/*- * Copyright (c) 2012 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Memory ranges are represented with an RB tree. On insertion, the range * is checked for overlaps. On lookup, the key has the same base and limit * so it can be searched within the range. * * It is assumed that all setup of ranges takes place in single-threaded * mode before vCPUs have been started. As such, no locks are used on the * RB tree. If this is no longer the case, then a r/w lock could be used, * with readers on the lookup and a writer if the tree needs to be changed * (and per vCPU caches flushed) */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "mem.h" struct mmio_rb_range { RB_ENTRY(mmio_rb_range) mr_link; /* RB tree links */ struct mem_range mr_param; uint64_t mr_base; uint64_t mr_end; }; struct mmio_rb_tree; RB_PROTOTYPE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare); RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rbroot; /* * Per-vCPU cache. Since most accesses from a vCPU will be to * consecutive addresses in a range, it makes sense to cache the * result of a lookup. */ static struct mmio_rb_range *mmio_hint[VM_MAXCPU]; static int mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b) { if (a->mr_end < b->mr_base) return (-1); else if (a->mr_base > b->mr_end) return (1); return (0); } static int mmio_rb_lookup(uint64_t addr, struct mmio_rb_range **entry) { struct mmio_rb_range find, *res; find.mr_base = find.mr_end = addr; res = RB_FIND(mmio_rb_tree, &mmio_rbroot, &find); if (res != NULL) { *entry = res; return (0); } return (ENOENT); } static int mmio_rb_add(struct mmio_rb_range *new) { struct mmio_rb_range *overlap; overlap = RB_INSERT(mmio_rb_tree, &mmio_rbroot, new); if (overlap != NULL) { #ifdef RB_DEBUG printf("overlap detected: new %lx:%lx, tree %lx:%lx\n", new->mr_base, new->mr_end, overlap->mr_base, overlap->mr_end); #endif return (EEXIST); } return (0); } #if 0 static void mmio_rb_dump(void) { struct mmio_rb_range *np; RB_FOREACH(np, mmio_rb_tree, &mmio_rbroot) { printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end, np->mr_param.name); } } #endif RB_GENERATE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare); static int mem_read(void *ctx, int vcpu, uint64_t gpa, uint64_t *rval, int size, void *arg) { int error; struct mem_range *mr = arg; error = (*mr->handler)(ctx, vcpu, MEM_F_READ, gpa, size, rval, mr->arg1, mr->arg2); return (error); } static int mem_write(void *ctx, int vcpu, uint64_t gpa, uint64_t wval, int size, void *arg) { int error; struct mem_range *mr = arg; error = (*mr->handler)(ctx, vcpu, MEM_F_WRITE, gpa, size, &wval, mr->arg1, mr->arg2); return (error); } int emulate_mem(struct vmctx *ctx, int vcpu, uint64_t paddr, struct vie *vie) { struct mmio_rb_range *entry; int err; /* * First check the per-vCPU cache */ if (mmio_hint[vcpu] && paddr >= mmio_hint[vcpu]->mr_base && paddr <= mmio_hint[vcpu]->mr_end) { entry = mmio_hint[vcpu]; } else entry = NULL; if (entry == NULL) { if (mmio_rb_lookup(paddr, &entry)) return (ESRCH); /* Update the per-vCPU cache */ mmio_hint[vcpu] = entry; } assert(entry != NULL && entry == mmio_hint[vcpu]); err = vmm_emulate_instruction(ctx, vcpu, paddr, vie, mem_read, mem_write, &entry->mr_param); return (err); } int register_mem(struct mem_range *memp) { struct mmio_rb_range *mrp; int err; err = 0; mrp = malloc(sizeof(struct mmio_rb_range)); if (mrp != NULL) { mrp->mr_param = *memp; mrp->mr_base = memp->base; mrp->mr_end = memp->base + memp->size - 1; err = mmio_rb_add(mrp); if (err) free(mrp); } else err = ENOMEM; return (err); } void init_mem(void) { RB_INIT(&mmio_rbroot); }