/*- * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include u_int dmar_nd2mask(u_int nd) { static const u_int masks[] = { 0x000f, /* nd == 0 */ 0x002f, /* nd == 1 */ 0x00ff, /* nd == 2 */ 0x02ff, /* nd == 3 */ 0x0fff, /* nd == 4 */ 0x2fff, /* nd == 5 */ 0xffff, /* nd == 6 */ 0x0000, /* nd == 7 reserved */ }; KASSERT(nd <= 6, ("number of domains %d", nd)); return (masks[nd]); } static const struct sagaw_bits_tag { int agaw; int cap; int awlvl; int pglvl; } sagaw_bits[] = { {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL, .pglvl = 2}, {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL, .pglvl = 3}, {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL, .pglvl = 4}, {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL, .pglvl = 5}, {.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL, .pglvl = 6} }; bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].pglvl != pglvl) continue; if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) return (true); } return (false); } int domain_set_agaw(struct dmar_domain *domain, int mgaw) { int sagaw, i; domain->mgaw = mgaw; sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap); for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].agaw >= mgaw) { domain->agaw = sagaw_bits[i].agaw; domain->pglvl = sagaw_bits[i].pglvl; domain->awlvl = sagaw_bits[i].awlvl; return (0); } } device_printf(domain->dmar->dev, "context request mgaw %d: no agaw found, sagaw %x\n", mgaw, sagaw); return (EINVAL); } /* * Find a best fit mgaw for the given maxaddr: * - if allow_less is false, must find sagaw which maps all requested * addresses (used by identity mappings); * - if allow_less is true, and no supported sagaw can map all requested * address space, accept the biggest sagaw, whatever is it. */ int dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if ((1ULL << sagaw_bits[i].agaw) >= maxaddr && (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) break; } if (allow_less && i == nitems(sagaw_bits)) { do { i--; } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) == 0); } if (i < nitems(sagaw_bits)) return (sagaw_bits[i].agaw); KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d", (uintmax_t) maxaddr, allow_less)); return (-1); } /* * Calculate the total amount of page table pages needed to map the * whole bus address space on the context with the selected agaw. */ vm_pindex_t pglvl_max_pages(int pglvl) { vm_pindex_t res; int i; for (res = 0, i = pglvl; i > 0; i--) { res *= DMAR_NPTEPG; res++; } return (res); } /* * Return true if the page table level lvl supports the superpage for * the context ctx. */ int domain_is_sp_lvl(struct dmar_domain *domain, int lvl) { int alvl, cap_sps; static const int sagaw_sp[] = { DMAR_CAP_SPS_2M, DMAR_CAP_SPS_1G, DMAR_CAP_SPS_512G, DMAR_CAP_SPS_1T }; alvl = domain->pglvl - lvl - 1; cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap); return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0); } dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl) { int rlvl; static const dmar_gaddr_t pg_sz[] = { (dmar_gaddr_t)DMAR_PAGE_SIZE, (dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT, (dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT), (dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT), (dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT), (dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT) }; KASSERT(lvl >= 0 && lvl < total_pglvl, ("total %d lvl %d", total_pglvl, lvl)); rlvl = total_pglvl - lvl - 1; KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl)); return (pg_sz[rlvl]); } dmar_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl) { return (pglvl_page_size(domain->pglvl, lvl)); } int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size, dmar_gaddr_t *isizep) { dmar_gaddr_t isize; int am; for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) { isize = 1ULL << (am + DMAR_PAGE_SHIFT); if ((base & (isize - 1)) == 0 && size >= isize) break; if (am == 0) break; } *isizep = isize; return (am); } dmar_haddr_t dmar_high; int haw; int dmar_tbl_pagecnt; vm_page_t dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags) { vm_page_t m; int zeroed, aflags; zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0; aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP | ((flags & DMAR_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL : VM_ALLOC_NOWAIT); for (;;) { if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WLOCK(obj); m = vm_page_lookup(obj, idx); if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) { if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); break; } m = vm_page_alloc_contig(obj, idx, aflags, 1, 0, dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); if (m != NULL) { if (zeroed && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); atomic_add_int(&dmar_tbl_pagecnt, 1); break; } if ((flags & DMAR_PGF_WAITOK) == 0) break; } return (m); } void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags) { vm_page_t m; if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WLOCK(obj); m = vm_page_lookup(obj, idx); if (m != NULL) { vm_page_free(m); atomic_subtract_int(&dmar_tbl_pagecnt, 1); } if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); } void * dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, struct sf_buf **sf) { vm_page_t m; bool allocated; if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WLOCK(obj); m = vm_page_lookup(obj, idx); if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) { m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL); allocated = true; } else allocated = false; if (m == NULL) { if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); return (NULL); } /* Sleepable allocations cannot fail. */ if ((flags & DMAR_PGF_WAITOK) != 0) VM_OBJECT_WUNLOCK(obj); sched_pin(); *sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK) == 0 ? SFB_NOWAIT : 0)); if (*sf == NULL) { sched_unpin(); if (allocated) { VM_OBJECT_ASSERT_WLOCKED(obj); dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL); } if ((flags & DMAR_PGF_OBJL) == 0) VM_OBJECT_WUNLOCK(obj); return (NULL); } if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) VM_OBJECT_WLOCK(obj); else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0) VM_OBJECT_WUNLOCK(obj); return ((void *)sf_buf_kva(*sf)); } void dmar_unmap_pgtbl(struct sf_buf *sf) { sf_buf_free(sf); sched_unpin(); } static void dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz) { if (DMAR_IS_COHERENT(unit)) return; /* * If DMAR does not snoop paging structures accesses, flush * CPU cache to memory. */ pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz, TRUE); } void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } /* * Load the root entry pointer into the hardware, busily waiting for * the completion. */ int dmar_load_root_entry_ptr(struct dmar_unit *unit) { vm_page_t root_entry; int error; /* * Access to the GCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); VM_OBJECT_RLOCK(unit->ctx_obj); root_entry = vm_page_lookup(unit->ctx_obj, 0); VM_OBJECT_RUNLOCK(unit->ctx_obj); dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) != 0)); return (error); } /* * Globally invalidate the context entries cache, busily waiting for * the completion. */ int dmar_inv_ctx_glob(struct dmar_unit *unit) { int error; /* * Access to the CCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); /* * The DMAR_CCMD_ICC bit in the upper dword should be written * after the low dword write is completed. Amd64 * dmar_write8() does not have this issue, i386 dmar_write8() * writes the upper dword last. */ dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) == 0)); return (error); } /* * Globally invalidate the IOTLB, busily waiting for the completion. */ int dmar_inv_iotlb_glob(struct dmar_unit *unit) { int error, reg; DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap); /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */ dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW); DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & DMAR_IOTLB_IVT32) == 0)); return (error); } /* * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing" * in the architecture specification. */ int dmar_flush_write_bufs(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); /* * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported. */ KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0, ("dmar%d: no RWBF", unit->unit)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) != 0)); return (error); } int dmar_enable_translation(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0)); return (error); } int dmar_disable_translation(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0)); return (error); } int dmar_load_irt_ptr(struct dmar_unit *unit) { uint64_t irta, s; int error; DMAR_ASSERT_LOCKED(unit); irta = unit->irt_phys; if (DMAR_X2APIC(unit)) irta |= DMAR_IRTA_EIME; s = fls(unit->irte_cnt) - 2; KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK && powerof2(unit->irte_cnt), ("IRTA_REG_S overflow %x", unit->irte_cnt)); irta |= s; dmar_write8(unit, DMAR_IRTA_REG, irta); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) != 0)); return (error); } int dmar_enable_ir(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_IRE; unit->hw_gcmd &= ~DMAR_GCMD_CFI; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0)); return (error); } int dmar_disable_ir(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_IRE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0)); return (error); } #define BARRIER_F \ u_int f_done, f_inproc, f_wakeup; \ \ f_done = 1 << (barrier_id * 3); \ f_inproc = 1 << (barrier_id * 3 + 1); \ f_wakeup = 1 << (barrier_id * 3 + 2) bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_LOCK(dmar); if ((dmar->barrier_flags & f_done) != 0) { DMAR_UNLOCK(dmar); return (false); } if ((dmar->barrier_flags & f_inproc) != 0) { while ((dmar->barrier_flags & f_inproc) != 0) { dmar->barrier_flags |= f_wakeup; msleep(&dmar->barrier_flags, &dmar->lock, 0, "dmarb", 0); } KASSERT((dmar->barrier_flags & f_done) != 0, ("dmar%d barrier %d missing done", dmar->unit, barrier_id)); DMAR_UNLOCK(dmar); return (false); } dmar->barrier_flags |= f_inproc; DMAR_UNLOCK(dmar); return (true); } void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_ASSERT_LOCKED(dmar); KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc, ("dmar%d barrier %d missed entry", dmar->unit, barrier_id)); dmar->barrier_flags |= f_done; if ((dmar->barrier_flags & f_wakeup) != 0) wakeup(&dmar->barrier_flags); dmar->barrier_flags &= ~(f_inproc | f_wakeup); DMAR_UNLOCK(dmar); } int dmar_match_verbose; int dmar_batch_coalesce = 100; struct timespec dmar_hw_timeout = { .tv_sec = 0, .tv_nsec = 1000000 }; static const uint64_t d = 1000000000; void dmar_update_timeout(uint64_t newval) { /* XXXKIB not atomic */ dmar_hw_timeout.tv_sec = newval / d; dmar_hw_timeout.tv_nsec = newval % d; } uint64_t dmar_get_timeout(void) { return ((uint64_t)dmar_hw_timeout.tv_sec * d + dmar_hw_timeout.tv_nsec); } static int dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS) { uint64_t val; int error; val = dmar_get_timeout(); error = sysctl_handle_long(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); dmar_update_timeout(val); return (error); } static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, ""); SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD, &dmar_tbl_pagecnt, 0, "Count of pages used for DMAR pagetables"); SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN, &dmar_match_verbose, 0, "Verbose matching of the PCI devices to DMAR paths"); SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN, &dmar_batch_coalesce, 0, "Number of qi batches between interrupt"); SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout, CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, dmar_timeout_sysctl, "QU", "Timeout for command wait, in nanoseconds"); #ifdef INVARIANTS int dmar_check_free; SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN, &dmar_check_free, 0, "Check the GPA RBtree for free_down and free_after validity"); #endif