/**************************************************************** Copyright 1990 - 1995 by AT&T Bell Laboratories and Bellcore. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the names of AT&T Bell Laboratories or Bellcore or any of their entities not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. AT&T and Bellcore disclaim all warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall AT&T or Bellcore be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. ****************************************************************/ #include "defs.h" #include "output.h" #include "names.h" typedef struct { double dreal, dimag; } dcomplex; static void consbinop Argdcl((int, int, Constp, Constp, Constp)); static void conspower Argdcl((Constp, Constp, long int)); static void zdiv Argdcl((dcomplex*, dcomplex*, dcomplex*)); static tagptr mkpower Argdcl((tagptr)); static tagptr stfcall Argdcl((Namep, struct Listblock*)); extern char dflttype[26]; extern int htype; /* little routines to create constant blocks */ Constp #ifdef KR_headers mkconst(t) register int t; #else mkconst(register int t) #endif { register Constp p; p = ALLOC(Constblock); p->tag = TCONST; p->vtype = t; return(p); } /* mklogcon -- Make Logical Constant */ expptr #ifdef KR_headers mklogcon(l) register int l; #else mklogcon(register int l) #endif { register Constp p; p = mkconst(tylog); p->Const.ci = l; return( (expptr) p ); } /* mkintcon -- Make Integer Constant */ expptr #ifdef KR_headers mkintcon(l) ftnint l; #else mkintcon(ftnint l) #endif { register Constp p; p = mkconst(tyint); p->Const.ci = l; return( (expptr) p ); } /* mkaddcon -- Make Address Constant, given integer value */ expptr #ifdef KR_headers mkaddcon(l) register long l; #else mkaddcon(register long l) #endif { register Constp p; p = mkconst(TYADDR); p->Const.ci = l; return( (expptr) p ); } /* mkrealcon -- Make Real Constant. The type t is assumed to be TYREAL or TYDREAL */ expptr #ifdef KR_headers mkrealcon(t, d) register int t; char *d; #else mkrealcon(register int t, char *d) #endif { register Constp p; p = mkconst(t); p->Const.cds[0] = cds(d,CNULL); p->vstg = 1; return( (expptr) p ); } /* mkbitcon -- Make bit constant. Reads the input string, which is assumed to correctly specify a number in base 2^shift (where shift is the input parameter). shift may not exceed 4, i.e. only binary, quad, octal and hex bases may be input. Constants may not exceed 32 bits, or whatever the size of (struct Constblock).ci may be. */ expptr #ifdef KR_headers mkbitcon(shift, leng, s) int shift; int leng; char *s; #else mkbitcon(int shift, int leng, char *s) #endif { register Constp p; register long x, y, z; int len; char buff[100], *fmt, *s0 = s; static char *kind[3] = { "Binary", "Hex", "Octal" }; p = mkconst(TYLONG); x = y = 0; while(--leng >= 0) if(*s != ' ') { z = x; x = (x << shift) | hextoi(*s++); y |= (((unsigned long)x) >> shift) - z; } /* Don't change the type to short for short constants, as * that is dangerous -- there is no syntax for long constants * with small values. */ p->Const.ci = x; if (y) { if (--shift == 3) shift = 1; if ((len = (int)leng) > 60) sprintf(buff, "%s constant '%.60s' truncated.", kind[shift], s0); else sprintf(buff, "%s constant '%.*s' truncated.", kind[shift], len, s0); err(buff); } return( (expptr) p ); } /* mkstrcon -- Make string constant. Allocates storage and initializes the memory for a copy of the input Fortran-string. */ expptr #ifdef KR_headers mkstrcon(l, v) int l; register char *v; #else mkstrcon(int l, register char *v) #endif { register Constp p; register char *s; p = mkconst(TYCHAR); p->vleng = ICON(l); p->Const.ccp = s = (char *) ckalloc(l+1); p->Const.ccp1.blanks = 0; while(--l >= 0) *s++ = *v++; *s = '\0'; return( (expptr) p ); } /* mkcxcon -- Make complex contsant. A complex number is a pair of values, each of which may be integer, real or double. */ expptr #ifdef KR_headers mkcxcon(realp, imagp) register expptr realp; register expptr imagp; #else mkcxcon(register expptr realp, register expptr imagp) #endif { int rtype, itype; register Constp p; rtype = realp->headblock.vtype; itype = imagp->headblock.vtype; if( ISCONST(realp) && ISNUMERIC(rtype) && ISCONST(imagp) && ISNUMERIC(itype) ) { p = mkconst( (rtype==TYDREAL||itype==TYDREAL) ? TYDCOMPLEX : tycomplex); if (realp->constblock.vstg || imagp->constblock.vstg) { p->vstg = 1; p->Const.cds[0] = ISINT(rtype) ? string_num("", realp->constblock.Const.ci) : realp->constblock.vstg ? realp->constblock.Const.cds[0] : dtos(realp->constblock.Const.cd[0]); p->Const.cds[1] = ISINT(itype) ? string_num("", imagp->constblock.Const.ci) : imagp->constblock.vstg ? imagp->constblock.Const.cds[0] : dtos(imagp->constblock.Const.cd[0]); } else { p->Const.cd[0] = ISINT(rtype) ? realp->constblock.Const.ci : realp->constblock.Const.cd[0]; p->Const.cd[1] = ISINT(itype) ? imagp->constblock.Const.ci : imagp->constblock.Const.cd[0]; } } else { err("invalid complex constant"); p = (Constp)errnode(); } frexpr(realp); frexpr(imagp); return( (expptr) p ); } /* errnode -- Allocate a new error block */ expptr errnode(Void) { struct Errorblock *p; p = ALLOC(Errorblock); p->tag = TERROR; p->vtype = TYERROR; return( (expptr) p ); } /* mkconv -- Make type conversion. Cast expression p into type t. Note that casting to a character copies only the first sizeof(char) bytes. */ expptr #ifdef KR_headers mkconv(t, p) register int t; register expptr p; #else mkconv(register int t, register expptr p) #endif { register expptr q; register int pt, charwarn = 1; if (t >= 100) { t -= 100; charwarn = 0; } if(t==TYUNKNOWN || t==TYERROR) badtype("mkconv", t); pt = p->headblock.vtype; /* Casting to the same type is a no-op */ if(t == pt) return(p); /* If we're casting a constant which is not in the literal table ... */ else if( ISCONST(p) && pt!=TYADDR && pt != TYCHAR) { if (ISINT(t) && ISINT(pt) || ISREAL(t) && ISREAL(pt)) { /* avoid trouble with -i2 */ p->headblock.vtype = t; return p; } q = (expptr) mkconst(t); consconv(t, &q->constblock, &p->constblock ); frexpr(p); } else { if (pt == TYCHAR && t != TYADDR && charwarn && (!halign || p->tag != TADDR || p->addrblock.uname_tag != UNAM_CONST)) warn( "ichar([first char. of] char. string) assumed for conversion to numeric"); q = opconv(p, t); } if(t == TYCHAR) q->constblock.vleng = ICON(1); return(q); } /* opconv -- Convert expression p to type t using the main expression evaluator; returns an OPCONV expression, I think 14-jun-88 mwm */ expptr #ifdef KR_headers opconv(p, t) expptr p; int t; #else opconv(expptr p, int t) #endif { register expptr q; if (t == TYSUBR) err("illegal use of subroutine name"); q = mkexpr(OPCONV, p, ENULL); q->headblock.vtype = t; return(q); } /* addrof -- Create an ADDR expression operation */ expptr #ifdef KR_headers addrof(p) expptr p; #else addrof(expptr p) #endif { return( mkexpr(OPADDR, p, ENULL) ); } /* cpexpr - Returns a new copy of input expression p */ tagptr #ifdef KR_headers cpexpr(p) register tagptr p; #else cpexpr(register tagptr p) #endif { register tagptr e; int tag; register chainp ep, pp; /* This table depends on the ordering of the T macros, e.g. TNAME */ static int blksize[ ] = { 0, sizeof(struct Nameblock), sizeof(struct Constblock), sizeof(struct Exprblock), sizeof(struct Addrblock), sizeof(struct Primblock), sizeof(struct Listblock), sizeof(struct Impldoblock), sizeof(struct Errorblock) }; if(p == NULL) return(NULL); /* TNAMEs are special, and