/* * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. * * $Id: vm_pageout.c,v 1.96 1997/02/27 15:38:41 bde Exp $ */ /* * The proverbial page-out daemon. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * System initialization */ /* the kernel process "vm_pageout"*/ static void vm_pageout __P((void)); static int vm_pageout_clean __P((vm_page_t, int)); static int vm_pageout_scan __P((void)); static int vm_pageout_free_page_calc __P((vm_size_t count)); struct proc *pageproc; static struct kproc_desc page_kp = { "pagedaemon", vm_pageout, &pageproc }; SYSINIT_KT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp) #if !defined(NO_SWAPPING) /* the kernel process "vm_daemon"*/ static void vm_daemon __P((void)); static struct proc *vmproc; static struct kproc_desc vm_kp = { "vmdaemon", vm_daemon, &vmproc }; SYSINIT_KT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp) #endif int vm_pages_needed; /* Event on which pageout daemon sleeps */ int vm_pageout_pages_needed; /* flag saying that the pageout daemon needs pages */ extern int npendingio; #if !defined(NO_SWAPPING) static int vm_pageout_req_swapout; /* XXX */ static int vm_daemon_needed; #endif extern int nswiodone; extern int vm_swap_size; extern int vfs_update_wakeup; int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0; int vm_pageout_full_stats_interval = 0; int vm_pageout_stats_free_max=0, vm_pageout_algorithm_lru=0; #if defined(NO_SWAPPING) int vm_swapping_enabled=0; #else int vm_swapping_enabled=1; #endif SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm, CTLFLAG_RW, &vm_pageout_algorithm_lru, 0, ""); SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max, CTLFLAG_RW, &vm_pageout_stats_max, 0, ""); SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval, CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, ""); SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval, CTLFLAG_RW, &vm_pageout_stats_interval, 0, ""); SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max, CTLFLAG_RW, &vm_pageout_stats_free_max, 0, ""); #if defined(NO_SWAPPING) SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swapping_enabled, CTLFLAG_RD, &vm_swapping_enabled, 0, ""); #else SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swapping_enabled, CTLFLAG_RW, &vm_swapping_enabled, 0, ""); #endif #define MAXLAUNDER (cnt.v_page_count > 1800 ? 32 : 16) #define VM_PAGEOUT_PAGE_COUNT 16 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT; int vm_page_max_wired; /* XXX max # of wired pages system-wide */ #if !defined(NO_SWAPPING) typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int)); static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t)); static freeer_fcn_t vm_pageout_object_deactivate_pages; static void vm_req_vmdaemon __P((void)); #endif static void vm_pageout_page_stats(void); /* * vm_pageout_clean: * * Clean the page and remove it from the laundry. * * We set the busy bit to cause potential page faults on this page to * block. * * And we set pageout-in-progress to keep the object from disappearing * during pageout. This guarantees that the page won't move from the * inactive queue. (However, any other page on the inactive queue may * move!) */ static int vm_pageout_clean(m, sync) vm_page_t m; int sync; { register vm_object_t object; vm_page_t mc[2*vm_pageout_page_count]; int pageout_count; int i, forward_okay, backward_okay, page_base; vm_pindex_t pindex = m->pindex; object = m->object; /* * If not OBJT_SWAP, additional memory may be needed to do the pageout. * Try to avoid the deadlock. */ if ((sync != VM_PAGEOUT_FORCE) && (object->type == OBJT_DEFAULT) && ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)) return 0; /* * Don't mess with the page if it's busy. */ if ((!sync && m->hold_count != 0) || ((m->busy != 0) || (m->flags & PG_BUSY))) return 0; /* * Try collapsing before it's too late. */ if (!sync && object->backing_object) { vm_object_collapse(object); } mc[vm_pageout_page_count] = m; pageout_count = 1; page_base = vm_pageout_page_count; forward_okay = TRUE; if (pindex != 0) backward_okay = TRUE; else