/* $Id: brooktree848.c,v 1.67 1999/02/25 07:45:47 roger Exp $ */ /* BT848 Driver for Brooktree's Bt848, Bt849, Bt878 and Bt 879 based cards. The Brooktree BT848 Driver driver is based upon Mark Tinguely and Jim Lowe's driver for the Matrox Meteor PCI card . The Philips SAA 7116 and SAA 7196 are very different chipsets than the BT848. For starters, the BT848 is a one chipset solution and it incorporates a RISC engine to control the DMA transfers -- that is it the actual dma process is control by a program which resides in the hosts memory also the register definitions between the Philips chipsets and the Bt848 are very different. The original copyright notice by Mark and Jim is included mostly to honor their fantastic work in the Matrox Meteor driver! Enjoy, Amancio */ /* * 1. Redistributions of source code must retain the * Copyright (c) 1997 Amancio Hasty * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Amancio Hasty * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * 1. Redistributions of source code must retain the * Copyright (c) 1995 Mark Tinguely and Jim Lowe * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Tinguely and Jim Lowe * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* Change History: Note: These version numbers represent the authors own numbering. They are unrelated to Revision Control numbering of FreeBSD or any other system. 1.0 1/24/97 First Alpha release 1.1 2/20/97 Added video ioctl so we can do PCI To PCI data transfers. This is for capturing data directly to a vga frame buffer which has a linear frame buffer. Minor code clean-up. 1.3 2/23/97 Fixed system lock-up reported by Randall Hopper . This problem seems somehow to be exhibited only in his system. I changed the setting of INT_MASK for CAP_CONTINUOUS to be exactly the same as CAP_SINGLE apparently setting bit 23 cleared the system lock up. version 1.1 of the driver has been reported to work with STB's WinTv, Hauppage's Wincast/Tv and last but not least with the Intel Smart Video Recorder. 1.4 3/9/97 fsmp@freefall.org Merged code to support tuners on STB and WinCast cards. Modifications to the contrast and chroma ioctls. Textual cleanup. 1.5 3/15/97 fsmp@freefall.org new bt848 specific versions of hue/bright/ contrast/satu/satv. Amancio's patch to fix "screen freeze" problem. 1.6 3/19/97 fsmp@freefall.org new table-driven frequency lookup. removed disable_intr()/enable_intr() calls from i2c. misc. cleanup. 1.7 3/19/97 fsmp@freefall.org added audio support submitted by: Michael Petry 1.8 3/20/97 fsmp@freefall.org extended audio support. card auto-detection. major cleanup, order of routines, declarations, etc. 1.9 3/22/97 fsmp@freefall.org merged in Amancio's minor unit for tuner control mods. misc. cleanup, especially in the _intr routine. made AUDIO_SUPPORT mainline code. 1.10 3/23/97 fsmp@freefall.org added polled hardware i2c routines, removed all existing software i2c routines. created software i2cProbe() routine. Randall Hopper's fixes of BT848_GHUE & BT848_GBRIG. eeprom support. 1.11 3/24/97 fsmp@freefall.org Louis Mamakos's new bt848 struct. 1.12 3/25/97 fsmp@freefall.org japanese freq table from Naohiro Shichijo. new table structs for tuner lookups. major scrub for "magic numbers". 1.13 3/28/97 fsmp@freefall.org 1st PAL support. MAGIC_[1-4] demarcates magic #s needing PAL work. AFC code submitted by Richard Tobin . 1.14 3/29/97 richard@cogsci.ed.ac.uk PAL support: magic numbers moved into format_params structure. Revised AFC interface. fixed DMA_PROG_ALLOC size misdefinition. 1.15 4/18/97 John-Mark Gurney Added [SR]RGBMASKs ioctl for byte swapping. 1.16 4/20/97 Randall Hopper Generalized RGBMASK ioctls for general pixel format setting [SG]ACTPIXFMT, and added query API to return driver-supported pix fmts GSUPPIXFMT. 1.17 4/21/97 hasty@rah.star-gate.com Clipping support added. 1.18 4/23/97 Clean up after failed CAP_SINGLEs where bt interrupt isn't delivered, and fixed fixing CAP_SINGLEs that for ODD_ONLY fields. 1.19 9/8/97 improved yuv support , cleaned up weurope channel table, incorporated cleanup work from Luigi, fixed pci interface bug due to a change in the pci interface which disables interrupts from a PCI device by default, Added Luigi's, ioctl's BT848_SLNOTCH, BT848_GLNOTCH (set luma notch and get luma not) 1.20 10/5/97 Keith Sklower submitted a patch to fix compilation of the BSDI's PCI interface. Hideyuki Suzuki Submitted a patch for Japanese cable channels Joao Carlos Mendes Luis jonny@gta.ufrj.br Submitted general ioctl to set video broadcast formats (PAL, NTSC, etc..) previously we depended on the Bt848 auto video detect feature. 1.21 10/24/97 Randall Hopper Fix temporal decimation, disable it when doing CAP_SINGLEs, and in dual-field capture, don't capture fields for different frames 1.22 11/08/97 Randall Hopper Fixes for packed 24bpp - FIFO alignment 1.23 11/17/97 Amancio Added yuv support mpeg encoding 1.24 12/27/97 Jonathan Hanna Patch to support Philips FR1236MK2 tuner 1.25 02/02/98 Takeshi Ohashi submitted code to support bktr_read . Flemming Jacobsen submitted code to support radio available with in some bt848 based cards;additionally, wrote code to correctly recognized his bt848 card. Roger Hardiman submitted various fixes to smooth out the microcode and made all modes consistent. 1.26 Moved Luigi's I2CWR ioctl from the video_ioctl section to the tuner_ioctl section Changed Major device from 79 to 92 and reserved our Major device number -- hasty@star-gate.com 1.27 Last batch of patches for radio support from Flemming Jacobsen . Added B849 PCI ID submitted by: Tomi Vainio 1.28 Frank Nobis added tuner support for the German Phillips PAL tuner and additional channels for german cable tv. 1.29 Roger Hardiman Revised autodetection code to correctly handle both old and new VideoLogic Captivator PCI cards. Added tsleep of 2 seconds to initialistion code for PAL users.Corrected clock selection code on format change. 1.30 Bring back Frank Nobis 's opt_bktr.h 1.31 Randall Hopper submitted ioctl to clear the video buffer prior to starting video capture Amancio : clean up yuv12 so that it does not affect rgb capture. Basically, fxtv after capturing in yuv12 mode , switching to rgb would cause the video capture to be too bright. 1.32 disable inverse gamma function for rgb and yuv capture. fixed meteor brightness ioctl it now converts the brightness value from unsigned to signed. 1.33 added sysctl: hw.bt848.tuner, hw.bt848.reverse_mute, hw.bt848.card card takes a value from 0 to bt848_max_card tuner takes a value from 0 to bt848_max_tuner reverse_mute : 0 no effect, 1 reverse tuner mute function some tuners are wired reversed :( 1.34 reverse mute function for ims turbo card 1.35 Roger Hardiman options BROOKTREE_SYSTEM_DEFAULT=BROOKTREE_PAL in the kernel config file makes the driver's video_open() function select PAL rather than NTSC. This fixed all the hangs on my Dual Crystal card when using a PAL video signal. As a result, you can loose the tsleep (of 2 seconds - now 0.25!!) which I previously added. (Unless someone else wanted the 0.25 second tsleep). 1.36 added bt848.format sysctl variable. 1 denotes NTSC , 0 denotes PAL 1.37 added support for Bt878 and improved Hauppauge's bt848 tuner recognition 1.38 Further improvements on Hauppauge's rely on eeprom[9] to determine the tuner type 8) AVerMedia card type added 1.39 08/05/98 Roger Hardiman Updated Hauppauge detection code for Tuner ID 0x0a for newer NTSC WinCastTV 404 with Bt878 chipset. Tidied up PAL default in video_open() 1.49 10 August 1998 Roger Hardiman Added Capture Area ioctl - BT848[SG]CAPAREA. Normally the full 640x480 (768x576 PAL) image is grabbed. This ioctl allows a smaller area from anywhere within the video image to be grabbed, eg a 400x300 image from (50,10). See restrictions in BT848SCAPAREA. 1.50 31 August 1998 Roger Hardiman Renamed BT848[SG]CAPAREA to BT848_[SG]CAPAREA. Added PR kern/7177 for SECAM Video Highway Xtreme with single crystal PLL configuration submitted by Vsevolod Lobko . In kernel configuration file add options OVERRIDE_CARD=2 options OVERRIDE_TUNER=11 options BKTR_USE_PLL 1.51 31 August 1998 Roger Hardiman Fixed bug in Miro Tuner detection. Missing Goto. Removed Hauppauge EEPROM 0x10 detection as I think 0x10 should be a PAL tuner, not NTSC. Reinstated some Tuner Guesswork code from 1.27 1.52 3 Sep 1998 Roger Hardiman Submitted patch by Vsevolod Lobko to correct SECAM B-Delay and add XUSSR channel set. 1.53 9 Sep 1998 Roger Hardiman Changed METEORSINPUT for Hauppauge cards with bt878. Submitted by Fred Templin Also fixed video_open defines and 878 support. 