//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the main API hooks in the Clang-C Source Indexing // library. // //===----------------------------------------------------------------------===// #include "CIndexer.h" #include "CXCursor.h" #include "CXSourceLocation.h" #include "CIndexDiagnostic.h" #include "clang/Basic/Version.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/Preprocessor.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/System/Program.h" // Needed to define L_TMPNAM on some systems. #include using namespace clang; using namespace clang::cxcursor; using namespace idx; //===----------------------------------------------------------------------===// // Crash Reporting. //===----------------------------------------------------------------------===// #ifdef __APPLE__ #ifndef NDEBUG #define USE_CRASHTRACER #include "clang/Analysis/Support/SaveAndRestore.h" // Integrate with crash reporter. extern "C" const char *__crashreporter_info__; #define NUM_CRASH_STRINGS 16 static unsigned crashtracer_counter = 0; static unsigned crashtracer_counter_id[NUM_CRASH_STRINGS] = { 0 }; static const char *crashtracer_strings[NUM_CRASH_STRINGS] = { 0 }; static const char *agg_crashtracer_strings[NUM_CRASH_STRINGS] = { 0 }; static unsigned SetCrashTracerInfo(const char *str, llvm::SmallString<1024> &AggStr) { unsigned slot = 0; while (crashtracer_strings[slot]) { if (++slot == NUM_CRASH_STRINGS) slot = 0; } crashtracer_strings[slot] = str; crashtracer_counter_id[slot] = ++crashtracer_counter; // We need to create an aggregate string because multiple threads // may be in this method at one time. The crash reporter string // will attempt to overapproximate the set of in-flight invocations // of this function. Race conditions can still cause this goal // to not be achieved. { llvm::raw_svector_ostream Out(AggStr); for (unsigned i = 0; i < NUM_CRASH_STRINGS; ++i) if (crashtracer_strings[i]) Out << crashtracer_strings[i] << '\n'; } __crashreporter_info__ = agg_crashtracer_strings[slot] = AggStr.c_str(); return slot; } static void ResetCrashTracerInfo(unsigned slot) { unsigned max_slot = 0; unsigned max_value = 0; crashtracer_strings[slot] = agg_crashtracer_strings[slot] = 0; for (unsigned i = 0 ; i < NUM_CRASH_STRINGS; ++i) if (agg_crashtracer_strings[i] && crashtracer_counter_id[i] > max_value) { max_slot = i; max_value = crashtracer_counter_id[i]; } __crashreporter_info__ = agg_crashtracer_strings[max_slot]; } namespace { class ArgsCrashTracerInfo { llvm::SmallString<1024> CrashString; llvm::SmallString<1024> AggregateString; unsigned crashtracerSlot; public: ArgsCrashTracerInfo(llvm::SmallVectorImpl &Args) : crashtracerSlot(0) { { llvm::raw_svector_ostream Out(CrashString); Out << "ClangCIndex [createTranslationUnitFromSourceFile]: clang"; for (llvm::SmallVectorImpl::iterator I=Args.begin(), E=Args.end(); I!=E; ++I) Out << ' ' << *I; } crashtracerSlot = SetCrashTracerInfo(CrashString.c_str(), AggregateString); } ~ArgsCrashTracerInfo() { ResetCrashTracerInfo(crashtracerSlot); } }; } #endif #endif /// \brief The result of comparing two source ranges. enum RangeComparisonResult { /// \brief Either the ranges overlap or one of the ranges is invalid. RangeOverlap, /// \brief The first range ends before the second range starts. RangeBefore, /// \brief The first range starts after the second range ends. RangeAfter }; /// \brief Compare two source ranges to determine their relative position in /// the translation unit. static RangeComparisonResult RangeCompare(SourceManager &SM, SourceRange R1, SourceRange R2) { assert(R1.isValid() && "First range is invalid?"); assert(R2.isValid() && "Second range is invalid?"); if (R1.getEnd() == R2.getBegin() || SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin())) return RangeBefore; if (R2.getEnd() == R1.getBegin() || SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin())) return RangeAfter; return RangeOverlap; } /// \brief Translate a Clang source range into a CIndex source range. /// /// Clang internally represents ranges where the end location points to the /// start of the token at the end. However, for external clients it is more /// useful to have a CXSourceRange be a proper half-open interval. This routine /// does the appropriate translation. CXSourceRange cxloc::translateSourceRange(const SourceManager &SM, const LangOptions &LangOpts, SourceRange R) { // FIXME: This is largely copy-paste from // TextDiagnosticPrinter::HighlightRange. When it is clear that this is what // we want the two routines should be refactored. // We want the last character in this location, so we will adjust the // instantiation location accordingly. // If the location is from a macro instantiation, get the end of the // instantiation range. SourceLocation EndLoc = R.getEnd(); SourceLocation InstLoc = SM.getInstantiationLoc(EndLoc); if (EndLoc.isMacroID()) InstLoc = SM.getInstantiationRange(EndLoc).second; // Measure the length token we're pointing at, so we can adjust the physical // location in the file to point at the last character. // // FIXME: This won't cope with trigraphs or escaped newlines well. For that, // we actually need a preprocessor, which isn't currently available // here. Eventually, we'll switch the pointer data of // CXSourceLocation/CXSourceRange to a translation unit (CXXUnit), so that the // preprocessor will be available here. At that point, we can use // Preprocessor::getLocForEndOfToken(). if (InstLoc.isValid()) { unsigned Length = Lexer::MeasureTokenLength(InstLoc, SM, LangOpts); EndLoc = EndLoc.getFileLocWithOffset(Length); } CXSourceRange Result = { { (void *)&SM, (void *)&LangOpts }, R.getBegin().getRawEncoding(), EndLoc.getRawEncoding() }; return Result; } //===----------------------------------------------------------------------===// // Cursor visitor. //===----------------------------------------------------------------------===// namespace { // Cursor visitor. class CursorVisitor : public DeclVisitor, public TypeLocVisitor, public StmtVisitor { /// \brief The translation unit we are traversing. ASTUnit *TU; /// \brief The parent cursor whose children we are traversing. CXCursor Parent; /// \brief The declaration that serves at the parent of any statement or /// expression nodes. Decl *StmtParent; /// \brief The visitor function. CXCursorVisitor Visitor; /// \brief The opaque client data, to be passed along to the visitor. CXClientData ClientData; // MaxPCHLevel - the maximum PCH level of declarations that we will pass on // to the visitor. Declarations with a PCH level greater than this value will // be suppressed. unsigned MaxPCHLevel; /// \brief When valid, a source range to which the cursor should restrict /// its search. SourceRange RegionOfInterest; using DeclVisitor::Visit; using TypeLocVisitor::Visit; using StmtVisitor::Visit; /// \brief Determine whether this particular source range comes before, comes /// after, or overlaps the region of interest. /// /// \param R a half-open source range retrieved from the abstract syntax tree. RangeComparisonResult CompareRegionOfInterest(SourceRange R); public: CursorVisitor(ASTUnit *TU, CXCursorVisitor Visitor, CXClientData ClientData, unsigned MaxPCHLevel, SourceRange RegionOfInterest = SourceRange()) : TU(TU), Visitor(Visitor), ClientData(ClientData), MaxPCHLevel(MaxPCHLevel), RegionOfInterest(RegionOfInterest) { Parent.kind = CXCursor_NoDeclFound; Parent.data[0] = 0; Parent.data[1] = 0; Parent.data[2] = 0; StmtParent = 0; } bool Visit(CXCursor Cursor, bool CheckedRegionOfInterest = false); bool VisitChildren(CXCursor Parent); // Declaration visitors bool VisitDeclContext(DeclContext *DC); bool VisitTranslationUnitDecl(TranslationUnitDecl *D); bool VisitTypedefDecl(TypedefDecl *D); bool VisitTagDecl(TagDecl *D); bool VisitEnumConstantDecl(EnumConstantDecl *D); bool VisitDeclaratorDecl(DeclaratorDecl *DD); bool VisitFunctionDecl(FunctionDecl *ND); bool VisitFieldDecl(FieldDecl *D); bool VisitVarDecl(VarDecl *); bool VisitObjCMethodDecl(ObjCMethodDecl *ND); bool VisitObjCContainerDecl(ObjCContainerDecl *D); bool VisitObjCCategoryDecl(ObjCCategoryDecl *ND); bool VisitObjCProtocolDecl(ObjCProtocolDecl *PID); bool VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); bool VisitObjCImplDecl(ObjCImplDecl *D); bool VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); bool VisitObjCImplementationDecl(ObjCImplementationDecl *D); // FIXME: ObjCPropertyDecl requires TypeSourceInfo, getter/setter locations, // etc. // FIXME: ObjCCompatibleAliasDecl requires aliased-class locations. bool VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D); bool VisitObjCClassDecl(ObjCClassDecl *D); // Type visitors // FIXME: QualifiedTypeLoc doesn't provide any location information bool VisitBuiltinTypeLoc(BuiltinTypeLoc TL); bool VisitTypedefTypeLoc(TypedefTypeLoc TL); bool VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL); bool VisitTagTypeLoc(TagTypeLoc TL); // FIXME: TemplateTypeParmTypeLoc doesn't provide any location information bool VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL); bool VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL); bool VisitPointerTypeLoc(PointerTypeLoc TL); bool VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL); bool VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL); bool VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL); bool VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL); bool VisitFunctionTypeLoc(FunctionTypeLoc TL); bool VisitArrayTypeLoc(ArrayTypeLoc TL); // FIXME: Implement for TemplateSpecializationTypeLoc // FIXME: Implement visitors here when the unimplemented TypeLocs get // implemented bool VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL); bool VisitTypeOfTypeLoc(TypeOfTypeLoc TL); // Statement visitors bool VisitStmt(Stmt *S); bool VisitDeclStmt(DeclStmt *S); // FIXME: LabelStmt label? bool VisitIfStmt(IfStmt *S); bool VisitSwitchStmt(SwitchStmt *S); bool VisitWhileStmt(WhileStmt *S); bool VisitForStmt(ForStmt *S); // Expression visitors bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E); bool VisitExplicitCastExpr(ExplicitCastExpr *E); bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E); }; } // end anonymous namespace RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) { return RangeCompare(TU->getSourceManager(), R, RegionOfInterest); } /// \brief Visit the given cursor and, if requested by the visitor, /// its children. /// /// \param Cursor the cursor to visit. /// /// \param CheckRegionOfInterest if true, then the caller already checked that /// this cursor is within the region of interest. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) { if (clang_isInvalid(Cursor.kind)) return false; if (clang_isDeclaration(Cursor.kind)) { Decl *D = getCursorDecl(Cursor); assert(D && "Invalid declaration cursor"); if (D->getPCHLevel() > MaxPCHLevel) return false; if (D->isImplicit()) return false; } // If we have a range of interest, and this cursor doesn't intersect with it, // we're done. if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) { SourceRange Range = cxloc::translateCXSourceRange(clang_getCursorExtent(Cursor)); if (Range.isInvalid() || CompareRegionOfInterest(Range)) return false; } switch (Visitor(Cursor, Parent, ClientData)) { case CXChildVisit_Break: return true; case CXChildVisit_Continue: return false; case CXChildVisit_Recurse: return VisitChildren(Cursor); } return false; } /// \brief Visit the children of the given cursor. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::VisitChildren(CXCursor Cursor) { if (clang_isReference(Cursor.kind)) { // By definition, references have no children. return false; } // Set the Parent field to Cursor, then back to its old value once we're // done. class SetParentRAII { CXCursor &Parent; Decl *&StmtParent; CXCursor OldParent; public: SetParentRAII(CXCursor &Parent, Decl *&StmtParent, CXCursor NewParent) : Parent(Parent), StmtParent(StmtParent), OldParent(Parent) { Parent = NewParent; if (clang_isDeclaration(Parent.kind)) StmtParent = getCursorDecl(Parent); } ~SetParentRAII() { Parent = OldParent; if (clang_isDeclaration(Parent.kind)) StmtParent = getCursorDecl(Parent); } } SetParent(Parent, StmtParent, Cursor); if (clang_isDeclaration(Cursor.kind)) { Decl *D = getCursorDecl(Cursor); assert(D && "Invalid declaration cursor"); return Visit(D); } if (clang_isStatement(Cursor.kind)) return Visit(getCursorStmt(Cursor)); if (clang_isExpression(Cursor.kind)) return Visit(getCursorExpr(Cursor)); if (clang_isTranslationUnit(Cursor.kind)) { ASTUnit *CXXUnit = getCursorASTUnit(Cursor); if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() && RegionOfInterest.isInvalid()) { const std::vector &TLDs = CXXUnit->getTopLevelDecls(); for (std::vector::const_iterator it = TLDs.begin(), ie = TLDs.end(); it != ie; ++it) { if (Visit(MakeCXCursor(*it, CXXUnit), true)) return true; } } else { return VisitDeclContext( CXXUnit->getASTContext().getTranslationUnitDecl()); } return false; } // Nothing to visit at the moment. return false; } bool CursorVisitor::VisitDeclContext(DeclContext *DC) { for (DeclContext::decl_iterator I = DC->decls_begin(), E = DC->decls_end(); I != E; ++I) { CXCursor Cursor = MakeCXCursor(*I, TU); if (RegionOfInterest.isValid()) { SourceRange Range = cxloc::translateCXSourceRange(clang_getCursorExtent(Cursor)); if (Range.isInvalid()) continue; switch (CompareRegionOfInterest(Range)) { case RangeBefore: // This declaration comes before the region of interest; skip it. continue; case RangeAfter: // This declaration comes after the region of interest; we're done. return false; case RangeOverlap: // This declaration overlaps the region of interest; visit it. break; } } if (Visit(Cursor, true)) return true; } return false; } bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) { llvm_unreachable("Translation