/*- * Copyright (c) 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)proc.h 8.15 (Berkeley) 5/19/95 * $FreeBSD$ */ #ifndef _SYS_PROC_H_ #define _SYS_PROC_H_ #include /* For struct callout. */ #include /* For struct klist. */ #include #include #include #include /* XXX */ #include #include #ifndef _KERNEL #include /* For structs itimerval, timeval. */ #else #include #endif #include #include /* Machine-dependent proc substruct. */ #include /* * One structure allocated per session. * * List of locks * (m) locked by s_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct session { int s_count; /* (m) Ref cnt; pgrps in session. */ struct proc *s_leader; /* (m + e) Session leader. */ struct vnode *s_ttyvp; /* (m) Vnode of controlling terminal. */ struct tty *s_ttyp; /* (m) Controlling terminal. */ pid_t s_sid; /* (c) Session ID. */ /* (m) Setlogin() name: */ char s_login[roundup(MAXLOGNAME, sizeof(long))]; struct mtx s_mtx; /* Mutex to protect members */ }; /* * One structure allocated per process group. * * List of locks * (m) locked by pg_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct pgrp { LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */ LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */ struct session *pg_session; /* (c) Pointer to session. */ struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */ pid_t pg_id; /* (c) Pgrp id. */ int pg_jobc; /* (m) # procs qualifying pgrp for job control */ struct mtx pg_mtx; /* Mutex to protect members */ }; struct procsig { sigset_t ps_sigignore; /* Signals being ignored. */ sigset_t ps_sigcatch; /* Signals being caught by user. */ int ps_flag; struct sigacts *ps_sigacts; /* Signal actions, state. */ int ps_refcnt; }; #define PS_NOCLDWAIT 0x0001 /* No zombies if child dies */ #define PS_NOCLDSTOP 0x0002 /* No SIGCHLD when children stop. */ #define PS_CLDSIGIGN 0x0004 /* The SIGCHLD handler is SIG_IGN. */ /* * pargs, used to hold a copy of the command line, if it had a sane length. */ struct pargs { u_int ar_ref; /* Reference count. */ u_int ar_length; /* Length. */ u_char ar_args[0]; /* Arguments. */ }; /*- * Description of a process. * * This structure contains the information needed to manage a thread of * control, known in UN*X as a process; it has references to substructures * containing descriptions of things that the process uses, but may share * with related processes. The process structure and the substructures * are always addressable except for those marked "(CPU)" below, * which might be addressable only on a processor on which the process * is running. * * Below is a key of locks used to protect each member of struct proc. The * lock is indicated by a reference to a specific character in parens in the * associated comment. * * - not yet protected * a - only touched by curproc or parent during fork/wait * b - created at fork, never changes * (exception aiods switch vmspaces, but they are also * marked 'P_SYSTEM' so hopefully it will be left alone) * c - locked by proc mtx * d - locked by allproc_lock lock * e - locked by proctree_lock lock * f - session mtx * g - process group mtx * h - callout_lock mtx * i - by curproc or the master session mtx * j - locked by sched_lock mtx * k - only accessed by curthread * l - the attaching proc or attaching proc parent * m - Giant * n - not locked, lazy * o - ktrace lock * p - select lock (sellock) * * If the locking key specifies two identifiers (for example, p_pptr) then * either lock is sufficient for read access, but both locks must be held * for write access. */ struct ithd; struct nlminfo; struct trapframe; /* * Here we define the four structures used for process information. * * The first is the thread. It might be though of as a "Kernel * Schedulable Entity Context". * This structure contains all the information as to where a thread of * execution is now, or was when it was suspended, why it was