/*- * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef __X86_IOMMU_INTEL_DMAR_H #define __X86_IOMMU_INTEL_DMAR_H /* Host or physical memory address, after translation. */ typedef uint64_t dmar_haddr_t; /* Guest or bus address, before translation. */ typedef uint64_t dmar_gaddr_t; struct dmar_qi_genseq { u_int gen; uint32_t seq; }; struct dmar_map_entry { dmar_gaddr_t start; dmar_gaddr_t end; dmar_gaddr_t free_after; /* Free space after the entry */ dmar_gaddr_t free_down; /* Max free space below the current R/B tree node */ u_int flags; TAILQ_ENTRY(dmar_map_entry) dmamap_link; /* Link for dmamap entries */ RB_ENTRY(dmar_map_entry) rb_entry; /* Links for ctx entries */ TAILQ_ENTRY(dmar_map_entry) unroll_link; /* Link for unroll after dmamap_load failure */ struct dmar_ctx *ctx; struct dmar_qi_genseq gseq; }; RB_HEAD(dmar_gas_entries_tree, dmar_map_entry); RB_PROTOTYPE(dmar_gas_entries_tree, dmar_map_entry, rb_entry, dmar_gas_cmp_entries); #define DMAR_MAP_ENTRY_PLACE 0x0001 /* Fake entry */ #define DMAR_MAP_ENTRY_RMRR 0x0002 /* Permanent, not linked by dmamap_link */ #define DMAR_MAP_ENTRY_MAP 0x0004 /* Busdma created, linked by dmamap_link */ #define DMAR_MAP_ENTRY_UNMAPPED 0x0010 /* No backing pages */ #define DMAR_MAP_ENTRY_QI_NF 0x0020 /* qi task, do not free entry */ #define DMAR_MAP_ENTRY_READ 0x1000 /* Read permitted */ #define DMAR_MAP_ENTRY_WRITE 0x2000 /* Write permitted */ #define DMAR_MAP_ENTRY_SNOOP 0x4000 /* Snoop */ #define DMAR_MAP_ENTRY_TM 0x8000 /* Transient */ struct dmar_ctx { int bus; /* pci bus/slot/func */ int slot; int func; int domain; /* DID */ int mgaw; /* Real max address width */ int agaw; /* Adjusted guest address width */ int pglvl; /* The pagelevel */ int awlvl; /* The pagelevel as the bitmask, to set in context entry */ dmar_gaddr_t end;/* Highest address + 1 in the guest AS */ u_int refs; /* References to the context, from tags */ struct dmar_unit *dmar; struct bus_dma_tag_dmar ctx_tag; /* Root tag */ struct mtx lock; LIST_ENTRY(dmar_ctx) link; /* Member in the dmar list */ vm_object_t pgtbl_obj; /* Page table pages */ u_int flags; /* Protected by dmar lock */ uint64_t last_fault_rec[2]; /* Last fault reported */ u_int entries_cnt; u_long loads; u_long unloads; struct dmar_gas_entries_tree rb_root; struct dmar_map_entries_tailq unload_entries; /* Entries to unload */ struct dmar_map_entry *first_place, *last_place; struct task unload_task; }; /* struct dmar_ctx flags */ #define DMAR_CTX_FAULTED 0x0001 /* Fault was reported, last_fault_rec is valid */ #define DMAR_CTX_IDMAP 0x0002 /* Context uses identity page table */ #define DMAR_CTX_RMRR 0x0004 /* Context contains RMRR entry, cannot be turned off */ #define DMAR_CTX_DISABLED 0x0008 /* Device is disabled, the ephemeral reference is kept to prevent context destruction */ #define DMAR_CTX_PGLOCK(ctx) VM_OBJECT_WLOCK((ctx)->pgtbl_obj) #define DMAR_CTX_PGTRYLOCK(ctx) VM_OBJECT_TRYWLOCK((ctx)->pgtbl_obj) #define DMAR_CTX_PGUNLOCK(ctx) VM_OBJECT_WUNLOCK((ctx)->pgtbl_obj) #define DMAR_CTX_ASSERT_PGLOCKED(ctx) \ VM_OBJECT_ASSERT_WLOCKED((ctx)->pgtbl_obj) #define DMAR_CTX_LOCK(ctx) mtx_lock(&(ctx)->lock) #define DMAR_CTX_UNLOCK(ctx) mtx_unlock(&(ctx)->lock) #define DMAR_CTX_ASSERT_LOCKED(ctx) mtx_assert(&(ctx)->lock, MA_OWNED) struct dmar_msi_data { int irq; int irq_rid; struct resource *irq_res; void *intr_handle; int (*handler)(void *); int msi_data_reg; int msi_addr_reg; int msi_uaddr_reg; void (*enable_intr)(struct dmar_unit *); void (*disable_intr)(struct dmar_unit *); const char *name; }; #define DMAR_INTR_FAULT 0 #define DMAR_INTR_QI 1 #define DMAR_INTR_TOTAL 2 struct dmar_unit { device_t dev; int unit; uint16_t segment; uint64_t base; /* Resources */ int reg_rid; struct resource *regs; struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; /* Hardware registers cache */ uint32_t hw_ver; uint64_t hw_cap; uint64_t hw_ecap; uint32_t hw_gcmd; /* Data for being a dmar */ struct mtx lock; LIST_HEAD(, dmar_ctx) contexts; struct