/* * Copyright 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !defined(lint) static const char copyright[] = "@(#) Copyright (c) 1997, 1998, 1999\ Bill Paul. All rights reserved."; static const char rcsid[] = "@(#) $FreeBSD$"; #endif static void an_getval __P((char *, struct an_req *)); static void an_setval __P((char *, struct an_req *)); static void an_printwords __P((u_int16_t *, int)); static void an_printspeeds __P((u_int8_t*, int)); static void an_printbool __P((int)); static void an_printhex __P((char *, int)); static void an_printstr __P((char *, int)); static void an_dumpstatus __P((char *)); static void an_dumpstats __P((char *)); static void an_dumpconfig __P((char *)); static void an_dumpcaps __P((char *)); static void an_dumpssid __P((char *)); static void an_dumpap __P((char *)); static void an_setconfig __P((char *, int, void *)); static void an_setssid __P((char *, int, void *)); static void an_setap __P((char *, int, void *)); static void an_setspeed __P((char *, int, void *)); static void an_readkeyinfo __P((char *)); #ifdef ANCACHE static void an_zerocache __P((char *)); static void an_readcache __P((char *)); #endif static void usage __P((char *)); int main __P((int, char **)); #define ACT_DUMPSTATS 1 #define ACT_DUMPCONFIG 2 #define ACT_DUMPSTATUS 3 #define ACT_DUMPCAPS 4 #define ACT_DUMPSSID 5 #define ACT_DUMPAP 6 #define ACT_SET_OPMODE 7 #define ACT_SET_SSID1 8 #define ACT_SET_SSID2 9 #define ACT_SET_SSID3 10 #define ACT_SET_FREQ 11 #define ACT_SET_AP1 12 #define ACT_SET_AP2 13 #define ACT_SET_AP3 14 #define ACT_SET_AP4 15 #define ACT_SET_DRIVERNAME 16 #define ACT_SET_SCANMODE 17 #define ACT_SET_TXRATE 18 #define ACT_SET_RTS_THRESH 19 #define ACT_SET_PWRSAVE 20 #define ACT_SET_DIVERSITY_RX 21 #define ACT_SET_DIVERSITY_TX 22 #define ACT_SET_RTS_RETRYLIM 23 #define ACT_SET_WAKE_DURATION 24 #define ACT_SET_BEACON_PERIOD 25 #define ACT_SET_TXPWR 26 #define ACT_SET_FRAG_THRESH 27 #define ACT_SET_NETJOIN 28 #define ACT_SET_MYNAME 29 #define ACT_SET_MAC 30 #define ACT_DUMPCACHE 31 #define ACT_ZEROCACHE 32 #define ACT_ENABLE_WEP 33 #define ACT_SET_KEY_TYPE 34 #define ACT_SET_KEYS 35 #define ACT_ENABLE_TX_KEY 36 static void an_getval(iface, areq) char *iface; struct an_req *areq; { struct ifreq ifr; int s; bzero((char *)&ifr, sizeof(ifr)); strlcpy(ifr.ifr_name, iface, sizeof(ifr.ifr_name)); ifr.ifr_data = (caddr_t)areq; s = socket(AF_INET, SOCK_DGRAM, 0); if (s == -1) err(1, "socket"); if (ioctl(s, SIOCGAIRONET, &ifr) == -1) err(1, "SIOCGAIRONET"); close(s); return; } static void an_setval(iface, areq) char *iface; struct an_req *areq; { struct ifreq ifr; int s; bzero((char *)&ifr, sizeof(ifr)); strlcpy(ifr.ifr_name, iface, sizeof(ifr.ifr_name)); ifr.ifr_data = (caddr_t)areq; s = socket(AF_INET, SOCK_DGRAM, 0); if (s == -1) err(1, "socket"); if (ioctl(s, SIOCSAIRONET, &ifr) == -1) err(1, "SIOCSAIRONET"); close(s); return; } static void an_printstr(str, len) char *str; int len; { int i; for (i = 0; i < len - 1; i++) { if (str[i] == '\0') str[i] = ' '; } printf("[ %.*s ]", len, str); return; } static void an_printwords(w, len) u_int16_t *w; int len; { int i; printf("[ "); for (i = 0; i < len; i++) printf("%d ", w[i]); printf("]"); return; } static void an_printspeeds(w, len) u_int8_t *w; int len; { int i; printf("[ "); for (i = 0; i < len && w[i]; i++) printf("%2.1fMbps ", w[i] * 0.500); printf("]"); return; } static void an_printbool(val) int val; { if (val) printf("[ On ]"); else printf("[ Off ]"); return; } static void an_printhex(ptr, len) char *ptr; int len; { int i; printf("[ "); for (i = 0; i < len; i++) { printf("%02x", ptr[i] & 0xFF); if (i < (len - 1)) printf(":"); } printf(" ]"); return; } static void an_dumpstatus(iface) char *iface; { struct an_ltv_status *sts; struct an_req areq; areq.an_len = sizeof(areq); areq.an_type = AN_RID_STATUS; an_getval(iface, &areq); sts = (struct an_ltv_status *)&areq; printf("MAC address:\t\t"); an_printhex((char *)&sts->an_macaddr, ETHER_ADDR_LEN); printf("\nOperating mode:\t\t[ "); if (sts->an_opmode & AN_STATUS_OPMODE_CONFIGURED) printf("configured "); if (sts->an_opmode & AN_STATUS_OPMODE_MAC_ENABLED) printf("MAC ON "); if (sts->an_opmode & AN_STATUS_OPMODE_RX_ENABLED) printf("RX ON "); if (sts->an_opmode & AN_STATUS_OPMODE_IN_SYNC) printf("synced "); if (sts->an_opmode & AN_STATUS_OPMODE_ASSOCIATED) printf("associated "); if (sts->an_opmode & AN_STATUS_OPMODE_ERROR) printf("error "); printf("]\n"); printf("Error code:\t\t"); an_printhex((char *)&sts->an_errcode, 