1.54 18 Sep 1998 Roger Hardiman Changed tuner code to autodetect tuner i2c address. Addresses were incorrectly hardcoded. 1.55 21 Sep 1998 Roger Hardiman Hauppauge Tech Support confirmed all Hauppauge 878 PAL/SECAM boards will use PLL mode. Added to card probe. Thanks to Ken and Fred. 1.56 21 Jan 1999 Roger Hardiman Added detection of Hauppauge IR remote control. and MSP34xx Audio chip. Fixed i2c read error. Hauppauge supplied details of new Tuner Types. Danny Braniss submitted Bt878 AverMedia detection with PCI subsystem vendor id. 1.57 26 Jan 1999 Roger Hardiman Support for MSP3410D / MSP3415D Stereo/Mono audio using the audio format Auto Detection Mode. Nicolas Souchu ported the msp_read/write/reset functions to smbus/iicbus. METEOR_INPUT_DEV2 now selects a composite camera on the SVIDEO port for Johan Larsson For true SVIDEO, use METEOR_INPUT_DEV_SVIDEO 1.58 8 Feb 1999 Roger Hardiman Added check to bktr_mmap from OpenBSD driver. Improved MSP34xx reset for bt848 Hauppauge boards. Added detection for Bt848a. Vsevolod Lobko added more XUSSR channels. 1.59 9 Feb 1999 Added ioctl REMOTE_GETKEY for Hauppauge Infra-Red Remote Control. Submitted by Roger Hardiman. Added ioctl TVTUNER_GETCHANSET and BT848_GPIO_SET_EN,BT848_GPIO_SET_DATA (and GETs) Submitted by Vsevolod Lobko 1.60 23 Feb 1999 Roger Hardiman Corrected Mute on Hauppauge Radio cards. Autodetect MMAC Osprey by looking for "MMAC" in the EEPROM. Added for Jan Schmidt Added ALPS Tuner Type from Hiroki Mori */ #define DDB(x) x #define DEB(x) #ifdef __FreeBSD__ #include "bktr.h" #include "opt_bktr.h" #include "opt_devfs.h" #include "pci.h" #endif /* __FreeBSD__ */ #if !defined(__FreeBSD__) || (NBKTR > 0 && NPCI > 0) #include #include #include #include #include #include #include #include #include #include #include #ifdef __FreeBSD__ #ifdef DEVFS #include #endif /* DEVFS */ #include #include #include #include #include /* extensions to ioctl_meteor.h */ #include #include #include #include #include #include "smbus_if.h" #include "iicbus_if.h" #include static int bt848_card = -1; static int bt848_tuner = -1; static int bt848_reverse_mute = -1; static int bt848_format = -1; SYSCTL_NODE(_hw, OID_AUTO, bt848, CTLFLAG_RW, 0, "Bt848 Driver mgmt"); SYSCTL_INT(_hw_bt848, OID_AUTO, card, CTLFLAG_RW, &bt848_card, -1, ""); SYSCTL_INT(_hw_bt848, OID_AUTO, tuner, CTLFLAG_RW, &bt848_tuner, -1, ""); SYSCTL_INT(_hw_bt848, OID_AUTO, reverse_mute, CTLFLAG_RW, &bt848_reverse_mute, -1, ""); SYSCTL_INT(_hw_bt848, OID_AUTO, format, CTLFLAG_RW, &bt848_format, -1, ""); typedef u_long ioctl_cmd_t; #endif /* __FreeBSD__ */ #ifdef __bsdi__ #include #include #include #include #include #include #include #include "ioctl_meteor.h" #include "ioctl_bt848.h" #include "bt848_reg.h" typedef u_long ioctl_cmd_t; #define pci_conf_read(a, r) pci_inl(a, r) #define pci_conf_write(a, r, v) pci_outl(a, r, v) #include #define bootverbose (autoprint & (AC_VERBOSE|AC_DEBUG)) #endif /* __bsdi__ */ typedef u_char bool_t; #define BKTRPRI (PZERO+8)|PCATCH static void bktr_intr __P((void *arg)); /* * memory allocated for DMA programs */ #define DMA_PROG_ALLOC (8 * PAGE_SIZE) /* When to split a dma transfer , the bt848 has timing as well as dma transfer size limitations so that we have to split dma transfers into two dma requests */ #define DMA_BT848_SPLIT 319*2 /* * Allocate enough memory for: * 768x576 RGB 16 or YUV (16 storage bits/pixel) = 884736 = 216 pages * * You may override this using the options "BROOKTREE_ALLOC_PAGES=value" * in your kernel configuration file. */ #ifndef BROOKTREE_ALLOC_PAGES #define BROOKTREE_ALLOC_PAGES 217*4 #endif #define BROOKTREE_ALLOC (BROOKTREE_ALLOC_PAGES * PAGE_SIZE) /* Defines for fields */ #define ODD_F 0x01 #define EVEN_F 0x02 #ifdef __FreeBSD__ static bktr_reg_t brooktree[ NBKTR ]; #define BROOKTRE_NUM(mtr) ((bktr - &brooktree[0])/sizeof(bktr_reg_t)) #define UNIT(x) ((x) & 0x0f) #define MINOR(x) ((x >> 4) & 0x0f) #define ATTACH_ARGS pcici_t tag, int unit static const char* bktr_probe( pcici_t tag, pcidi_t type ); static void bktr_attach( ATTACH_ARGS ); static u_long bktr_count; static struct pci_device bktr_device = { "bktr", bktr_probe, bktr_attach, &bktr_count }; #ifdef COMPAT_PCI_DRIVER COMPAT_PCI_DRIVER (bktr, bktr_device); #else DATA_SET (pcidevice_set, bktr_device); #endif /* COMPAT_PCI_DRIVER */ static d_open_t bktr_open; static d_close_t bktr_close; static d_read_t bktr_read; static d_write_t bktr_write; static d_ioctl_t bktr_ioctl; static d_mmap_t bktr_mmap; #define CDEV_MAJOR 92 static struct cdevsw bktr_cdevsw = { bktr_open, bktr_close, bktr_read, bktr_write, bktr_ioctl, nostop, nullreset, nodevtotty, seltrue, bktr_mmap, NULL, "bktr", NULL, -1 }; #endif /* __FreeBSD__ */ #ifdef __bsdi__ #define UNIT dv_unit #define MINOR dv_subunit #define ATTACH_ARGS \ struct device * const parent, struct device * const self, void * const aux #define PCI_COMMAND_STATUS_REG PCI_COMMAND static void bktr_attach( ATTACH_ARGS ); #define NBKTR bktrcd.cd_ndevs #define brooktree *((bktr_ptr_t *)bktrcd.cd_devs) static int bktr_spl; static int bktr_intr_returning_1(void *arg) { bktr_intr(arg); return (1);} #define disable_intr() { bktr_spl = splhigh(); } #define enable_intr() { splx(bktr_spl); } static int bktr_pci_match(pci_devaddr_t *pa) { unsigned id; id = pci_inl(pa, PCI_VENDOR_ID); switch (id) { BROOKTREE_848_PCI_ID: BROOKTREE_849_PCI_ID: BROOKTREE_878_PCI_ID: BROOKTREE_879_PCI_ID: return 1; } aprint_debug("bktr_pci_match got %x\n", id); return 0; } pci_devres_t bktr_res; /* XXX only remembers last one, helps debug */ static int bktr_probe(struct device *parent, struct cfdata *cf, void *aux) { pci_devaddr_t *pa; pci_devres_t res; struct isa_attach_args *ia = aux; if (ia->ia_bustype != BUS_PCI) return (0); if ((pa = pci_scan(bktr_pci_match)) == NULL) return (0); pci_getres(pa, &bktr_res, 1, ia); if (ia->ia_maddr == 0) { printf("bktr%d: no mem attached\n", cf->cf_unit); return (0); } ia->ia_aux = pa; return 1; } struct cfdriver bktrcd = { 0, "bktr", bktr_probe, bktr_attach, DV_DULL, sizeof(bktr_reg_t) }; int bktr_open __P((dev_t, int, int, struct proc *)); int bktr_close __P((dev_t, int, int, struct proc *)); int bktr_read __P((dev_t, struct uio *, int)); int bktr_write __P((dev_t, struct uio *, int)); int bktr_ioctl __P((dev_t, ioctl_cmd_t, caddr_t, int, struct proc *)); int bktr_mmap __P((dev_t, int, int)); struct devsw bktrsw = { &bktrcd, bktr_open, bktr_close, bktr_read, bktr_write, bktr_ioctl, seltrue, bktr_mmap, NULL, nodump, NULL, 0, nostop }; #endif /* __bsdi__ */ /* * This is for start-up convenience only, NOT mandatory. */ #if !defined( DEFAULT_CHNLSET ) #define DEFAULT_CHNLSET CHNLSET_WEUROPE #endif /* * Parameters describing size of transmitted image. */ static struct format_params format_params[] = { /* # define BT848_IFORM_F_AUTO (0x0) - don't matter. */ { 525, 26, 480, 910, 135, 754, 640, 780, 30, 0x68, 0x5d, BT848_IFORM_X_AUTO }, /* # define BT848_IFORM_F_NTSCM (0x1) */ { 525, 26, 480, 910, 135, 754, 640, 780, 30, 0x68, 0x5d, BT848_IFORM_X_XT0 }, /* # define BT848_IFORM_F_NTSCJ (0x2) */ { 525, 22, 480, 910, 135, 754, 640, 780, 30, 0x68, 0x5d, BT848_IFORM_X_XT0 }, /* # define BT848_IFORM_F_PALBDGHI (0x3) */ { 625, 32, 576, 1135, 186, 922, 768, 944, 25, 0x7f, 0x72, BT848_IFORM_X_XT1 }, /* # define BT848_IFORM_F_PALM (0x4) */ { 525, 22, 480, 910, 135, 754, 640, 780, 30, 0x68, 0x5d, BT848_IFORM_X_XT0 }, /*{ 625, 32, 576, 910, 186, 922, 640, 780, 25, 0x68, 0x5d, BT848_IFORM_X_XT0 }, */ /* # define BT848_IFORM_F_PALN (0x5) */ { 625, 32, 576, 1135, 186, 922, 768, 944, 25, 0x7f, 0x72, BT848_IFORM_X_XT1 }, /* # define BT848_IFORM_F_SECAM (0x6) */ { 625, 32, 576, 1135, 186, 922, 768, 944, 25, 0x7f, 0xa0, BT848_IFORM_X_XT1 }, /* # define BT848_IFORM_F_RSVD (0x7) - ???? */ { 625, 32, 576, 1135, 186, 922, 768, 944, 25, 0x7f, 0x72, BT848_IFORM_X_XT0 }, }; /* * Table of supported Pixel Formats */ static struct meteor_pixfmt_internal { struct meteor_pixfmt public; u_int color_fmt; } pixfmt_table[] = { { { 0, METEOR_PIXTYPE_RGB, 2, { 0x7c00, 0x03e0, 0x001f }, 0,0 }, 0x33 }, { { 0, METEOR_PIXTYPE_RGB, 2, { 0x7c00, 0x03e0, 0x001f }, 1,0 }, 0x33 }, { { 0, METEOR_PIXTYPE_RGB, 2, { 0xf800, 0x07e0, 0x001f }, 0,0 }, 0x22 }, { { 0, METEOR_PIXTYPE_RGB, 2, { 0xf800, 0x07e0, 0x001f }, 1,0 }, 0x22 }, { { 