backward_okay = FALSE; /* * Scan object for clusterable pages. * * We can cluster ONLY if: ->> the page is NOT * clean, wired, busy, held, or mapped into a * buffer, and one of the following: * 1) The page is inactive, or a seldom used * active page. * -or- * 2) we force the issue. */ for (i = 1; (i < vm_pageout_page_count) && (forward_okay || backward_okay); i++) { vm_page_t p; /* * See if forward page is clusterable. */ if (forward_okay) { /* * Stop forward scan at end of object. */ if ((pindex + i) > object->size) { forward_okay = FALSE; goto do_backward; } p = vm_page_lookup(object, pindex + i); if (p) { if (((p->queue - p->pc) == PQ_CACHE) || (p->flags & PG_BUSY) || p->busy) { forward_okay = FALSE; goto do_backward; } vm_page_test_dirty(p); if ((p->dirty & p->valid) != 0 && ((p->queue == PQ_INACTIVE) || (sync == VM_PAGEOUT_FORCE)) && (p->wire_count == 0) && (p->hold_count == 0)) { mc[vm_pageout_page_count + i] = p; pageout_count++; if (pageout_count == vm_pageout_page_count) break; } else { forward_okay = FALSE; } } else { forward_okay = FALSE; } } do_backward: /* * See if backward page is clusterable. */ if (backward_okay) { /* * Stop backward scan at beginning of object. */ if ((pindex - i) == 0) { backward_okay = FALSE; } p = vm_page_lookup(object, pindex - i); if (p) { if (((p->queue - p->pc) == PQ_CACHE) || (p->flags & PG_BUSY) || p->busy) { backward_okay = FALSE; continue; } vm_page_test_dirty(p); if ((p->dirty & p->valid) != 0 && ((p->queue == PQ_INACTIVE) || (sync == VM_PAGEOUT_FORCE)) && (p->wire_count == 0) && (p->hold_count == 0)) { mc[vm_pageout_page_count - i] = p; pageout_count++; page_base--; if (pageout_count == vm_pageout_page_count) break; } else { backward_okay = FALSE; } } else { backward_okay = FALSE; } } } /* * we allow reads during pageouts... */ for (i = page_base; i < (page_base + pageout_count); i++) { mc[i]->flags |= PG_BUSY; vm_page_protect(mc[i], VM_PROT_READ); } return vm_pageout_flush(&mc[page_base], pageout_count, sync); } int vm_pageout_flush(mc, count, sync) vm_page_t *mc; int count; int sync; { register vm_object_t object; int pageout_status[count]; int anyok = 0; int i; object = mc[0]->object; object->paging_in_progress += count; vm_pager_put_pages(object, mc, count, ((sync || (object == kernel_object)) ? TRUE : FALSE), pageout_status); for (i = 0; i < count; i++) { vm_page_t mt = mc[i]; switch (pageout_status[i]) { case VM_PAGER_OK: ++anyok; break; case VM_PAGER_PEND: ++anyok; break; case VM_PAGER_BAD: /* * Page outside of range of object. Right now we * essentially lose the changes by pretending it * worked. */ pmap_clear_modify(VM_PAGE_TO_PHYS(mt)); mt->dirty = 0; break; case VM_PAGER_ERROR: case VM_PAGER_FAIL: /* * If page couldn't be paged out, then reactivate the * page so it doesn't clog the inactive list. (We * will try paging out it again later). */ if (mt->queue == PQ_INACTIVE) vm_page_activate(mt); break; case VM_PAGER_AGAIN: break; } /* * If the operation is still going, leave the page busy to * block all other accesses. Also, leave the paging in * progress indicator set so that we don't attempt an object * collapse. */ if (pageout_status[i] != VM_PAGER_PEND) { vm_object_pip_wakeup(object); PAGE_WAKEUP(mt); } } return anyok; } #if !defined(NO_SWAPPING) /* * vm_pageout_object_deactivate_pages * * deactivate enough pages to satisfy the inactive target * requirements or if vm_page_proc_limit is set, then * deactivate all of the pages in the object and its * backing_objects. * * The object and map must be locked. */ static void vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only) vm_map_t map; vm_object_t object; vm_pindex_t desired; int map_remove_only; { register vm_page_t p, next; int rcount; int remove_mode; int s; if (object->type == OBJT_DEVICE) return; while (object) { if (vm_map_pmap(map)->pm_stats.resident_count <= desired) return; if (object->paging_in_progress) return; remove_mode = map_remove_only; if (object->shadow_count > 1) remove_mode = 1; /* * scan the objects entire memory queue */ rcount = object->resident_page_count; p = TAILQ_FIRST(&object->memq); while (p && (rcount-- > 0)) { int refcount; if (vm_map_pmap(map)->pm_stats.resident_count <= desired) return; next = TAILQ_NEXT(p, listq); cnt.v_pdpages++; if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 || (p->flags & PG_BUSY) || !pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) { p = next; continue; } refcount = pmap_ts_referenced(VM_PAGE_TO_PHYS(p)); if (refcount) { p->flags |= PG_REFERENCED; } else if (p->flags & PG_REFERENCED) { refcount = 1; } if ((p->queue != PQ_ACTIVE) && (p->flags & PG_REFERENCED)) { vm_page_activate(p); p->act_count += refcount; p->flags &= ~PG_REFERENCED; } else if (p->queue == PQ_ACTIVE) { if ((p->flags & PG_REFERENCED) == 0) { p->act_count -= min(p->act_count, ACT_DECLINE); if (!remove_mode && (vm_pageout_algorithm_lru || (p->act_count == 0))) { vm_page_protect(p, VM_PROT_NONE); vm_page_deactivate(p); } else { s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, p, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq); splx(s); } } else { p->flags &= ~PG_REFERENCED; if (p->act_count < (ACT_MAX - ACT_ADVANCE)) p->act_count += ACT_ADVANCE; s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, p, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq); splx(s); } } else if (p->queue == PQ_INACTIVE) { vm_page_protect(p, VM_PROT_NONE); } p = next; } object = object->backing_object; } return; } /* * deactivate some number of pages in a map, try to do it fairly, but * that is really hard to do. */ static void vm_pageout_map_deactivate_pages(map, desired) vm_map_t map; vm_pindex_t desired; { vm_map_entry_t tmpe; vm_object_t obj, bigobj; vm_map_reference(map); if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) { vm_map_deallocate(map); return; } bigobj = NULL; /* * first, search out the biggest object, and try to free pages from * that. */ tmpe = map->header.next; while (tmpe != &map->header) { if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { obj = tmpe->object.vm_object; if ((obj != NULL) && (obj->shadow_count <= 1) && ((bigobj == NULL) || (bigobj->resident_page_count < obj->resident_page_count))) { bigobj = obj; } } tmpe = tmpe->next; } if (bigobj) vm_pageout_object_deactivate_pages(map, bigobj, desired, 0); /* * Next, hunt around for other pages to deactivate. We actually * do this search sort of wrong -- .text first is not the best idea. */ tmpe = map->header.next; while (tmpe != &map->header) { if (vm_map_pmap(map)->pm_stats.resident_count <= desired) break; if ((tmpe->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { obj = tmpe->object.vm_object; if (obj) vm_pageout_object_deactivate_pages(map, obj, desired, 0); } tmpe = tmpe->next; }; /* * Remove all mappings if a process is swapped out, this will free page * table pages. */ if (desired == 0) pmap_remove(vm_map_pmap(map), VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); vm_map_unlock(map); vm_map_deallocate(map); return; } #endif /* * vm_pageout_scan does the dirty work for the pageout daemon. */ static int vm_pageout_scan() { vm_page_t m, next; int page_shortage, addl_page_shortage, maxscan, maxlaunder, pcount; int pages_freed; struct proc *p, *bigproc; vm_offset_t size, bigsize; vm_object_t object; int force_wakeup = 0; int vnodes_skipped = 0; int s; /* * Start scanning the inactive queue for pages we can free. We keep * scanning until we have enough free pages or we have scanned through * the entire queue. If we encounter dirty pages, we start cleaning * them. */ pages_freed = 0; addl_page_shortage = 0; maxlaunder = (cnt.v_inactive_target > MAXLAUNDER) ? MAXLAUNDER : cnt.v_inactive_target; rescan0: maxscan = cnt.v_inactive_count; for( m = TAILQ_FIRST(&vm_page_queue_inactive); (m != NULL) && (maxscan-- > 0) && ((cnt.v_cache_count + cnt.v_free_count) < (cnt.v_cache_min + cnt.v_free_target)); m = next) { cnt.v_pdpages++; if (m->queue != PQ_INACTIVE) { goto rescan0; } next = TAILQ_NEXT(m, pageq); if (m->hold_count) { s = splvm(); TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq); splx(s); addl_page_shortage++; continue; } /* * Dont