don't get copied. Each name in the current symbol table has a unique TNAME structure. */ if( (tag = p->tag) == TNAME) return(p); e = cpblock(blksize[p->tag], (char *)p); switch(tag) { case TCONST: if(e->constblock.vtype == TYCHAR) { e->constblock.Const.ccp = copyn((int)e->constblock.vleng->constblock.Const.ci+1, e->constblock.Const.ccp); e->constblock.vleng = (expptr) cpexpr(e->constblock.vleng); } case TERROR: break; case TEXPR: e->exprblock.leftp = (expptr) cpexpr(p->exprblock.leftp); e->exprblock.rightp = (expptr) cpexpr(p->exprblock.rightp); break; case TLIST: if(pp = p->listblock.listp) { ep = e->listblock.listp = mkchain((char *)cpexpr((tagptr)pp->datap), CHNULL); for(pp = pp->nextp ; pp ; pp = pp->nextp) ep = ep->nextp = mkchain((char *)cpexpr((tagptr)pp->datap), CHNULL); } break; case TADDR: e->addrblock.vleng = (expptr) cpexpr(e->addrblock.vleng); e->addrblock.memoffset = (expptr)cpexpr(e->addrblock.memoffset); e->addrblock.istemp = NO; break; case TPRIM: e->primblock.argsp = (struct Listblock *) cpexpr((expptr)e->primblock.argsp); e->primblock.fcharp = (expptr) cpexpr(e->primblock.fcharp); e->primblock.lcharp = (expptr) cpexpr(e->primblock.lcharp); break; default: badtag("cpexpr", tag); } return(e); } /* frexpr -- Free expression -- frees up memory used by expression p */ void #ifdef KR_headers frexpr(p) register tagptr p; #else frexpr(register tagptr p) #endif { register chainp q; if(p == NULL) return; switch(p->tag) { case TCONST: if( ISCHAR(p) ) { free( (charptr) (p->constblock.Const.ccp) ); frexpr(p->constblock.vleng); } break; case TADDR: if (p->addrblock.vtype > TYERROR) /* i/o block */ break; frexpr(p->addrblock.vleng); frexpr(p->addrblock.memoffset); break; case TERROR: break; /* TNAME blocks don't get free'd - probably because they're pointed to in the hash table. 14-Jun-88 -- mwm */ case TNAME: return; case TPRIM: frexpr((expptr)p->primblock.argsp); frexpr(p->primblock.fcharp); frexpr(p->primblock.lcharp); break; case TEXPR: frexpr(p->exprblock.leftp); if(p->exprblock.rightp) frexpr(p->exprblock.rightp); break; case TLIST: for(q = p->listblock.listp ; q ; q = q->nextp) frexpr((tagptr)q->datap); frchain( &(p->listblock.listp) ); break; default: badtag("frexpr", p->tag); } free( (charptr) p ); } void #ifdef KR_headers wronginf(np) Namep np; #else wronginf(Namep np) #endif { int c, k; warn1("fixing wrong type inferred for %.65s", np->fvarname); np->vinftype = 0; c = letter(np->fvarname[0]); if ((np->vtype = impltype[c]) == TYCHAR && (k = implleng[c])) np->vleng = ICON(k); } /* fix up types in expression; replace subtrees and convert names to address blocks */ expptr #ifdef KR_headers fixtype(p) register tagptr p; #else fixtype(register tagptr p) #endif { if(p == 0) return(0); switch(p->tag) { case TCONST: if(ONEOF(p->constblock.vtype,MSKINT|MSKLOGICAL|MSKADDR| MSKREAL) ) return( (expptr) p); return( (expptr) putconst((Constp)p) ); case TADDR: p->addrblock.memoffset = fixtype(p->addrblock.memoffset); return( (expptr) p); case TERROR: return( (expptr) p); default: badtag("fixtype", p->tag); /* This case means that fixexpr can't call fixtype with any expr, only a subexpr of its parameter. */ case TEXPR: if (((Exprp)p)->typefixed) return (expptr)p; return( fixexpr((Exprp)p) ); case TLIST: return( (expptr) p ); case TPRIM: if(p->primblock.argsp && p->primblock.namep->vclass!=CLVAR) { if(p->primblock.namep->vtype == TYSUBR) { err("function invocation of subroutine"); return( errnode() ); } else { if (p->primblock.namep->vinftype) wronginf(p->primblock.namep); return( mkfunct(p) ); } } /* The lack of args makes p a function name, substring reference or variable name. */ else return mklhs((struct Primblock *) p, keepsubs); } } int #ifdef KR_headers badchleng(p) register expptr p; #else badchleng(register expptr p) #endif { if (!p->headblock.vleng) { if (p->headblock.tag == TADDR && p->addrblock.uname_tag == UNAM_NAME) errstr("bad use of character*(*) variable %.60s", p->addrblock.user.name->fvarname); else err("Bad use of character*(*)"); return 1; } return 0; } static expptr #ifdef KR_headers cplenexpr(p) expptr p; #else cplenexpr(expptr p) #endif { expptr rv; if (badchleng(p)) return ICON(1); rv = cpexpr(p->headblock.vleng); if (ISCONST(p) && p->constblock.vtype == TYCHAR) rv->constblock.Const.ci += p->constblock.Const.ccp1.blanks; return rv; } /* special case tree transformations and cleanups of expression trees. Parameter p should have a TEXPR tag at its root, else an error is returned */ expptr #ifdef KR_headers fixexpr(p) register Exprp p; #else fixexpr(register Exprp p) #endif { expptr lp; register expptr rp; register expptr q; char *hsave; int opcode, ltype, rtype, ptype, mtype; if( ISERROR(p) || p->typefixed ) return( (expptr) p ); else if(p->tag != TEXPR) badtag("fixexpr", p->tag); opcode = p->opcode; /* First set the types of the left and right subexpressions */ lp = p->leftp; if (!ISCONST(lp) || lp->constblock.vtype != TYCHAR) lp = p->leftp = fixtype(lp); ltype = lp->headblock.vtype; if(opcode==OPASSIGN && lp->tag!=TADDR) { err("left side of assignment must be variable"); eret: frexpr((expptr)p); return( errnode() ); } if(rp = p->rightp) { if (!ISCONST(rp) || rp->constblock.vtype != TYCHAR) rp = p->rightp = fixtype(rp); rtype = rp->headblock.vtype; } else rtype = 0; if(ltype==TYERROR || rtype==TYERROR) goto eret; /* Now work on the whole expression */ /* force folding if possible */ if( ISCONST(lp) && (rp==NULL || ISCONST(rp)) ) { q = opcode == OPCONV && lp->constblock.vtype == p->vtype ? lp : mkexpr(opcode, lp, rp); /* mkexpr is expected to reduce constant expressions */ if( ISCONST(q) ) { p->leftp = p->rightp = 0; frexpr((expptr)p); return(q); } free( (charptr) q ); /* constants did not fold */ } if( (ptype = cktype(opcode, ltype, rtype)) == TYERROR) goto eret; if (ltype == TYCHAR && ISCONST(lp)) { if (opcode == OPCONV) { hsave = halign; halign = 0; lp = (expptr)putconst((Constp)lp); halign = hsave; } else lp = (expptr)putconst((Constp)lp); p->leftp = lp; } if (rtype == TYCHAR && ISCONST(rp)) p->rightp = rp = (expptr)putconst((Constp)rp); switch(opcode) { case OPCONCAT: if(p->vleng == NULL) p->vleng = mkexpr(OPPLUS, cplenexpr(lp), cplenexpr(rp) ); break; case OPASSIGN: if (rtype == TYREAL || ISLOGICAL(ptype) || rtype == TYDREAL && ltype == TYREAL && !ISCONST(rp)) break; case OPPLUSEQ: case OPSTAREQ: if(ltype == rtype) break; if( ! ISCONST(rp) && ISREAL(ltype) && ISREAL(rtype) ) break; if( ISCOMPLEX(ltype) || ISCOMPLEX(rtype) ) break; if( ONEOF(ltype, MSKADDR|MSKINT) && ONEOF(rtype, MSKADDR|MSKINT) && typesize[ltype]>=typesize[rtype] ) break; /* Cast the right hand side to match the type of the expression */ p->rightp = fixtype( mkconv(ptype, rp) ); break; case OPSLASH: if( ISCOMPLEX(rtype) ) { p = (Exprp) call2(ptype, /* Handle double precision complex variables */ ptype == TYCOMPLEX ? "c_div" : "z_div", mkconv(ptype, lp), mkconv(ptype, rp) ); break; } case OPPLUS: case OPMINUS: case OPSTAR: case OPMOD: if(ptype==TYDREAL && ( (ltype==TYREAL && ! ISCONST(lp) ) || (rtype==TYREAL && ! ISCONST(rp) ) )) break; if( ISCOMPLEX(ptype) ) break; /* Cast both sides of the expression to match the type of the whole expression. */ if(ltype != ptype && (ltype < TYINT1 || ptype > TYDREAL)) p->leftp = fixtype(mkconv(ptype,lp)); if(rtype != ptype && (rtype < TYINT1 || ptype > TYDREAL)) p->rightp = fixtype(mkconv(ptype,rp)); break; case OPPOWER: rp = mkpower((expptr)p); if (rp->tag == TEXPR) rp->exprblock.typefixed = 1; return rp; case OPLT: case OPLE: case OPGT: case OPGE: case OPEQ: case OPNE: if(ltype == rtype) break; if (htype) { if (ltype == TYCHAR) { p->leftp = fixtype(mkconv(rtype,lp)); break; } if (rtype == TYCHAR) { p->rightp = fixtype(mkconv(ltype,rp)); break; } } mtype = cktype(OPMINUS, ltype, rtype); if(mtype==TYDREAL && (ltype==TYREAL || rtype==TYREAL)) break; if( ISCOMPLEX(mtype) ) break; if(ltype != mtype) p->leftp = fixtype(mkconv(mtype,lp)); if(rtype != mtype) p->rightp = fixtype(mkconv(mtype,rp)); break; case OPCONV: ptype = cktype(OPCONV, p->vtype, ltype); if(lp->tag==TEXPR && lp->exprblock.opcode==OPCOMMA && !ISCOMPLEX(ptype)) { lp->exprblock.rightp = fixtype( mkconv(ptype, lp->exprblock.rightp) ); free( (charptr) p ); p = (Exprp) lp; } break; case OPADDR: if(lp->tag==TEXPR && lp->exprblock.opcode==OPADDR) Fatal("addr of addr"); break; case OPCOMMA: case OPQUEST: case OPCOLON: break; case OPMIN: case OPMAX: case OPMIN2: case OPMAX2: case OPDMIN: case OPDMAX: case OPABS: case OPDABS: ptype = p->vtype; break; default: break; } p->vtype = ptype; p->typefixed = 1; return((expptr) p); } /* fix an argument list, taking due care for special first level cases */ int #ifdef KR_headers fixargs(doput, p0) int doput; struct Listblock *p0; #else fixargs(int doput, struct Listblock *p0) #endif /* doput is true if constants need to be passed by reference */ { register chainp p; register tagptr q, t; register int qtag; int nargs; nargs = 0; if(p0) for(p = p0->listp ; p ; p = p->nextp) { ++nargs; q = (tagptr)p->datap; qtag = q->tag; if(qtag == TCONST) { /* Call putconst() to store values in a constant table. Since even constants must be passed by reference, this can optimize on the storage required */ p->datap = doput ? (char *)putconst((Constp)q) : (char *)q; } /* Take a function name and turn it into an Addr. This only happens when nothing else has figured out the function beforehand */ else if(qtag==TPRIM && q->primblock.argsp==0 && q->primblock.namep->vclass==CLPROC && q->primblock.namep->vprocclass != PTHISPROC) p->datap = (char *)mkaddr(q->primblock.namep); else if(qtag==TPRIM && q->primblock.argsp==0 && q->primblock.namep->vdim!=NULL) p->datap = (char *)mkscalar(q->primblock.namep); else if(qtag==TPRIM && q->primblock.argsp==0 && q->primblock.namep->vdovar && (t = (tagptr) memversion(q->primblock.namep)) ) p->datap = (char *)fixtype(t); else p->datap = (char *)fixtype(q); } return(nargs); } /* mkscalar -- only called by fixargs above, and by some routines in io.c */ Addrp #ifdef KR_headers mkscalar(np) register Namep np; #else mkscalar(register Namep np) #endif { register Addrp ap; vardcl(np); ap = mkaddr(np); /* The prolog causes array arguments to point to the * (0,...,0) element, unless subscript checking is on. */ if( !checksubs && np->vstg==STGARG) { register struct Dimblock *dp; dp = np->vdim; frexpr(ap->memoffset); ap->memoffset = mkexpr(OPSTAR, (np->vtype==TYCHAR ? cpexpr(np->vleng) : (tagptr)ICON(typesize[np->vtype]) ), cpexpr(dp->baseoffset) ); } return(ap); } static void #ifdef KR_headers adjust_arginfo(np) register Namep np; #else adjust_arginfo(register Namep np) #endif /* adjust arginfo to omit the length arg for the arg that we now know to be a character-valued function */ { struct Entrypoint *ep; register chainp args; Argtypes *at; for(ep = entries; ep; ep = ep->entnextp) for(args = ep->arglist; args; args = args->nextp) if (np == (Namep)args->datap && (at = ep->entryname->arginfo)) --at->nargs; } expptr #ifdef KR_headers mkfunct(p0) expptr p0; #else mkfunct(expptr p0) #endif { register struct Primblock *p = (struct Primblock *)p0; struct Entrypoint *ep; Addrp ap; Extsym *extp; register Namep np; register expptr q; extern chainp new_procs; int k, nargs; int class; if(p->tag != TPRIM) return( errnode() ); np = p->namep; class = np->vclass; if(class == CLUNKNOWN) { np->vclass = class = CLPROC; if(np->vstg == STGUNKNOWN) { if(np->vtype!=TYSUBR && (k = intrfunct(np->fvarname)) && (zflag || !(*(struct Intrpacked *)&k).f4 || dcomplex_seen)) { np->vstg = STGINTR; np->vardesc.varno = k; np->vprocclass = PINTRINSIC; } else { extp = mkext(np->fvarname, addunder(np->cvarname)); extp->extstg = STGEXT; np->vstg = STGEXT; np->vardesc.varno = extp - extsymtab; np->vprocclass = PEXTERNAL; } } else if(np->vstg==STGARG) { if(np->vtype == TYCHAR) { adjust_arginfo(np); if (np->vpassed) { char wbuf[160], *who; who = np->fvarname; sprintf(wbuf, "%s%s%s\n\t%s%s%s", "Character-valued dummy procedure ", who, " not declared EXTERNAL.", "Code may be wrong for previous function calls having ", who, " as a parameter."); warn(wbuf); } } np->vprocclass = PEXTERNAL; } } if(class != CLPROC) { if (np->vstg == STGCOMMON) fatalstr( "Cannot invoke common variable %.50s as a function.", np->fvarname); errstr("%.80s cannot be called.", np->fvarname); goto error; } /* F77 doesn't allow subscripting of function calls */ if(p->fcharp || p->lcharp) { err("no substring of function call"); goto error; } impldcl(np); np->vimpltype = 0; /* invoking as function ==> inferred type */ np->vcalled = 1; nargs = fixargs( np->vprocclass!=PINTRINSIC, p->argsp); switch(np->vprocclass) { case PEXTERNAL: if(np->vtype == TYUNKNOWN) { dclerr("attempt to use untyped function", np); np->vtype = dflttype[letter(np->fvarname[0])]; } ap = mkaddr(np); if (!extsymtab[np->vardesc.varno].extseen) { new_procs = mkchain((char *)np, new_procs); extsymtab[np->vardesc.varno].extseen = 1; } call: q = mkexpr(OPCALL, (expptr)ap, (expptr)p->argsp); q->exprblock.vtype = np->vtype; if(np->vleng) q->exprblock.vleng = (expptr) cpexpr(np->vleng); break; case PINTRINSIC: q = intrcall(np, p->argsp, nargs); break; case PSTFUNCT: q = stfcall(np, p->argsp); break; case PTHISPROC: warn("recursive call"); /* entries is the list of multiple entry points */ for(ep = entries ; ep ; ep = ep->entnextp) if(ep->enamep == np) break; if(ep == NULL) Fatal("mkfunct: impossible recursion"); ap = builtin(np->vtype, ep->entryname->cextname, -2); /* the negative last arg prevents adding */ /* this name to the list of used builtins */ goto call; default: fatali("mkfunct: impossible vprocclass %d", (int) (np->vprocclass) ); } free( (charptr) p ); return(q); error: frexpr((expptr)p); return( errnode() ); } static expptr #ifdef KR_headers stfcall(np, actlist) Namep np; struct Listblock *actlist; #else stfcall(Namep np, struct Listblock *actlist) #endif { register chainp actuals; int nargs; chainp oactp, formals; int type; expptr Ln, Lq, q, q1, rhs, ap; Namep tnp; register struct Rplblock *rp; struct Rplblock *tlist; if (np->arginfo) { errstr("statement function %.66s calls itself.", np->fvarname); return ICON(0); } np->arginfo = (Argtypes *)np; /* arbitrary nonzero value */ if(actlist) { actuals = actlist->listp; free( (charptr) actlist); } else actuals = NULL; oactp = actuals; nargs = 0; tlist = NULL; if( (type = np->vtype) == TYUNKNOWN) { dclerr("attempt to use untyped statement function", np); type = np->vtype = dflttype[letter(np->fvarname[0])]; } formals = (chainp) np->varxptr.vstfdesc->datap; rhs = (expptr) (np->varxptr.vstfdesc->nextp); /* copy actual arguments into temporaries */ while(actuals!=NULL && formals!=NULL) { if (!(tnp = (Namep) formals->datap)) { /* buggy statement function declaration */ q = ICON(1); goto done; } rp = ALLOC(Rplblock); rp->rplnp = tnp; ap = fixtype((tagptr)actuals->datap); if(tnp->vtype==ap->headblock.vtype && tnp->vtype!