0, METEOR_PIXTYPE_RGB, 3, { 0xff0000,0x00ff00,0x0000ff }, 1,0 }, 0x11 }, { { 0, METEOR_PIXTYPE_RGB, 4, { 0xff0000,0x00ff00,0x0000ff }, 0,0 }, 0x00 }, { { 0, METEOR_PIXTYPE_RGB, 4, { 0xff0000,0x00ff00,0x0000ff }, 0,1 }, 0x00 }, { { 0, METEOR_PIXTYPE_RGB, 4, { 0xff0000,0x00ff00,0x0000ff }, 1,0 }, 0x00 }, { { 0, METEOR_PIXTYPE_RGB, 4, { 0xff0000,0x00ff00,0x0000ff }, 1,1 }, 0x00 }, { { 0, METEOR_PIXTYPE_YUV, 2, { 0xff0000,0x00ff00,0x0000ff }, 1,1 }, 0x88 }, { { 0, METEOR_PIXTYPE_YUV_PACKED, 2, { 0xff0000,0x00ff00,0x0000ff }, 0,1 }, 0x44 }, { { 0, METEOR_PIXTYPE_YUV_12, 2, { 0xff0000,0x00ff00,0x0000ff }, 1,1 }, 0x88 }, }; #define PIXFMT_TABLE_SIZE ( sizeof(pixfmt_table) / sizeof(pixfmt_table[0]) ) /* * Table of Meteor-supported Pixel Formats (for SETGEO compatibility) */ /* FIXME: Also add YUV_422 and YUV_PACKED as well */ static struct { u_long meteor_format; struct meteor_pixfmt public; } meteor_pixfmt_table[] = { { METEOR_GEO_YUV_12, { 0, METEOR_PIXTYPE_YUV_12, 2, { 0xff0000,0x00ff00,0x0000ff }, 1,1 } }, /* FIXME: Should byte swap flag be on for this one; negative in drvr? */ { METEOR_GEO_YUV_422, { 0, METEOR_PIXTYPE_YUV, 2, { 0xff0000,0x00ff00,0x0000ff }, 1,1 } }, { METEOR_GEO_YUV_PACKED, { 0, METEOR_PIXTYPE_YUV_PACKED, 2, { 0xff0000,0x00ff00,0x0000ff }, 0,1 } }, { METEOR_GEO_RGB16, { 0, METEOR_PIXTYPE_RGB, 2, { 0x7c00, 0x03e0, 0x001f }, 0, 0 } }, { METEOR_GEO_RGB24, { 0, METEOR_PIXTYPE_RGB, 4, { 0xff0000, 0x00ff00, 0x0000ff }, 0, 0 } }, }; #define METEOR_PIXFMT_TABLE_SIZE ( sizeof(meteor_pixfmt_table) / \ sizeof(meteor_pixfmt_table[0]) ) #define BSWAP (BT848_COLOR_CTL_BSWAP_ODD | BT848_COLOR_CTL_BSWAP_EVEN) #define WSWAP (BT848_COLOR_CTL_WSWAP_ODD | BT848_COLOR_CTL_WSWAP_EVEN) /* experimental code for Automatic Frequency Control */ #define TUNER_AFC #define TEST_TUNER_AFC_NOT #if defined( TUNER_AFC ) #define AFC_DELAY 10000 /* 10 millisend delay */ #define AFC_BITS 0x07 #define AFC_FREQ_MINUS_125 0x00 #define AFC_FREQ_MINUS_62 0x01 #define AFC_FREQ_CENTERED 0x02 #define AFC_FREQ_PLUS_62 0x03 #define AFC_FREQ_PLUS_125 0x04 #define AFC_MAX_STEP (5 * FREQFACTOR) /* no more than 5 MHz */ #endif /* TUNER_AFC */ /* * i2c things: */ #define TSA552x_CB_MSB (0x80) #define TSA552x_CB_CP (1<<6) #define TSA552x_CB_T2 (1<<5) #define TSA552x_CB_T1 (1<<4) #define TSA552x_CB_T0 (1<<3) #define TSA552x_CB_RSA (1<<2) #define TSA552x_CB_RSB (1<<1) #define TSA552x_CB_OS (1<<0) #define TSA552x_RADIO (TSA552x_CB_MSB | \ TSA552x_CB_T0) /* Add RADIO_OFFSET to the "frequency" to indicate that we want to tune */ /* the radio (if present) not the TV tuner. */ /* 20000 is equivalent to 20000MHz/16 = 1.25GHz - this area is unused. */ #define RADIO_OFFSET 20000 /* address(s) of the Hauppauge Infra-Red Remote Control adapter */ #define HAUP_REMOTE_INT_WADDR 0x30 #define HAUP_REMOTE_INT_RADDR 0x31 #define HAUP_REMOTE_EXT_WADDR 0x34 #define HAUP_REMOTE_EXT_RADDR 0x35 /* address of BTSC/SAP decoder chip */ #define TDA9850_WADDR 0xb6 #define TDA9850_RADDR 0xb7 /* address of MSP3400C chip */ #define MSP3400C_WADDR 0x80 #define MSP3400C_RADDR 0x81 /* EEProm (128 * 8) on an STB card */ #define X24C01_WADDR 0xae #define X24C01_RADDR 0xaf /* EEProm (256 * 8) on a Hauppauge card */ /* and on most BT878s cards to store the sub-system vendor id */ #define PFC8582_WADDR 0xa0 #define PFC8582_RADDR 0xa1 /* registers in the BTSC/dbx chip */ #define CON1ADDR 0x04 #define CON2ADDR 0x05 #define CON3ADDR 0x06 #define CON4ADDR 0x07 /* raise the charge pump voltage for fast tuning */ #define TSA552x_FCONTROL (TSA552x_CB_MSB | \ TSA552x_CB_CP | \ TSA552x_CB_T0 | \ TSA552x_CB_RSA | \ TSA552x_CB_RSB) /* lower the charge pump voltage for better residual oscillator FM */ #define TSA552x_SCONTROL (TSA552x_CB_MSB | \ TSA552x_CB_T0 | \ TSA552x_CB_RSA | \ TSA552x_CB_RSB) /* The control value for the ALPS TSCH5 Tuner */ #define TSCH5_FCONTROL 0x82 /* sync detect threshold */ #if 0 #define SYNC_LEVEL (BT848_ADC_RESERVED | \ BT848_ADC_CRUSH) /* threshold ~125 mV */ #else #define SYNC_LEVEL (BT848_ADC_RESERVED | \ BT848_ADC_SYNC_T) /* threshold ~75 mV */ #endif /* the GPIO bits that control the audio MUXes */ #define GPIO_AUDIOMUX_BITS 0x0f /* * the data for each type of tuner * * if probeCard() fails to detect the proper tuner on boot you can * override it by setting the following define to the tuner present: * #define OVERRIDE_TUNER * * where is one of the following tuner defines. */ /* indexes into tuners[] */ #define NO_TUNER 0 #define TEMIC_NTSC 1 #define TEMIC_PAL 2 #define TEMIC_SECAM 3 #define PHILIPS_NTSC 4 #define PHILIPS_PAL 5 #define PHILIPS_SECAM 6 #define TEMIC_PALI 7 #define PHILIPS_PALI 8 #define PHILIPS_FR1236_NTSC 9 #define PHILIPS_FR1216_PAL 10 #define PHILIPS_FR1236_SECAM 11 #define ALPS_TSCH5 12 #define Bt848_MAX_TUNER 13 /* XXX FIXME: this list is incomplete */ /* input types */ #define TTYPE_XXX 0 #define TTYPE_NTSC 1 #define TTYPE_NTSC_J 2 #define TTYPE_PAL 3 #define TTYPE_PAL_M 4 #define TTYPE_PAL_N 5 #define TTYPE_SECAM 6 /** struct TUNER { char* name; u_char type; u_char pllControl; u_char bandLimits[ 2 ]; u_char bandAddrs[ 3 ]; }; */ static const struct TUNER tuners[] = { /* XXX FIXME: fill in the band-switch crosspoints */ /* NO_TUNER */ { "", /* the 'name' */ TTYPE_XXX, /* input type */ { 0x00, /* control byte for PLL */ 0x00, 0x00, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0x00, 0x00, 0x00,0x00} }, /* the band-switch values */ /* TEMIC_NTSC */ { "Temic NTSC", /* the 'name' */ TTYPE_NTSC, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */ /* TEMIC_PAL */ { "Temic PAL", /* the 'name' */ TTYPE_PAL, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0x02, 0x04, 0x01, 0x00 } }, /* the band-switch values */ /* TEMIC_SECAM */ { "Temic SECAM", /* the 'name' */ TTYPE_SECAM, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */ /* PHILIPS_NTSC */ { "Philips NTSC", /* the 'name' */ TTYPE_NTSC, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0xa0, 0x90, 0x30, 0x00 } }, /* the band-switch values */ /* PHILIPS_PAL */ { "Philips PAL", /* the 'name' */ TTYPE_PAL, /* input type */ { TSA552x_FCONTROL, /* control byte for PLL */ TSA552x_FCONTROL, TSA552x_FCONTROL, TSA552x_RADIO }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0xa0, 0x90, 0x30, 0xa4 } }, /* the band-switch values */ /* PHILIPS_SECAM */ { "Philips SECAM", /* the 'name' */ TTYPE_SECAM, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, TSA552x_RADIO }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0xa0, 0x90, 0x30,0xa4 } }, /* the band-switch values */ /* TEMIC_PAL I */ { "Temic PAL I", /* the 'name' */ TTYPE_PAL, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0x02, 0x04, 0x01,0x00 } }, /* the band-switch values */ /* PHILIPS_PAL */ { "Philips PAL I", /* the 'name' */ TTYPE_PAL, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0xa0, 0x90, 0x30,0x00 } }, /* the band-switch values */ /* PHILIPS_FR1236_NTSC */ { "Philips FR1236 NTSC FM", /* the 'name' */ TTYPE_NTSC, /* input type */ { TSA552x_SCONTROL, /* control byte for PLL */ TSA552x_SCONTROL, TSA552x_SCONTROL, TSA552x_RADIO }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0xa0, 0x90, 0x30,0xa4 } }, /* the band-switch values */ /* PHILIPS_FR1216_PAL */ { "Philips FR1216 PAL" , /* the 'name' */ TTYPE_PAL, /* input type */ { TSA552x_FCONTROL, /* control byte for PLL */ TSA552x_FCONTROL, TSA552x_FCONTROL, TSA552x_RADIO }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0xa0, 0x90, 0x30, 0xa4 } }, /* the band-switch values */ /* PHILIPS_FR1236_SECAM */ { "Philips FR1236 SECAM FM", /* the 'name' */ TTYPE_SECAM, /* input type */ { TSA552x_FCONTROL, /* control byte for PLL */ TSA552x_FCONTROL, TSA552x_FCONTROL, TSA552x_RADIO }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0xa0, 0x90, 0x30, 0xa4 } }, /* the band-switch values */ /* ALPS TSCH5 NTSC */ { "ALPS TSCH5", /* the 'name' */ TTYPE_NTSC, /* input type */ { TSCH5_FCONTROL, /* control byte for PLL */ TSCH5_FCONTROL, TSCH5_FCONTROL, 0x00 }, { 0x00, 0x00 }, /* band-switch crosspoints */ { 0x14, 0x12, 0x11, 0x00 } } /* the band-switch values */ }; /****************************************************************************** * card probe */ /* * the recognized cards, used as indexes of several tables. * * if probeCard() fails to detect the proper card on boot you can * override it by setting the following define to the card you are using: * #define OVERRIDE_CARD * * where is one of the following card defines. */ #define CARD_UNKNOWN 