suspended, * and anything else that will be needed to restart it when it is * rescheduled. Always associated with a KSE when running, but can be * reassigned to an equivalent KSE when being restarted for * load balancing. Each of these is associated with a kernel stack * and a pcb. * * It is important to remember that a particular thread structure only * exists as long as the system call or kernel entrance (e.g. by pagefault) * which it is currently executing. It should threfore NEVER be referenced * by pointers in long lived structures that live longer than a single * request. If several threads complete their work at the same time, * they will all rewind their stacks to the uer boundary, report their * completion state, and all but one will be freed. That last one will * be kept to provide a kernel stack and pcb for the NEXT syscall or kernel * entrance. (basically to save freeing and then re-allocating it) A process * might keep a cache of threads available to allow it to quickly * get one when it needs a new one. There would probably also be a system * cache of free threads. */ struct thread; /* * The second structure is the Kernel Schedulable Entity. (KSE) * As long as this is scheduled, it will continue to run any threads that * are assigned to it or the KSEGRP (see later) until either it runs out * of runnable threads or CPU. * It runs on one CPU and is assigned a quantum of time. When a thread is * blocked, The KSE continues to run and will search for another thread * in a runnable state amongst those it has. It May decide to return to user * mode with a new 'empty' thread if there are no runnable threads. * threads are associated with a KSE for cache reasons, but a sheduled KSE with * no runnable thread will try take a thread from a sibling KSE before * surrendering its quantum. In some schemes it gets it's quantum from the KSEG * and contributes to draining that quantum, along withthe other KSEs in * the group. (undecided) */ struct kse; /* * The KSEGRP is allocated resources across a number of CPUs. * (Including a number of CPUxQUANTA. It parcels these QUANTA up among * Its KSEs, each of which should be running in a different CPU. * Priority and total available sheduled quanta are properties of a KSEGRP. * Multiple KSEGRPs in a single process compete against each other * for total quanta in the same way that a forked child competes against * it's parent process. */ struct ksegrp; /* * A process is the owner of all system resources allocated to a task * except CPU quanta. * All KSEGs under one process see, and have the same access to, these * resources (e.g. files, memory, sockets, permissions kqueues). * A process may compete for CPU cycles on the same basis as a * forked process cluster by spawning several KSEGRPs. */ struct proc; /*************** * In pictures: With a single run queue used by all processors: RUNQ: --->KSE---KSE--... SLEEPQ:[]---THREAD---THREAD---THREAD | / []---THREAD KSEG---THREAD--THREAD--THREAD [] []---THREAD---THREAD (processors run THREADs from the KSEG until they are exhausted or the KSEG exhausts its quantum) With PER-CPU run queues: KSEs on the separate run queues directly They would be given priorities calculated from the KSEG. * *****************/ /* * Kernel runnable context (thread). * This is what is put to sleep and reactivated. * The first KSE available in the correct group will run this thread. * If several are available, use the one on the same CPU as last time. */ struct thread { struct proc *td_proc; /* Associated process. */ struct ksegrp *td_ksegrp; /* Associated KSEG. */ struct kse *td_last_kse; /* Where it wants to be if possible. */ struct kse *td_kse; /* Current KSE if running. */ TAILQ_ENTRY(thread) td_plist; /* All threads in this proc */ TAILQ_ENTRY(thread) td_kglist; /* All threads in this ksegrp */ /* The two queues below should someday be merged */ TAILQ_ENTRY(thread) td_slpq; /* (j) Sleep