units are visited directly by Visit()"); return false; } bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) { if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitTagDecl(TagDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) { if (Expr *Init = D->getInitExpr()) return Visit(MakeCXCursor(Init, StmtParent, TU)); return false; } bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) { if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; return false; } bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) { if (VisitDeclaratorDecl(ND)) return true; if (ND->isThisDeclarationADefinition() && Visit(MakeCXCursor(ND->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitFieldDecl(FieldDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *BitWidth = D->getBitWidth()) return Visit(MakeCXCursor(BitWidth, StmtParent, TU)); return false; } bool CursorVisitor::VisitVarDecl(VarDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *Init = D->getInit()) return Visit(MakeCXCursor(Init, StmtParent, TU)); return false; } bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) { // FIXME: We really need a TypeLoc covering Objective-C method declarations. // At the moment, we don't have information about locations in the return // type. for (ObjCMethodDecl::param_iterator P = ND->param_begin(), PEnd = ND->param_end(); P != PEnd; ++P) { if (Visit(MakeCXCursor(*P, TU))) return true; } if (ND->isThisDeclarationADefinition() && Visit(MakeCXCursor(ND->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) { if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(), TU))) return true; ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin(); for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(), E = ND->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(ND); } bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) { ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin(); for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(), E = PID->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(PID); } bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) { // Issue callbacks for super class. if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin(); for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(), E = D->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) { return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { if (Visit(MakeCursorObjCClassRef(D->getCategoryDecl()->getClassInterface(), D->getLocation(), TU))) return true; return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { #if 0 // Issue callbacks for super class. // FIXME: No source location information! if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; #endif return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D) { ObjCForwardProtocolDecl::protocol_loc_iterator PL = D->protocol_loc_begin(); for (ObjCForwardProtocolDecl::protocol_iterator I = D->protocol_begin(), E = D->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return false; } bool CursorVisitor::VisitObjCClassDecl(ObjCClassDecl *D) { for (ObjCClassDecl::iterator C = D->begin(), CEnd = D->end(); C != CEnd; ++C) if (Visit(MakeCursorObjCClassRef(C->getInterface(), C->getLocation(), TU))) return true; return false; } bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { ASTContext &Context = TU->getASTContext(); // Some builtin types (such as Objective-C's "id", "sel", and // "Class") have associated declarations. Create cursors for those. QualType VisitType; switch (TL.getType()->getAs()->getKind()) { case BuiltinType::Void: case BuiltinType::Bool: case BuiltinType::Char_U: case BuiltinType::UChar: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::UShort: case BuiltinType::UInt: case BuiltinType::ULong: case BuiltinType::ULongLong: case BuiltinType::UInt128: case BuiltinType::Char_S: case BuiltinType::SChar: case BuiltinType::WChar: case BuiltinType::Short: case BuiltinType::Int: case BuiltinType::Long: case BuiltinType::LongLong: case BuiltinType::Int128: case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: case BuiltinType::NullPtr: case BuiltinType::Overload: case BuiltinType::Dependent: break; case BuiltinType::UndeducedAuto: // FIXME: Deserves a cursor? break; case BuiltinType::ObjCId: VisitType = Context.getObjCIdType(); break; case BuiltinType::ObjCClass: VisitType = Context.getObjCClassType(); break; case BuiltinType::ObjCSel: VisitType = Context.getObjCSelType(); break; } if (!VisitType.isNull()) { if (const TypedefType *Typedef = VisitType->getAs()) return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(), TU)); } return false; } bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getTypedefDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU))) return true; for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) { if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I), TU))) return true; } return false; } bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseTypeLoc())) return true; if (TL.hasProtocolsAsWritten()) { for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) { if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I), TU))) return true; } } return false; } bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL) { if (Visit(TL.getResultLoc())) return true; for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (Visit(MakeCXCursor(TL.getArg(I), TU))) return true; return false; } bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) { if (Visit(TL.getElementLoc())) return true; if (Expr *Size = TL.getSizeExpr()) return Visit(MakeCXCursor(Size, StmtParent, TU)); return false; } bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU)); } bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitStmt(Stmt *S) { for (Stmt::child_iterator Child = S->child_begin(), ChildEnd = S->child_end(); Child != ChildEnd; ++Child) { if (*Child && Visit(MakeCXCursor(*Child, StmtParent, TU))) return true; } return false; } bool CursorVisitor::VisitDeclStmt(DeclStmt *S) { for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { if (*D && Visit(MakeCXCursor(*D, TU))) return true; } return false; } bool CursorVisitor::VisitIfStmt(IfStmt *S) { if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getThen() && Visit(MakeCXCursor(S->getThen(), StmtParent, TU))) return true; if (S->getElse() && Visit(MakeCXCursor(S->getElse(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitSwitchStmt(SwitchStmt *S) { if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitWhileStmt(WhileStmt *S) { if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitForStmt(ForStmt *S) { if (S->getInit() && Visit(MakeCXCursor(S->getInit(), StmtParent, TU))) return true; if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getInc() && Visit(MakeCXCursor(S->getInc(), StmtParent, TU))) return true; if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { if (E->isArgumentType()) { if (TypeSourceInfo *TSInfo = E->getArgumentTypeInfo()) return Visit(TSInfo->getTypeLoc()); return false; } return VisitExpr(E); } bool CursorVisitor::VisitExplicitCastExpr(ExplicitCastExpr *E) { if (TypeSourceInfo *TSInfo = E->getTypeInfoAsWritten()) if (Visit(TSInfo->getTypeLoc())) return true; return VisitCastExpr(E); } bool CursorVisitor::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { if (TypeSourceInfo *TSInfo = E->getTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; return VisitExpr(E); } CXString CIndexer::createCXString(const char *String, bool DupString){ CXString Str; if (DupString) { Str.Spelling = strdup(String); Str.MustFreeString = 1; } else { Str.Spelling = String; Str.MustFreeString = 0; } return Str; } CXString CIndexer::createCXString(llvm::StringRef String, bool DupString) { CXString Result; if (DupString || (!String.empty() && String.data()[String.size()] != 0)) { char *Spelling = (char *)malloc(String.size() + 1); memmove(Spelling, String.data(), String.size()); Spelling[String.size()] = 0; Result.Spelling = Spelling; Result.MustFreeString = 1; } else { Result.Spelling = String.data(); Result.MustFreeString = 0; } return Result; } extern "C" { CXIndex clang_createIndex(int excludeDeclarationsFromPCH) { CIndexer *CIdxr = new CIndexer(); if (excludeDeclarationsFromPCH) CIdxr->setOnlyLocalDecls(); return CIdxr; } void clang_disposeIndex(CXIndex CIdx) { if (CIdx) delete static_cast(CIdx); } void clang_setUseExternalASTGeneration(CXIndex CIdx, int value) { if (CIdx) { CIndexer *CXXIdx = static_cast(CIdx); CXXIdx->setUseExternalASTGeneration(value); } } CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx, const char *ast_filename, CXDiagnosticCallback diag_callback, CXClientData diag_client_data) { if (!CIdx) return 0; CIndexer *CXXIdx = static_cast(CIdx); // Configure the diagnostics. DiagnosticOptions DiagOpts; llvm::OwningPtr Diags; Diags.reset(CompilerInstance::createDiagnostics(DiagOpts, 0, 0)); CIndexDiagnosticClient DiagClient(diag_callback, diag_client_data); Diags->setClient(&DiagClient); return ASTUnit::LoadFromPCHFile(ast_filename, *Diags, CXXIdx->getOnlyLocalDecls()); } CXTranslationUnit clang_createTranslationUnitFromSourceFile(CXIndex CIdx, const char *source_filename, int num_command_line_args, const char **command_line_args, unsigned num_unsaved_files, struct CXUnsavedFile *unsaved_files, CXDiagnosticCallback diag_callback, CXClientData diag_client_data) { if (!CIdx) return 0; CIndexer *CXXIdx = static_cast(CIdx); // Configure the diagnostics. DiagnosticOptions DiagOpts; llvm::OwningPtr Diags; Diags.reset(CompilerInstance::createDiagnostics(DiagOpts, 0, 0)); CIndexDiagnosticClient DiagClient(diag_callback, diag_client_data); Diags->setClient(&DiagClient); llvm::SmallVector RemappedFiles; for (unsigned I = 0; I != num_unsaved_files; ++I) { const llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(unsaved_files[I].Contents, unsaved_files[I].Contents + unsaved_files[I].Length, unsaved_files[I].Filename); RemappedFiles.push_back(std::make_pair(unsaved_files[I].Filename, Buffer)); } if (!CXXIdx->getUseExternalASTGeneration()) { llvm::SmallVector Args; // The 'source_filename' argument is optional. If the caller does not // specify it then it is assumed that the source file is specified // in the actual argument list. if (source_filename) Args.push_back(source_filename); Args.insert(Args.end(), command_line_args, command_line_args + num_command_line_args); unsigned NumErrors = Diags->getNumErrors(); #ifdef USE_CRASHTRACER ArgsCrashTracerInfo ACTI(Args); #endif llvm::OwningPtr Unit( ASTUnit::LoadFromCommandLine(Args.data(), Args.data() + Args.size(), *Diags, CXXIdx->getClangResourcesPath(), CXXIdx->getOnlyLocalDecls(), RemappedFiles.data(), RemappedFiles.size())); // FIXME: Until we have broader testing, just drop the entire AST if we // encountered an error. if (NumErrors != Diags->getNumErrors()) return 0; return Unit.take(); } // Build up the arguments for invoking 'clang'. std::vector argv; // First add the complete path to the 'clang' executable. llvm::sys::Path ClangPath = static_cast(CIdx)->getClangPath(); argv.push_back(ClangPath.c_str()); // Add the '-emit-ast' option as our execution mode for 'clang'. argv.push_back("-emit-ast"); // The 'source_filename' argument is optional. If the caller does not // specify it then it is assumed that the source file is specified // in the actual argument list. if (source_filename) argv.push_back(source_filename); // Generate a temporary name for the AST file. argv.push_back("-o"); char astTmpFile[L_tmpnam]; argv.push_back(tmpnam(astTmpFile)); // Remap any unsaved files to temporary files. std::vector TemporaryFiles; std::vector RemapArgs; if (RemapFiles(num_unsaved_files, unsaved_files, RemapArgs, TemporaryFiles)) return 0; // The pointers into the elements of RemapArgs are stable because we // won't be adding anything to RemapArgs after this point. for (unsigned i = 0, e = RemapArgs.size(); i != e; ++i) argv.push_back(RemapArgs[i].c_str()); // Process the compiler options, stripping off '-o', '-c', '-fsyntax-only'. for (int i = 0; i < num_command_line_args; ++i) if (const char *arg = command_line_args[i]) { if (strcmp(arg, "-o") == 0) { ++i; // Also skip the matching argument. continue; } if (strcmp(arg, "-emit-ast") == 0 || strcmp(arg, "-c") == 0 || strcmp(arg, "-fsyntax-only") == 0) { continue; } // Keep the argument. argv.push_back(arg); } // Generate a temporary name for the diagnostics file. char tmpFileResults[L_tmpnam]; char *tmpResultsFileName = tmpnam(tmpFileResults); llvm::sys::Path DiagnosticsFile(tmpResultsFileName); TemporaryFiles.push_back(DiagnosticsFile); argv.push_back("-fdiagnostics-binary"); // Add the null terminator. argv.push_back(NULL); // Invoke 'clang'. llvm::sys::Path DevNull; // leave empty, causes redirection to /dev/null // on Unix or NUL (Windows). std::string ErrMsg; const llvm::sys::Path *Redirects[] = { &DevNull, &DevNull, &DiagnosticsFile, NULL }; llvm::sys::Program::ExecuteAndWait(ClangPath, &argv[0], /* env */ NULL, /* redirects */ &Redirects[0], /* secondsToWait */ 0, /* memoryLimits */ 0, &ErrMsg); if (!ErrMsg.empty()) { std::string AllArgs; for (std::vector::iterator I = argv.begin(), E = argv.end(); I != E; ++I) { AllArgs += ' '; if (*I) AllArgs += *I; } Diags->Report(diag::err_fe_clang) << AllArgs << ErrMsg; } // FIXME: Parse the (redirected) standard error to emit diagnostics. ASTUnit *ATU = ASTUnit::LoadFromPCHFile(astTmpFile, *Diags, CXXIdx->getOnlyLocalDecls(), RemappedFiles.data(), RemappedFiles.size()); if (ATU) ATU->unlinkTemporaryFile(); // FIXME: Currently we don't report diagnostics on invalid ASTs. if (ATU) ReportSerializedDiagnostics(DiagnosticsFile, *Diags, num_unsaved_files, unsaved_files, ATU->getASTContext().getLangOptions()); for (unsigned i = 0, e = TemporaryFiles.size(); i != e; ++i) TemporaryFiles[i].eraseFromDisk(); return