0 #define CARD_MIRO 1 #define CARD_HAUPPAUGE 2 #define CARD_STB 3 #define CARD_INTEL 4 #define CARD_IMS_TURBO 5 #define CARD_AVER_MEDIA 6 #define CARD_OSPREY 7 #define Bt848_MAX_CARD 8 /* * the data for each type of card * * Note: * these entried MUST be kept in the order defined by the CARD_XXX defines! */ static const struct CARDTYPE cards[] = { { CARD_UNKNOWN, /* the card id */ "Unknown", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, /* dbx unknown */ 0, 0, /* EEProm unknown */ 0, /* EEProm unknown */ { 0, 0, 0, 0, 0 } }, { CARD_MIRO, /* the card id */ "Miro TV", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, /* dbx unknown */ 0, 0, /* EEProm unknown */ 0, /* size unknown */ { 0x02, 0x01, 0x00, 0x0a, 1 } }, /* XXX ??? */ { CARD_HAUPPAUGE, /* the card id */ "Hauppauge WinCast/TV", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, /* dbx is optional */ 0, PFC8582_WADDR, /* EEProm type */ (u_char)(256 / EEPROMBLOCKSIZE), /* 256 bytes */ { 0x00, 0x02, 0x01, 0x04, 1 } }, /* audio MUX values */ { CARD_STB, /* the card id */ "STB TV/PCI", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, /* dbx is optional */ 0, X24C01_WADDR, /* EEProm type */ (u_char)(128 / EEPROMBLOCKSIZE), /* 128 bytes */ { 0x00, 0x01, 0x02, 0x02, 1 } }, /* audio MUX values */ { CARD_INTEL, /* the card id */ "Intel Smart Video III/VideoLogic Captivator PCI", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, 0, 0, 0, { 0, 0, 0, 0, 0 } }, { CARD_IMS_TURBO, /* the card id */ "IMS TV Turbo", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, /* dbx is optional */ 0, PFC8582_WADDR, /* EEProm type */ (u_char)(256 / EEPROMBLOCKSIZE), /* 256 bytes */ { 0x01, 0x02, 0x01, 0x00, 1 } }, /* audio MUX values */ { CARD_AVER_MEDIA, /* the card id */ "AVer Media TV/FM", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, /* dbx is optional */ 0, 0, /* EEProm size */ 0, /* EEProm size */ { 0x0c, 0x00, 0x0b, 0x0b, 1 } }, /* audio MUX values */ { CARD_OSPREY, /* the card id */ "MMAC Osprey", /* the 'name' */ NULL, /* the tuner */ 0, /* the tuner i2c address */ 0, /* dbx is optional */ 0, PFC8582_WADDR, /* EEProm type */ (u_char)(256 / EEPROMBLOCKSIZE), /* 256 bytes */ { 0x0c, 0x00, 0x0b, 0x0b, 1 } }, /* audio MUX values */ }; struct bt848_card_sig bt848_card_signature[1]= { /* IMS TURBO TV : card 5 */ { 5,9, {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 02, 00, 00, 00}} }; /* debug utility for holding previous INT_STAT contents */ #define STATUS_SUM static u_long status_sum = 0; /* * defines to make certain bit-fiddles understandable */ #define FIFO_ENABLED BT848_DMA_CTL_FIFO_EN #define RISC_ENABLED BT848_DMA_CTL_RISC_EN #define FIFO_RISC_ENABLED (BT848_DMA_CTL_FIFO_EN | BT848_DMA_CTL_RISC_EN) #define FIFO_RISC_DISABLED 0 #define ALL_INTS_DISABLED 0 #define ALL_INTS_CLEARED 0xffffffff #define CAPTURE_OFF 0 #define BIT_SEVEN_HIGH (1<<7) #define BIT_EIGHT_HIGH (1<<8) #define I2C_BITS (BT848_INT_RACK | BT848_INT_I2CDONE) #define TDEC_BITS (BT848_INT_FDSR | BT848_INT_FBUS) /* * misc. support routines. */ static int signCard( bktr_ptr_t bktr, int offset, int count, u_char* sig ); static void probeCard( bktr_ptr_t bktr, int verbose ); static vm_offset_t get_bktr_mem( int unit, unsigned size ); static int oformat_meteor_to_bt( u_long format ); static u_int pixfmt_swap_flags( int pixfmt ); /* * bt848 RISC programming routines. */ #ifdef BT848_DUMP static int dump_bt848( bt848_ptr_t bt848 ); #endif static void yuvpack_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ); static void yuv422_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ); static void yuv12_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ); static void rgb_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ); static void build_dma_prog( bktr_ptr_t bktr, char i_flag ); static bool_t getline(bktr_reg_t *, int); static bool_t notclipped(bktr_reg_t * , int , int); static bool_t split(bktr_reg_t *, volatile u_long **, int, u_long, int, volatile u_char ** , int ); /* * video & video capture specific routines. */ static int video_open( bktr_ptr_t bktr ); static int video_close( bktr_ptr_t bktr ); static int video_ioctl( bktr_ptr_t bktr, int unit, int cmd, caddr_t arg, struct proc* pr ); static void start_capture( bktr_ptr_t bktr, unsigned type ); static void set_fps( bktr_ptr_t bktr, u_short fps ); /* * tuner specific functions. */ static int tuner_open( bktr_ptr_t bktr ); static int tuner_close( bktr_ptr_t bktr ); static int tuner_ioctl( bktr_ptr_t bktr, int unit, int cmd, caddr_t arg, struct proc* pr ); static int tuner_getchnlset( struct bktr_chnlset *chnlset ); static int tv_channel( bktr_ptr_t bktr, int channel ); static int tv_freq( bktr_ptr_t bktr, int frequency ); #if defined( TUNER_AFC ) static int do_afc( bktr_ptr_t bktr, int addr, int frequency ); #endif /* TUNER_AFC */ /* * audio specific functions. */ static int set_audio( bktr_ptr_t bktr, int mode ); static void temp_mute( bktr_ptr_t bktr, int flag ); static int set_BTSC( bktr_ptr_t bktr, int control ); static void msp_autodetect( bktr_ptr_t bktr ); static void msp_read_id( bktr_ptr_t bktr ); static void msp_reset( bktr_ptr_t bktr ); static unsigned int msp_read(bktr_ptr_t bktr, unsigned char dev, unsigned int addr); static void msp_write( bktr_ptr_t bktr, unsigned char dev, unsigned int addr, unsigned int data); /* * Remote Control Functions */ static void remote_read(bktr_ptr_t bktr, struct bktr_remote *remote); /* * ioctls common to both video & tuner. */ static int common_ioctl( bktr_ptr_t bktr, bt848_ptr_t bt848, int cmd, caddr_t arg ); /* * i2c primitives */ static int i2cWrite( bktr_ptr_t bktr, int addr, int byte1, int byte2 ); static int i2cRead( bktr_ptr_t bktr, int addr ); static int writeEEProm( bktr_ptr_t bktr, int offset, int count, u_char* data ); static int readEEProm( bktr_ptr_t bktr, int offset, int count, u_char* data ); #ifndef __FreeBSD__ /* * i2c primatives for low level control of i2c bus. Added for MSP34xx control */ static void i2c_start( bktr_ptr_t bktr); static void i2c_stop( bktr_ptr_t bktr); static int i2c_write_byte( bktr_ptr_t bktr, unsigned char data); static int i2c_read_byte( bktr_ptr_t bktr, unsigned char *data, int last ); #endif #ifdef __FreeBSD__ /* * the boot time probe routine. */ static const char* bktr_probe( pcici_t tag, pcidi_t type ) { unsigned int rev = pci_conf_read( tag, PCIR_REVID) & 0x000000ff; switch (type) { case BROOKTREE_848_PCI_ID: if (rev == 0x12) return("BrookTree 848a"); else return("BrookTree 848"); case BROOKTREE_849_PCI_ID: return("BrookTree 849"); case BROOKTREE_878_PCI_ID: return("BrookTree 878"); case BROOKTREE_879_PCI_ID: return("BrookTree 879"); }; return ((char *)0); } #endif /* __FreeBSD__ */ /* * the attach routine. */ static void bktr_attach( ATTACH_ARGS ) { bktr_ptr_t bktr; bt848_ptr_t bt848; #ifdef BROOKTREE_IRQ u_long old_irq, new_irq; #endif vm_offset_t buf; u_long latency; u_long fun; unsigned int rev; #ifdef __FreeBSD__ bktr = &brooktree[unit]; if (unit >= NBKTR) { printf("brooktree%d: attach: only %d units configured.\n", unit, NBKTR); printf("brooktree%d: attach: invalid unit number.\n", unit); return; } bktr->tag = tag; pci_map_mem( tag, PCI_MAP_REG_START, (vm_offset_t *) &bktr->base, &bktr->phys_base ); fun = pci_conf_read(tag, 0x40); pci_conf_write(tag, 0x40, fun | 1); /* XXX call bt848_i2c dependent attach() routine */ if (bt848_i2c_attach(unit, bktr->base, &bktr->i2c_sc)) printf("bktr%d: i2c_attach: can't attach\n", unit); #ifdef BROOKTREE_IRQ /* from the configuration file */ old_irq = pci_conf_read(tag, PCI_INTERRUPT_REG); pci_conf_write(tag, PCI_INTERRUPT_REG, BROOKTREE_IRQ); new_irq = pci_conf_read(tag, PCI_INTERRUPT_REG); printf("bktr%d: attach: irq changed from %d to %d\n", unit, (old_irq & 0xff), (new_irq & 0xff)); #endif /* setup the interrupt handling routine */ pci_map_int(tag, bktr_intr, (void*) bktr, &net_imask); #endif /* __FreeBSD__ */ #ifdef __bsdi__ struct isa_attach_args * const ia = (struct isa_attach_args *)aux; pci_devaddr_t *tag = (pci_devaddr_t *) ia->ia_aux; int unit = bktr->bktr_dev.dv_unit; bktr = (bktr_reg_t *) self; bktr->base = (bt848_ptr_t) bktr_res.pci_vaddr; isa_establish(&bktr->bktr_id, &bktr->bktr_dev); bktr->bktr_ih.ih_fun = bktr_intr_returning_1; bktr->bktr_ih.ih_arg = (void *)bktr; intr_establish(ia->ia_irq, &bktr->bktr_ih, DV_DULL); #endif /* __bsdi__ */ /* * PCI latency timer. 