queue. XXXKSE */ TAILQ_ENTRY(thread) td_blkq; /* (j) Mutex queue. XXXKSE */ TAILQ_ENTRY(thread) td_runq; /* (j) Run queue(s). XXXKSE */ TAILQ_HEAD(, selinfo) td_selq; /* (p) List of selinfos. */ #define td_startzero td_flags int td_flags; /* (j) TDF_* flags. */ int td_dupfd; /* (k) Ret value from fdopen. XXX */ void *td_wchan; /* (j) Sleep address. */ const char *td_wmesg; /* (j) Reason for sleep. */ u_char td_lastcpu; /* (j) Last cpu we were on. */ u_char td_inktr; /* (k) Currently handling a KTR. */ u_char td_inktrace; /* (k) Currently handling a KTRACE. */ short td_locks; /* (k) DEBUG: lockmgr count of locks */ struct mtx *td_blocked; /* (j) Mutex process is blocked on. */ struct ithd *td_ithd; /* (b) For interrupt threads only. */ const char *td_mtxname; /* (j) Name of mutex blocked on. */ LIST_HEAD(, mtx) td_contested; /* (j) Contested locks. */ struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */ int td_intr_nesting_level; /* (k) Interrupt recursion. */ #define td_endzero td_md #define td_startcopy td_endzero /* XXXKSE p_md is in the "on your own" section in old struct proc */ struct mdthread td_md; /* (k) Any machine-dependent fields. */ register_t td_retval[2]; /* (k) Syscall aux returns. */ u_char td_base_pri; /* (j) Thread base kernel priority. */ u_char td_priority; /* (j) Thread active priority. */ #define td_endcopy td_pcb struct ucred *td_ucred; /* (k) Reference to credentials. */ struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */ struct callout td_slpcallout; /* (h) Callout for sleep. */ struct trapframe *td_frame; /* (k) */ struct vm_object *td_kstack_obj;/* (a) Kstack object. */ vm_offset_t td_kstack; /* Kernel VA of kstack. */ u_int td_critnest; /* (k) Critical section nest level. */ }; /* * The schedulable entity that can be given a context to run. * A process may have several of these. Probably one per processor * but posibly a few more. In this universe they are grouped * with a KSEG that contains the priority and niceness * for the group. */ struct kse { struct proc *ke_proc; /* Associated process. */ struct ksegrp *ke_ksegrp; /* Associated KSEG. */ struct thread *ke_thread; /* Associated thread, if running. */ TAILQ_ENTRY(kse) ke_kglist; /* Queue of all KSEs in ke_ksegrp. */ TAILQ_ENTRY(kse) ke_kgrlist; /* Queue of all KSEs in this state. */ TAILQ_ENTRY(kse) ke_procq; /* (j) Run queue. */ TAILQ_HEAD(, thread) ke_runq; /* (td_runq) RUNNABLE bound to KSE. */ #define ke_startzero ke_flags int ke_flags; /* (j) KEF_* flags. */ /*u_int ke_estcpu; */ /* (j) Time averaged val of cpticks. */ int ke_cpticks; /* (j) Ticks of cpu time. */ fixpt_t ke_pctcpu; /* (j) %cpu during p_swtime. */ u_int64_t ke_uu; /* (j) Previous user time in usec. */ u_int64_t ke_su; /* (j) Previous system time in usec. */ u_int64_t ke_iu; /* (j) Previous intr time in usec. */ u_int64_t ke_uticks; /* (j) Statclock hits in user mode. */ u_int64_t ke_sticks; /* (j) Statclock hits in system mode. */ u_int64_t ke_iticks; /* (j) Statclock hits in intr. */ u_char ke_oncpu; /* (j) Which cpu we are on. */ u_int ke_slptime; /* (j) Time since last idle. */ char ke_rqindex; /* (j) Run queue index. */ #define ke_endzero ke_priority #define ke_startcopy ke_endzero u_char ke_priority; /* (j) Process priority. */ u_char ke_usrpri; /* (j) User pri from cpu & nice. */ #define ke_endcopy ke_end int ke_end; /* dummy entry */ }; /* * Kernel-scheduled entity group (KSEG). The scheduler considers each KSEG to * be an indivisible unit from a time-sharing perspective, though each KSEG may * contain multiple KSEs. */ struct ksegrp { struct proc *kg_proc; /* Process that contains this KSEG. */ TAILQ_ENTRY(ksegrp) kg_ksegrp; /* Queue of KSEGs in kg_proc. */ TAILQ_HEAD(, kse) kg_kseq; /* (ke_kglist) All KSEs. */ TAILQ_HEAD(, kse) kg_rq; /* (ke_kgrlist) Runnable KSEs. */ TAILQ_HEAD(, kse) kg_iq; /* (ke_kgrlist) Idle KSEs. */ TAILQ_HEAD(, thread) kg_threads;/* (td_kglist) All threads. */ TAILQ_HEAD(, thread) kg_runq; /* (td_runq) Unbound RUNNABLE threads */ TAILQ_HEAD(, thread) kg_slpq; /* (td_runq) NONRUNNABLE threads. */ #define kg_startzero kg_estcpu u_int kg_estcpu; /* Sum of the same field in KSEs. */ u_int kg_slptime; /* (j) How long completely blocked. */ #define kg_endzero kg_pri_class #define kg_startcopy kg_endzero u_char kg_pri_class; /* (j) Scheduling class. */ u_char kg_user_pri; /* (j) User pri from estcpu and nice. */ char kg_nice; /* (j?