ATU; } void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) { if (CTUnit) delete static_cast(CTUnit); } CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) { if (!CTUnit) return CIndexer::createCXString(""); ASTUnit *CXXUnit = static_cast(CTUnit); return CIndexer::createCXString(CXXUnit->getOriginalSourceFileName().c_str(), true); } CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) { CXCursor Result = { CXCursor_TranslationUnit, { 0, 0, TU } }; return Result; } } // end: extern "C" //===----------------------------------------------------------------------===// // CXSourceLocation and CXSourceRange Operations. //===----------------------------------------------------------------------===// extern "C" { CXSourceLocation clang_getNullLocation() { CXSourceLocation Result = { { 0, 0 }, 0 }; return Result; } unsigned clang_equalLocations(CXSourceLocation loc1, CXSourceLocation loc2) { return (loc1.ptr_data[0] == loc2.ptr_data[0] && loc1.ptr_data[1] == loc2.ptr_data[1] && loc1.int_data == loc2.int_data); } CXSourceLocation clang_getLocation(CXTranslationUnit tu, CXFile file, unsigned line, unsigned column) { if (!tu) return clang_getNullLocation(); ASTUnit *CXXUnit = static_cast(tu); SourceLocation SLoc = CXXUnit->getSourceManager().getLocation( static_cast(file), line, column); return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SLoc); } CXSourceRange clang_getNullRange() { CXSourceRange Result = { { 0, 0 }, 0, 0 }; return Result; } CXSourceRange clang_getRange(CXSourceLocation begin, CXSourceLocation end) { if (begin.ptr_data[0] != end.ptr_data[0] || begin.ptr_data[1] != end.ptr_data[1]) return clang_getNullRange(); CXSourceRange Result = { { begin.ptr_data[0], begin.ptr_data[1] }, begin.int_data, end.int_data }; return Result; } void clang_getInstantiationLocation(CXSourceLocation location, CXFile *file, unsigned *line, unsigned *column, unsigned *offset) { SourceLocation Loc = SourceLocation::getFromRawEncoding(location.int_data); if (!location.ptr_data[0] || Loc.isInvalid()) { if (file) *file = 0; if (line) *line = 0; if (column) *column = 0; if (offset) *offset = 0; return; } const SourceManager &SM = *static_cast(location.ptr_data[0]); SourceLocation InstLoc = SM.getInstantiationLoc(Loc); if (file) *file = (void *)SM.getFileEntryForID(SM.getFileID(InstLoc)); if (line) *line = SM.getInstantiationLineNumber(InstLoc); if (column) *column = SM.getInstantiationColumnNumber(InstLoc); if (offset) *offset = SM.getDecomposedLoc(InstLoc).second; } CXSourceLocation clang_getRangeStart(CXSourceRange range) { CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] }, range.begin_int_data }; return Result; } CXSourceLocation clang_getRangeEnd(CXSourceRange range) { CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] }, range.end_int_data }; return Result; } } // end: extern "C" //===----------------------------------------------------------------------===// // CXFile Operations. //===----------------------------------------------------------------------===// extern "C" { const char *clang_getFileName(CXFile SFile) { if (!SFile) return 0; FileEntry *FEnt = static_cast(SFile); return FEnt->getName(); } time_t clang_getFileTime(CXFile SFile) { if (!SFile) return 0; FileEntry *FEnt = static_cast(SFile); return FEnt->getModificationTime(); } CXFile clang_getFile(CXTranslationUnit tu, const char *file_name) { if (!tu) return 0; ASTUnit *CXXUnit = static_cast(tu); FileManager &FMgr = CXXUnit->getFileManager(); const FileEntry *File = FMgr.getFile(file_name, file_name+strlen(file_name)); return const_cast(File); } } // end: extern "C" //===----------------------------------------------------------------------===// // CXCursor Operations. //===----------------------------------------------------------------------===// static Decl *getDeclFromExpr(Stmt *E) { if (DeclRefExpr *RefExpr = dyn_cast(E)) return RefExpr->getDecl(); if (MemberExpr *ME = dyn_cast(E)) return ME->getMemberDecl(); if (ObjCIvarRefExpr *RE = dyn_cast(E)) return RE->getDecl(); if (CallExpr *CE = dyn_cast(E)) return getDeclFromExpr(CE->getCallee()); if (CastExpr *CE = dyn_cast(E)) return getDeclFromExpr(CE->getSubExpr()); if (ObjCMessageExpr *OME = dyn_cast(E)) return OME->getMethodDecl(); return 0; } static SourceLocation getLocationFromExpr(Expr *E) { if (ObjCMessageExpr *Msg = dyn_cast(E)) return /*FIXME:*/Msg->getLeftLoc(); if (DeclRefExpr *DRE = dyn_cast(E)) return DRE->getLocation(); if (MemberExpr *Member = dyn_cast(E)) return Member->getMemberLoc(); if (ObjCIvarRefExpr *Ivar = dyn_cast(E)) return Ivar->getLocation(); return E->getLocStart(); } extern "C" { unsigned clang_visitChildren(CXCursor parent, CXCursorVisitor visitor, CXClientData client_data) { ASTUnit *CXXUnit = getCursorASTUnit(parent); unsigned PCHLevel = Decl::MaxPCHLevel; // Set the PCHLevel to filter out unwanted decls if requested. if (CXXUnit->getOnlyLocalDecls()) { PCHLevel = 0; // If the main input was an AST, bump the level. if (CXXUnit->isMainFileAST()) ++PCHLevel; } CursorVisitor CursorVis(CXXUnit, visitor, client_data, PCHLevel); return CursorVis.VisitChildren(parent); } static CXString getDeclSpelling(Decl *D) { NamedDecl *ND = dyn_cast_or_null(D); if (!ND) return CIndexer::createCXString(""); if (ObjCMethodDecl *OMD = dyn_cast(ND)) return CIndexer::createCXString(OMD->getSelector().getAsString().c_str(), true); if (ObjCCategoryImplDecl *CIMP = dyn_cast(ND)) // No, this isn't the same as the code below. getIdentifier() is non-virtual // and returns different names. NamedDecl returns the class name and // ObjCCategoryImplDecl returns the category name. return CIndexer::createCXString(CIMP->getIdentifier()->getNameStart()); if (ND->getIdentifier()) return CIndexer::createCXString(ND->getIdentifier()->getNameStart()); return CIndexer::createCXString(""); } CXString clang_getCursorSpelling(CXCursor C) { if (clang_isTranslationUnit(C.kind)) return clang_getTranslationUnitSpelling(C.data[2]); if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first; return CIndexer::createCXString(Super->getIdentifier()->getNameStart()); } case CXCursor_ObjCClassRef: { ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first; return CIndexer::createCXString(Class->getIdentifier()->getNameStart()); } case CXCursor_ObjCProtocolRef: { ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first; assert(OID && "getCursorSpelling(): Missing protocol decl"); return CIndexer::createCXString(OID->getIdentifier()->getNameStart()); } case CXCursor_TypeRef: { TypeDecl *Type = getCursorTypeRef(C).first; assert(Type && "Missing type decl"); return CIndexer::createCXString( getCursorContext(C).getTypeDeclType(Type).getAsString().c_str(), true); } default: return CIndexer::createCXString(""); } } if (clang_isExpression(C.kind)) { Decl *D = getDeclFromExpr(getCursorExpr(C)); if (D) return getDeclSpelling(D); return CIndexer::createCXString(""); } if (clang_isDeclaration(C.kind)) return