32 is a good value for 4 bus mastering slots, if * you have more than four, then 16 would probably be a better value. */ #ifndef BROOKTREE_DEF_LATENCY_VALUE #define BROOKTREE_DEF_LATENCY_VALUE 10 #endif latency = pci_conf_read(tag, PCI_LATENCY_TIMER); latency = (latency >> 8) & 0xff; if ( bootverbose ) { if (latency) printf("brooktree%d: PCI bus latency is", unit); else printf("brooktree%d: PCI bus latency was 0 changing to", unit); } if ( !latency ) { latency = BROOKTREE_DEF_LATENCY_VALUE; pci_conf_write(tag, PCI_LATENCY_TIMER, latency<<8); } if ( bootverbose ) { printf(" %d.\n", (int) latency); } /* allocate space for dma program */ bktr->dma_prog = get_bktr_mem(unit, DMA_PROG_ALLOC); bktr->odd_dma_prog = get_bktr_mem(unit, DMA_PROG_ALLOC); /* allocate space for pixel buffer */ if ( BROOKTREE_ALLOC ) buf = get_bktr_mem(unit, BROOKTREE_ALLOC); else buf = 0; if ( bootverbose ) { printf("bktr%d: buffer size %d, addr 0x%x\n", unit, BROOKTREE_ALLOC, vtophys(buf)); } bktr->bigbuf = buf; bktr->alloc_pages = BROOKTREE_ALLOC_PAGES; fun = pci_conf_read(tag, PCI_COMMAND_STATUS_REG); pci_conf_write(tag, PCI_COMMAND_STATUS_REG, fun | 2); if ( buf != 0 ) { bzero((caddr_t) buf, BROOKTREE_ALLOC); buf = vtophys(buf); bktr->flags = METEOR_INITALIZED | METEOR_AUTOMODE | METEOR_DEV0 | METEOR_RGB16; bktr->dma_prog_loaded = FALSE; bktr->cols = 640; bktr->rows = 480; bktr->frames = 1; /* one frame */ bktr->format = METEOR_GEO_RGB16; bktr->pixfmt = oformat_meteor_to_bt( bktr->format ); bktr->pixfmt_compat = TRUE; bt848 = bktr->base; bt848->int_mask = ALL_INTS_DISABLED; bt848->gpio_dma_ctl = FIFO_RISC_DISABLED; } /* read the pci id and determine the card type */ fun = pci_conf_read(tag, PCI_ID_REG); rev = pci_conf_read(tag, PCIR_REVID) & 0x000000ff; switch (fun) { case BROOKTREE_848_PCI_ID: if (rev == 0x12) bktr->id = BROOKTREE_848A; else bktr->id = BROOKTREE_848; break; case BROOKTREE_849_PCI_ID: bktr->id = BROOKTREE_849; break; case BROOKTREE_878_PCI_ID: bktr->id = BROOKTREE_878; break; case BROOKTREE_879_PCI_ID: bktr->id = BROOKTREE_879; break; }; bktr->clr_on_start = FALSE; /* defaults for the tuner section of the card */ bktr->tflags = TUNER_INITALIZED; bktr->tuner.frequency = 0; bktr->tuner.channel = 0; bktr->tuner.chnlset = DEFAULT_CHNLSET; bktr->audio_mux_select = 0; bktr->audio_mute_state = FALSE; bktr->bt848_card = -1; bktr->bt848_tuner = -1; bktr->reverse_mute = -1; probeCard( bktr, TRUE ); /* If there is an MSP Audio device, reset it and display the model */ if (bktr->card.msp3400c)msp_reset(bktr); if (bktr->card.msp3400c)msp_read_id(bktr); #ifdef DEVFS /* XXX This just throw away the token, which should probably be fixed when DEVFS is finally made really operational. */ devfs_add_devswf(&bktr_cdevsw, unit, DV_CHR, 0, 0, 0444, "bktr%d", unit); devfs_add_devswf(&bktr_cdevsw, unit+16, DV_CHR, 0, 0, 0444, "tuner%d", unit); #endif /* DEVFS */ #if __FreeBSD__ > 2 fun = pci_conf_read(tag, PCI_COMMAND_STATUS_REG); pci_conf_write(tag, PCI_COMMAND_STATUS_REG, fun | 4); #endif } /* * interrupt handling routine complete bktr_read() if using interrupts. */ static void bktr_intr( void *arg ) { bktr_ptr_t bktr; bt848_ptr_t bt848; u_long bktr_status; u_char dstatus; u_long field; u_long w_field; u_long req_field; bktr = (bktr_ptr_t) arg; bt848 = bktr->base; /* * check to see if any interrupts are unmasked on this device. If * none are, then we likely got here by way of being on a PCI shared * interrupt dispatch list. */ if (bt848->int_mask == ALL_INTS_DISABLED) return; /* bail out now, before we do something we shouldn't */ if (!(bktr->flags & METEOR_OPEN)) { bt848->gpio_dma_ctl = FIFO_RISC_DISABLED; bt848->int_mask = ALL_INTS_DISABLED; /* return; ?? */ } /* record and clear the INTerrupt status bits */ bktr_status = bt848->int_stat; bt848->int_stat = bktr_status & ~I2C_BITS; /* don't touch i2c */ /* record and clear the device status register */ dstatus = bt848->dstatus; bt848->dstatus = 0x00; #if defined( STATUS_SUM ) /* add any new device status or INTerrupt status bits */ status_sum |= (bktr_status & ~(BT848_INT_RSV0|BT848_INT_RSV1)); status_sum |= ((dstatus & (BT848_DSTATUS_COF|BT848_DSTATUS_LOF)) << 6); #endif /* STATUS_SUM */ /* printf( " STATUS %x %x %x \n", dstatus, bktr_status, bt848->risc_count ); */ /* if risc was disabled re-start process again */ if ( !(bktr_status & BT848_INT_RISC_EN) || ((bktr_status &(BT848_INT_FBUS | BT848_INT_FTRGT | BT848_INT_FDSR | BT848_INT_PPERR | BT848_INT_RIPERR | BT848_INT_PABORT | BT848_INT_OCERR | BT848_INT_SCERR) ) != 0) || ((bt848->tdec == 0) && (bktr_status & TDEC_BITS)) ) { u_short tdec_save = bt848->tdec; bt848->gpio_dma_ctl = FIFO_RISC_DISABLED; bt848->int_mask = ALL_INTS_DISABLED; /* Reset temporal decimation ctr */ bt848->tdec = 0; bt848->tdec = tdec_save; /* Reset to no-fields captured state */ if (bktr->flags & (METEOR_CONTIN | METEOR_SYNCAP)) { switch(bktr->flags & METEOR_ONLY_FIELDS_MASK) { case METEOR_ONLY_ODD_FIELDS: bktr->flags |= METEOR_WANT_ODD; break; case METEOR_ONLY_EVEN_FIELDS: bktr->flags |= METEOR_WANT_EVEN; break; default: bktr->flags |= METEOR_WANT_MASK; break; } } bt848->risc_strt_add = vtophys(bktr->dma_prog); bt848->gpio_dma_ctl = FIFO_ENABLED; bt848->gpio_dma_ctl = bktr->capcontrol; bt848->int_mask = BT848_INT_MYSTERYBIT | BT848_INT_RISCI | BT848_INT_VSYNC | BT848_INT_FMTCHG; bt848->cap_ctl = bktr->bktr_cap_ctl; return; } if (!(bktr_status & BT848_INT_RISCI)) return; /** printf( "intr status %x %x %x\n", bktr_status, dstatus, bt848->risc_count ); */ /* * Disable future interrupts if a capture mode is not selected. * This can happen when we are in the process of closing or * changing capture modes, otherwise it shouldn't happen. */ if (!(bktr->flags & METEOR_CAP_MASK)) bt848->cap_ctl = CAPTURE_OFF; /* * Register the completed field * (For dual-field mode, require fields from the same frame) */ field = ( bktr_status & BT848_INT_FIELD ) ? EVEN_F : ODD_F; switch ( bktr->flags & METEOR_WANT_MASK ) { case METEOR_WANT_ODD : w_field = ODD_F ; break; case METEOR_WANT_EVEN : w_field = EVEN_F ; break; default : w_field = (ODD_F|EVEN_F); break; } switch ( bktr->flags & METEOR_ONLY_FIELDS_MASK ) { case METEOR_ONLY_ODD_FIELDS : req_field = ODD_F ; break; case METEOR_ONLY_EVEN_FIELDS : req_field = EVEN_F ; break; default : req_field = (ODD_F|EVEN_F); break; } if (( field == EVEN_F ) && ( w_field == EVEN_F )) bktr->flags &= ~METEOR_WANT_EVEN; else if (( field == ODD_F ) && ( req_field == ODD_F ) && ( w_field == ODD_F )) bktr->flags &= ~METEOR_WANT_ODD; else if (( field == ODD_F ) && ( req_field == (ODD_F|EVEN_F) ) && ( w_field == (ODD_F|EVEN_F) )) bktr->flags &= ~METEOR_WANT_ODD; else if (( field == ODD_F ) && ( req_field == (ODD_F|EVEN_F) ) && ( w_field == ODD_F )) { bktr->flags &= ~METEOR_WANT_ODD; bktr->flags |= METEOR_WANT_EVEN; } else { /* We're out of sync. Start over. */ if (bktr->flags & (METEOR_CONTIN | METEOR_SYNCAP)) { switch(bktr->flags & METEOR_ONLY_FIELDS_MASK) { case METEOR_ONLY_ODD_FIELDS: bktr->flags |= METEOR_WANT_ODD; break; case METEOR_ONLY_EVEN_FIELDS: bktr->flags |= METEOR_WANT_EVEN; break; default: bktr->flags |= METEOR_WANT_MASK; break; } } return; } /* * If we have a complete frame. */ if (!(bktr->flags & METEOR_WANT_MASK)) { bktr->frames_captured++; /* * post the completion time. */ if (bktr->flags & METEOR_WANT_TS) { struct timeval *ts; if ((u_int) bktr->alloc_pages * PAGE_SIZE <= (bktr->frame_size + sizeof(struct timeval))) { ts =(struct timeval *)bktr->bigbuf + bktr->frame_size; /* doesn't work in synch mode except * for first frame */ /* XXX */ microtime(ts); } } /* * Wake up the user in single capture mode. */ if (bktr->flags & METEOR_SINGLE) { /* stop dma */ bt848->int_mask = ALL_INTS_DISABLED; /* disable risc, leave fifo running */ bt848->gpio_dma_ctl = FIFO_ENABLED; wakeup((caddr_t)bktr); } /* * If the user requested to be notified via signal, * let them know the frame is complete. */ if (bktr->proc && !