=TYCHAR && (ap->tag==TCONST || ap->tag==TADDR) ) { /* If actuals are constants or variable names, no temporaries are required */ rp->rplvp = (expptr) ap; rp->rplxp = NULL; rp->rpltag = ap->tag; } else { rp->rplvp = (expptr) mktmp(tnp->vtype, tnp->vleng); rp -> rplxp = NULL; putexpr ( mkexpr(OPASSIGN, cpexpr(rp->rplvp), ap)); if((rp->rpltag = rp->rplvp->tag) == TERROR) err("disagreement of argument types in statement function call"); } rp->rplnextp = tlist; tlist = rp; actuals = actuals->nextp; formals = formals->nextp; ++nargs; } if(actuals!=NULL || formals!=NULL) err("statement function definition and argument list differ"); /* now push down names involved in formal argument list, then evaluate rhs of statement function definition in this environment */ if(tlist) /* put tlist in front of the rpllist */ { for(rp = tlist; rp->rplnextp; rp = rp->rplnextp) ; rp->rplnextp = rpllist; rpllist = tlist; } /* So when the expression finally gets evaled, that evaluator must read from the globl rpllist 14-jun-88 mwm */ q = (expptr) mkconv(type, fixtype(cpexpr(rhs)) ); /* get length right of character-valued statement functions... */ if (type == TYCHAR && (Ln = np->vleng) && q->tag != TERROR && (Lq = q->exprblock.vleng) && (Lq->tag != TCONST || Ln->constblock.Const.ci != Lq->constblock.Const.ci)) { q1 = (expptr) mktmp(type, Ln); putexpr ( mkexpr(OPASSIGN, cpexpr(q1), q)); q = q1; } /* now generate the tree ( t1=a1, (t2=a2,... , f))))) */ while(--nargs >= 0) { if(rpllist->rplxp) q = mkexpr(OPCOMMA, rpllist->rplxp, q); rp = rpllist->rplnextp; frexpr(rpllist->rplvp); free((char *)rpllist); rpllist = rp; } done: frchain( &oactp ); np->arginfo = 0; return(q); } static int replaced; /* mkplace -- Figure out the proper storage class for the input name and return an addrp with the appropriate stuff */ Addrp #ifdef KR_headers mkplace(np) register Namep np; #else mkplace(register Namep np) #endif { register Addrp s; register struct Rplblock *rp; int regn; /* is name on the replace list? */ for(rp = rpllist ; rp ; rp = rp->rplnextp) { if(np == rp->rplnp) { replaced = 1; if(rp->rpltag == TNAME) { np = (Namep) (rp->rplvp); break; } else return( (Addrp) cpexpr(rp->rplvp) ); } } /* is variable a DO index in a register ? */ if(np->vdovar && ( (regn = inregister(np)) >= 0) ) if(np->vtype == TYERROR) return((Addrp) errnode() ); else { s = ALLOC(Addrblock); s->tag = TADDR; s->vstg = STGREG; s->vtype = TYIREG; s->memno = regn; s->memoffset = ICON(0); s -> uname_tag = UNAM_NAME; s -> user.name = np; return(s); } if (np->vclass == CLPROC && np->vprocclass != PTHISPROC) errstr("external %.60s used as a variable", np->fvarname); vardcl(np); return(mkaddr(np)); } static expptr #ifdef KR_headers subskept(p, a) struct Primblock *p; Addrp a; #else subskept(struct Primblock *p, Addrp a) #endif { expptr ep; struct Listblock *Lb; chainp cp; if (a->uname_tag != UNAM_NAME) erri("subskept: uname_tag %d", a->uname_tag); a->user.name->vrefused = 1; a->user.name->visused = 1; a->uname_tag = UNAM_REF; Lb = (struct Listblock *)cpexpr((tagptr)p->argsp); for(cp = Lb->listp; cp; cp = cp->nextp) cp->datap = (char *)putx(fixtype((tagptr)cp->datap)); if (a->vtype == TYCHAR) { ep = p->fcharp ? mkexpr(OPMINUS, cpexpr(p->fcharp), ICON(1)) : ICON(0); Lb->listp = mkchain((char *)ep, Lb->listp); } return (expptr)Lb; } static int doing_vleng; /* mklhs -- Compute the actual address of the given expression; account for array subscripts, stack offset, and substring offsets. The f -> C translator will need this only to worry about the subscript stuff */ expptr #ifdef KR_headers mklhs(p, subkeep) register struct Primblock *p; int subkeep; #else mklhs(register struct Primblock *p, int subkeep) #endif { register Addrp s; Namep np; if(p->tag != TPRIM) return( (expptr) p ); np = p->namep; replaced = 0; s = mkplace(np); if(s->tag!=TADDR || s->vstg==STGREG) { free( (charptr) p ); return( (expptr) s ); } s->parenused = p->parenused; /* compute the address modified by subscripts */ if (!replaced) s->memoffset = (subkeep && np->vdim && (np->vdim->ndim > 1 || np->vtype == TYCHAR && (!ISCONST(np->vleng) || np->vleng->constblock.Const.ci != 1))) ? subskept(p,s) : mkexpr(OPPLUS, s->memoffset, suboffset(p) ); frexpr((expptr)p->argsp); p->argsp = NULL; /* now do substring part */ if(p->fcharp || p->lcharp) { if(np->vtype != TYCHAR) errstr("substring of noncharacter %s", np->fvarname); else { if(p->lcharp == NULL) p->lcharp = (expptr) cpexpr(s->vleng); if(p->fcharp) { doing_vleng = 1; s->vleng = fixtype(mkexpr(OPMINUS, p->lcharp, mkexpr(OPMINUS, p->fcharp, ICON(1) ))); doing_vleng = 0; } else { frexpr(s->vleng); s->vleng = p->lcharp; } } } s->vleng = fixtype( s->vleng ); s->memoffset = fixtype( s->memoffset ); free( (charptr) p ); return( (expptr) s ); } /* deregister -- remove a register allocation from the list; assumes that names are deregistered in stack order (LIFO order - Last In First Out) */ void #ifdef KR_headers deregister(np) Namep np; #else deregister(Namep np) #endif { if(nregvar>0 && regnamep[nregvar-1]==np) { --nregvar; } } /* memversion -- moves a DO index REGISTER into a memory location; other objects are passed through untouched */ Addrp #ifdef KR_headers memversion(np) register Namep np; #else memversion(register Namep np) #endif { register Addrp s; if(np->vdovar==NO || (inregister(np)<0) ) return(NULL); np->vdovar = NO; s = mkplace(np); np->vdovar = YES; return(s); } /* inregister -- looks for the input name in the global list regnamep */ int #ifdef KR_headers inregister(np) register Namep np; #else inregister(register Namep np) #endif { register int i; for(i = 0 ; i < nregvar ; ++i) if(regnamep[i] == np) return( regnum[i] ); return(-1); } /* suboffset -- Compute the offset from the start of the array, given the subscripts as arguments */ expptr #ifdef KR_headers suboffset(p) register struct Primblock *p; #else suboffset(register struct Primblock *p) #endif { int n; expptr si, size; chainp cp; expptr e, e1, offp, prod; struct Dimblock *dimp; expptr sub[MAXDIM+1]; register Namep np; np = p->namep; offp = ICON(0); n = 0; if(p->argsp) for(cp = p->argsp->listp ; cp ; cp = cp->nextp) { si = fixtype(cpexpr((tagptr)cp->datap)); if (!ISINT(si->headblock.vtype)) { NOEXT("non-integer subscript"); si = mkconv(TYLONG, si); } sub[n++] = si; if(n > maxdim) { erri("more than %d subscripts", maxdim); break; } } dimp = np->vdim; if(n>0 && dimp==NULL) errstr("subscripts on scalar variable %.68s", np->fvarname); else if(dimp && dimp->ndim!=n) errstr("wrong number of subscripts on %.68s", np->fvarname); else if(n > 0) { prod = sub[--n]; while( --n >= 0) prod = mkexpr(OPPLUS, sub[n], mkexpr(OPSTAR, prod, cpexpr(dimp->dims[n].dimsize)) ); if(checksubs || np->vstg!