1); printf("\nSignal quality:\t\t"); an_printhex((char *)&sts->an_cur_signal_quality, 1); printf("\nCurrent SSID:\t\t"); an_printstr((char *)&sts->an_ssid, sts->an_ssidlen); printf("\nCurrent AP name:\t"); an_printstr((char *)&sts->an_ap_name, 16); printf("\nCurrent BSSID:\t\t"); an_printhex((char *)&sts->an_cur_bssid, ETHER_ADDR_LEN); printf("\nBeacon period:\t\t"); an_printwords(&sts->an_beacon_period, 1); printf("\nDTIM period:\t\t"); an_printwords(&sts->an_dtim_period, 1); printf("\nATIM duration:\t\t"); an_printwords(&sts->an_atim_duration, 1); printf("\nHOP period:\t\t"); an_printwords(&sts->an_hop_period, 1); printf("\nChannel set:\t\t"); an_printwords(&sts->an_channel_set, 1); printf("\nCurrent channel:\t"); an_printwords(&sts->an_cur_channel, 1); printf("\nHops to backbone:\t"); an_printwords(&sts->an_hops_to_backbone, 1); printf("\nTotal AP load:\t\t"); an_printwords(&sts->an_ap_total_load, 1); printf("\nOur generated load:\t"); an_printwords(&sts->an_our_generated_load, 1); printf("\nAccumulated ARL:\t"); an_printwords(&sts->an_accumulated_arl, 1); printf("\n"); return; } static void an_dumpcaps(iface) char *iface; { struct an_ltv_caps *caps; struct an_req areq; u_int16_t tmp; areq.an_len = sizeof(areq); areq.an_type = AN_RID_CAPABILITIES; an_getval(iface, &areq); caps = (struct an_ltv_caps *)&areq; printf("OUI:\t\t\t"); an_printhex((char *)&caps->an_oui, 3); printf("\nProduct number:\t\t"); an_printwords(&caps->an_prodnum, 1); printf("\nManufacturer name:\t"); an_printstr((char *)&caps->an_manufname, 32); printf("\nProduce name:\t\t"); an_printstr((char *)&caps->an_prodname, 16); printf("\nFirmware version:\t"); an_printstr((char *)&caps->an_prodvers, 1); printf("\nOEM MAC address:\t"); an_printhex((char *)&caps->an_oemaddr, ETHER_ADDR_LEN); printf("\nAironet MAC address:\t"); an_printhex((char *)&caps->an_aironetaddr, ETHER_ADDR_LEN); printf("\nRadio type:\t\t[ "); if (caps->an_radiotype & AN_RADIOTYPE_80211_FH) printf("802.11 FH"); else if (caps->an_radiotype & AN_RADIOTYPE_80211_DS) printf("802.11 DS"); else if (caps->an_radiotype & AN_RADIOTYPE_LM2000_DS) printf("LM2000 DS"); else printf("unknown (%x)", caps->an_radiotype); printf(" ]"); printf("\nRegulatory domain:\t"); an_printwords(&caps->an_regdomain, 1); printf("\nAssigned CallID:\t"); an_printhex((char *)&caps->an_callid, 6); printf("\nSupported speeds:\t"); an_printspeeds(caps->an_rates, 8); printf("\nRX Diversity:\t\t[ "); if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nTX Diversity:\t\t[ "); if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (caps->an_rx_diversity == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nSupported power levels:\t"); an_printwords(caps->an_tx_powerlevels, 8); printf("\nHardware revision:\t"); tmp = ntohs(caps->an_hwrev); an_printhex((char *)&tmp, 2); printf("\nSoftware revision:\t"); tmp = ntohs(caps->an_fwrev); an_printhex((char *)&tmp, 2); printf("\nSoftware subrevision:\t"); tmp = ntohs(caps->an_fwsubrev); an_printhex((char *)&tmp, 2); printf("\nInterface revision:\t"); tmp = ntohs(caps->an_ifacerev); an_printhex((char *)&tmp, 2); printf("\nBootblock revision:\t"); tmp = ntohs(caps->an_bootblockrev); an_printhex((char *)&tmp, 2); printf("\n"); return; } static void an_dumpstats(iface) char *iface; { struct an_ltv_stats *stats; struct an_req areq; caddr_t ptr; areq.an_len = sizeof(areq); areq.an_type = AN_RID_32BITS_CUM; an_getval(iface, &areq); ptr = (caddr_t)&areq; ptr -= 2; stats = (struct an_ltv_stats *)ptr; printf("RX overruns:\t\t\t\t\t[ %d ]\n", stats->an_rx_overruns); printf("RX PLCP CSUM errors:\t\t\t\t[ %d ]\n", stats->an_rx_plcp_csum_errs); printf("RX PLCP format errors:\t\t\t\t[ %d ]\n", stats->an_rx_plcp_format_errs); printf("RX PLCP length errors:\t\t\t\t[ %d ]\n", stats->an_rx_plcp_len_errs); printf("RX MAC CRC errors:\t\t\t\t[ %d ]\n", stats->an_rx_mac_crc_errs); printf("RX MAC CRC OK:\t\t\t\t\t[ %d ]\n", stats->an_rx_mac_crc_ok); printf("RX WEP errors:\t\t\t\t\t[ %d ]\n", stats->an_rx_wep_errs); printf("RX WEP OK:\t\t\t\t\t[ %d ]\n", stats->an_rx_wep_ok); printf("Long retries:\t\t\t\t\t[ %d ]\n", stats->an_retry_long); printf("Short retries:\t\t\t\t\t[ %d ]\n", stats->an_retry_short); printf("Retries exchausted:\t\t\t\t[ %d ]\n", stats->an_retry_max); printf("Bad ACK:\t\t\t\t\t[ %d ]\n", stats->an_no_ack); printf("Bad CTS:\t\t\t\t\t[ %d ]\n", stats->an_no_cts); printf("RX good ACKs:\t\t\t\t\t[ %d ]\n", stats->an_rx_ack_ok); printf("RX good CTSs:\t\t\t\t\t[ %d ]\n", stats->an_rx_cts_ok); printf("TX