(bktr->signal & METEOR_SIG_MODE_MASK)) psignal( bktr->proc, bktr->signal&(~METEOR_SIG_MODE_MASK) ); /* * Reset the want flags if in continuous or * synchronous capture mode. */ /* * XXX NOTE (Luigi): * currently we only support 3 capture modes: odd only, even only, * odd+even interlaced (odd field first). A fourth mode (non interlaced, * either even OR odd) could provide 60 (50 for PAL) pictures per * second, but it would require this routine to toggle the desired frame * each time, and one more different DMA program for the Bt848. * As a consequence, this fourth mode is currently unsupported. */ if (bktr->flags & (METEOR_CONTIN | METEOR_SYNCAP)) { switch(bktr->flags & METEOR_ONLY_FIELDS_MASK) { case METEOR_ONLY_ODD_FIELDS: bktr->flags |= METEOR_WANT_ODD; break; case METEOR_ONLY_EVEN_FIELDS: bktr->flags |= METEOR_WANT_EVEN; break; default: bktr->flags |= METEOR_WANT_MASK; break; } } } return; } /*--------------------------------------------------------- ** ** BrookTree 848 character device driver routines ** **--------------------------------------------------------- */ #define VIDEO_DEV 0x00 #define TUNER_DEV 0x01 /* * */ int bktr_open( dev_t dev, int flags, int fmt, struct proc *p ) { bktr_ptr_t bktr; int unit; unit = UNIT( minor(dev) ); if (unit >= NBKTR) /* unit out of range */ return( ENXIO ); bktr = &(brooktree[ unit ]); if (!(bktr->flags & METEOR_INITALIZED)) /* device not found */ return( ENXIO ); if (bt848_card != -1) { if ((bt848_card >> 8 == unit ) && ( (bt848_card & 0xff) < Bt848_MAX_CARD )) { if ( bktr->bt848_card != (bt848_card & 0xff) ) { bktr->bt848_card = (bt848_card & 0xff); probeCard(bktr, FALSE); } } } if (bt848_tuner != -1) { if ((bt848_tuner >> 8 == unit ) && ( (bt848_tuner & 0xff) < Bt848_MAX_TUNER )) { if ( bktr->bt848_tuner != (bt848_tuner & 0xff) ) { bktr->bt848_tuner = (bt848_tuner & 0xff); probeCard(bktr, FALSE); } } } if (bt848_reverse_mute != -1) { if (((bt848_reverse_mute >> 8) == unit ) && ((bt848_reverse_mute & 0xff) < Bt848_MAX_TUNER) ) { bktr->reverse_mute = bt848_reverse_mute & 0xff; bt848_reverse_mute = -1; } } switch ( MINOR( minor(dev) ) ) { case VIDEO_DEV: return( video_open( bktr ) ); case TUNER_DEV: return( tuner_open( bktr ) ); } return( ENXIO ); } /* * */ static int video_open( bktr_ptr_t bktr ) { bt848_ptr_t bt848; int frame_rate, video_format=0; if (bktr->flags & METEOR_OPEN) /* device is busy */ return( EBUSY ); bktr->flags |= METEOR_OPEN; bt848 = bktr->base; #ifdef BT848_DUMP dump_bt848( bt848 ); #endif bktr->clr_on_start = FALSE; bt848->dstatus = 0x00; /* clear device status reg. */ bt848->adc = SYNC_LEVEL; #if BROOKTREE_SYSTEM_DEFAULT == BROOKTREE_PAL video_format = 0; #else video_format = 1; #endif if (bt848_format == 0 ) video_format = 0; if (bt848_format == 1 ) video_format = 1; if (video_format == 1 ) { bt848->iform = BT848_IFORM_F_NTSCM; bktr->format_params = BT848_IFORM_F_NTSCM; } else { bt848->iform = BT848_IFORM_F_PALBDGHI; bktr->format_params = BT848_IFORM_F_PALBDGHI; } bt848->iform |= format_params[bktr->format_params].iform_xtsel; /* work around for new Hauppauge 878 cards */ if ((bktr->card.card_id == CARD_HAUPPAUGE) && (bktr->id==BROOKTREE_878 || bktr->id==BROOKTREE_879) ) bt848->iform |= BT848_IFORM_M_MUX3; else bt848->iform |= BT848_IFORM_M_MUX1; bt848->adelay = format_params[bktr->format_params].adelay; bt848->bdelay = format_params[bktr->format_params].bdelay; frame_rate = format_params[bktr->format_params].frame_rate; /* enable PLL mode using 28Mhz crystal for PAL/SECAM users */ if (bktr->xtal_pll_mode == BT848_USE_PLL) { bt848->tgctrl=0; bt848->pll_f_lo=0xf9; bt848->pll_f_hi=0xdc; bt848->pll_f_xci=0x8e; } bktr->flags = (bktr->flags & ~METEOR_DEV_MASK) | METEOR_DEV0; bktr->max_clip_node = 0; bt848->color_ctl_gamma = 1; bt848->color_ctl_rgb_ded = 1; bt848->color_ctl_color_bars = 0; bt848->color_ctl_ext_frmrate = 0; bt848->color_ctl_swap = 0; bt848->e_hscale_lo = 170; bt848->o_hscale_lo = 170; bt848->e_delay_lo = 0x72; bt848->o_delay_lo = 0x72; bt848->e_scloop = 0; bt848->o_scloop = 0; bt848->vbi_pack_size = 0; bt848->vbi_pack_del = 0; bktr->fifo_errors = 0; bktr->dma_errors = 0; bktr->frames_captured = 0; bktr->even_fields_captured = 0; bktr->odd_fields_captured = 0; bktr->proc = (struct proc *)0; set_fps(bktr, frame_rate); bktr->video.addr = 0; bktr->video.width = 0; bktr->video.banksize = 0; bktr->video.ramsize = 0; bktr->pixfmt_compat = TRUE; bktr->format = METEOR_GEO_RGB16; bktr->pixfmt = oformat_meteor_to_bt( bktr->format ); bktr->capture_area_enabled = FALSE; bt848->int_mask = BT848_INT_MYSTERYBIT; /* if you take this out triton based motherboards will operate unreliably */ return( 0 ); } /* * */ static int tuner_open( bktr_ptr_t bktr ) { if ( !(bktr->tflags & TUNER_INITALIZED) ) /* device not found */ return( ENXIO ); if ( bktr->tflags & TUNER_OPEN ) /* already open */ return( 0 ); bktr->tflags |= TUNER_OPEN; bktr->tuner.radio_mode = 0; /* enable drivers on the GPIO port that control the MUXes */ bktr->base->gpio_out_en |= GPIO_AUDIOMUX_BITS; /* unmute the audio stream */ set_audio( bktr, AUDIO_UNMUTE ); /* enable stereo if appropriate on TDA audio chip */ if ( bktr->card.dbx ) set_BTSC( bktr, 0 ); /* reset the MSP34xx stereo audio chip */ if ( bktr->card.msp3400c ) msp_reset( bktr ); return( 0 ); } /* * */ int bktr_close( dev_t dev, int flags, int fmt, struct proc *p ) { bktr_ptr_t bktr; int unit; unit = UNIT( minor(dev) ); if (unit >= NBKTR) /* unit out of range */ return( ENXIO ); bktr = &(brooktree[ unit ]); switch ( MINOR( minor(dev) ) ) { case VIDEO_DEV: return( video_close( bktr ) ); case TUNER_DEV: return( tuner_close( bktr ) ); } return( ENXIO ); } /* * */ static int video_close( bktr_ptr_t bktr ) { bt848_ptr_t bt848; bktr->flags &= ~(METEOR_OPEN | METEOR_SINGLE | METEOR_CAP_MASK | METEOR_WANT_MASK); bt848 = bktr->base; bt848->gpio_dma_ctl = FIFO_RISC_DISABLED; bt848->cap_ctl = CAPTURE_OFF; bktr->dma_prog_loaded = FALSE; bt848->tdec = 0; bt848->int_mask = ALL_INTS_DISABLED; /** FIXME: is 0xf magic, wouldn't 0x00 work ??? */ bt848->sreset = 0xf; bt848->int_stat = ALL_INTS_CLEARED; return( 0 ); } /* * tuner close handle, * place holder for tuner specific operations on a close. */ static int tuner_close( bktr_ptr_t bktr ) { bktr->tflags &= ~TUNER_OPEN; /* mute the audio by switching the mux */ set_audio( bktr, AUDIO_MUTE ); /* disable drivers on the GPIO port that control the MUXes */ bktr->base->gpio_out_en = bktr->base->gpio_out_en & ~GPIO_AUDIOMUX_BITS; return( 0 ); } /* * */ int bktr_read( dev_t dev, struct uio *uio, int ioflag ) { bktr_ptr_t bktr; bt848_ptr_t bt848; int unit; int status; int count; if (MINOR(minor(dev)) > 0) return( ENXIO ); unit = UNIT(minor(dev)); if (unit >= NBKTR) /* unit out of range */ return( ENXIO ); bktr = &(brooktree[unit]); bt848 = bktr->base; if (bktr->bigbuf == 0) /* no frame buffer allocated (ioctl failed) */ return( ENOMEM ); if (bktr->flags & METEOR_CAP_MASK) return( EIO ); /* already capturing */ bt848->cap_ctl = bktr->bktr_cap_ctl; count = bktr->rows * bktr->cols * pixfmt_table[ bktr->pixfmt ].public.Bpp; if ((int) uio->uio_iov->iov_len < count) return( EINVAL ); bktr->flags &= ~(METEOR_CAP_MASK | METEOR_WANT_MASK); /* capture one frame */ start_capture(bktr, METEOR_SINGLE); /* wait for capture to complete */ bt848->int_stat = ALL_INTS_CLEARED; bt848->gpio_dma_ctl = FIFO_ENABLED; bt848->gpio_dma_ctl = bktr->capcontrol; bt848->int_mask = BT848_INT_MYSTERYBIT | BT848_INT_RISCI | BT848_INT_VSYNC | BT848_INT_FMTCHG; status = tsleep((caddr_t)bktr, BKTRPRI, "captur", 0); if (!status) /* successful capture */ status = uiomove((caddr_t)bktr->bigbuf, count, uio); else printf ("bktr%d: read: tsleep error %d\n", unit, status); bktr->flags &= ~(METEOR_SINGLE | METEOR_WANT_MASK); return( status ); } /* * */ int bktr_write( dev_t dev, struct uio *uio, int ioflag ) { return( EINVAL ); /* XXX or ENXIO ? */ } /* * */ int bktr_ioctl( dev_t dev, ioctl_cmd_t cmd, caddr_t arg, int flag, struct proc* pr ) { bktr_ptr_t bktr; int unit; unit = UNIT(minor(dev)); if (unit >= NBKTR) /* unit out of range */ return( ENXIO ); bktr = &(brooktree[ unit ]); if (bktr->bigbuf == 0) /* no frame buffer allocated (ioctl failed) */ return( ENOMEM ); switch ( MINOR( minor(dev) ) ) { case VIDEO_DEV: return( video_ioctl( bktr, unit, cmd, arg, pr ) ); case TUNER_DEV: return( tuner_ioctl( bktr, unit, cmd, arg, pr ) ); } return( ENXIO ); } /* * video ioctls */ static int video_ioctl( bktr_ptr_t bktr, int unit, int cmd, caddr_t arg, struct proc* pr ) { bt848_ptr_t bt848; volatile u_char c_temp; unsigned int temp; unsigned int temp_iform; unsigned int error; struct meteor_geomet *geo; struct meteor_counts *cnt; struct meteor_video *video; struct bktr_capture_area *cap_area; vm_offset_t buf; int i; char char_temp; bt848 = bktr->base; switch ( cmd ) { case BT848SCLIP: /* set clip region */ bktr->max_clip_node = 0; memcpy(&bktr->clip_list, arg, sizeof(bktr->clip_list)); for (i = 0; i < BT848_MAX_CLIP_NODE; i++) { if (bktr->clip_list[i].y_min == 0 && bktr->clip_list[i].y_max == 0) break; } bktr->max_clip_node = i; /* make sure that the list contains a valid clip secquence */ /* the clip rectangles should be sorted by x then by y as the second order sort key */ /* clip rectangle list is terminated by y_min and y_max set to 0 */ /* to disable clipping set y_min and y_max to 0 in the first clip rectangle . The first clip rectangle is clip_list[0]. */ if (bktr->max_clip_node == 0 && (bktr->clip_list[0].y_min != 0 && bktr->clip_list[0].y_max != 0)) { return EINVAL; } for (i = 0; i < BT848_MAX_CLIP_NODE - 1 ; i++) { if (bktr->clip_list[i].y_min == 0 && bktr->clip_list[i].y_max == 0) { break; } if ( bktr->clip_list[i+1].y_min != 0 && bktr->clip_list[i+1].y_max != 0 && bktr->clip_list[i].x_min > bktr->clip_list[i+1].x_min ) { bktr->max_clip_node = 0; return (EINVAL); } if (bktr->clip_list[i].x_min >= bktr->clip_list[i].x_max || bktr->clip_list[i].y_min >= bktr->clip_list[i].y_max || bktr->clip_list[i].x_min < 0 || bktr->clip_list[i].x_max < 0 || bktr->clip_list[i].y_min < 0 || bktr->clip_list[i].y_max < 0 ) { bktr->max_clip_node = 0; return (EINVAL); } } bktr->dma_prog_loaded = FALSE; break; case METEORSTATUS: /* get Bt848 status */ c_temp = bt848->dstatus; temp = 0; if (!