=STGARG) prod = mkexpr(OPMINUS, prod, cpexpr(dimp->baseoffset)); /* Add in the run-time bounds check */ if(checksubs) prod = subcheck(np, prod); size = np->vtype == TYCHAR ? (expptr) cpexpr(np->vleng) : ICON(typesize[np->vtype]); prod = mkexpr(OPSTAR, prod, size); offp = mkexpr(OPPLUS, offp, prod); } /* Check for substring indicator */ if(p->fcharp && np->vtype==TYCHAR) { e = p->fcharp; e1 = mkexpr(OPMINUS, cpexpr(e), ICON(1)); if (!ISCONST(e) && (e->tag != TPRIM || e->primblock.argsp)) { e = (expptr)mktmp(TYLONG, ENULL); putout(putassign(cpexpr(e), e1)); p->fcharp = mkexpr(OPPLUS, cpexpr(e), ICON(1)); e1 = e; } offp = mkexpr(OPPLUS, offp, e1); } return(offp); } expptr #ifdef KR_headers subcheck(np, p) Namep np; register expptr p; #else subcheck(Namep np, register expptr p) #endif { struct Dimblock *dimp; expptr t, checkvar, checkcond, badcall; dimp = np->vdim; if(dimp->nelt == NULL) return(p); /* don't check arrays with * bounds */ np->vlastdim = 0; if( ISICON(p) ) { /* check for negative (constant) offset */ if(p->constblock.Const.ci < 0) goto badsub; if( ISICON(dimp->nelt) ) /* see if constant offset exceeds the array declaration */ if(p->constblock.Const.ci < dimp->nelt->constblock.Const.ci) return(p); else goto badsub; } /* We know that the subscript offset p or dimp -> nelt is not a constant. Now find a register to use for run-time bounds checking */ if(p->tag==TADDR && p->addrblock.vstg==STGREG) { checkvar = (expptr) cpexpr(p); t = p; } else { checkvar = (expptr) mktmp(p->headblock.vtype, ENULL); t = mkexpr(OPASSIGN, cpexpr(checkvar), p); } checkcond = mkexpr(OPLT, t, cpexpr(dimp->nelt) ); if( ! ISICON(p) ) checkcond = mkexpr(OPAND, checkcond, mkexpr(OPLE, ICON(0), cpexpr(checkvar)) ); /* Construct the actual test */ badcall = call4(p->headblock.vtype, "s_rnge", mkstrcon(strlen(np->fvarname), np->fvarname), mkconv(TYLONG, cpexpr(checkvar)), mkstrcon(strlen(procname), procname), ICON(lineno) ); badcall->exprblock.opcode = OPCCALL; p = mkexpr(OPQUEST, checkcond, mkexpr(OPCOLON, checkvar, badcall)); return(p); badsub: frexpr(p); errstr("subscript on variable %s out of range", np->fvarname); return ( ICON(0) ); } Addrp #ifdef KR_headers mkaddr(p) register Namep p; #else mkaddr(register Namep p) #endif { Extsym *extp; register Addrp t; int k; switch( p->vstg) { case STGAUTO: if(p->vclass == CLPROC && p->vprocclass == PTHISPROC) return (Addrp) cpexpr((expptr)xretslot[p->vtype]); goto other; case STGUNKNOWN: if(p->vclass != CLPROC) break; /* Error */ extp = mkext(p->fvarname, addunder(p->cvarname)); extp->extstg = STGEXT; p->vstg = STGEXT; p->vardesc.varno = extp - extsymtab; p->vprocclass = PEXTERNAL; if ((extp->exproto || infertypes) && (p->vtype == TYUNKNOWN || p->vimpltype) && (k = extp->extype)) inferdcl(p, k); case STGCOMMON: case STGEXT: case STGBSS: case STGINIT: case STGEQUIV: case STGARG: case STGLENG: other: t = ALLOC(Addrblock); t->tag = TADDR; t->vclass = p->vclass; t->vtype = p->vtype; t->vstg = p->vstg; t->memno = p->vardesc.varno; t->memoffset = ICON(p->voffset); if (p->vdim) t->isarray = 1; if(p->vleng) { t->vleng = (expptr) cpexpr(p->vleng); if( ISICON(t->vleng) ) t->varleng = t->vleng->constblock.Const.ci; } /* Keep the original name around for the C code generation */ t -> uname_tag = UNAM_NAME; t -> user.name = p; return(t); case STGINTR: return ( intraddr (p)); case STGSTFUNCT: errstr("invalid use of statement function %.64s.", p->fvarname); return putconst((Constp)ICON(0)); } badstg("mkaddr", p->vstg); /* NOT REACHED */ return 0; } /* mkarg -- create storage for a new parameter. This is called when a function returns a string (for the return value, which is the first parameter), or when a variable-length string is passed to a function. */ Addrp #ifdef KR_headers mkarg(type, argno) int type; int argno; #else mkarg(int type, int argno) #endif { register Addrp p; p = ALLOC(Addrblock); p->tag = TADDR; p->vtype = type; p->vclass = CLVAR; /* TYLENG is the type of the field holding the length of a character string */ p->vstg = (type==TYLENG ? STGLENG : STGARG); p->memno = argno; return(p); } /* mkprim -- Create a PRIM (primary/primitive) block consisting of a Nameblock (or Paramblock), arguments (actual params or array subscripts) and substring bounds. Requires that v have lots of extra (uninitialized) storage, since it could be a paramblock or nameblock */ expptr #ifdef KR_headers mkprim(v0, args, substr) Namep v0; struct Listblock *args; chainp substr; #else mkprim(Namep v0, struct Listblock *args, chainp substr) #endif { typedef union { struct Paramblock paramblock; struct Nameblock nameblock; struct Headblock headblock; } *Primu; register Primu v = (Primu)v0; register struct Primblock *p; if(v->headblock.vclass == CLPARAM) { /* v is to be a Paramblock */ if(args || substr) { errstr("no qualifiers on parameter name %s", v->paramblock.fvarname); frexpr((expptr)args); if(substr) { frexpr((tagptr)substr->datap); frexpr((tagptr)substr->nextp->datap); frchain(&substr); } frexpr((expptr)v); return( errnode() ); } return( (expptr) cpexpr(v->paramblock.paramval) ); } p = ALLOC(Primblock); p->tag = TPRIM; p->vtype = v->nameblock.vtype; /* v is to be a Nameblock */ p->namep = (Namep) v; p->argsp = args; if(substr) { p->fcharp = (expptr) substr->datap; p->lcharp = (expptr) substr->nextp->datap; frchain(&substr); } return( (expptr) p); } /* vardcl -- attempt to fill out the Name template for variable v. This function is called on identifiers known to be variables or recursive references to the same function */ void #ifdef KR_headers vardcl(v) register Namep v; #else vardcl(register Namep v) #endif { struct Dimblock *t; expptr neltp; extern int doing_stmtfcn; if(v->vclass == CLUNKNOWN) { v->vclass = CLVAR; if (v->vinftype) { v->vtype = TYUNKNOWN; if (v->vdcldone) { v->vdcldone = 0; impldcl(v); } } } if(v->vdcldone) return; if(v->vclass == CLNAMELIST) return; if(v->vtype == TYUNKNOWN) impldcl(v); else if(v->vclass!=CLVAR && v->vprocclass!=PTHISPROC) { dclerr("used as variable", v); return; } if(v->vstg==STGUNKNOWN) { if (doing_stmtfcn) { /* neither declare this variable if its only use */ /* is in defining a stmt function, nor complain */ /* that it is never used */ v->vimpldovar = 1; return; } v->vstg = implstg[ letter(v->fvarname[0]) ]; v->vimplstg = 1; } /* Compute the actual storage location, i.e. offsets from base addresses, possibly the stack pointer */ switch(v->vstg) { case STGBSS: v->vardesc.varno = ++lastvarno; break; case STGAUTO: if(v->vclass==CLPROC && v->vprocclass==PTHISPROC) break; if(t = v->vdim) if( (neltp = t->nelt) && ISCONST(neltp) ) ; else dclerr("adjustable automatic array", v); break; default: break; } v->vdcldone = YES; } /* Set the implicit type declaration of parameter p based on its first letter */ void #ifdef KR_headers impldcl(p) register Namep p; #else impldcl(register Namep p) #endif { register int k; int type; ftnint leng; if(p->vdcldone || (p->vclass==CLPROC && p->vprocclass==PINTRINSIC) ) return; if(p->vtype == TYUNKNOWN) { k = letter(p->fvarname[0]); type = impltype[ k ]; leng = implleng[ k ]; if(type == TYUNKNOWN) { if(p->vclass == CLPROC) return; dclerr("attempt to use undefined variable", p); type = dflttype[k]; leng = 0; } settype(p, type, leng); p->vimpltype = 1; } } void #ifdef KR_headers inferdcl(np, type) Namep np; int type; #else inferdcl(Namep np, int type) #endif { int k = impltype[letter(np->fvarname[0])]; if (k != type) { np->vinftype = 1; np->vtype = type; frexpr(np->vleng); np->vleng = 0; } np->vimpltype = 0; np->vinfproc = 1; } LOCAL int #ifdef KR_headers zeroconst(e) expptr e; #else zeroconst(expptr e) #endif { register Constp c = (Constp) e; if (c->tag == TCONST) switch(c->vtype) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif return c->Const.ci == 0; case TYREAL: case TYDREAL: if (c->vstg == 1) return !strcmp(c->Const.cds[0],"0."); return c->Const.cd[0] == 0.; case TYCOMPLEX: case TYDCOMPLEX: if (c->vstg == 1) return !strcmp(c->Const.cds[0],"0.") && !strcmp(c->Const.cds[1],"0."); return c->Const.cd[0] == 0. && c->Const.cd[1] == 0.; } return 0; } #define ICONEQ(z, c) (ISICON(z) && z->constblock.Const.ci==c) #define COMMUTE { e = lp; lp = rp; rp = e; } /* mkexpr -- Make expression, and simplify constant subcomponents (tree order is not preserved). Assumes that lp is nonempty, and uses fold() to simplify adjacent constants */ expptr #ifdef KR_headers mkexpr(opcode, lp, rp) int opcode; register expptr lp; register expptr rp; #else mkexpr(int opcode, register expptr lp, register expptr rp) #endif { register expptr e, e1; int etype; int ltype, rtype; int ltag, rtag; long L; static long divlineno; ltype = lp->headblock.vtype; ltag = lp->tag; if(rp && opcode!