unrhdr *domids; vm_object_t ctx_obj; u_int barrier_flags; /* Fault handler data */ struct mtx fault_lock; uint64_t *fault_log; int fault_log_head; int fault_log_tail; int fault_log_size; struct task fault_task; struct taskqueue *fault_taskqueue; /* QI */ int qi_enabled; vm_offset_t inv_queue; vm_size_t inv_queue_size; uint32_t inv_queue_avail; uint32_t inv_queue_tail; volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait descr completion */ uint64_t inv_waitd_seq_hw_phys; uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ u_int inv_seq_waiters; /* count of waiters for seq */ u_int inv_queue_full; /* informational counter */ /* Delayed freeing of map entries queue processing */ struct dmar_map_entries_tailq tlb_flush_entries; struct task qi_task; struct taskqueue *qi_taskqueue; /* Busdma delayed map load */ struct task dmamap_load_task; TAILQ_HEAD(, bus_dmamap_dmar) delayed_maps; struct taskqueue *delayed_taskqueue; }; #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->lock) #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->lock) #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->lock, MA_OWNED) #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) /* Barrier ids */ #define DMAR_BARRIER_RMRR 0 #define DMAR_BARRIER_USEQ 1 struct dmar_unit *dmar_find(device_t dev); u_int dmar_nd2mask(u_int nd); bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); int ctx_set_agaw(struct dmar_ctx *ctx, int mgaw); int dmar_maxaddr2mgaw(struct dmar_unit* unit, dmar_gaddr_t maxaddr, bool allow_less); vm_pindex_t pglvl_max_pages(int pglvl); int ctx_is_sp_lvl(struct dmar_ctx *ctx, int lvl); dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl); dmar_gaddr_t ctx_page_size(struct dmar_ctx *ctx, int lvl); int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size, dmar_gaddr_t *isizep); struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags); void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags); void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, struct sf_buf **sf); void dmar_unmap_pgtbl(struct sf_buf *sf, bool coherent); int dmar_load_root_entry_ptr(struct dmar_unit *unit); int dmar_inv_ctx_glob(struct dmar_unit *unit); int dmar_inv_iotlb_glob(struct dmar_unit *unit); int dmar_flush_write_bufs(struct dmar_unit *unit); int dmar_enable_translation(struct dmar_unit *unit); int dmar_disable_translation(struct dmar_unit *unit); bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); int dmar_fault_intr(void *arg); void dmar_enable_fault_intr(struct dmar_unit *unit); void dmar_disable_fault_intr(struct dmar_unit *unit); int dmar_init_fault_log(struct dmar_unit *unit); void dmar_fini_fault_log(struct dmar_unit *unit); int dmar_qi_intr(void *arg); void dmar_enable_qi_intr(struct dmar_unit *unit); void dmar_disable_qi_intr(struct dmar_unit *unit); int dmar_init_qi(struct dmar_unit *unit); void dmar_fini_qi(struct dmar_unit *unit); void dmar_qi_invalidate_locked(struct dmar_ctx *ctx, dmar_gaddr_t start, dmar_gaddr_t size, struct dmar_qi_genseq *pseq); void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); vm_object_t ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr); void put_idmap_pgtbl(vm_object_t obj); int ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags); int ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size, int flags); void ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size); int ctx_alloc_pgtbl(struct dmar_ctx *ctx); void ctx_free_pgtbl(struct dmar_ctx *ctx); struct dmar_ctx *dmar_instantiate_ctx(struct dmar_unit *dmar, device_t dev, bool rmrr); struct dmar_ctx *dmar_get_ctx(struct dmar_unit *dmar, device_t dev, int bus, int slot, int func, bool id_mapped, bool rmrr_init); void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); void dmar_free_ctx(struct dmar_ctx *ctx); struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, int bus, int slot, int func); void dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free); void