(c_temp & 0x40)) temp |= METEOR_STATUS_HCLK; if (!(c_temp & 0x10)) temp |= METEOR_STATUS_FIDT; *(u_short *)arg = temp; break; case BT848SFMT: /* set input format */ temp = *(unsigned long*)arg & BT848_IFORM_FORMAT; temp_iform = bt848->iform; temp_iform &= ~BT848_IFORM_FORMAT; temp_iform &= ~BT848_IFORM_XTSEL; bt848->iform = (temp_iform | temp | format_params[temp].iform_xtsel); switch( temp ) { case BT848_IFORM_F_AUTO: bktr->flags = (bktr->flags & ~METEOR_FORM_MASK) | METEOR_AUTOMODE; break; case BT848_IFORM_F_NTSCM: case BT848_IFORM_F_NTSCJ: bktr->flags = (bktr->flags & ~METEOR_FORM_MASK) | METEOR_NTSC; bt848->adelay = format_params[temp].adelay; bt848->bdelay = format_params[temp].bdelay; bktr->format_params = temp; break; case BT848_IFORM_F_PALBDGHI: case BT848_IFORM_F_PALN: case BT848_IFORM_F_SECAM: case BT848_IFORM_F_RSVD: case BT848_IFORM_F_PALM: bktr->flags = (bktr->flags & ~METEOR_FORM_MASK) | METEOR_PAL; bt848->adelay = format_params[temp].adelay; bt848->bdelay = format_params[temp].bdelay; bktr->format_params = temp; break; } bktr->dma_prog_loaded = FALSE; break; case METEORSFMT: /* set input format */ temp_iform = bt848->iform; temp_iform &= ~BT848_IFORM_FORMAT; temp_iform &= ~BT848_IFORM_XTSEL; switch(*(unsigned long *)arg & METEOR_FORM_MASK ) { case 0: /* default */ case METEOR_FMT_NTSC: bktr->flags = (bktr->flags & ~METEOR_FORM_MASK) | METEOR_NTSC; bt848->iform = temp_iform | BT848_IFORM_F_NTSCM | format_params[BT848_IFORM_F_NTSCM].iform_xtsel; bt848->adelay = format_params[BT848_IFORM_F_NTSCM].adelay; bt848->bdelay = format_params[BT848_IFORM_F_NTSCM].bdelay; bktr->format_params = BT848_IFORM_F_NTSCM; break; case METEOR_FMT_PAL: bktr->flags = (bktr->flags & ~METEOR_FORM_MASK) | METEOR_PAL; bt848->iform = temp_iform | BT848_IFORM_F_PALBDGHI | format_params[BT848_IFORM_F_PALBDGHI].iform_xtsel; bt848->adelay = format_params[BT848_IFORM_F_PALBDGHI].adelay; bt848->bdelay = format_params[BT848_IFORM_F_PALBDGHI].bdelay; bktr->format_params = BT848_IFORM_F_PALBDGHI; break; case METEOR_FMT_AUTOMODE: bktr->flags = (bktr->flags & ~METEOR_FORM_MASK) | METEOR_AUTOMODE; bt848->iform = temp_iform | BT848_IFORM_F_AUTO | format_params[BT848_IFORM_F_AUTO].iform_xtsel; break; default: return( EINVAL ); } bktr->dma_prog_loaded = FALSE; break; case METEORGFMT: /* get input format */ *(u_long *)arg = bktr->flags & METEOR_FORM_MASK; break; case BT848GFMT: /* get input format */ *(u_long *)arg = bt848->iform & BT848_IFORM_FORMAT; break; case METEORSCOUNT: /* (re)set error counts */ cnt = (struct meteor_counts *) arg; bktr->fifo_errors = cnt->fifo_errors; bktr->dma_errors = cnt->dma_errors; bktr->frames_captured = cnt->frames_captured; bktr->even_fields_captured = cnt->even_fields_captured; bktr->odd_fields_captured = cnt->odd_fields_captured; break; case METEORGCOUNT: /* get error counts */ cnt = (struct meteor_counts *) arg; cnt->fifo_errors = bktr->fifo_errors; cnt->dma_errors = bktr->dma_errors; cnt->frames_captured = bktr->frames_captured; cnt->even_fields_captured = bktr->even_fields_captured; cnt->odd_fields_captured = bktr->odd_fields_captured; break; case METEORGVIDEO: video = (struct meteor_video *)arg; video->addr = bktr->video.addr; video->width = bktr->video.width; video->banksize = bktr->video.banksize; video->ramsize = bktr->video.ramsize; break; case METEORSVIDEO: video = (struct meteor_video *)arg; bktr->video.addr = video->addr; bktr->video.width = video->width; bktr->video.banksize = video->banksize; bktr->video.ramsize = video->ramsize; break; case METEORSFPS: set_fps(bktr, *(u_short *)arg); break; case METEORGFPS: *(u_short *)arg = bktr->fps; break; case METEORSHUE: /* set hue */ bt848->hue = (*(u_char *) arg) & 0xff; break; case METEORGHUE: /* get hue */ *(u_char *)arg = bt848->hue; break; case METEORSBRIG: /* set brightness */ char_temp = ( *(u_char *)arg & 0xff) - 128; bt848->bright = char_temp; break; case METEORGBRIG: /* get brightness */ *(u_char *)arg = bt848->bright; break; case METEORSCSAT: /* set chroma saturation */ temp = (int)*(u_char *)arg; bt848->sat_u_lo = bt848->sat_v_lo = (temp << 1) & 0xff; bt848->e_control &= ~(BT848_E_CONTROL_SAT_U_MSB | BT848_E_CONTROL_SAT_V_MSB); bt848->o_control &= ~(BT848_O_CONTROL_SAT_U_MSB | BT848_O_CONTROL_SAT_V_MSB); if ( temp & BIT_SEVEN_HIGH ) { bt848->e_control |= (BT848_E_CONTROL_SAT_U_MSB | BT848_E_CONTROL_SAT_V_MSB); bt848->o_control |= (BT848_O_CONTROL_SAT_U_MSB | BT848_O_CONTROL_SAT_V_MSB); } break; case METEORGCSAT: /* get chroma saturation */ temp = (bt848->sat_v_lo >> 1) & 0xff; if ( bt848->e_control & BT848_E_CONTROL_SAT_V_MSB ) temp |= BIT_SEVEN_HIGH; *(u_char *)arg = (u_char)temp; break; case METEORSCONT: /* set contrast */ temp = (int)*(u_char *)arg & 0xff; temp <<= 1; bt848->contrast_lo = temp & 0xff; bt848->e_control &= ~BT848_E_CONTROL_CON_MSB; bt848->o_control &= ~BT848_O_CONTROL_CON_MSB; bt848->e_control |= ((temp & 0x100) >> 6 ) & BT848_E_CONTROL_CON_MSB; bt848->o_control |= ((temp & 0x100) >> 6 ) & BT848_O_CONTROL_CON_MSB; break; case METEORGCONT: /* get contrast */ temp = (int)bt848->contrast_lo & 0xff; temp |= ((int)bt848->o_control & 0x04) << 6; *(u_char *)arg = (u_char)((temp >> 1) & 0xff); break; case BT848SCBUF: /* set Clear-Buffer-on-start flag */ bktr->clr_on_start = (*(int *)arg != 0); break; case BT848GCBUF: /* get Clear-Buffer-on-start flag */ *(int *)arg = (int) bktr->clr_on_start; break; case METEORSSIGNAL: if(*(int *)arg == 0 || *(int *)arg >= NSIG) { return( EINVAL ); break; } bktr->signal = *(int *) arg; bktr->proc = pr; break; case METEORGSIGNAL: *(int *)arg = bktr->signal; break; case METEORCAPTUR: temp = bktr->flags; switch (*(int *) arg) { case METEOR_CAP_SINGLE: if (bktr->bigbuf==0) /* no frame buffer allocated */ return( ENOMEM ); /* already capturing */ if (temp & METEOR_CAP_MASK) return( EIO ); start_capture(bktr, METEOR_SINGLE); /* wait for capture to complete */ bt848->int_stat = ALL_INTS_CLEARED; bt848->gpio_dma_ctl = FIFO_ENABLED; bt848->gpio_dma_ctl = bktr->capcontrol; bt848->int_mask = BT848_INT_MYSTERYBIT | BT848_INT_RISCI | BT848_INT_VSYNC | BT848_INT_FMTCHG; bt848->cap_ctl = bktr->bktr_cap_ctl; error = tsleep((caddr_t)bktr, BKTRPRI, "captur", hz); if (error && (error != ERESTART)) { /* Here if we didn't get complete frame */ #ifdef DIAGNOSTIC printf( "bktr%d: ioctl: tsleep error %d %x\n", unit, error, bt848->risc_count); #endif /* stop dma */ bt848->int_mask = ALL_INTS_DISABLED; /* disable risc, leave fifo running */ bt848->gpio_dma_ctl = FIFO_ENABLED; } bktr->flags &= ~(METEOR_SINGLE|METEOR_WANT_MASK); /* FIXME: should we set bt848->int_stat ??? */ break; case METEOR_CAP_CONTINOUS: if (bktr->bigbuf==0) /* no frame buffer allocated */ return( ENOMEM ); /* already capturing */ if (temp & METEOR_CAP_MASK) return( EIO ); start_capture(bktr, METEOR_CONTIN); bt848->int_stat = bt848->int_stat; bt848->gpio_dma_ctl = FIFO_ENABLED; bt848->gpio_dma_ctl = bktr->capcontrol; bt848->cap_ctl = bktr->bktr_cap_ctl; bt848->int_mask = BT848_INT_MYSTERYBIT | BT848_INT_RISCI | BT848_INT_VSYNC | BT848_INT_FMTCHG; #ifdef BT848_DUMP dump_bt848( bt848 ); #endif break; case METEOR_CAP_STOP_CONT: if (bktr->flags & METEOR_CONTIN) { /* turn off capture */ bt848->gpio_dma_ctl = FIFO_RISC_DISABLED; bt848->cap_ctl = CAPTURE_OFF; bt848->int_mask = ALL_INTS_DISABLED; bktr->flags &= ~(METEOR_CONTIN | METEOR_WANT_MASK); } } break; case METEORSETGEO: /* can't change parameters while capturing */ if (bktr->flags & METEOR_CAP_MASK) return( EBUSY ); geo = (struct meteor_geomet *) arg; error = 0; /* Either even or odd, if even & odd, then these a zero */ if ((geo->oformat & METEOR_GEO_ODD_ONLY) && (geo->oformat & METEOR_GEO_EVEN_ONLY)) { printf( "bktr%d: ioctl: Geometry odd or even only.