good ACKs:\t\t\t\t\t[ %d ]\n", stats->an_tx_ack_ok); printf("TX good RTSs:\t\t\t\t\t[ %d ]\n", stats->an_tx_rts_ok); printf("TX good CTSs:\t\t\t\t\t[ %d ]\n", stats->an_tx_cts_ok); printf("LMAC multicasts transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_mcasts); printf("LMAC broadcasts transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_bcasts); printf("LMAC unicast frags transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_ucast_frags); printf("LMAC unicasts transmitted:\t\t\t[ %d ]\n", stats->an_tx_lmac_ucasts); printf("Beacons transmitted:\t\t\t\t[ %d ]\n", stats->an_tx_beacons); printf("Beacons received:\t\t\t\t[ %d ]\n", stats->an_rx_beacons); printf("Single transmit collisions:\t\t\t[ %d ]\n", stats->an_tx_single_cols); printf("Multiple transmit collisions:\t\t\t[ %d ]\n", stats->an_tx_multi_cols); printf("Transmits without deferrals:\t\t\t[ %d ]\n", stats->an_tx_defers_no); printf("Transmits defered due to protocol:\t\t[ %d ]\n", stats->an_tx_defers_prot); printf("Transmits defered due to energy detect:\t\t[ %d ]\n", stats->an_tx_defers_energy); printf("RX duplicate frames/frags:\t\t\t[ %d ]\n", stats->an_rx_dups); printf("RX partial frames:\t\t\t\t[ %d ]\n", stats->an_rx_partial); printf("TX max lifetime exceeded:\t\t\t[ %d ]\n", stats->an_tx_too_old); printf("RX max lifetime exceeded:\t\t\t[ %d ]\n", stats->an_tx_too_old); printf("Sync lost due to too many missed beacons:\t[ %d ]\n", stats->an_lostsync_missed_beacons); printf("Sync lost due to ARL exceeded:\t\t\t[ %d ]\n", stats->an_lostsync_arl_exceeded); printf("Sync lost due to deauthentication:\t\t[ %d ]\n", stats->an_lostsync_deauthed); printf("Sync lost due to disassociation:\t\t[ %d ]\n", stats->an_lostsync_disassociated); printf("Sync lost due to excess change in TSF timing:\t[ %d ]\n", stats->an_lostsync_tsf_timing); printf("Host transmitted multicasts:\t\t\t[ %d ]\n", stats->an_tx_host_mcasts); printf("Host transmitted broadcasts:\t\t\t[ %d ]\n", stats->an_tx_host_bcasts); printf("Host transmitted unicasts:\t\t\t[ %d ]\n", stats->an_tx_host_ucasts); printf("Host transmission failures:\t\t\t[ %d ]\n", stats->an_tx_host_failed); printf("Host received multicasts:\t\t\t[ %d ]\n", stats->an_rx_host_mcasts); printf("Host received broadcasts:\t\t\t[ %d ]\n", stats->an_rx_host_bcasts); printf("Host received unicasts:\t\t\t\t[ %d ]\n", stats->an_rx_host_ucasts); printf("Host receive discards:\t\t\t\t[ %d ]\n", stats->an_rx_host_discarded); printf("HMAC transmitted multicasts:\t\t\t[ %d ]\n", stats->an_tx_hmac_mcasts); printf("HMAC transmitted broadcasts:\t\t\t[ %d ]\n", stats->an_tx_hmac_bcasts); printf("HMAC transmitted unicasts:\t\t\t[ %d ]\n", stats->an_tx_hmac_ucasts); printf("HMAC transmissions failed:\t\t\t[ %d ]\n", stats->an_tx_hmac_failed); printf("HMAC received multicasts:\t\t\t[ %d ]\n", stats->an_rx_hmac_mcasts); printf("HMAC received broadcasts:\t\t\t[ %d ]\n", stats->an_rx_hmac_bcasts); printf("HMAC received unicasts:\t\t\t\t[ %d ]\n", stats->an_rx_hmac_ucasts); printf("HMAC receive discards:\t\t\t\t[ %d ]\n", stats->an_rx_hmac_discarded); printf("HMAC transmits accepted:\t\t\t[ %d ]\n", stats->an_tx_hmac_accepted); printf("SSID mismatches:\t\t\t\t[ %d ]\n", stats->an_ssid_mismatches); printf("Access point mismatches:\t\t\t[ %d ]\n", stats->an_ap_mismatches); printf("Speed mismatches:\t\t\t\t[ %d ]\n", stats->an_rates_mismatches); printf("Authentication rejects:\t\t\t\t[ %d ]\n", stats->an_auth_rejects); printf("Authentication timeouts:\t\t\t[ %d ]\n", stats->an_auth_timeouts); printf("Association rejects:\t\t\t\t[ %d ]\n", stats->an_assoc_rejects); printf("Association timeouts:\t\t\t\t[ %d ]\n", stats->an_assoc_timeouts); printf("Management frames received:\t\t\t[ %d ]\n", stats->an_rx_mgmt_pkts); printf("Management frames transmitted:\t\t\t[ %d ]\n", stats->an_tx_mgmt_pkts); printf("Refresh frames received:\t\t\t[ %d ]\n", stats->an_rx_refresh_pkts), printf("Refresh frames transmitted:\t\t\t[ %d ]\n", stats->an_tx_refresh_pkts), printf("Poll frames received:\t\t\t\t[ %d ]\n", stats->an_rx_poll_pkts); printf("Poll frames transmitted:\t\t\t[ %d ]\n", stats->an_tx_poll_pkts); printf("Host requested sync losses:\t\t\t[ %d ]\n", stats->an_lostsync_hostreq); printf("Host transmitted bytes:\t\t\t\t[ %d ]\n", stats->an_host_tx_bytes); printf("Host received bytes:\t\t\t\t[ %d ]\n", stats->an_host_rx_bytes); printf("Uptime in microseconds:\t\t\t\t[ %d ]\n", stats->an_uptime_usecs); printf("Uptime in seconds:\t\t\t\t[ %d ]\n", stats->an_uptime_secs); printf("Sync lost due to better AP:\t\t\t[ %d ]\n", stats->an_lostsync_better_ap); return; } static void an_dumpap(iface) char *iface; { struct an_ltv_aplist *ap; struct an_req areq; areq.an_len = sizeof(areq); areq.an_type = AN_RID_APLIST; an_getval(iface, &areq); ap = (struct an_ltv_aplist *)&areq; printf("Access point 1:\t\t\t"); an_printhex((char *)&ap->an_ap1, ETHER_ADDR_LEN); printf("\nAccess point 2:\t\t\t"); an_printhex((char *)&ap->an_ap2, ETHER_ADDR_LEN); printf("\nAccess point 3:\t\t\t"); an_printhex((char *)&ap->an_ap3, ETHER_ADDR_LEN); printf("\nAccess point 4:\t\t\t"); an_printhex((char *)&ap->an_ap4, ETHER_ADDR_LEN); printf("\n"); return; } static void an_dumpssid(iface) char *iface; { struct an_ltv_ssidlist *ssid; struct an_req areq; areq.an_len = sizeof(areq); areq.an_type = AN_RID_SSIDLIST; an_getval(iface, &areq); ssid = (struct an_ltv_ssidlist *)&areq; printf("SSID 1:\t\t\t[ %.*s ]\n", ssid->an_ssid1_len, ssid->an_ssid1); printf("SSID 2:\t\t\t[ %.*s ]\n", ssid->an_ssid2_len, ssid->an_ssid2); printf("SSID 3:\t\t\t[ %.*s ]\n", ssid->an_ssid3_len, ssid->an_ssid3); return; } static void an_dumpconfig(iface) char *iface; { struct an_ltv_genconfig *cfg; struct an_req areq; unsigned char div; areq.an_len = sizeof(areq); areq.an_type = AN_RID_ACTUALCFG; an_getval(iface, &areq); cfg = (struct an_ltv_genconfig *)&areq; printf("Operating mode:\t\t\t\t[ "); if ((cfg->an_opmode & 0x7) == AN_OPMODE_IBSS_ADHOC) printf("ad-hoc"); if ((cfg->an_opmode & 0x7) == AN_OPMODE_INFRASTRUCTURE_STATION) printf("infrastructure"); if ((cfg->an_opmode & 0x7) == AN_OPMODE_AP) printf("access point"); if ((cfg->an_opmode & 0x7) == AN_OPMODE_AP_REPEATER) printf("access point repeater"); printf(" ]"); printf("\nReceive mode:\t\t\t\t[ "); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_BC_MC_ADDR) printf("broadcast/multicast/unicast"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_BC_ADDR) printf("broadcast/unicast"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_ADDR) printf("unicast"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_80211_MONITOR_CURBSS) printf("802.11 monitor, current BSSID"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_80211_MONITOR_ANYBSS) printf("802.11 monitor, any BSSID"); if ((cfg->an_rxmode & 0x7) == AN_RXMODE_LAN_MONITOR_CURBSS) printf("LAN monitor, current BSSID"); printf(" ]"); printf("\nFragment threshold:\t\t\t"); an_printwords(&cfg->an_fragthresh, 1); printf("\nRTS threshold:\t\t\t\t"); an_printwords(&cfg->an_rtsthresh, 1); printf("\nMAC address:\t\t\t\t"); an_printhex((char *)&cfg->an_macaddr, ETHER_ADDR_LEN); printf("\nSupported rates:\t\t\t"); an_printspeeds(cfg->an_rates, 8); printf("\nShort retry limit:\t\t\t"); an_printwords(&cfg->an_shortretry_limit, 1); printf("\nLong retry limit:\t\t\t"); an_printwords(&cfg->an_longretry_limit, 1); printf("\nTX MSDU lifetime:\t\t\t"); an_printwords(&cfg->an_tx_msdu_lifetime, 1); printf("\nRX MSDU lifetime:\t\t\t"); an_printwords(&cfg->an_rx_msdu_lifetime, 1); printf("\nStationary:\t\t\t\t"); an_printbool(cfg->an_stationary); printf("\nOrdering:\t\t\t\t"); an_printbool(cfg->an_ordering); printf("\nDevice type:\t\t\t\t[ "); if (cfg->an_devtype == AN_DEVTYPE_PC4500) printf("PC4500"); else if (cfg->an_devtype == AN_DEVTYPE_PC4800) printf("PC4800"); else printf("unknown (%x)", cfg->an_devtype); printf(" ]"); printf("\nScanning mode:\t\t\t\t[ "); if (cfg->an_scanmode == AN_SCANMODE_ACTIVE) printf("active"); if (cfg->an_scanmode == AN_SCANMODE_PASSIVE) printf("passive"); if (cfg->an_scanmode == AN_SCANMODE_AIRONET_ACTIVE) printf("Aironet active"); printf(" ]"); printf("\nProbe delay:\t\t\t\t"); an_printwords(&cfg->an_probedelay, 1); printf("\nProbe energy timeout:\t\t\t"); an_printwords(&cfg->an_probe_energy_timeout, 1); printf("\nProbe response timeout:\t\t\t"); an_printwords(&cfg->an_probe_response_timeout, 1); printf("\nBeacon listen timeout:\t\t\t"); an_printwords(&cfg->an_beacon_listen_timeout, 1); printf("\nIBSS join network timeout:\t\t"); an_printwords(&cfg->an_ibss_join_net_timeout, 1); printf("\nAuthentication timeout:\t\t\t"); an_printwords(&cfg->an_auth_timeout, 1); printf("\nWEP enabled:\t\t\t\t[ "); if (cfg->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) { if (cfg->an_authtype & AN_AUTHTYPE_ALLOW_UNENCRYPTED) printf("mixed cell"); else printf("full"); } else printf("no"); printf(" ]"); printf("\nAuthentication type:\t\t\t[ "); if ((cfg->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_NONE) printf("none"); if ((cfg->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_OPEN) printf("open"); if ((cfg->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_SHAREDKEY) printf("shared key"); printf(" ]"); printf("\nAssociation timeout:\t\t\t"); an_printwords(&cfg->an_assoc_timeout, 1); printf("\nSpecified AP association timeout:\t"); an_printwords(&cfg->an_specified_ap_timeout, 1); printf("\nOffline scan interval:\t\t\t"); an_printwords(&cfg->an_offline_scan_interval, 1); printf("\nOffline scan duration:\t\t\t"); an_printwords(&cfg->an_offline_scan_duration, 1); printf("\nLink loss delay:\t\t\t"); an_printwords(&cfg->an_link_loss_delay, 1); printf("\nMax beacon loss time:\t\t\t"); an_printwords(&cfg->an_max_beacon_lost_time, 1); printf("\nRefresh interval:\t\t\t"); an_printwords(&cfg->an_refresh_interval, 1); printf("\nPower save mode:\t\t\t[ "); if (cfg->an_psave_mode == AN_PSAVE_NONE) printf("none"); if (cfg->an_psave_mode == AN_PSAVE_CAM) printf("constantly awake mode"); if (cfg->an_psave_mode == AN_PSAVE_PSP) printf("PSP"); if (cfg->an_psave_mode == AN_PSAVE_PSP_CAM) printf("PSP-CAM (fast PSP)"); printf(" ]"); printf("\nSleep through DTIMs:\t\t\t"); an_printbool(cfg->an_sleep_for_dtims); printf("\nPower save listen interval:\t\t"); an_printwords(&cfg->an_listen_interval, 1); printf("\nPower save fast listen interval:\t"); an_printwords(&cfg->an_fast_listen_interval, 1); printf("\nPower save listen decay:\t\t"); an_printwords(&cfg->an_listen_decay, 1); printf("\nPower save fast listen decay:\t\t"); an_printwords(&cfg->an_fast_listen_decay, 1); printf("\nAP/ad-hoc Beacon period:\t\t"); an_printwords(&cfg->an_beacon_period, 1); printf("\nAP/ad-hoc ATIM duration:\t\t"); an_printwords(&cfg->an_atim_duration, 1); printf("\nAP/ad-hoc current channel:\t\t"); an_printwords(&cfg->an_ds_channel, 1); printf("\nAP/ad-hoc DTIM period:\t\t\t"); an_printwords(&cfg->an_dtim_period, 1); printf("\nRadio type:\t\t\t\t[ "); if (cfg->an_radiotype & AN_RADIOTYPE_80211_FH) printf("802.11 FH"); else if (cfg->an_radiotype & AN_RADIOTYPE_80211_DS) printf("802.11 DS"); else if (cfg->an_radiotype & AN_RADIOTYPE_LM2000_DS) printf("LM2000 DS"); else printf("unknown (%x)", cfg->an_radiotype); printf(" ]"); printf("\nRX Diversity:\t\t\t\t[ "); div = cfg->an_diversity & 0xFF; if (div == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (div == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (div == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nTX Diversity:\t\t\t\t[ "); div = (cfg->an_diversity >> 8) & 0xFF; if (div == AN_DIVERSITY_ANTENNA_1_ONLY) printf("antenna 1 only"); else if (div == AN_DIVERSITY_ANTENNA_2_ONLY) printf("antenna 2 only"); else if (div == AN_DIVERSITY_ANTENNA_1_AND_2) printf("antenna 1 and 2"); printf(" ]"); printf("\nTransmit power level:\t\t\t"); an_printwords(&cfg->an_tx_power, 1); printf("\nRSS threshold:\t\t\t\t"); an_printwords(&cfg->an_rss_thresh, 1); printf("\nNode name:\t\t\t\t"); an_printstr((char *)&cfg->an_nodename, 16); printf("\nARL threshold:\t\t\t\t"); an_printwords(&cfg->an_arl_thresh, 1); printf("\nARL decay:\t\t\t\t"); an_printwords(&cfg->an_arl_decay, 1); printf("\nARL delay:\t\t\t\t"); an_printwords(&cfg->an_arl_delay, 1); printf("\n"); printf("\n"); an_readkeyinfo(iface); return; } static void usage(p) char *p; { fprintf(stderr, "usage: %s -i iface -A (show specified APs)\n", p); fprintf(stderr, "\t%s -i iface -N (show specified SSIDss)\n", p); fprintf(stderr, "\t%s -i iface -S (show NIC status)\n", p); fprintf(stderr, "\t%s -i iface -I (show NIC capabilities)\n", p); fprintf(stderr, "\t%s -i iface -T (show stats counters)\n", p); fprintf(stderr, "\t%s -i iface -C (show current config)\n", p); fprintf(stderr, "\t%s -i iface -t 0|1|2|3|4 (set TX speed)\n", p); fprintf(stderr, "\t%s -i iface -s 0|1|2|3 (set power same mode)\n", p); fprintf(stderr, "\t%s -i iface [-v 1|2|3|4] -a AP (specify AP)\n", p); fprintf(stderr, "\t%s -i iface -b val (set beacon period)\n", p); fprintf(stderr, "\t%s -i iface [-v 0|1] -d val (set diversity)\n", p); fprintf(stderr, "\t%s -i iface -j val (set netjoin timeout)\n", p); fprintf(stderr, "\t%s -i iface -e 0|1|2|3 (enable transmit key)\n", p); fprintf(stderr, "\t%s -i iface [-v 0|1|2|3|4|5|6|7] -k key (set key)\n", p); fprintf(stderr, "\t%s -i iface -K 0|1|2 (no auth/open/shared secret)\n", p); fprintf(stderr, "\t%s -i iface -W 0|1|2 (no WEP/full WEP/mixed cell)\n", p); fprintf(stderr, "\t%s -i iface -l val (set station name)\n", p); fprintf(stderr, "\t%s -i iface -m val (set MAC