/k?) Process "nice" value. */ struct rtprio kg_rtprio; /* (j) Realtime priority. */ #define kg_endcopy kg_runnable int kg_runnable; /* Num runnable threads on queue. */ int kg_runq_kses; /* Num KSEs on runq. */ int kg_kses; /* Num KSEs in group. */ }; /* * The old fashionned process. May have multiple threads, KSEGRPs * and KSEs. Starts off with a single embedded KSEGRP, KSE and THREAD. */ struct proc { LIST_ENTRY(proc) p_list; /* (d) List of all processes. */ TAILQ_HEAD(, ksegrp) p_ksegrps; /* (kg_ksegrp) All KSEGs. */ TAILQ_HEAD(, thread) p_threads; /* (td_plist) Threads. (shortcut) */ struct ucred *p_ucred; /* (c) Process owner's identity. */ struct filedesc *p_fd; /* (b) Ptr to open files structure. */ /* Accumulated stats for all KSEs? */ struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */ struct plimit *p_limit; /* (m) Process limits. */ struct vm_object *p_upages_obj; /* (a) Upages object. */ struct procsig *p_procsig; /* (c) Signal actions, state (CPU). */ struct ksegrp p_ksegrp; struct kse p_kse; struct thread p_xxthread; /* * The following don't make too much sense.. * See the td_ or ke_ versions of the same flags */ int p_flag; /* (c) P_* flags. */ int p_sflag; /* (j) PS_* flags. */ int p_stat; /* (j) S* process status. */ pid_t p_pid; /* (b) Process identifier. */ LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */ LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */ struct proc *p_pptr; /* (c + e) Pointer to parent process. */ LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */ LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */ struct mtx p_mtx; /* (k) Lock for this struct. */ /* The following fields are all zeroed upon creation in fork. */ #define p_startzero p_oppid pid_t p_oppid; /* (c + e) Save ppid in ptrace. XXX */ struct vmspace *p_vmspace; /* (b) Address space. */ u_int p_swtime; /* (j) Time swapped in or out. */ struct itimerval p_realtimer; /* (h?/k?) Alarm timer. */ struct bintime p_runtime; /* (j) Real time. */ int p_traceflag; /* (o) Kernel trace points. */ struct vnode *p_tracep; /* (c + o) Trace to vnode. */ sigset_t p_siglist; /* (c) Sigs arrived, not delivered. */ struct vnode *p_textvp; /* (b) Vnode of executable. */ char p_lock; /* (c) Proclock (prevent swap) count. */ struct klist p_klist; /* (c) Knotes attached to this proc. */ struct sigiolst p_sigiolst; /* (c) List of sigio sources. */ int p_sigparent; /* (c) Signal to parent on exit. */ sigset_t p_oldsigmask; /* (c) Saved mask from pre sigpause. */ int p_sig; /* (n) For core dump/debugger XXX. */ u_long p_code; /* (n) For core dump/debugger XXX. */ u_int p_stops; /* (c) Stop event bitmask. */ u_int p_stype; /* (c) Stop event type. */ char p_step; /* (c) Process is stopped. */ u_char p_pfsflags; /* (c) Procfs flags. */ struct nlminfo *p_nlminfo; /* (?) Only used by/for lockd. */ void *p_aioinfo; /* (c) ASYNC I/O info. */ /* End area that is zeroed on creation. */ #define p_startcopy p_sigmask /* The following fields are all copied upon creation in fork. */ #define p_endzero p_startcopy sigset_t p_sigmask; /* (c) Current signal mask. */ stack_t p_sigstk; /* (c) Stack ptr and on-stack flag. */ int p_magic; /* (b) Magic number. */ char p_comm[MAXCOMLEN + 1]; /* (b) Process name. */ struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */ struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */ struct