getDeclSpelling(getCursorDecl(C)); return CIndexer::createCXString(""); } const char *clang_getCursorKindSpelling(enum CXCursorKind Kind) { switch (Kind) { case CXCursor_FunctionDecl: return "FunctionDecl"; case CXCursor_TypedefDecl: return "TypedefDecl"; case CXCursor_EnumDecl: return "EnumDecl"; case CXCursor_EnumConstantDecl: return "EnumConstantDecl"; case CXCursor_StructDecl: return "StructDecl"; case CXCursor_UnionDecl: return "UnionDecl"; case CXCursor_ClassDecl: return "ClassDecl"; case CXCursor_FieldDecl: return "FieldDecl"; case CXCursor_VarDecl: return "VarDecl"; case CXCursor_ParmDecl: return "ParmDecl"; case CXCursor_ObjCInterfaceDecl: return "ObjCInterfaceDecl"; case CXCursor_ObjCCategoryDecl: return "ObjCCategoryDecl"; case CXCursor_ObjCProtocolDecl: return "ObjCProtocolDecl"; case CXCursor_ObjCPropertyDecl: return "ObjCPropertyDecl"; case CXCursor_ObjCIvarDecl: return "ObjCIvarDecl"; case CXCursor_ObjCInstanceMethodDecl: return "ObjCInstanceMethodDecl"; case CXCursor_ObjCClassMethodDecl: return "ObjCClassMethodDecl"; case CXCursor_ObjCImplementationDecl: return "ObjCImplementationDecl"; case CXCursor_ObjCCategoryImplDecl: return "ObjCCategoryImplDecl"; case CXCursor_UnexposedDecl: return "UnexposedDecl"; case CXCursor_ObjCSuperClassRef: return "ObjCSuperClassRef"; case CXCursor_ObjCProtocolRef: return "ObjCProtocolRef"; case CXCursor_ObjCClassRef: return "ObjCClassRef"; case CXCursor_TypeRef: return "TypeRef"; case CXCursor_UnexposedExpr: return "UnexposedExpr"; case CXCursor_DeclRefExpr: return "DeclRefExpr"; case CXCursor_MemberRefExpr: return "MemberRefExpr"; case CXCursor_CallExpr: return "CallExpr"; case CXCursor_ObjCMessageExpr: return "ObjCMessageExpr"; case CXCursor_UnexposedStmt: return "UnexposedStmt"; case CXCursor_InvalidFile: return "InvalidFile"; case CXCursor_NoDeclFound: return "NoDeclFound"; case CXCursor_NotImplemented: return "NotImplemented"; case CXCursor_TranslationUnit: return "TranslationUnit"; } llvm_unreachable("Unhandled CXCursorKind"); return NULL; } enum CXChildVisitResult GetCursorVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { CXCursor *BestCursor = static_cast(client_data); *BestCursor = cursor; return CXChildVisit_Recurse; } CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) { if (!TU) return clang_getNullCursor(); ASTUnit *CXXUnit = static_cast(TU); SourceLocation SLoc = cxloc::translateSourceLocation(Loc); CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound); if (SLoc.isValid()) { SourceRange RegionOfInterest(SLoc, SLoc.getFileLocWithOffset(1)); // FIXME: Would be great to have a "hint" cursor, then walk from that // hint cursor upward until we find a cursor whose source range encloses // the region of interest, rather than starting from the translation unit. CXCursor Parent = clang_getTranslationUnitCursor(CXXUnit); CursorVisitor CursorVis(CXXUnit, GetCursorVisitor, &Result, Decl::MaxPCHLevel, RegionOfInterest); CursorVis.VisitChildren(Parent); } return Result; } CXCursor clang_getNullCursor(void) { return MakeCXCursorInvalid(CXCursor_InvalidFile); } unsigned clang_equalCursors(CXCursor X, CXCursor Y) { return X == Y; } unsigned clang_isInvalid(enum CXCursorKind K) { return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid; } unsigned clang_isDeclaration(enum CXCursorKind K) { return K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl; } unsigned clang_isReference(enum CXCursorKind K) { return K >= CXCursor_FirstRef && K <= CXCursor_LastRef; } unsigned clang_isExpression(enum CXCursorKind K) { return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr; } unsigned clang_isStatement(enum CXCursorKind K) { return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt; } unsigned clang_isTranslationUnit(enum CXCursorKind K) { return K == CXCursor_TranslationUnit; } CXCursorKind clang_getCursorKind(CXCursor C) { return C.kind; } CXSourceLocation clang_getCursorLocation(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { std::pair P = getCursorObjCSuperClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCProtocolRef: { std::pair P = getCursorObjCProtocolRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCClassRef: { std::pair P = getCursorObjCClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_TypeRef: { std::pair P = getCursorTypeRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return cxloc::translateSourceLocation(getCursorContext(C), getLocationFromExpr(getCursorExpr(C))); if (!getCursorDecl(C)) return clang_getNullLocation(); Decl *D = getCursorDecl(C); SourceLocation Loc = D->getLocation(); if (ObjCInterfaceDecl *Class = dyn_cast(D)) Loc = Class->getClassLoc(); return cxloc::translateSourceLocation(D->getASTContext(), Loc); } CXSourceRange clang_getCursorExtent(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { std::pair P = getCursorObjCSuperClassRef(C); return cxloc::translateSourceRange(P.first->getASTContext(), P.second); } case CXCursor_ObjCProtocolRef: { std::pair P = getCursorObjCProtocolRef(C); return cxloc::translateSourceRange(P.first->getASTContext(), P.second); } case CXCursor_ObjCClassRef: { std::pair P = getCursorObjCClassRef(C); return cxloc::translateSourceRange(P.first->getASTContext(), P.second); } case CXCursor_TypeRef: { std::pair P = getCursorTypeRef(C); return cxloc::translateSourceRange(P.first->getASTContext(), P.second); } default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return cxloc::translateSourceRange(getCursorContext(C), getCursorExpr(C)->getSourceRange()); if (clang_isStatement(C.kind)) return cxloc::translateSourceRange(getCursorContext(C), getCursorStmt(C)->getSourceRange()); if (!getCursorDecl(C)) return clang_getNullRange(); Decl *D = getCursorDecl(C); return cxloc::translateSourceRange(D->getASTContext(), D->getSourceRange()); } CXCursor clang_getCursorReferenced(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); ASTUnit *CXXUnit = getCursorASTUnit(C); if (clang_isDeclaration(C.kind)) return C; if (clang_isExpression(C.kind)) { Decl *D = getDeclFromExpr(getCursorExpr(C)); if (D) return MakeCXCursor(D, CXXUnit); return clang_getNullCursor(); } if (!clang_isReference(C.kind)) return clang_getNullCursor(); switch (C.kind) { case CXCursor_ObjCSuperClassRef: return MakeCXCursor(getCursorObjCSuperClassRef(C).first, CXXUnit); case CXCursor_ObjCProtocolRef: { return MakeCXCursor(getCursorObjCProtocolRef(C).first, CXXUnit); case CXCursor_ObjCClassRef: return MakeCXCursor(getCursorObjCClassRef(C).first, CXXUnit); case CXCursor_TypeRef: return MakeCXCursor(getCursorTypeRef(C).first, CXXUnit); default: // We would prefer to enumerate all non-reference cursor kinds here. llvm_unreachable("Unhandled reference cursor kind"); break; } } return clang_getNullCursor(); } CXCursor clang_getCursorDefinition(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); ASTUnit *CXXUnit = getCursorASTUnit(C); bool WasReference = false; if (clang_isReference(C.kind) || clang_isExpression(C.kind)) { C = clang_getCursorReferenced(C); WasReference = true; } if (!clang_isDeclaration(C.kind)) return clang_getNullCursor(); Decl *D = getCursorDecl(C); if (!D) return clang_getNullCursor(); switch (D->getKind()) { // Declaration kinds that don't really separate the notions of // declaration and definition. case Decl::Namespace: case Decl::Typedef: case Decl::TemplateTypeParm: case Decl::EnumConstant: case Decl::Field: case Decl::ObjCIvar: case Decl::ObjCAtDefsField: case Decl::ImplicitParam: case Decl::ParmVar: case Decl::NonTypeTemplateParm: case Decl::TemplateTemplateParm: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::LinkageSpec: case Decl::ObjCPropertyImpl: case Decl::FileScopeAsm: case Decl::StaticAssert: case Decl::Block: return C; // Declaration kinds that don't make any sense here, but are // nonetheless harmless. case Decl::TranslationUnit: case Decl::Template: case Decl::ObjCContainer: break; // Declaration kinds for which the definition is not resolvable. case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: break; case Decl::UsingDirective: return MakeCXCursor(cast(D)->getNominatedNamespace(), CXXUnit); case Decl::NamespaceAlias: return MakeCXCursor(cast(D)->getNamespace(), CXXUnit); case Decl::Enum: case Decl::Record: case Decl::CXXRecord: case Decl::ClassTemplateSpecialization: case Decl::ClassTemplatePartialSpecialization: if (TagDecl *Def = cast(D)->getDefinition()) return MakeCXCursor(Def, CXXUnit); return clang_getNullCursor(); case Decl::Function: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: { const FunctionDecl *Def = 0; if (cast(D)->getBody(Def)) return MakeCXCursor(const_cast(Def), CXXUnit); return clang_getNullCursor(); } case Decl::Var: { // Ask the variable if it has a definition. if (VarDecl *Def = cast(D)->getDefinition()) return MakeCXCursor(Def, CXXUnit); return clang_getNullCursor(); } case Decl::FunctionTemplate: { const FunctionDecl *Def = 0; if (cast(D)->getTemplatedDecl()->getBody(Def)) return MakeCXCursor(Def->getDescribedFunctionTemplate(), CXXUnit); return clang_getNullCursor(); } case Decl::ClassTemplate: { if (RecordDecl *Def = cast(D)->getTemplatedDecl() ->getDefinition()) return MakeCXCursor( cast(Def)->getDescribedClassTemplate(), CXXUnit); return clang_getNullCursor(); } case Decl::Using: { UsingDecl *Using = cast(D); CXCursor Def = clang_getNullCursor(); for (UsingDecl::shadow_iterator S = Using->shadow_begin(), SEnd = Using->shadow_end(); S != SEnd; ++S) { if (Def != clang_getNullCursor()) { // FIXME: We have no way to return multiple results. return clang_getNullCursor(); } Def = clang_getCursorDefinition(MakeCXCursor((*S)->getTargetDecl(), CXXUnit)); } return Def; } case Decl::UsingShadow: return clang_getCursorDefinition( MakeCXCursor(cast(D)->getTargetDecl(), CXXUnit)); case Decl::ObjCMethod: { ObjCMethodDecl *Method = cast(D); if (Method->isThisDeclarationADefinition()) return C; // Dig out the method definition in the associated // @implementation, if we have it. // FIXME: The ASTs should make finding the definition easier. if (ObjCInterfaceDecl *Class = dyn_cast(Method->getDeclContext())) if (ObjCImplementationDecl *ClassImpl = Class->getImplementation()) if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(), Method->isInstanceMethod())) if (Def->isThisDeclarationADefinition()) return MakeCXCursor(Def, CXXUnit); return clang_getNullCursor(); } case Decl::ObjCCategory: if (ObjCCategoryImplDecl *Impl = cast(D)->getImplementation()) return MakeCXCursor(Impl, CXXUnit); return clang_getNullCursor(); case Decl::ObjCProtocol: if (!cast(D)->isForwardDecl()) return C; return clang_getNullCursor(); case Decl::ObjCInterface: // There are two notions of a "definition" for an Objective-C // class: the interface and its implementation. When we resolved a // reference to an Objective-C class, produce the @interface as // the definition; when we were provided with the interface, // produce the @implementation as the definition. if (WasReference) { if (!cast(D)->isForwardDecl()) return C; } else if (ObjCImplementationDecl *Impl = cast(D)->getImplementation()) return MakeCXCursor(Impl, CXXUnit); return clang_getNullCursor(); case Decl::ObjCProperty: // FIXME: We don't really know where to find the // ObjCPropertyImplDecls that implement this property. return clang_getNullCursor(); case Decl::ObjCCompatibleAlias: if (ObjCInterfaceDecl *Class = cast(D)->getClassInterface()) if (!Class->isForwardDecl()) return MakeCXCursor(Class, CXXUnit); return clang_getNullCursor(); case Decl::ObjCForwardProtocol: { ObjCForwardProtocolDecl *Forward = cast(D); if (Forward->protocol_size() == 1) return clang_getCursorDefinition( MakeCXCursor(*Forward->protocol_begin(), CXXUnit)); // FIXME: Cannot return multiple definitions. return clang_getNullCursor(); } case Decl::ObjCClass: { ObjCClassDecl *Class = cast(D); if (Class->size() == 1) { ObjCInterfaceDecl *IFace = Class->begin()->getInterface(); if (!IFace->isForwardDecl()) return MakeCXCursor(IFace, CXXUnit); return clang_getNullCursor(); } // FIXME: Cannot return multiple definitions. return clang_getNullCursor(); } case Decl::Friend: if (NamedDecl *Friend = cast(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit)); return clang_getNullCursor(); case Decl::FriendTemplate: if (NamedDecl *Friend = cast(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit)); return clang_getNullCursor(); } return clang_getNullCursor(); } unsigned clang_isCursorDefinition(CXCursor C) { if (!clang_isDeclaration(C.kind)) return 0; return clang_getCursorDefinition(C) == C; } void clang_getDefinitionSpellingAndExtent(CXCursor C, const char **startBuf, const char **endBuf, unsigned *startLine, unsigned *startColumn, unsigned *endLine, unsigned *endColumn) { assert(getCursorDecl(C) && "CXCursor has null decl"); NamedDecl *ND = static_cast(getCursorDecl(C)); FunctionDecl *FD = dyn_cast(ND); CompoundStmt *Body = dyn_cast(FD->getBody()); SourceManager &SM = FD->getASTContext().getSourceManager(); *startBuf = SM.getCharacterData(Body->getLBracLoc()); *endBuf = SM.getCharacterData(Body->getRBracLoc()); *startLine = SM.getSpellingLineNumber(Body->getLBracLoc()); *startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc()); *endLine = SM.getSpellingLineNumber(Body->getRBracLoc()); *endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc()); } } // end: extern "C" //===----------------------------------------------------------------------===// // Token-based Operations. //===----------------------------------------------------------------------===// /* CXToken layout: * int_data[0]: a CXTokenKind * int_data[1]: starting token location * int_data[2]: token length * int_data[3]: reserved * ptr_data: for identifiers and keywords, an IdentifierInfo*. * otherwise unused. */ extern "C" { CXTokenKind clang_getTokenKind(CXToken CXTok) { return static_cast(CXTok.int_data[0]); } CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) { switch (clang_getTokenKind(CXTok)) { case CXToken_Identifier: case CXToken_Keyword: // We know we have an IdentifierInfo*, so use that. return CIndexer::createCXString( static_cast(CXTok.ptr_data)->getNameStart()); case CXToken_Literal: { // We have stashed the starting pointer in the ptr_data field. Use it. const char *Text = static_cast(CXTok.ptr_data); return CIndexer::createCXString(llvm::StringRef(Text, CXTok.int_data[2]), true); } case CXToken_Punctuation: case CXToken_Comment: break; } // We have to find the starting buffer pointer the hard way, by // deconstructing the source location. ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit) return CIndexer::createCXString(""); SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]); std::pair LocInfo = CXXUnit->getSourceManager().getDecomposedLoc(Loc); std::pair Buffer = CXXUnit->getSourceManager().getBufferData(LocInfo.first); return CIndexer::createCXString(llvm::StringRef(Buffer.first+LocInfo.second, CXTok.int_data[2]), true); } CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit) return clang_getNullLocation(); return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit) return clang_getNullRange(); return cxloc::translateSourceRange(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range, CXToken **Tokens, unsigned *NumTokens) { if (Tokens) *Tokens = 0; if (NumTokens) *NumTokens = 0; ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit || !Tokens || !NumTokens) return; SourceRange R = cxloc::translateCXSourceRange(Range); if (R.isInvalid()) return; SourceManager &SourceMgr = CXXUnit->getSourceManager(); std::pair BeginLocInfo = SourceMgr.getDecomposedLoc(R.getBegin()); std::pair EndLocInfo = SourceMgr.getDecomposedLoc(R.getEnd()); // Cannot tokenize across files. if (BeginLocInfo.first != EndLocInfo.first) return; // Create a lexer std::pair Buffer = SourceMgr.getBufferData(BeginLocInfo.first); Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first), CXXUnit->getASTContext().getLangOptions(), Buffer.first, Buffer.first + BeginLocInfo.second, Buffer.second); Lex.SetCommentRetentionState(true); // Lex tokens until we hit the end of the range. const char *EffectiveBufferEnd = Buffer.first + EndLocInfo.second; llvm::SmallVector CXTokens; Token Tok; do { // Lex the next token Lex.LexFromRawLexer(Tok); if (Tok.is(tok::eof)) break; // Initialize the CXToken. CXToken CXTok; // - Common fields CXTok.int_data[1] = Tok.getLocation().getRawEncoding(); CXTok.int_data[2] = Tok.getLength(); CXTok.int_data[3] = 0; // - Kind-specific fields if (Tok.isLiteral()) { CXTok.int_data[0] = CXToken_Literal; CXTok.ptr_data = (void *)Tok.getLiteralData(); } else if (Tok.is(tok::identifier)) { // Lookup the identifier to determine whether we have a std::pair LocInfo = SourceMgr.getDecomposedLoc(Tok.getLocation()); const char *StartPos = CXXUnit->getSourceManager().getBufferData(LocInfo.first).first + LocInfo.second; IdentifierInfo *II = CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok, StartPos); CXTok.int_data[0] = II->getTokenID() == tok::identifier? CXToken_Identifier : CXToken_Keyword; CXTok.ptr_data = II; } else if (Tok.is(tok::comment)) { CXTok.int_data[0] = CXToken_Comment; CXTok.ptr_data = 0; } else { CXTok.int_data[0] = CXToken_Punctuation; CXTok.ptr_data = 0; } CXTokens.push_back(CXTok); } while (Lex.getBufferLocation() <= EffectiveBufferEnd); if (CXTokens.empty()) return; *Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size()); memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size()); *NumTokens = CXTokens.size(); } typedef llvm::DenseMap AnnotateTokensData; enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { AnnotateTokensData *Data = static_cast(client_data); // We only annotate the locations of declarations, simple // references, and expressions which directly reference something. CXCursorKind Kind = clang_getCursorKind(cursor); if (clang_isDeclaration(Kind) || clang_isReference(Kind)) { // Okay: We can annotate the location of this declaration with the // declaration or reference } else if (clang_isExpression(cursor.kind)) { if (Kind != CXCursor_DeclRefExpr && Kind != CXCursor_MemberRefExpr && Kind != CXCursor_ObjCMessageExpr) return CXChildVisit_Recurse; CXCursor Referenced = clang_getCursorReferenced(cursor); if (Referenced == cursor || Referenced == clang_getNullCursor()) return CXChildVisit_Recurse; // Okay: we can annotate the location of this expression } else { // Nothing to annotate return CXChildVisit_Recurse; } CXSourceLocation Loc = clang_getCursorLocation(cursor); (*Data)[Loc.int_data] = cursor; return CXChildVisit_Recurse; } void clang_annotateTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens, CXCursor *Cursors) { if (NumTokens == 0) return; // Any token we don't specifically annotate will have a NULL cursor. for (unsigned I = 0; I != NumTokens; ++I) Cursors[I] = clang_getNullCursor(); ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit || !Tokens) return; // Annotate all of the source locations in the region of interest that map SourceRange RegionOfInterest; RegionOfInterest.setBegin( cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[0]))); SourceLocation End = cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[NumTokens - 1])); RegionOfInterest.setEnd(CXXUnit->getPreprocessor().getLocForEndOfToken(End)); // FIXME: Would be great to have a "hint" cursor, then walk from that // hint cursor upward until we find a cursor whose source range encloses // the region of interest, rather than starting from the translation unit. AnnotateTokensData Annotated; CXCursor Parent = clang_getTranslationUnitCursor(CXXUnit); CursorVisitor AnnotateVis(CXXUnit, AnnotateTokensVisitor, &Annotated, Decl::MaxPCHLevel, RegionOfInterest); AnnotateVis.VisitChildren(Parent); for (unsigned I = 0; I != NumTokens; ++I) { // Determine whether we saw a cursor at this token's location. AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]); if (Pos == Annotated.end()) continue; Cursors[I] = Pos->second; } } void clang_disposeTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens) { free(Tokens); } } // end: extern "C" //===----------------------------------------------------------------------===// // CXString Operations. //===----------------------------------------------------------------------===// extern "C" { const char *clang_getCString(CXString string) { return string.Spelling; } void clang_disposeString(CXString string) { if (string.MustFreeString && string.Spelling) free((void*)string.Spelling); } } // end: extern "C" //===----------------------------------------------------------------------===// // Misc. utility functions. //===----------------------------------------------------------------------===// extern "C" { CXString clang_getClangVersion() { return CIndexer::createCXString(getClangFullVersion(), true); } } // end: extern "C"