// RUN: %clang_cc1 -fcxx-exceptions -fexceptions -fsyntax-only -verify -std=c++0x -ffreestanding %s #include typedef decltype(nullptr) nullptr_t; struct A {}; int o1(char*); void o1(uintptr_t); void o2(char*); // expected-note {{candidate}} void o2(int A::*); // expected-note {{candidate}} nullptr_t f(nullptr_t null) { // Implicit conversions. null = nullptr; void *p = nullptr; p = null; int *pi = nullptr; pi = null; null = 0; int A::*pm = nullptr; pm = null; void (*pf)() = nullptr; pf = null; void (A::*pmf)() = nullptr; pmf = null; bool b = nullptr; // Can't convert nullptr to integral implicitly. uintptr_t i = nullptr; // expected-error {{cannot initialize}} // Operators (void)(null == nullptr); (void)(null <= nullptr); (void)(null == (void*)0); (void)((void*)0 == nullptr); (void)(null <= (void*)0); (void)((void*)0 <= nullptr); (void)(0 == nullptr); (void)(nullptr == 0); (void)(nullptr <= 0); (void)(0 <= nullptr); (void)(1 > nullptr); // expected-error {{invalid operands to binary expression}} (void)(1 != nullptr); // expected-error {{invalid operands to binary expression}} (void)(1 + nullptr); // expected-error {{invalid operands to binary expression}} (void)(0 ? nullptr : 0); // expected-error {{non-pointer operand type 'int' incompatible with nullptr}} (void)(0 ? nullptr : (void*)0); (void)(0 ? nullptr : A()); // expected-error {{non-pointer operand type 'A' incompatible with nullptr}} (void)(0 ? A() : nullptr); // expected-error {{non-pointer operand type 'A' incompatible with nullptr}} // Overloading int t = o1(nullptr); t = o1(null); o2(nullptr); // expected-error {{ambiguous}} // nullptr is an rvalue, null is an lvalue (void)&nullptr; // expected-error {{address expression must be an lvalue}} nullptr_t *pn = &null; // You can reinterpret_cast nullptr to an integer. (void)reinterpret_cast(nullptr); (void)reinterpret_cast(*pn); int *ip = *pn; if (*pn) { } // You can throw nullptr. throw nullptr; } // Template arguments can be nullptr. template struct T {}; typedef T NT; namespace test1 { template struct is_same { static const bool value = false; }; template struct is_same { static const bool value = true; }; void *g(void*); bool g(bool); // Test that we prefer g(void*) over g(bool). static_assert(is_same::value, ""); } namespace test2 { void f(int, ...) __attribute__((sentinel)); void g() { // nullptr can be used as the sentinel value. f(10, nullptr); } } namespace test3 { void f(const char*, ...) __attribute__((format(printf, 1, 2))); void g() { // Don't warn when using nullptr with %p. f("%p", nullptr); } } int array0[__is_scalar(nullptr_t)? 1 : -1]; int array1[__is_pod(nullptr_t)? 1 : -1]; int array2[sizeof(nullptr_t) == sizeof(void*)? 1 : -1]; // FIXME: when we implement constexpr, this will be testable. #if 0 int relational0[nullptr < nullptr? -1 : 1]; int relational1[nullptr > nullptr? -1 : 1]; int relational2[nullptr <= nullptr? 1 : -1]; int relational3[nullptr >= nullptr? 1 : -1]; int equality[nullptr == nullptr? 1 : -1]; int inequality[nullptr != nullptr? -1 : 1]; #endif namespace overloading { int &f1(int*); float &f1(bool); void test_f1() { int &ir = (f1)(nullptr); } struct ConvertsToNullPtr { operator nullptr_t() const; }; void test_conversion(ConvertsToNullPtr ctn) { (void)(ctn == ctn); (void)(ctn != ctn); (void)(ctn <= ctn); (void)(ctn >= ctn); (void)(ctn < ctn); (void)(ctn > ctn); } } namespace templates { template struct X { X() { ptr = Value; } T *ptr; }; X x; template struct X2 {}; X2 x2; }