pargs *p_args; /* (c) Process arguments. */ /* End area that is copied on creation. */ #define p_endcopy p_xstat u_short p_xstat; /* (c) Exit status; also stop sig. */ struct mdproc p_md; /* (c) Any machine-dependent fields. */ struct callout p_itcallout; /* (h) Interval timer callout. */ struct user *p_uarea; /* (k) Kernel VA of u-area (CPU) */ u_short p_acflag; /* (c) Accounting flags. */ struct rusage *p_ru; /* (a) Exit information. XXX */ struct proc *p_peers; /* (c) */ struct proc *p_leader; /* (b) */ void *p_emuldata; /* (c) Emulator state data. */ }; #define p_rlimit p_limit->pl_rlimit #define p_sigacts p_procsig->ps_sigacts #define p_sigignore p_procsig->ps_sigignore #define p_sigcatch p_procsig->ps_sigcatch #define p_session p_pgrp->pg_session #define p_pgid p_pgrp->pg_id #define NOCPU 0xff /* For p_oncpu when we aren't on a CPU. */ /* Status values (p_stat). */ #define SIDL 1 /* Process being created by fork. */ #define SRUN 2 /* Currently runnable. */ #define SSLEEP 3 /* Sleeping on an address. */ #define SSTOP 4 /* Process debugging or suspension. */ #define SZOMB 5 /* Awaiting collection by parent. */ #define SWAIT 6 /* Waiting for interrupt. */ #define SMTX 7 /* Blocked on a mutex. */ /* These flags are kept in p_flag. */ #define P_ADVLOCK 0x00001 /* Process may hold a POSIX advisory lock. */ #define P_CONTROLT 0x00002 /* Has a controlling terminal. */ #define P_KTHREAD 0x00004 /* Kernel thread. (*)*/ #define P_NOLOAD 0x00008 /* Ignore during load avg calculations. */ #define P_PPWAIT 0x00010 /* Parent is waiting for child to exec/exit. */ #define P_SUGID 0x00100 /* Had set id privileges since last exec. */ #define P_SYSTEM 0x00200 /* System proc: no sigs, stats or swapping. */ #define P_TRACED 0x00800 /* Debugged process being traced. */ #define P_WAITED 0x01000 /* Debugging process has waited for child. */ #define P_WEXIT 0x02000 /* Working on exiting. */ #define P_EXEC 0x04000 /* Process called exec. */ #define P_KSES 0x08000 /* Process is using KSEs. */ #define P_CONTINUED 0x10000 /* Proc has continued from a stopped state. */ /* Should be moved to machine-dependent areas. */ #define P_UNUSED100000 0x100000 #define P_COWINPROGRESS 0x400000 /* Snapshot copy-on-write in progress. */ #define P_JAILED 0x1000000 /* Process is in jail. */ #define P_OLDMASK 0x2000000 /* Need to restore mask after suspend. */ #define P_ALTSTACK 0x4000000 /* Have alternate signal stack. */ #define P_INEXEC 0x8000000 /* Process is in execve(). */ /* These flags are kept in p_sflag and are protected with sched_lock. */ #define PS_INMEM 0x00001 /* Loaded into memory. */ #define PS_PROFIL 0x00004 /* Has started profiling. */ #define PS_ALRMPEND 0x00020 /* Pending SIGVTALRM needs to be posted. */ #define PS_PROFPEND 0x00040 /* Pending SIGPROF needs to be posted. */ #define PS_SWAPINREQ 0x00100 /* Swapin request due to wakeup. */ #define PS_SWAPPING 0x00200 /* Process is being swapped. */ #define PS_NEEDSIGCHK 0x02000 /* Process may need signal delivery. */ /* flags kept in td_flags */ #define TDF_ONRUNQ 0x00001 /* This KE is on a run queue */ #define TDF_SINTR 0x00008 /* Sleep is interruptible. */ #define TDF_TIMEOUT 0x00010 /* Timing out during sleep. */ #define TDF_SELECT 0x00040 /* Selecting; wakeup/waiting danger. */ #define TDF_CVWAITQ 0x00080 /* Thread is on a cv_waitq (not slpq). */ #define TDF_TIMOFAIL 0x01000 /* Timeout from sleep after we were awake. */ #define TDF_DEADLKTREAT 0x800000 /* Lock aquisition - deadlock treatment. */ /* flags kept in ke_flags */ #define KEF_ONRUNQ 0x00001 /* This KE is on a run queue */ #define KEF_OWEUPC 0x00002 /* Owe process an addupc() call at next ast. */ #define KEF_ASTPENDING 0x00400 /* KSE has a pending ast. */ #define KEF_NEEDRESCHED 0x00800 /* Process needs to yield. */ #define P_MAGIC 0xbeefface #ifdef _KERNEL #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_PARGS); MALLOC_DECLARE(M_PGRP); MALLOC_DECLARE(M_SESSION); MALLOC_DECLARE(M_SUBPROC); MALLOC_DECLARE(M_ZOMBIE); #endif #define FOREACH_PROC_IN_SYSTEM(p) \ LIST_FOREACH((p), &allproc, p_list) #define FOREACH_KSEGRP_IN_PROC(p, kg) \ TAILQ_FOREACH((kg), &(p)->p_ksegrps, kg_ksegrp) #define FOREACH_THREAD_IN_GROUP(kg, td) \ TAILQ_FOREACH((td), &(kg)->kg_threads, td_kglist) #define FOREACH_KSE_IN_GROUP(kg, ke) \ TAILQ_FOREACH((ke), &(kg)->kg_kseq, ke_kglist) #define FOREACH_THREAD_IN_PROC(p, td) \ TAILQ_FOREACH((td), &(p)->p_threads, td_plist) /* XXXKSE the lines below should probably only be used in 1:1 code */ #define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&p->p_threads) #define FIRST_KSEGRP_IN_PROC(p) TAILQ_FIRST(&p->p_ksegrps) #define FIRST_KSE_IN_KSEGRP(kg) TAILQ_FIRST(&kg->kg_kseq) #define FIRST_KSE_IN_PROC(p) FIRST_KSE_IN_KSEGRP(FIRST_KSEGRP_IN_PROC(p)) static __inline int sigonstack(size_t sp) { register struct thread *td = curthread; struct proc *p = td->td_proc; return ((p->p_flag & P_ALTSTACK) ? #if defined(COMPAT_43) || defined(COMPAT_SUNOS) ((p->p_sigstk.ss_size == 0) ? (p->p_sigstk.ss_flags & SS_ONSTACK) : ((sp - (size_t)p->p_sigstk.ss_sp) < p->p_sigstk.ss_size)) #else ((sp - (size_t)p->p_sigstk.ss_sp) < p->p_sigstk.ss_size) #endif : 0); } /* Handy macro to determine if p1 can mangle p2. */ #define PRISON_CHECK(p1, p2) \ ((p1)->p_prison == NULL || (p1)->p_prison == (p2)->p_prison) /* * We use process IDs <= PID_MAX; PID_MAX + 1 must also fit in a pid_t, * as it is used to represent "no process group". */ #define PID_MAX 99999 #define NO_PID 100000 #define SESS_LEADER(p) ((p)->p_session->s_leader == (p)) #define SESSHOLD(s) ((s)->s_count++) #define SESSRELE(s) { \ if (--(s)->s_count == 0) \ FREE(s, M_SESSION); \ } #define STOPEVENT(p, e, v) do { \ PROC_LOCK(p); \ _STOPEVENT((p), (e), (v)); \ PROC_UNLOCK(p); \ } while (0) #define _STOPEVENT(p, e, v) do { \ PROC_LOCK_ASSERT(p, MA_OWNED); \ if ((p)->p_stops & (e)) { \ stopevent((p), (e), (v)); \ } \ } while (0) /* Lock and unlock a process. */ #define PROC_LOCK(p) mtx_lock(&(p)->p_mtx) #define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx) #define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx) #define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx) #define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type)) /* Lock and unlock a process group. */ #define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx) #define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx) #define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx) #define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type)) #define PGRP_LOCK_PGSIGNAL(pg) \ do { \ if ((pg) != NULL) \ PGRP_LOCK(pg); \ } while (0); #define PGRP_UNLOCK_PGSIGNAL(pg) \ do { \ if ((pg) != NULL) \ PGRP_UNLOCK(pg); \ } while (0); /* Lock and unlock a session. */ #define SESS_LOCK(s) mtx_lock(&(s)->s_mtx) #define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx) #define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx) #define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type)) /* Hold process U-area in memory, normally for ptrace/procfs work. */ #define PHOLD(p) do { \ PROC_LOCK(p); \ _PHOLD(p); \ PROC_UNLOCK(p); \ } while (0) #define _PHOLD(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ if ((p)->p_lock++ == 0) \ faultin((p)); \ } while (0) #define PRELE(p) do { \ PROC_LOCK((p)); \ _PRELE((p)); \ PROC_UNLOCK((p)); \ } while (0) #define _PRELE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ (--(p)->p_lock); \ } while (0) /* Lock and unlock process arguments. */ #define PARGS_LOCK(p) mtx_lock(&pargs_ref_lock) #define PARGS_UNLOCK(p) mtx_unlock(&pargs_ref_lock) #define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash]) extern LIST_HEAD(pidhashhead, proc) *pidhashtbl; extern u_long pidhash; #define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash]) extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl; extern