address)\n", p); fprintf(stderr, "\t%s -i iface [-v 1|2|3] -n SSID " "(specify SSID)\n", p); fprintf(stderr, "\t%s -i iface -o 0|1 (set operating mode)\n", p); fprintf(stderr, "\t%s -i iface -c val (set ad-hoc channel)\n", p); fprintf(stderr, "\t%s -i iface -f val (set frag threshold)\n", p); fprintf(stderr, "\t%s -i iface -r val (set RTS threshold)\n", p); #ifdef ANCACHE fprintf(stderr, "\t%s -i iface -Q print signal quality cache\n", p); fprintf(stderr, "\t%s -i iface -Z zero out signal cache\n", p); #endif fprintf(stderr, "\t%s -h (display this message)\n", p); exit(1); } static void an_setconfig(iface, act, arg) char *iface; int act; void *arg; { struct an_ltv_genconfig *cfg; struct an_ltv_caps *caps; struct an_req areq; struct an_req areq_caps; u_int16_t diversity = 0; struct ether_addr *addr; int i; areq.an_len = sizeof(areq); areq.an_type = AN_RID_GENCONFIG; an_getval(iface, &areq); cfg = (struct an_ltv_genconfig *)&areq; areq_caps.an_len = sizeof(areq); areq_caps.an_type = AN_RID_CAPABILITIES; an_getval(iface, &areq_caps); caps = (struct an_ltv_caps *)&areq_caps; switch(act) { case ACT_SET_OPMODE: cfg->an_opmode = atoi(arg); break; case ACT_SET_FREQ: cfg->an_ds_channel = atoi(arg); break; case ACT_SET_PWRSAVE: cfg->an_psave_mode = atoi(arg); break; case ACT_SET_SCANMODE: cfg->an_scanmode = atoi(arg); break; case ACT_SET_DIVERSITY_RX: case ACT_SET_DIVERSITY_TX: switch(atoi(arg)) { case 0: diversity = AN_DIVERSITY_FACTORY_DEFAULT; break; case 1: diversity = AN_DIVERSITY_ANTENNA_1_ONLY; break; case 2: diversity = AN_DIVERSITY_ANTENNA_2_ONLY; break; case 3: diversity = AN_DIVERSITY_ANTENNA_1_AND_2; break; default: errx(1, "bad diversity setting: %d", diversity); break; } if (atoi(arg) == ACT_SET_DIVERSITY_RX) { cfg->an_diversity &= 0x00FF; cfg->an_diversity |= (diversity << 8); } else { cfg->an_diversity &= 0xFF00; cfg->an_diversity |= diversity; } break; case ACT_SET_TXPWR: for (i = 0; i < 8; i++) { if (caps->an_tx_powerlevels[i] == atoi(arg)) break; } if (i == 8) errx(1, "unsupported power level: %dmW", atoi(arg)); cfg->an_tx_power = atoi(arg); break; case ACT_SET_RTS_THRESH: cfg->an_rtsthresh = atoi(arg); break; case ACT_SET_RTS_RETRYLIM: cfg->an_shortretry_limit = cfg->an_longretry_limit = atoi(arg); break; case ACT_SET_BEACON_PERIOD: cfg->an_beacon_period = atoi(arg); break; case ACT_SET_WAKE_DURATION: cfg->an_atim_duration = atoi(arg); break; case ACT_SET_FRAG_THRESH: cfg->an_fragthresh = atoi(arg); break; case ACT_SET_NETJOIN: cfg->an_ibss_join_net_timeout = atoi(arg); break; case ACT_SET_MYNAME: bzero(cfg->an_nodename, 16); strncpy((char *)&cfg->an_nodename, optarg, 16); break; case ACT_SET_MAC: addr = ether_aton((char *)arg); if (addr == NULL) errx(1, "badly formatted address"); bzero(cfg->an_macaddr, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&cfg->an_macaddr, ETHER_ADDR_LEN); break; case ACT_ENABLE_WEP: switch (atoi (arg)) { case 0: /* no WEP */ cfg->an_authtype &= ~(AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_ALLOW_UNENCRYPTED); break; case 1: /* full WEP */ cfg->an_authtype |= AN_AUTHTYPE_PRIVACY_IN_USE; cfg->an_authtype &= ~AN_AUTHTYPE_ALLOW_UNENCRYPTED; break; case 2: /* mixed cell */ cfg->an_authtype = AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_ALLOW_UNENCRYPTED; break; } break; case ACT_SET_KEY_TYPE: cfg->an_authtype = (cfg->an_authtype & ~AN_AUTHTYPE_MASK) | atoi(arg); break; default: errx(1, "unknown action"); break; } an_setval(iface, &areq); exit(0); } static void an_setspeed(iface, act, arg) char *iface; int act; void *arg; { struct an_req areq; struct an_ltv_caps *caps; u_int16_t speed; areq.an_len = sizeof(areq); areq.an_type = AN_RID_CAPABILITIES; an_getval(iface, &areq); caps = (struct an_ltv_caps *)&areq; switch(atoi(arg)) { case 0: speed = 0; break; case 1: speed = AN_RATE_1MBPS; break; case 2: speed = AN_RATE_2MBPS; break; case 3: if (caps->an_rates[2] != AN_RATE_5_5MBPS) errx(1, "5.5Mbps not supported on this card"); speed = AN_RATE_5_5MBPS; break; case 4: if (caps->an_rates[3] != AN_RATE_11MBPS) errx(1, "11Mbps not supported on this card"); speed = AN_RATE_11MBPS; break; default: errx(1, "unsupported speed"); break; } areq.an_len = 6; areq.an_type = AN_RID_TX_SPEED; areq.an_val[0] = speed; an_setval(iface, &areq); exit(0); } static void an_setap(iface, act, arg) char *iface; int act; void *arg; { struct an_ltv_aplist *ap; struct an_req areq; struct ether_addr *addr; areq.an_len = sizeof(areq); areq.an_type = AN_RID_APLIST; an_getval(iface, &areq); ap = (struct