=OPCALL && opcode!=OPCCALL) { rtype = rp->headblock.vtype; rtag = rp->tag; } else rtype = 0; etype = cktype(opcode, ltype, rtype); if(etype == TYERROR) goto error; switch(opcode) { /* check for multiplication by 0 and 1 and addition to 0 */ case OPSTAR: if( ISCONST(lp) ) COMMUTE if( ISICON(rp) ) { if(rp->constblock.Const.ci == 0) goto retright; goto mulop; } break; case OPSLASH: case OPMOD: if( zeroconst(rp) && lineno != divlineno ) { warn("attempted division by zero"); divlineno = lineno; } if(opcode == OPMOD) break; /* Handle multiplying or dividing by 1, -1 */ mulop: if( ISICON(rp) ) { if(rp->constblock.Const.ci == 1) goto retleft; if(rp->constblock.Const.ci == -1) { frexpr(rp); return( mkexpr(OPNEG, lp, ENULL) ); } } /* Group all constants together. In particular, (x * CONST1) * CONST2 ==> x * (CONST1 * CONST2) (x * CONST1) / CONST2 ==> x * (CONST1 / CONST2) */ if (!ISINT(etype) || lp->tag != TEXPR || !lp->exprblock.rightp || !ISICON(lp->exprblock.rightp)) break; if (lp->exprblock.opcode == OPLSHIFT) { L = 1 << lp->exprblock.rightp->constblock.Const.ci; if (opcode == OPSTAR || ISICON(rp) && !(L % rp->constblock.Const.ci)) { lp->exprblock.opcode = OPSTAR; lp->exprblock.rightp->constblock.Const.ci = L; } } if (lp->exprblock.opcode == OPSTAR) { if(opcode == OPSTAR) e = mkexpr(OPSTAR, lp->exprblock.rightp, rp); else if(ISICON(rp) && (lp->exprblock.rightp->constblock.Const.ci % rp->constblock.Const.ci) == 0) e = mkexpr(OPSLASH, lp->exprblock.rightp, rp); else break; e1 = lp->exprblock.leftp; free( (charptr) lp ); return( mkexpr(OPSTAR, e1, e) ); } break; case OPPLUS: if( ISCONST(lp) ) COMMUTE goto addop; case OPMINUS: if( ICONEQ(lp, 0) ) { frexpr(lp); return( mkexpr(OPNEG, rp, ENULL) ); } if( ISCONST(rp) && is_negatable((Constp)rp)) { opcode = OPPLUS; consnegop((Constp)rp); } /* Group constants in an addition expression (also subtraction, since the subtracted value was negated above). In particular, (x + CONST1) + CONST2 ==> x + (CONST1 + CONST2) */ addop: if( ISICON(rp) ) { if(rp->constblock.Const.ci == 0) goto retleft; if( ISPLUSOP(lp) && ISICON(lp->exprblock.rightp) ) { e = mkexpr(OPPLUS, lp->exprblock.rightp, rp); e1 = lp->exprblock.leftp; free( (charptr) lp ); return( mkexpr(OPPLUS, e1, e) ); } } if (opcode == OPMINUS && (ISINT(etype) || doing_vleng)) { /* check for (i [+const]) - (i [+const]) */ if (lp->tag == TPRIM) e = lp; else if (lp->tag == TEXPR && lp->exprblock.opcode == OPPLUS && lp->exprblock.rightp->tag == TCONST) { e = lp->exprblock.leftp; if (e->tag != TPRIM) break; } else break; if (e->primblock.argsp) break; if (rp->tag == TPRIM) e1 = rp; else if (rp->tag == TEXPR && rp->exprblock.opcode == OPPLUS && rp->exprblock.rightp->tag == TCONST) { e1 = rp->exprblock.leftp; if (e1->tag != TPRIM) break; } else break; if (e->primblock.namep != e1->primblock.namep || e1->primblock.argsp) break; L = e == lp ? 0 : lp->exprblock.rightp->constblock.Const.ci; if (e1 != rp) L -= rp->exprblock.rightp->constblock.Const.ci; frexpr(lp); frexpr(rp); return ICON(L); } break; case OPPOWER: break; /* Eliminate outermost double negations */ case OPNEG: case OPNEG1: if(ltag==TEXPR && lp->exprblock.opcode==OPNEG) { e = lp->exprblock.leftp; free( (charptr) lp ); return(e); } break; /* Eliminate outermost double NOTs */ case OPNOT: if(ltag==TEXPR && lp->exprblock.opcode==OPNOT) { e = lp->exprblock.leftp; free( (charptr) lp ); return(e); } break; case OPCALL: case OPCCALL: etype = ltype; if(rp!=NULL && rp->listblock.listp==NULL) { free( (charptr) rp ); rp = NULL; } break; case OPAND: case OPOR: if( ISCONST(lp) ) COMMUTE if( ISCONST(rp) ) { if(rp->constblock.Const.ci == 0) if(opcode == OPOR) goto retleft; else goto retright; else if(opcode == OPOR) goto retright; else goto retleft; } case OPEQV: case OPNEQV: case OPBITAND: case OPBITOR: case OPBITXOR: case OPBITNOT: case OPLSHIFT: case OPRSHIFT: case OPLT: case OPGT: case OPLE: case OPGE: case OPEQ: case OPNE: case OPCONCAT: break; case OPMIN: case OPMAX: case OPMIN2: case OPMAX2: case OPDMIN: case OPDMAX: case OPASSIGN: case OPASSIGNI: case OPPLUSEQ: case OPSTAREQ: case OPMINUSEQ: case OPSLASHEQ: case OPMODEQ: case OPLSHIFTEQ: case OPRSHIFTEQ: case OPBITANDEQ: case OPBITXOREQ: case OPBITOREQ: case OPCONV: case OPADDR: case OPWHATSIN: case OPCOMMA: case OPCOMMA_ARG: case OPQUEST: case OPCOLON: case OPDOT: case OPARROW: case OPIDENTITY: case OPCHARCAST: case OPABS: case OPDABS: break; default: badop("mkexpr", opcode); } e = (expptr) ALLOC(Exprblock); e->exprblock.tag = TEXPR; e->exprblock.opcode = opcode; e->exprblock.vtype = etype; e->exprblock.leftp = lp; e->exprblock.rightp = rp; if(ltag==TCONST && (rp==0 || rtag==TCONST) ) e = fold(e); return(e); retleft: frexpr(rp); if (lp->tag == TPRIM) lp->primblock.parenused = 1; return(lp); retright: frexpr(lp); if (rp->tag == TPRIM) rp->primblock.parenused = 1; return(rp); error: frexpr(lp); if(rp && opcode!=OPCALL && opcode!=OPCCALL) frexpr(rp); return( errnode() ); } #define ERR(s) { errs = s; goto error; } /* cktype -- Check and return the type of the expression */ #ifdef KR_headers cktype(op, lt, rt) register int op; register int lt; register int rt; #else cktype(register int op, register int lt, register int rt) #endif { char *errs; if(lt==TYERROR || rt==TYERROR) goto error1; if(lt==TYUNKNOWN) return(TYUNKNOWN); if(rt==TYUNKNOWN) /* If not unary operation, return UNKNOWN */ if(!is_unary_op (op) && op != OPCALL && op != OPCCALL) return(TYUNKNOWN); switch(op) { case OPPLUS: case OPMINUS: case OPSTAR: case OPSLASH: case OPPOWER: case OPMOD: if( ISNUMERIC(lt) && ISNUMERIC(rt) ) return( maxtype(lt, rt) ); ERR("nonarithmetic operand of arithmetic operator") case OPNEG: case OPNEG1: if( ISNUMERIC(lt) ) return(lt); ERR("nonarithmetic operand of negation") case OPNOT: if(ISLOGICAL(lt)) return(lt); ERR("NOT of nonlogical") case OPAND: case OPOR: case OPEQV: case OPNEQV: if(ISLOGICAL(lt) && ISLOGICAL(rt)) return( maxtype(lt, rt) ); ERR("nonlogical operand of logical operator") case OPLT: case OPGT: case OPLE: case OPGE: case OPEQ: case OPNE: if(lt==TYCHAR || rt==TYCHAR || ISLOGICAL(lt) || ISLOGICAL(rt)) { if(lt != rt){ if (htype && (lt == TYCHAR && ISNUMERIC(rt) || rt == TYCHAR && ISNUMERIC(lt))) return TYLOGICAL; ERR("illegal comparison") } } else if( ISCOMPLEX(lt) || ISCOMPLEX(rt) ) { if(op!=OPEQ && op!=OPNE) ERR("order comparison of complex data") } else if( ! ISNUMERIC(lt) || ! ISNUMERIC(rt) ) ERR("comparison of nonarithmetic data") return(TYLOGICAL); case OPCONCAT: if(lt==TYCHAR && rt==TYCHAR) return(TYCHAR); ERR("concatenation of nonchar data") case OPCALL: case OPCCALL: case OPIDENTITY: return(lt); case OPADDR: case OPCHARCAST: return(TYADDR); case OPCONV: if(rt == 0) return(0); if(lt==TYCHAR && ISINT(rt) ) return(TYCHAR); if (ISLOGICAL(lt) && ISLOGICAL(rt)) return lt; case OPASSIGN: case OPASSIGNI: case OPMINUSEQ: case OPPLUSEQ: case OPSTAREQ: case OPSLASHEQ: case OPMODEQ: case OPLSHIFTEQ: case OPRSHIFTEQ: case OPBITANDEQ: case OPBITXOREQ: case OPBITOREQ: if( ISINT(lt) && rt==TYCHAR) return(lt); if (ISLOGICAL(lt) && ISLOGICAL(rt) && op == OPASSIGN) return lt; if(lt==TYCHAR || rt==TYCHAR || ISLOGICAL(lt) || ISLOGICAL(rt)) if((op!