mess with busy pages, keep in the front of the * queue, most likely are being paged out. */ if (m->busy || (m->flags & PG_BUSY)) { addl_page_shortage++; continue; } if (m->object->ref_count == 0) { m->flags &= ~PG_REFERENCED; pmap_clear_reference(VM_PAGE_TO_PHYS(m)); } else if (((m->flags & PG_REFERENCED) == 0) && pmap_ts_referenced(VM_PAGE_TO_PHYS(m))) { vm_page_activate(m); continue; } if ((m->flags & PG_REFERENCED) != 0) { m->flags &= ~PG_REFERENCED; pmap_clear_reference(VM_PAGE_TO_PHYS(m)); vm_page_activate(m); continue; } if (m->dirty == 0) { vm_page_test_dirty(m); } else if (m->dirty != 0) { m->dirty = VM_PAGE_BITS_ALL; } if (m->valid == 0) { vm_page_protect(m, VM_PROT_NONE); vm_page_free(m); cnt.v_dfree++; ++pages_freed; } else if (m->dirty == 0) { vm_page_cache(m); ++pages_freed; } else if (maxlaunder > 0) { int written; struct vnode *vp = NULL; object = m->object; if (object->flags & OBJ_DEAD) { s = splvm(); TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq); splx(s); continue; } if (object->type == OBJT_VNODE) { vp = object->handle; if (VOP_ISLOCKED(vp) || vget(vp, LK_EXCLUSIVE, curproc)) { if ((m->queue == PQ_INACTIVE) && (m->hold_count == 0) && (m->busy == 0) && (m->flags & PG_BUSY) == 0) { s = splvm(); TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq); splx(s); } if (object->flags & OBJ_MIGHTBEDIRTY) ++vnodes_skipped; continue; } /* * The page might have been moved to another queue * during potential blocking in vget() above. */ if (m->queue != PQ_INACTIVE) { if (object->flags & OBJ_MIGHTBEDIRTY) ++vnodes_skipped; vput(vp); continue; } /* * The page may have been busied during the blocking in * vput(); We don't move the page back onto the end of * the queue so that statistics are more correct if we don't. */ if (m->busy || (m->flags & PG_BUSY)) { vput(vp); continue; } /* * If the page has become held, then skip it */ if (m->hold_count) { s = splvm(); TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq); splx(s); if (object->flags & OBJ_MIGHTBEDIRTY) ++vnodes_skipped; vput(vp); continue; } } /* * If a page is dirty, then it is either being washed * (but not yet cleaned) or it is still in the * laundry. If it is still in the laundry, then we * start the cleaning operation. */ written = vm_pageout_clean(m, 0); if (vp) vput(vp); maxlaunder -= written; } } /* * Compute the page shortage. If we are still very low on memory be * sure that we will move a minimal amount of pages from active to * inactive. */ page_shortage = (cnt.v_inactive_target + cnt.v_cache_min) - (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count); if (page_shortage <= 0) { if (pages_freed == 0) { page_shortage = cnt.v_free_min - cnt.v_free_count; } else { page_shortage = 1; } } if (addl_page_shortage) { if (page_shortage < 0) page_shortage = 0; page_shortage += addl_page_shortage; } pcount = cnt.v_active_count; m = TAILQ_FIRST(&vm_page_queue_active); while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) { int refcount; if (m->queue != PQ_ACTIVE) { break; } next = TAILQ_NEXT(m, pageq); /* * Don't deactivate pages that are busy. */ if ((m->busy != 0) || (m->flags & PG_BUSY) || (m->hold_count != 0)) { s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); splx(s); m = next; continue; } /* * The count for pagedaemon pages is done after checking the * page for eligbility... */ cnt.v_pdpages++; refcount = 0; if (m->object->ref_count != 0) { if (m->flags & PG_REFERENCED) { refcount += 1; } refcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m)); if (refcount) { m->act_count += ACT_ADVANCE + refcount; if (m->act_count > ACT_MAX) m->act_count = ACT_MAX; } } m->flags &= ~PG_REFERENCED; if (refcount && (m->object->ref_count != 0)) { s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); splx(s); } else { m->act_count -= min(m->act_count, ACT_DECLINE); if (vm_pageout_algorithm_lru || (m->object->ref_count == 0) || (m->act_count == 0)) { --page_shortage; if (m->object->ref_count == 0) { vm_page_protect(m, VM_PROT_NONE); if (m->dirty == 0) vm_page_cache(m); else vm_page_deactivate(m); } else { vm_page_deactivate(m); } } else { s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); splx(s); } } m = next; } s = splvm(); /* * We try to maintain some *really* free pages, this allows interrupt * code to be guaranteed space. */ while (cnt.v_free_count < cnt.v_free_reserved) { static int cache_rover = 0; m = vm_page_list_find(PQ_CACHE, cache_rover); if (!m) break; cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK; vm_page_free(m); cnt.v_dfree++; } splx(s); /* * If we didn't get enough free pages, and we have skipped a vnode * in a writeable object, wakeup the sync daemon. And kick swapout * if we did not get enough free pages. */ if ((cnt.v_cache_count + cnt.v_free_count) < (cnt.v_free_target + cnt.v_cache_min) ) { if (vnodes_skipped && (cnt.v_cache_count + cnt.v_free_count) < cnt.v_free_min) { if (!vfs_update_wakeup) { vfs_update_wakeup = 1; wakeup(&vfs_update_wakeup); } } #if !defined(NO_SWAPPING) if (vm_swapping_enabled && (cnt.v_free_count + cnt.v_cache_count < cnt.v_free_target)) { vm_req_vmdaemon(); vm_pageout_req_swapout = 1; } #endif } /* * make sure that we have swap space -- if we are low on memory and * swap -- then kill the biggest process. */ if ((vm_swap_size == 0 || swap_pager_full) && ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) { bigproc = NULL; bigsize = 0; for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { /* * if this is a system process, skip it */ if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) || ((p->p_pid < 48) && (vm_swap_size != 0))) { continue; } /* * if the process is in a non-running type state, * don't touch it. */ if (p->p_stat != SRUN && p->p_stat != SSLEEP) { continue; } /* * get the process size */ size = p->p_vmspace->vm_pmap.pm_stats.resident_count; /* * if the this process is bigger than the biggest one * remember it. */ if (size > bigsize) { bigproc = p; bigsize = size; } } if (bigproc != NULL) { killproc(bigproc, "out of swap space"); bigproc->p_estcpu = 0; bigproc->p_nice = PRIO_MIN; resetpriority(bigproc); wakeup(&cnt.v_free_count); } } return force_wakeup; } /* * This routine tries to maintain the pseudo LRU active queue, * so that during long periods of time where there is no paging, * that some statistic accumlation still occurs. This code * helps the situation where paging just starts to occur. */ static void vm_pageout_page_stats() { int s; vm_page_t m,next; int pcount,tpcount; /* Number of pages to check */ static int fullintervalcount = 0; pcount = cnt.v_active_count; fullintervalcount += vm_pageout_stats_interval; if (fullintervalcount < vm_pageout_full_stats_interval) { tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count; if (pcount > tpcount) pcount = tpcount; } m = TAILQ_FIRST(&vm_page_queue_active); while ((m != NULL) && (pcount-- > 0)) { int refcount; if (m->queue != PQ_ACTIVE) { break; } next = TAILQ_NEXT(m, pageq); /* * Don't deactivate pages that are busy. */ if ((m->busy != 0) || (m->flags & PG_BUSY) || (m->hold_count != 0)) { s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); splx(s); m = next; continue; } refcount = 0; if (m->flags & PG_REFERENCED) { m->flags &= ~PG_REFERENCED; refcount += 1; } refcount += pmap_ts_referenced(VM_PAGE_TO_PHYS(m)); if (refcount) { m->act_count += ACT_ADVANCE + refcount; if (m->act_count > ACT_MAX) m->act_count = ACT_MAX; s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); splx(s); } else { if (m->act_count == 0) { vm_page_protect(m, VM_PROT_NONE); vm_page_deactivate(m); } else { m->act_count -= min(m->act_count, ACT_DECLINE); s = splvm(); TAILQ_REMOVE(&vm_page_queue_active, m, pageq); TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); splx(s); } } m = next; } } static int vm_pageout_free_page_calc(count) vm_size_t count; { if (count < cnt.v_page_count) return 0; /* * free_reserved needs to include enough for the largest swap pager * structures plus enough for any pv_entry structs when paging. */ if (cnt.v_page_count > 1024) cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200; else cnt.v_free_min = 4; cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE + cnt.v_interrupt_free_min; cnt.v_free_reserved = vm_pageout_page_count + cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE; cnt.v_free_min += cnt.v_free_reserved; return 1; } /* * vm_pageout is the high level pageout daemon. */ static void vm_pageout() { /* * Initialize some paging parameters. */ cnt.v_interrupt_free_min = 2; if (cnt.v_page_count < 2000) vm_pageout_page_count = 8; vm_pageout_free_page_calc(cnt.v_page_count); /* * free_reserved needs to include enough for the largest swap pager * structures plus enough for any pv_entry structs when paging. */ cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved; if (cnt.v_free_count > 1024) { cnt.v_cache_max = (cnt.v_free_count - 1024) / 2; cnt.v_cache_min = (cnt.v_free_count - 1024) / 8; cnt.v_inactive_target = 2*cnt.v_cache_min + 192; } else { cnt.v_cache_min = 0; cnt.v_cache_max = 0; cnt.v_inactive_target = cnt.v_free_count / 4; } /* XXX does not really belong here */ if (vm_page_max_wired == 0) vm_page_max_wired = cnt.v_free_count / 3; if (vm_pageout_stats_max == 0) vm_pageout_stats_max = cnt.v_free_target; /* * Set interval in seconds for stats scan. */ if (vm_pageout_stats_interval == 0) vm_pageout_stats_interval = 4; if (vm_pageout_full_stats_interval == 0) vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4; /* * Set maximum free per pass */ if (vm_pageout_stats_free_max == 0) vm_pageout_stats_free_max = 25; swap_pager_swap_init(); /* * The pageout daemon is never done, so loop forever. */ while (TRUE) { int inactive_target; int error; int s = splvm(); if (!vm_pages_needed || ((cnt.v_free_count + cnt.v_cache_count) > cnt.v_free_min)) { vm_pages_needed = 0; error = tsleep(&vm_pages_needed, PVM, "psleep", vm_pageout_stats_interval * hz); if (error && !vm_pages_needed) { splx(s); vm_pageout_page_stats(); continue; } } else if (vm_pages_needed) { tsleep(&vm_pages_needed, PVM, "psleep", hz/10); } inactive_target = (cnt.v_page_count - cnt.v_wire_count) / 4; if (inactive_target < 2*cnt.v_free_min) inactive_target = 2*cnt.v_free_min; cnt.v_inactive_target = inactive_target; if (vm_pages_needed) cnt.v_pdwakeups++; vm_pages_needed = 0; splx(s); vm_pager_sync(); vm_pageout_scan(); vm_pager_sync(); wakeup(&cnt.v_free_count); } } void pagedaemon_wakeup() { if (!vm_pages_needed && curproc != pageproc) { vm_pages_needed++; wakeup(&vm_pages_needed); } } #if !defined(NO_SWAPPING) static void vm_req_vmdaemon() { static int lastrun = 0; if ((ticks > (lastrun + hz)) || (ticks < lastrun)) { wakeup(&vm_daemon_needed); lastrun = ticks; } } static void vm_daemon() { vm_object_t object; struct proc *p; while (TRUE) { tsleep(&vm_daemon_needed, PUSER, "psleep", 0); if (vm_pageout_req_swapout) { swapout_procs(); vm_pageout_req_swapout = 0; } /* * scan the processes for exceeding their rlimits or if * process is swapped out -- deactivate pages */ for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) { quad_t limit; vm_offset_t size; /* * if this is a system process or if we have already * looked at this process, skip it. */ if (p->p_flag & (P_SYSTEM | P_WEXIT)) { continue; } /* * if the process is in a non-running type state, * don't touch it. */ if (p->p_stat != SRUN && p->p_stat != SSLEEP) { continue; } /* * get a limit */ limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur, p->p_rlimit[RLIMIT_RSS].rlim_max); /* * let processes that are swapped out really be * swapped out set the limit to nothing (will force a * swap-out.) */ if ((p->p_flag & P_INMEM) == 0) limit = 0; /* XXX */ size = p->p_vmspace->vm_pmap.pm_stats.resident_count * PAGE_SIZE; if (limit >= 0 && size >= limit) { vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map, (vm_pindex_t)(limit >> PAGE_SHIFT) ); } } /* * we remove cached objects that have no RSS... */ restart: object = TAILQ_FIRST(&vm_object_cached_list); while (object) { /* * if there are no resident pages -- get rid of the object */ if (object->resident_page_count == 0) { vm_object_reference(object); pager_cache(object, FALSE); goto restart; } object = TAILQ_NEXT(object, cached_list); } } } #endif