an_ltv_aplist *)&areq; addr = ether_aton((char *)arg); if (addr == NULL) errx(1, "badly formatted address"); switch(act) { case ACT_SET_AP1: bzero(ap->an_ap1, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap1, ETHER_ADDR_LEN); break; case ACT_SET_AP2: bzero(ap->an_ap2, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap2, ETHER_ADDR_LEN); break; case ACT_SET_AP3: bzero(ap->an_ap3, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap3, ETHER_ADDR_LEN); break; case ACT_SET_AP4: bzero(ap->an_ap4, ETHER_ADDR_LEN); bcopy((char *)addr, (char *)&ap->an_ap4, ETHER_ADDR_LEN); break; default: errx(1, "unknown action"); break; } an_setval(iface, &areq); exit(0); } static void an_setssid(iface, act, arg) char *iface; int act; void *arg; { struct an_ltv_ssidlist *ssid; struct an_req areq; areq.an_len = sizeof(areq); areq.an_type = AN_RID_SSIDLIST; an_getval(iface, &areq); ssid = (struct an_ltv_ssidlist *)&areq; switch (act) { case ACT_SET_SSID1: bzero(ssid->an_ssid1, sizeof(ssid->an_ssid1)); strlcpy(ssid->an_ssid1, (char *)arg, sizeof(ssid->an_ssid1)); ssid->an_ssid1_len = strlen(ssid->an_ssid1); break; case ACT_SET_SSID2: bzero(ssid->an_ssid2, sizeof(ssid->an_ssid2)); strlcpy(ssid->an_ssid2, (char *)arg, sizeof(ssid->an_ssid2)); ssid->an_ssid2_len = strlen(ssid->an_ssid2); break; case ACT_SET_SSID3: bzero(ssid->an_ssid3, sizeof(ssid->an_ssid3)); strlcpy(ssid->an_ssid3, (char *)arg, sizeof(ssid->an_ssid3)); ssid->an_ssid3_len = strlen(ssid->an_ssid3); break; default: errx(1, "unknown action"); break; } an_setval(iface, &areq); exit(0); } #ifdef ANCACHE static void an_zerocache(iface) char *iface; { struct an_req areq; bzero((char *)&areq, sizeof(areq)); areq.an_len = 0; areq.an_type = AN_RID_ZERO_CACHE; an_getval(iface, &areq); return; } static void an_readcache(iface) char *iface; { struct an_req areq; int *an_sigitems; struct an_sigcache *sc; char * pt; int i; if (iface == NULL) errx(1, "must specify interface name"); bzero((char *)&areq, sizeof(areq)); areq.an_len = AN_MAX_DATALEN; areq.an_type = AN_RID_READ_CACHE; an_getval(iface, &areq); an_sigitems = (int *) &areq.an_val; pt = ((char *) &areq.an_val); pt += sizeof(int); sc = (struct an_sigcache *) pt; for (i = 0; i < *an_sigitems; i++) { printf("[%d/%d]:", i+1, *an_sigitems); printf(" %02x:%02x:%02x:%02x:%02x:%02x,", sc->macsrc[0]&0xff, sc->macsrc[1]&0xff, sc->macsrc[2]&0xff, sc->macsrc[3]&0xff, sc->macsrc[4]&0xff, sc->macsrc[5]&0xff); printf(" %d.%d.%d.%d,",((sc->ipsrc >> 0) & 0xff), ((sc->ipsrc >> 8) & 0xff), ((sc->ipsrc >> 16) & 0xff), ((sc->ipsrc >> 24) & 0xff)); printf(" sig: %d, noise: %d, qual: %d\n", sc->signal, sc->noise, sc->quality); sc++; } return; } #endif static int an_hex2int(c) char c; { if (c >= '0' && c <= '9') return (c - '0'); if (c >= 'A' && c <= 'F') return (c - 'A' + 10); if (c >= 'a' && c <= 'f') return (c - 'a' + 10); return (0); } static void an_str2key(s, k) char *s; struct an_ltv_key *k; { int n, i; char *p; /* Is this a hex string? */ if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) { /* Yes, convert to int. */ n = 0; p = (char *)&k->key[0]; for (i = 2; i < strlen(s); i+= 2) { *p++ = (an_hex2int(s[i]) << 4) + an_hex2int(s[i + 1]); n++; } k->klen = n; } else { /* No, just copy it in. */ bcopy(s, k->key, strlen(s)); k->klen = strlen(s); } return; } static void an_setkeys(iface, key, keytype) char *iface; char *key; int keytype; { struct an_req areq; struct an_ltv_key *k; bzero((char *)&areq, sizeof(areq)); k = (struct an_ltv_key *)&areq; if (strlen(key) > 28) { err(1, "encryption key must be no " "more than 18 characters long"); } an_str2key(key, k); k->kindex=keytype/2; if (!(k->klen==0 || k->klen==5 || k->klen==13)) { err(1, "encryption key must be 0, 5 or 13 bytes long"); } /* default mac and only valid one (from manual) 1.0.0.0.0.0 */ k->mac[0]=1; k->mac[1]=0; k->mac[2]=0; k->mac[3]=0; k->mac[4]=0; k->mac[5]=0; switch(keytype & 1){ case 0: areq.an_len = sizeof(struct an_ltv_key); areq.an_type = AN_RID_WEP_PERM; an_setval(iface, &areq); break; case 1: areq.an_len = sizeof(struct an_ltv_key); areq.an_type = AN_RID_WEP_TEMP; an_setval(iface, &areq); break; } return; } static void an_readkeyinfo(iface) char *iface; { struct an_req areq; struct an_ltv_key *k; int i; bzero((char *)&areq, sizeof(areq)); k = (struct an_ltv_key *)&areq; printf("WEP Key status:\n"); areq.an_type = AN_RID_WEP_TEMP; /* read first key */ for(i=0; i<4; i++){ areq.an_len = sizeof(struct an_ltv_key); an_getval(iface, &areq); switch (k->klen){ case 0: printf("\tKey %d is unset\n",i); break; case 5: printf("\tKey %d is set 40 bits\n",i); break; case 13: printf("\tKey %d is set 128 bits\n",i); break; default: printf("\tWEP Key %d has an unknown size %d\n", i, k->klen); } areq.an_type = AN_RID_WEP_PERM; /* read next key */ } k->kindex = 0xffff; areq.an_len = sizeof(struct an_ltv_key); an_getval(iface, &areq); printf("\tThe active transmit key is %d\n", k->mac[0]); return; } static void an_enable_tx_key(iface, arg) char *iface; char *arg; { struct an_req areq; struct an_ltv_key *k; bzero((char *)&areq, sizeof(areq)); k = (struct an_ltv_key *)&areq; /* From a Cisco engineer write the transmit key to use in the first MAC, index is FFFF*/ k->kindex=0xffff; k->klen=0; k->mac[0]=atoi(arg); k->mac[1]=0; k->mac[2]=0; k->mac[3]=0; k->mac[4]=0; k->mac[5]=0; areq.an_len = sizeof(struct an_ltv_key); areq.an_type = AN_RID_WEP_PERM; an_setval(iface, &areq); return; } int main(argc, argv) int argc; char *argv[]; { int ch; int act = 0; char *iface = NULL; int modifier = 0; char *key = NULL; void *arg = NULL; char *p = argv[0]; /* Get the interface name */ opterr = 0; ch = getopt(argc, argv, "i:"); if (ch == 'i') { iface = optarg; } else { if (argc > 1 && *argv[1] != '-') { iface = argv[1]; optind = 2; } else { iface = "an0"; optind = 1; } optreset = 1; } opterr = 1; while ((ch = getopt(argc, argv, "ANISCTht:a:e:o:s:n:v:d:j:b:c:r:p:w:m:l:k:K:W:QZ")) != -1) { switch(ch) { case 'Z': #ifdef ANCACHE act = ACT_ZEROCACHE; #else errx(1, "ANCACHE not available"); #endif break; case 'Q': #ifdef ANCACHE act = ACT_DUMPCACHE; #else errx(1, "ANCACHE not available"); #endif break; case 'A': act = ACT_DUMPAP; break; case 'N': act = ACT_DUMPSSID; break; case 'S': act = ACT_DUMPSTATUS; break; case 'I': act = ACT_DUMPCAPS; break; case 'T': act = ACT_DUMPSTATS; break; case 'C': act = ACT_DUMPCONFIG; break; case 't': act = ACT_SET_TXRATE; arg = optarg; break; case 's': act = ACT_SET_PWRSAVE; arg = optarg; break; case 'p': act = ACT_SET_TXPWR; arg = optarg; break; case 'v': modifier = atoi(optarg); break; case 'a': switch(modifier) { case 0: case 1: act = ACT_SET_AP1; break; case 2: act = ACT_SET_AP2; break; case 3: act = ACT_SET_AP3; break; case 4: act = ACT_SET_AP4; break; default: errx(1, "bad modifier %d: there " "are only 4 access point settings", modifier); usage(p); break; } arg = optarg; break; case 'b': act = ACT_SET_BEACON_PERIOD; arg = optarg; break; case 'd': switch(modifier) { case 0: act = ACT_SET_DIVERSITY_RX; break; case 1: act = ACT_SET_DIVERSITY_TX; break; default: errx(1, "must specift RX or TX diversity"); break; } arg = optarg; break; case 'j': act = ACT_SET_NETJOIN; arg = optarg; break; case 'l': act = ACT_SET_MYNAME; arg = optarg; break; case 'm': act = ACT_SET_MAC; arg = optarg; break; case 'n': switch(modifier) { case 0: case 1: act = ACT_SET_SSID1; break; case 2: act = ACT_SET_SSID2; break; case 3: act = ACT_SET_SSID3; break; default: errx(1, "bad modifier %d: there" "are only 3 SSID settings", modifier); usage(p); break; } arg = optarg; break; case 'o': act = ACT_SET_OPMODE; arg = optarg; break; case 'c': act = ACT_SET_FREQ; arg = optarg; break; case 'f': act = ACT_SET_FRAG_THRESH; arg = optarg; break; case 'W': act = ACT_ENABLE_WEP; arg = optarg; break; case 'K': act = ACT_SET_KEY_TYPE; arg = optarg; break; case 'k': act = ACT_SET_KEYS; key = optarg; break; case 'e': act = ACT_ENABLE_TX_KEY; arg = optarg; break; case 'q': act = ACT_SET_RTS_RETRYLIM; arg = optarg; break; case 'r': act = ACT_SET_RTS_THRESH; arg = optarg; break; case 'w': act = ACT_SET_WAKE_DURATION; arg = optarg; break; case 'h': default: usage(p); } } if (iface == NULL || (!act && !key)) usage(p); switch(act) { case ACT_DUMPSTATUS: an_dumpstatus(iface); break; case ACT_DUMPCAPS: an_dumpcaps(iface); break; case ACT_DUMPSTATS: an_dumpstats(iface); break; case ACT_DUMPCONFIG: an_dumpconfig(iface); break; case ACT_DUMPSSID: an_dumpssid(iface); break; case ACT_DUMPAP: an_dumpap(iface); break; case ACT_SET_SSID1: case ACT_SET_SSID2: case ACT_SET_SSID3: an_setssid(iface, act, arg); break; case ACT_SET_AP1: case ACT_SET_AP2: case ACT_SET_AP3: case ACT_SET_AP4: an_setap(iface, act, arg); break; case ACT_SET_TXRATE: an_setspeed(iface, act, arg); break; #ifdef ANCACHE case ACT_ZEROCACHE: an_zerocache(iface); break; case ACT_DUMPCACHE: an_readcache(iface); break; #endif case ACT_SET_KEYS: an_setkeys(iface, key, modifier); break; case ACT_ENABLE_TX_KEY: an_enable_tx_key(iface, arg); break; default: an_setconfig(iface, act, arg); break; } exit(0); }