=OPASSIGN && op != OPPLUSEQ && op != OPMINUSEQ) || (lt!=rt)) { ERR("impossible conversion") } return(lt); case OPMIN: case OPMAX: case OPDMIN: case OPDMAX: case OPMIN2: case OPMAX2: case OPBITOR: case OPBITAND: case OPBITXOR: case OPBITNOT: case OPLSHIFT: case OPRSHIFT: case OPWHATSIN: case OPABS: case OPDABS: return(lt); case OPCOMMA: case OPCOMMA_ARG: case OPQUEST: case OPCOLON: /* Only checks the rightmost type because of C language definition (rightmost comma-expr is the value of the expr) */ return(rt); case OPDOT: case OPARROW: return (lt); default: badop("cktype", op); } error: err(errs); error1: return(TYERROR); } static void intovfl(Void) { err("overflow simplifying integer constants."); } /* fold -- simplifies constant expressions; it assumes that e -> leftp and e -> rightp are TCONST or NULL */ expptr #ifdef KR_headers fold(e) register expptr e; #else fold(register expptr e) #endif { Constp p; register expptr lp, rp; int etype, mtype, ltype, rtype, opcode; int i, bl, ll, lr; char *q, *s; struct Constblock lcon, rcon; ftnint L; double d; opcode = e->exprblock.opcode; etype = e->exprblock.vtype; lp = e->exprblock.leftp; ltype = lp->headblock.vtype; rp = e->exprblock.rightp; if(rp == 0) switch(opcode) { case OPNOT: lp->constblock.Const.ci = ! lp->constblock.Const.ci; retlp: e->exprblock.leftp = 0; frexpr(e); return(lp); case OPBITNOT: lp->constblock.Const.ci = ~ lp->constblock.Const.ci; goto retlp; case OPNEG: case OPNEG1: consnegop((Constp)lp); goto retlp; case OPCONV: case OPADDR: return(e); case OPABS: case OPDABS: switch(ltype) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif if ((L = lp->constblock.Const.ci) < 0) { lp->constblock.Const.ci = -L; if (L != -lp->constblock.Const.ci) intovfl(); } goto retlp; case TYREAL: case TYDREAL: if (lp->constblock.vstg) { s = lp->constblock.Const.cds[0]; if (*s == '-') lp->constblock.Const.cds[0] = s + 1; goto retlp; } if ((d = lp->constblock.Const.cd[0]) < 0.) lp->constblock.Const.cd[0] = -d; case TYCOMPLEX: case TYDCOMPLEX: return e; /* lazy way out */ } default: badop("fold", opcode); } rtype = rp->headblock.vtype; p = ALLOC(Constblock); p->tag = TCONST; p->vtype = etype; p->vleng = e->exprblock.vleng; switch(opcode) { case OPCOMMA: case OPCOMMA_ARG: case OPQUEST: case OPCOLON: goto ereturn; case OPAND: p->Const.ci = lp->constblock.Const.ci && rp->constblock.Const.ci; break; case OPOR: p->Const.ci = lp->constblock.Const.ci || rp->constblock.Const.ci; break; case OPEQV: p->Const.ci = lp->constblock.Const.ci == rp->constblock.Const.ci; break; case OPNEQV: p->Const.ci = lp->constblock.Const.ci != rp->constblock.Const.ci; break; case OPBITAND: p->Const.ci = lp->constblock.Const.ci & rp->constblock.Const.ci; break; case OPBITOR: p->Const.ci = lp->constblock.Const.ci | rp->constblock.Const.ci; break; case OPBITXOR: p->Const.ci = lp->constblock.Const.ci ^ rp->constblock.Const.ci; break; case OPLSHIFT: p->Const.ci = lp->constblock.Const.ci << rp->constblock.Const.ci; if ((((unsigned long)p->Const.ci) >> rp->constblock.Const.ci) != lp->constblock.Const.ci) intovfl(); break; case OPRSHIFT: p->Const.ci = lp->constblock.Const.ci >> rp->constblock.Const.ci; break; case OPCONCAT: ll = lp->constblock.vleng->constblock.Const.ci; lr = rp->constblock.vleng->constblock.Const.ci; bl = lp->constblock.Const.ccp1.blanks; p->Const.ccp = q = (char *) ckalloc(ll+lr+bl); p->Const.ccp1.blanks = rp->constblock.Const.ccp1.blanks; p->vleng = ICON(ll+lr+bl); s = lp->constblock.Const.ccp; for(i = 0 ; i < ll ; ++i) *q++ = *s++; for(i = 0 ; i < bl ; i++) *q++ = ' '; s = rp->constblock.Const.ccp; for(i = 0; i < lr; ++i) *q++ = *s++; break; case OPPOWER: if( !ISINT(rtype) || rp->constblock.Const.ci < 0 && zeroconst(lp)) goto ereturn; conspower(p, (Constp)lp, rp->constblock.Const.ci); break; case OPSLASH: if (zeroconst(rp)) goto ereturn; /* no break */ default: if(ltype == TYCHAR) { lcon.Const.ci = cmpstr(lp->constblock.Const.ccp, rp->constblock.Const.ccp, lp->constblock.vleng->constblock.Const.ci, rp->constblock.vleng->constblock.Const.ci); rcon.Const.ci = 0; mtype = tyint; } else { mtype = maxtype(ltype, rtype); consconv(mtype, &lcon, &lp->constblock); consconv(mtype, &rcon, &rp->constblock); } consbinop(opcode, mtype, p, &lcon, &rcon); break; } frexpr(e); return( (expptr) p ); ereturn: free((char *)p); return e; } /* assign constant l = r , doing coercion */ void #ifdef KR_headers consconv(lt, lc, rc) int lt; register Constp lc; register Constp rc; #else consconv(int lt, register Constp lc, register Constp rc) #endif { int rt = rc->vtype; register union Constant *lv = &lc->Const, *rv = &rc->Const; lc->vtype = lt; if (ONEOF(lt, MSKREAL|MSKCOMPLEX) && ONEOF(rt, MSKREAL|MSKCOMPLEX)) { memcpy((char *)lv, (char *)rv, sizeof(union Constant)); lc->vstg = rc->vstg; if (ISCOMPLEX(lt) && ISREAL(rt)) { if (rc->vstg) lv->cds[1] = cds("0",CNULL); else lv->cd[1] = 0.; } return; } lc->vstg = 0; switch(lt) { /* Casting to character means just copying the first sizeof (character) bytes into a new 1 character string. This is weird. */ case TYCHAR: *(lv->ccp = (char *) ckalloc(1)) = rv->ci; lv->ccp1.blanks = 0; break; case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif if(rt == TYCHAR) lv->ci = rv->ccp[0]; else if( ISINT(rt) ) lv->ci = rv->ci; else lv->ci = rc->vstg ? atof(rv->cds[0]) : rv->cd[0]; break; case TYCOMPLEX: case TYDCOMPLEX: lv->cd[1] = 0.; lv->cd[0] = rv->ci; break; case TYREAL: case TYDREAL: lv->cd[0] = rv->ci; break; case TYLOGICAL: case TYLOGICAL1: case TYLOGICAL2: lv->ci = rv->ci; break; } } /* Negate constant value -- changes the input node's value */ void #ifdef KR_headers consnegop(p) register Constp p; #else consnegop(register Constp p) #endif { register char *s; ftnint L; if (p->vstg) { if (ISCOMPLEX(p->vtype)) { s = p->Const.cds[1]; p->Const.cds[1] = *s == '-' ? s+1 : *s == '0' ? s : s-1; } s = p->Const.cds[0]; p->Const.cds[0] = *s == '-' ? s+1 : *s == '0' ? s : s-1; return; } switch(p->vtype) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif p->Const.ci = -(L = p->Const.ci); if (L != -p->Const.ci) intovfl(); break; case TYCOMPLEX: case TYDCOMPLEX: p->Const.cd[1] = - p->Const.cd[1]; /* fall through and do the real parts */ case TYREAL: case TYDREAL: p->Const.cd[0] = - p->Const.cd[0]; break; default: badtype("consnegop", p->vtype); } } /* conspower -- Expand out an exponentiation */ LOCAL void #ifdef KR_headers conspower(p, ap, n) Constp p; Constp ap; ftnint n; #else conspower(Constp p, Constp ap, ftnint n) #endif { register union Constant *powp = &p->Const; register int type; struct Constblock x, x0; if (n == 1) { memcpy((char *)powp, (char *)&ap->Const, sizeof(ap->Const)); return; } switch(type = ap->vtype) /* pow = 1 */ { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif powp->ci = 1; break; case TYCOMPLEX: case TYDCOMPLEX: powp->cd[1] = 0; case TYREAL: case TYDREAL: powp->cd[0] = 1; break; default: badtype("conspower", type); } if(n == 0) return; switch(type) /* x0 = ap */ { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif x0.Const.ci = ap->Const.ci; break; case TYCOMPLEX: case TYDCOMPLEX: x0.Const.cd[1] = ap->vstg ? atof(ap->Const.cds[1]) : ap->Const.cd[1]; case TYREAL: case TYDREAL: x0.Const.cd[0] = ap->vstg ? atof(ap->Const.cds[0]) : ap->Const.cd[0]; break; } x0.vtype = type; x0.vstg = 0; if(n < 0) { if( ISINT(type) ) { err("integer ** negative number"); return; } else if (!x0.Const.cd[0] && (!ISCOMPLEX(type) || !x0.Const.cd[1])) { err("0.0 ** negative number"); return; } n = -n; consbinop(OPSLASH, type, &x, p, &x0); } else consbinop(OPSTAR, type, &x, p, &x0); for( ; ; ) { if(n & 01) consbinop(OPSTAR, type, p, p, &x); if(n >>= 1) consbinop(OPSTAR, type, &x, &x, &x); else break; } } /* do constant operation cp = a op b -- assumes that ap and bp have data matching the input type */ LOCAL void #ifdef KR_headers consbinop(opcode, type, cpp, app, bpp) int opcode; int type; Constp cpp; Constp app; Constp bpp; #else consbinop(int opcode, int type, Constp cpp, Constp app, Constp bpp) #endif { register union Constant *ap = &app->Const, *bp = &bpp->Const, *cp = &cpp->Const; int k; double ad[2], bd[2], temp; ftnint a, b; cpp->vstg = 0; if (ONEOF(type, MSKREAL|MSKCOMPLEX)) { ad[0] = app->vstg ? atof(ap->cds[0]) : ap->cd[0]; bd[0] = bpp->vstg ? atof(bp->cds[0]) : bp->cd[0]; if (ISCOMPLEX(type)) { ad[1] = app->vstg ? atof(ap->cds[1]) : ap->cd[1]; bd[1] = bpp->vstg ? atof(bp->cds[1]) : bp->cd[1]; } } switch(opcode) { case OPPLUS: switch(type) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif cp->ci = ap->ci + bp->ci; if (ap->ci != cp->ci - bp->ci) intovfl(); break; case TYCOMPLEX: case TYDCOMPLEX: cp->cd[1] = ad[1] + bd[1]; case TYREAL: case TYDREAL: cp->cd[0] = ad[0] + bd[0]; break; } break; case OPMINUS: switch(type) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif cp->ci = ap->ci - bp->ci; if (ap->ci != bp->ci + cp->ci) intovfl(); break; case TYCOMPLEX: case TYDCOMPLEX: cp->cd[1] = ad[1] - bd[1]; case TYREAL: case TYDREAL: cp->cd[0] = ad[0] - bd[0]; break; } break; case OPSTAR: switch(type) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif cp->ci = (a = ap->ci) * (b = bp->ci); if (a && cp->ci / a != b) intovfl(); break; case TYREAL: case TYDREAL: cp->cd[0] = ad[0] * bd[0]; break; case TYCOMPLEX: case TYDCOMPLEX: temp = ad[0] * bd[0] - ad[1] * bd[1] ; cp->cd[1] = ad[0] * bd[1] + ad[1] * bd[0] ; cp->cd[0] = temp; break; } break; case OPSLASH: switch(type) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif cp->ci = ap->ci / bp->ci; break; case TYREAL: case TYDREAL: cp->cd[0] = ad[0] / bd[0]; break; case TYCOMPLEX: case TYDCOMPLEX: zdiv((dcomplex*)cp, (dcomplex*)ad, (dcomplex*)bd); break; } break; case OPMOD: if( ISINT(type) ) { cp->ci = ap->ci % bp->ci; break; } else Fatal("inline mod of noninteger"); case OPMIN2: case OPDMIN: switch(type) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif cp->ci = ap->ci <= bp->ci ? ap->ci : bp->ci; break; case TYREAL: case TYDREAL: cp->cd[0] = ad[0] <= bd[0] ? ad[0] : bd[0]; break; default: Fatal("inline min of exected type"); } break; case OPMAX2: case OPDMAX: switch(type) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif cp->ci = ap->ci >= bp->ci ? ap->ci : bp->ci; break; case TYREAL: case TYDREAL: cp->cd[0] = ad[0] >= bd[0] ? ad[0] : bd[0]; break; default: Fatal("inline max of exected type"); } break; default: /* relational ops */ switch(type) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif if(ap->ci < bp->ci) k = -1; else if(ap->ci == bp->ci) k = 0; else k = 1; break; case TYREAL: case TYDREAL: if(ad[0] < bd[0]) k = -1; else if(ad[0] == bd[0]) k = 0; else k = 1; break; case TYCOMPLEX: case TYDCOMPLEX: if(ad[0] == bd[0] && ad[1] == bd[1] ) k = 0; else k = 1; break; } switch(opcode) { case OPEQ: cp->ci = (k == 0); break; case OPNE: cp->ci = (k != 0); break; case OPGT: cp->ci = (k == 1); break; case OPLT: cp->ci = (k == -1); break; case OPGE: cp->ci = (k >= 0); break; case OPLE: cp->ci = (k <= 0); break; } break; } } /* conssgn - returns the sign of a Fortran constant */ #ifdef KR_headers conssgn(p) register expptr p; #else conssgn(register expptr p) #endif { register char *s; if( ! ISCONST(p) ) Fatal( "sgn(nonconstant)" ); switch(p->headblock.vtype) { case TYINT1: case TYSHORT: case TYLONG: #ifdef TYQUAD case TYQUAD: #endif if(p->constblock.Const.ci > 0) return(1); if(p->constblock.Const.ci < 0) return(-1); return(0); case TYREAL: case TYDREAL: if (p->constblock.vstg) { s = p->constblock.Const.cds[0]; if (*s == '-') return -1; if (*s == '0') return 0; return 1; } if(p->constblock.Const.cd[0] > 0) return(1); if(p->constblock.Const.cd[0] < 0) return(-1); return(0); /* The sign of a complex number is 0 iff the number is 0 + 0i, else it's 1 */ case TYCOMPLEX: case TYDCOMPLEX: if (p->constblock.vstg) return *p->constblock.Const.cds[0] != '0' && *p->constblock.Const.cds[1] != '0'; return(p->constblock.Const.cd[0]!=0 || p->constblock.Const.cd[1]!=0); default: badtype( "conssgn", p->constblock.vtype); } /* NOT REACHED */ return 0; } char *powint[ ] = { "pow_ii", #ifdef TYQUAD "pow_qq", #endif "pow_ri", "pow_di", "pow_ci", "pow_zi" }; LOCAL expptr #ifdef KR_headers mkpower(p) register expptr p; #else mkpower(register expptr p) #endif { register expptr q, lp, rp; int ltype, rtype, mtype, tyi; lp = p->exprblock.leftp; rp = p->exprblock.rightp; ltype = lp->headblock.vtype; rtype = rp->headblock.vtype; if (lp->tag == TADDR) lp->addrblock.parenused = 0; if (rp->tag == TADDR) rp->addrblock.parenused = 0; if(ISICON(rp)) { if(rp->constblock.Const.ci == 0) { frexpr(p); if( ISINT(ltype) ) return( ICON(1) ); else if (ISREAL (ltype)) return mkconv (ltype, ICON (1)); else return( (expptr) putconst((Constp) mkconv(ltype, ICON(1))) ); } if(rp->constblock.Const.ci < 0) { if( ISINT(ltype) ) { frexpr(p); err("integer**negative"); return( errnode() ); } rp->constblock.Const.ci = - rp->constblock.Const.ci; p->exprblock.leftp = lp = fixexpr((Exprp)mkexpr(OPSLASH, ICON(1), lp)); } if(rp->constblock.Const.ci == 1) { frexpr(rp); free( (charptr) p ); return(lp); } if( ONEOF(ltype, MSKINT|MSKREAL) ) { p->exprblock.vtype = ltype; return(p); } } if( ISINT(rtype) ) { if(ltype==TYSHORT && rtype==TYSHORT && (!ISCONST(lp) || tyint==TYSHORT) ) q = call2(TYSHORT, "pow_hh", lp, rp); else { if(ONEOF(ltype,M(TYINT1)|M(TYSHORT))) { ltype = TYLONG; lp = mkconv(TYLONG,lp); } #ifdef TYQUAD if (ltype == TYQUAD) rp = mkconv(TYQUAD,rp); else #endif rp = mkconv(TYLONG,rp); if (ISCONST(rp)) { tyi = tyint; tyint = TYLONG; rp = (expptr)putconst((Constp)rp); tyint = tyi; } q = call2(ltype, powint[ltype-TYLONG], lp, rp); } } else if( ISREAL( (mtype = maxtype(ltype,rtype)) )) { extern int callk_kludge; callk_kludge = TYDREAL; q = call2(mtype, "pow_dd", mkconv(TYDREAL,lp), mkconv(TYDREAL,rp)); callk_kludge = 0; } else { q = call2(TYDCOMPLEX, "pow_zz", mkconv(TYDCOMPLEX,lp), mkconv(TYDCOMPLEX,rp)); if(mtype == TYCOMPLEX) q = mkconv(TYCOMPLEX, q); } free( (charptr) p ); return(q); } /* Complex Division. Same code as in Runtime Library */ LOCAL void #ifdef KR_headers zdiv(c, a, b) register dcomplex *c; register dcomplex *a; register dcomplex *b; #else zdiv(register dcomplex *c, register dcomplex *a, register dcomplex *b) #endif { double ratio, den; double abr, abi; if( (abr = b->dreal) < 0.) abr = - abr; if( (abi = b->dimag) < 0.) abi = - abi; if( abr <= abi ) { if(abi == 0) Fatal("complex division by zero"); ratio = b->dreal / b->dimag ; den = b->dimag * (1 + ratio*ratio); c->dreal = (a->dreal*ratio + a->dimag) / den; c->dimag = (a->dimag*ratio - a->dreal) / den; } else { ratio = b->dimag / b->dreal ; den = b->dreal * (1 + ratio*ratio); c->dreal = (a->dreal + a->dimag*ratio) / den; c->dimag = (a->dimag - a->dreal*ratio) / den; } }