u_long pgrphash; extern struct sx allproc_lock; extern struct sx proctree_lock; extern struct mtx pargs_ref_lock; extern struct proc proc0; /* Process slot for swapper. */ extern struct thread thread0; /* Primary thread in proc0 */ extern int hogticks; /* Limit on kernel cpu hogs. */ extern int nprocs, maxproc; /* Current and max number of procs. */ extern int maxprocperuid; /* Max procs per uid. */ extern u_long ps_arg_cache_limit; extern int ps_argsopen; extern int ps_showallprocs; extern int sched_quantum; /* Scheduling quantum in ticks. */ LIST_HEAD(proclist, proc); TAILQ_HEAD(procqueue, proc); TAILQ_HEAD(threadqueue, thread); extern struct proclist allproc; /* List of all processes. */ extern struct proclist zombproc; /* List of zombie processes. */ extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */ extern struct proc *updateproc; /* Process slot for syncer (sic). */ extern uma_zone_t proc_zone; extern int lastpid; /* * XXX macros for scheduler. Shouldn't be here, but currently needed for * bounding the dubious p_estcpu inheritance in wait1(). * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in * the range 100-256 Hz (approximately). */ #define ESTCPULIM(e) \ min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \ RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1) #define INVERSE_ESTCPU_WEIGHT 8 /* 1 / (priorities per estcpu level). */ #define NICE_WEIGHT 1 /* Priorities per nice level. */ struct proc *pfind(pid_t); /* Find process by id. */ struct pgrp *pgfind(pid_t); /* Find process group by id. */ struct proc *zpfind(pid_t); /* Find zombie process by id. */ void ast(struct trapframe *framep); struct thread *choosethread(void); int cr_cansignal(struct ucred *cred, struct proc *proc, int signum); int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess); int enterthispgrp(struct proc *p, struct pgrp *pgrp); void faultin(struct proc *p); void fixjobc(struct proc *p, struct pgrp *pgrp, int entering); int fork1(struct thread *, int, struct proc **); void fork_exit(void (*)(void *, struct trapframe *), void *, struct trapframe *); void fork_return(struct thread *, struct trapframe *); int inferior(struct proc *p); int leavepgrp(struct proc *p); void mi_switch(void); int p_candebug(struct thread *td, struct proc *p); int p_cansee(struct thread *td, struct proc *p); int p_cansched(struct thread *td, struct proc *p); int p_cansignal(struct thread *td, struct proc *p, int signum); struct pargs *pargs_alloc(int len); void pargs_drop(struct pargs *pa); void pargs_free(struct pargs *pa); void pargs_hold(struct pargs *pa); void procinit(void); void proc_linkup(struct proc *p, struct ksegrp *kg, struct kse *ke, struct thread *td); void proc_reparent(struct proc *child, struct proc *newparent); int procrunnable(void); void remrunqueue(struct thread *); void resetpriority(struct ksegrp *); int roundrobin_interval(void); void schedclock(struct thread *); int securelevel_ge(struct ucred *cr, int level); int securelevel_gt(struct ucred *cr, int level); void setrunnable(struct thread *); void setrunqueue(struct thread *); void setsugid(struct proc *p); void sleepinit(void); void stopevent(struct proc *, u_int, u_int); void cpu_idle(void); void cpu_switch(void); void cpu_throw(void) __dead2; void unsleep(struct thread *); void updatepri(struct thread *); void userret(struct thread *, struct trapframe *, u_int); void maybe_resched(struct thread *); void cpu_exit(struct thread *); void cpu_sched_exit(struct thread *); void exit1(struct thread *, int) __dead2; void cpu_fork(struct thread *, struct proc *, struct thread *, int); void cpu_set_fork_handler(struct thread *, void (*)(void *), void *); void cpu_wait(struct proc *); int cpu_coredump(struct thread *, struct vnode *, struct ucred *); struct thread *thread_get(struct proc *); #endif /* _KERNEL */ #endif /* !_SYS_PROC_H_ */