dmar_ctx_unload(struct dmar_ctx *ctx, struct dmar_map_entries_tailq *entries, bool cansleep); void dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free); int dmar_init_busdma(struct dmar_unit *unit); void dmar_fini_busdma(struct dmar_unit *unit); void dmar_gas_init_ctx(struct dmar_ctx *ctx); void dmar_gas_fini_ctx(struct dmar_ctx *ctx); struct dmar_map_entry *dmar_gas_alloc_entry(struct dmar_ctx *ctx, u_int flags); void dmar_gas_free_entry(struct dmar_ctx *ctx, struct dmar_map_entry *entry); void dmar_gas_free_space(struct dmar_ctx *ctx, struct dmar_map_entry *entry); int dmar_gas_map(struct dmar_ctx *ctx, const struct bus_dma_tag_common *common, dmar_gaddr_t size, u_int eflags, u_int flags, vm_page_t *ma, struct dmar_map_entry **res); void dmar_gas_free_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry); int dmar_gas_map_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry, u_int eflags, u_int flags, vm_page_t *ma); int dmar_gas_reserve_region(struct dmar_ctx *ctx, dmar_gaddr_t start, dmar_gaddr_t end); void dmar_ctx_parse_rmrr(struct dmar_ctx *ctx, device_t dev, struct dmar_map_entries_tailq *rmrr_entries); int dmar_instantiate_rmrr_ctxs(struct dmar_unit *dmar); void dmar_quirks_post_ident(struct dmar_unit *dmar); void dmar_quirks_pre_use(struct dmar_unit *dmar); #define DMAR_GM_CANWAIT 0x0001 #define DMAR_GM_CANSPLIT 0x0002 #define DMAR_PGF_WAITOK 0x0001 #define DMAR_PGF_ZERO 0x0002 #define DMAR_PGF_ALLOC 0x0004 #define DMAR_PGF_NOALLOC 0x0008 #define DMAR_PGF_OBJL 0x0010 extern dmar_haddr_t dmar_high; extern int haw; extern int dmar_tbl_pagecnt; extern int dmar_match_verbose; extern int dmar_check_free; static inline uint32_t dmar_read4(const struct dmar_unit *unit, int reg) { return (bus_read_4(unit->regs, reg)); } static inline uint64_t dmar_read8(const struct dmar_unit *unit, int reg) { #ifdef __i386__ uint32_t high, low; low = bus_read_4(unit->regs, reg); high = bus_read_4(unit->regs, reg + 4); return (low | ((uint64_t)high << 32)); #else return (bus_read_8(unit->regs, reg)); #endif } static inline void dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) { KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == (unit->hw_gcmd & DMAR_GCMD_TE), ("dmar%d clearing TE 0x%08x 0x%08x", unit->unit, unit->hw_gcmd, val)); bus_write_4(unit->regs, reg, val); } static inline void dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) { KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); #ifdef __i386__ uint32_t high, low; low = val; high = val >> 32; bus_write_4(unit->regs, reg, low); bus_write_4(unit->regs, reg + 4, high); #else bus_write_8(unit->regs, reg, val); #endif } /* * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes * are issued in the correct order. For store, the lower word, * containing the P or R and W bits, is set only after the high word * is written. For clear, the P bit is cleared first, then the high * word is cleared. */ static inline void dmar_pte_store(volatile uint64_t *dst, uint64_t val) { KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", dst, (uintmax_t)*dst, (uintmax_t)val)); #ifdef __i386__ volatile uint32_t *p; uint32_t hi, lo; hi = val >> 32; lo = val; p = (volatile uint32_t *)dst; *(p + 1) = hi; *p = lo; #else *dst = val; #endif } static inline void dmar_pte_clear(volatile uint64_t *dst) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; *(p + 1) = 0; #else *dst = 0; #endif } static inline bool dmar_test_boundary(dmar_gaddr_t start, dmar_gaddr_t size, dmar_gaddr_t boundary) { if (boundary == 0) return (true); return (start + size <= ((start + boundary) & ~(boundary - 1))); } #ifdef INVARIANTS #define TD_PREP_PINNED_ASSERT \ int old_td_pinned; \ old_td_pinned = curthread->td_pinned #define TD_PINNED_ASSERT \ KASSERT(curthread->td_pinned == old_td_pinned, \ ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ old_td_pinned, __FILE__, __LINE__)) #else #define TD_PREP_PINNED_ASSERT #define TD_PINNED_ASSERT #endif #endif