloc(sizeof(*conf->mem)); conf->mem->length = ((p[1] << 8) | p[0]) << 8; conf->mem->address = ((p[3] << 8) | p[2]) << 8; break; case 3: conf->memspace = 1; x = *p++; conf->memwins = CIS_MEM_WINS(x); for (i = 0; i < conf->memwins; i++) { mem = xmalloc(sizeof(*mem)); if (i == 0) conf->mem = mem; else lastmem->next = mem; lastmem = mem; u.l = 0; for (j = 0 ; j < CIS_MEM_LENSZ(x); j++) u.b[j] = *p++; mem->length = u.l << 8; u.l = 0; for (j = 0 ; j < CIS_MEM_ADDRSZ(x); j++) u.b[j] = *p++; mem->address = u.l << 8; if (x & CIS_MEM_HOST) { u.l = 0; for (j = 0 ; j < CIS_MEM_ADDRSZ(x); j++) u.b[j] = *p++; mem->host_address = u.l << 8; } } break; } if (feat & 0x80) { conf->misc_valid = 1; conf->misc = *p++; } } /* * Read the tuples from the card. * The processing of tuples is as follows: * - Read tuples at attribute memory, offset 0. * - If a CIS_END is the first tuple, look for * a tuple list at common memory offset 0; this list * must start with a LINKTARGET. * - If a long link tuple was encountered, execute the long * link. * - If a no-link tuple was seen, terminate processing. * - If no no-link tuple exists, and no long link tuple * exists while processing the primary tuple list, * then look for a LINKTARGET tuple in common memory. * - If a long link tuple is found in any list, then process * it. Only one link is allowed per list. */ static struct tuple_list *tlist; struct tuple_list * read_tuples(int fd) { struct tuple_list *tl = 0, *last_tl; struct tuple *tp; int flag; off_t offs; tlist = 0; last_tl = tlist = read_one_tuplelist(fd, MDF_ATTR, (off_t)0); /* * Now start processing the links (if any). */ do { flag = MDF_ATTR; tp = find_tuple_in_list(last_tl, CIS_LONGLINK_A); if (tp == 0) { flag = 0; tp = find_tuple_in_list(last_tl, CIS_LONGLINK_C); } if (tp && tp->length == 4) { offs = tp->data[0] | (tp->data[1] << 8) | (tp->data[2] << 16) | (tp->data[3] << 24); #ifdef DEBUG printf("Checking long link at %ld (%s memory)\n", offs, flag ? "Attribute" : "Common"); #endif if (ck_linktarget(fd, offs, flag)) { /* * If a link was found, then read the tuple list from it. */ tl = read_one_tuplelist(fd, flag, offs); last_tl->next = tl; last_tl = tl; } } } while (tl); /* * If the primary list had no NOLINK tuple, and no LINKTARGET, * then try to read a tuple list at common memory (offset 0). */ if (find_tuple_in_list(tlist, CIS_NOLINK)==0 && tlist->next == 0 && ck_linktarget(fd, (off_t)0, 0)) { #ifdef DEBUG printf("Reading long link at %ld (%s memory)\n", offs, flag ? "Attribute" : "Common"); #endif tlist->next = read_one_tuplelist(fd, 0, (off_t)0); } return(tlist); } /* * Read one tuple list from the card. */ struct tuple_list * read_one_tuplelist(int fd, int flags, off_t offs) { struct tuple *tp, *last_tp = 0; struct tuple_list *tl; struct tuple_info *tinfo; int total = 0; unsigned char code, length; /* * Check to see if this memory has already been scanned. */ for (tl = tlist; tl; tl = tl->next) if (tl->offs == offs && tl->flags == (flags & MDF_ATTR)) return(0); tl = xmalloc(sizeof(*tl)); tl->offs = offs; tl->flags = flags & MDF_ATTR; ioctl(fd, PIOCRWFLAG, &flags); lseek(fd, offs, SEEK_SET); do { if (read_attr(fd, &code, 1) != 1) { perror("CIS code read"); break; } total++; if (code == CIS_NULL) continue; tp = xmalloc(sizeof(*tp)); tp->code = code; if (read_attr(fd, &length, 1) != 1) { perror("CIS len read"); break; } total++; tp->length = length; #ifdef DEBUG fprintf(stderr, "Tuple code = 0x%x, len = %d\n", code, length); #endif if (length == 0xFF) { length = tp->length = 0; code = CIS_END; } if (length != 0) { total += length; tp->data = xmalloc(length); if (read_attr(fd, tp->data, length) != length) { perror("CIS read"); break; } } /* * Check the tuple, and ignore it if it isn't in the table * or the length is illegal. */ tinfo = get_tuple_info(code); if (tinfo == 0 || (tinfo->length != 255 && tinfo->length != length)) { printf("code %s ignored\n", tuple_name(code)); tp->code = CIS_NULL; } if (tl->tuples==0) tl->tuples = tp; else last_tp->next = tp; last_tp = tp; } while (code != CIS_END && total < 1024); return(tl); } /* * return true if the offset points to a LINKTARGET tuple. */ int ck_linktarget(int fd, off_t offs, int flag) { char blk[5]; ioctl(fd, PIOCRWFLAG, &flag); lseek(fd, offs, SEEK_SET); if (read_attr(fd, blk, 5) != 5) return(0); if (blk[0] == 0x13 && blk[1] == 0x3 && blk[2] == 'C' && blk[3] == 'I' && blk[4] == 'S') return(1); return(0); } /* * find_tuple - find the indicated tuple in the CIS */ struct tuple * find_tuple(struct cis *sp, unsigned char code) { struct tuple_list *tl; struct tuple *tp; for (tl = sp->tlist; tl; tl = tl->next) if ((tp = find_tuple_in_list(tl, code)) != 0) return(tp); return(0); } /* * find_tuple_in_list - find a tuple within a * single tuple list. */ struct tuple * find_tuple_in_list(struct tuple_list *tl, unsigned char code) { struct tuple *tp; for (tp = tl->tuples; tp; tp = tp->next) if (tp->code == code) break; return(tp); } static int read_attr(int fd, char *bp, int len) { char blk[1024], *p = blk; int i,l; if (len > sizeof(blk)/2) len = sizeof(blk)/2; l = i = read(fd, blk, len*2); if (i <= 0) { printf("Read return %d bytes (expected %d)\n", i, len*2); return(i); } while (i > 0) { *bp++ = *p++; p++; i -= 2; } return(l/2); } /* * return table entry for code. */ struct tuple_info * get_tuple_info(unsigned char code) { struct tuple_info *tp; for (tp = tuple_info; tp->name; tp++) if (tp->code == code) return(tp); printf("Code %d not found\n", code); return(0); } char * tuple_name(unsigned char code) { struct tuple_info *tp; tp = get_tuple_info(code); if (tp) return(tp->name); return("Unknown"); }