\n", unit); return( EINVAL ); } /* set/clear even/odd flags */ if (geo->oformat & METEOR_GEO_ODD_ONLY) bktr->flags |= METEOR_ONLY_ODD_FIELDS; else bktr->flags &= ~METEOR_ONLY_ODD_FIELDS; if (geo->oformat & METEOR_GEO_EVEN_ONLY) bktr->flags |= METEOR_ONLY_EVEN_FIELDS; else bktr->flags &= ~METEOR_ONLY_EVEN_FIELDS; if ((geo->columns & 0x3fe) != geo->columns) { printf( "bktr%d: ioctl: %d: columns too large or not even.\n", unit, geo->columns); error = EINVAL; } if (((geo->rows & 0x7fe) != geo->rows) || ((geo->oformat & METEOR_GEO_FIELD_MASK) && ((geo->rows & 0x3fe) != geo->rows)) ) { printf( "bktr%d: ioctl: %d: rows too large or not even.\n", unit, geo->rows); error = EINVAL; } if (geo->frames > 32) { printf("bktr%d: ioctl: too many frames.\n", unit); error = EINVAL; } if (error) return( error ); bktr->dma_prog_loaded = FALSE; bt848->gpio_dma_ctl = FIFO_RISC_DISABLED; bt848->int_mask = ALL_INTS_DISABLED; if ((temp=(geo->rows * geo->columns * geo->frames * 2))) { if (geo->oformat & METEOR_GEO_RGB24) temp = temp * 2; /* meteor_mem structure for SYNC Capture */ if (geo->frames > 1) temp += PAGE_SIZE; temp = btoc(temp); if ((int) temp > bktr->alloc_pages && bktr->video.addr == 0) { buf = get_bktr_mem(unit, temp*PAGE_SIZE); if (buf != 0) { kmem_free(kernel_map, bktr->bigbuf, (bktr->alloc_pages * PAGE_SIZE)); bktr->bigbuf = buf; bktr->alloc_pages = temp; if (bootverbose) printf( "bktr%d: ioctl: Allocating %d bytes\n", unit, temp*PAGE_SIZE); } else error = ENOMEM; } } if (error) return error; bktr->rows = geo->rows; bktr->cols = geo->columns; bktr->frames = geo->frames; /* Pixel format (if in meteor pixfmt compatibility mode) */ if ( bktr->pixfmt_compat ) { bktr->format = METEOR_GEO_YUV_422; switch (geo->oformat & METEOR_GEO_OUTPUT_MASK) { case 0: /* default */ case METEOR_GEO_RGB16: bktr->format = METEOR_GEO_RGB16; break; case METEOR_GEO_RGB24: bktr->format = METEOR_GEO_RGB24; break; case METEOR_GEO_YUV_422: bktr->format = METEOR_GEO_YUV_422; if (geo->oformat & METEOR_GEO_YUV_12) bktr->format = METEOR_GEO_YUV_12; break; case METEOR_GEO_YUV_PACKED: bktr->format = METEOR_GEO_YUV_PACKED; break; } bktr->pixfmt = oformat_meteor_to_bt( bktr->format ); } if (bktr->flags & METEOR_CAP_MASK) { if (bktr->flags & (METEOR_CONTIN|METEOR_SYNCAP)) { switch(bktr->flags & METEOR_ONLY_FIELDS_MASK) { case METEOR_ONLY_ODD_FIELDS: bktr->flags |= METEOR_WANT_ODD; break; case METEOR_ONLY_EVEN_FIELDS: bktr->flags |= METEOR_WANT_EVEN; break; default: bktr->flags |= METEOR_WANT_MASK; break; } start_capture(bktr, METEOR_CONTIN); bt848->int_stat = bt848->int_stat; bt848->gpio_dma_ctl = FIFO_ENABLED; bt848->gpio_dma_ctl = bktr->capcontrol; bt848->int_mask = BT848_INT_MYSTERYBIT | BT848_INT_VSYNC | BT848_INT_FMTCHG; } } break; /* end of METEORSETGEO */ /* FIXME. The Capture Area currently has the following restrictions: GENERAL y_offset may need to be even in interlaced modes RGB24 - Interlaced mode x_size must be greater than or equal to 1.666*METEORSETGEO width (cols) y_size must be greater than or equal to METEORSETGEO height (rows) RGB24 - Even Only (or Odd Only) mode x_size must be greater than or equal to 1.666*METEORSETGEO width (cols) y_size must be greater than or equal to 2*METEORSETGEO height (rows) YUV12 - Interlaced mode x_size must be greater than or equal to METEORSETGEO width (cols) y_size must be greater than or equal to METEORSETGEO height (rows) YUV12 - Even Only (or Odd Only) mode x_size must be greater than or equal to METEORSETGEO width (cols) y_size must be greater than or equal to 2*METEORSETGEO height (rows) */ case BT848_SCAPAREA: /* set capture area of each video frame */ /* can't change parameters while capturing */ if (bktr->flags & METEOR_CAP_MASK) return( EBUSY ); cap_area = (struct bktr_capture_area *) arg; bktr->capture_area_x_offset = cap_area->x_offset; bktr->capture_area_y_offset = cap_area->y_offset; bktr->capture_area_x_size = cap_area->x_size; bktr->capture_area_y_size = cap_area->y_size; bktr->capture_area_enabled = TRUE; bktr->dma_prog_loaded = FALSE; break; case BT848_GCAPAREA: /* get capture area of each video frame */ cap_area = (struct bktr_capture_area *) arg; if (bktr->capture_area_enabled == FALSE) { cap_area->x_offset = 0; cap_area->y_offset = 0; cap_area->x_size = format_params[ bktr->format_params].scaled_hactive; cap_area->y_size = format_params[ bktr->format_params].vactive; } else { cap_area->x_offset = bktr->capture_area_x_offset; cap_area->y_offset = bktr->capture_area_y_offset; cap_area->x_size = bktr->capture_area_x_size; cap_area->y_size = bktr->capture_area_y_size; } break; default: return common_ioctl( bktr, bt848, cmd, arg ); } return( 0 ); } /* * tuner ioctls */ static int tuner_ioctl( bktr_ptr_t bktr, int unit, int cmd, caddr_t arg, struct proc* pr ) { bt848_ptr_t bt848; int tmp_int; unsigned int temp, temp1; int offset; int count; u_char *buf; u_long par; u_char write; int i2c_addr; int i2c_port; u_long data; bt848 = bktr->base; switch ( cmd ) { case REMOTE_GETKEY: /* Read the last key pressed by the Remote Control */ if (bktr->remote_control == 0) return (EINVAL); remote_read(bktr, (struct bktr_remote *)arg); break; #if defined( TUNER_AFC ) case TVTUNER_SETAFC: bktr->tuner.afc = (*(int *)arg != 0); break; case TVTUNER_GETAFC: *(int *)arg = bktr->tuner.afc; /* XXX Perhaps use another bit to indicate AFC success? */ break; #endif /* TUNER_AFC */ case TVTUNER_SETCHNL: temp_mute( bktr, TRUE ); temp = tv_channel( bktr, (int)*(unsigned long *)arg ); temp_mute( bktr, FALSE ); if ( temp < 0 ) return( EINVAL ); *(unsigned long *)arg = temp; /* after every channel change, we must restart the MSP34xx */ /* audio chip to reselect NICAM STEREO or MONO audio */ if ( bktr->card.msp3400c ) msp_autodetect( bktr ); break; case TVTUNER_GETCHNL: *(unsigned long *)arg = bktr->tuner.channel; break; case TVTUNER_SETTYPE: temp = *(unsigned long *)arg; if ( (temp < CHNLSET_MIN) || (temp > CHNLSET_MAX) ) return( EINVAL ); bktr->tuner.chnlset = temp; break; case TVTUNER_GETTYPE: *(unsigned long *)arg = bktr->tuner.chnlset; break; case TVTUNER_GETSTATUS: temp = i2cRead( bktr, bktr->card.tuner_pllAddr + 1 ); *(unsigned long *)arg = temp & 0xff; break; case TVTUNER_SETFREQ: temp_mute( bktr, TRUE ); temp = tv_freq( bktr, (int)*(unsigned long *)arg ); temp_mute( bktr, FALSE ); if ( temp < 0 ) return( EINVAL ); *(unsigned long *)arg = temp; /* after every channel change, we must restart the MSP34xx */ /* audio chip to reselect NICAM STEREO or MONO audio */ if ( bktr->card.msp3400c ) msp_autodetect( bktr ); break; case TVTUNER_GETFREQ: *(unsigned long *)arg = bktr->tuner.frequency; break; case TVTUNER_GETCHNLSET: return tuner_getchnlset((struct bktr_chnlset *)arg); case BT848_SAUDIO: /* set audio channel */ if ( set_audio( bktr, *(int*)arg ) < 0 ) return( EIO ); break; /* hue is a 2's compliment number, -90' to +89.3' in 0.7' steps */ case BT848_SHUE: /* set hue */ bt848->hue = (u_char)(*(int*)arg & 0xff); break; case BT848_GHUE: /* get hue */ *(int*)arg = (signed char)(bt848->hue & 0xff); break; /* brightness is a 2's compliment #, -50 to +%49.6% in 0.39% steps */ case BT848_SBRIG: /* set brightness */ bt848->bright = (u_char)(*(int *)arg & 0xff); break; case BT848_GBRIG: /* get brightness */ *(int *)arg = (signed char)(bt848->bright & 0xff); break; /* */ case BT848_SCSAT: /* set chroma saturation */ tmp_int = *(int*)arg; temp = bt848->e_control; temp1 = bt848->o_control; if ( tmp_int & BIT_EIGHT_HIGH ) { temp |= (BT848_E_CONTROL_SAT_U_MSB | BT848_E_CONTROL_SAT_V_MSB); temp1 |= (BT848_O_CONTROL_SAT_U_MSB | BT848_O_CONTROL_SAT_V_MSB); } else { temp &= ~(BT848_E_CONTROL_SAT_U_MSB | BT848_E_CONTROL_SAT_V_MSB); temp1 &= ~(BT848_O_CONTROL_SAT_U_MSB | BT848_O_CONTROL_SAT_V_MSB); } bt848->sat_u_lo = (u_char)(tmp_int & 0xff); bt848->sat_v_lo = (u_char)(tmp_int & 0xff); bt848->e_control = temp; bt848->o_control = temp1; break; case BT848_GCSAT: /* get chroma saturation */ tmp_int = (int)(bt848->sat_v_lo & 0xff); if ( bt848->e_control & BT848_E_CONTROL_SAT_V_MSB ) tmp_int |= BIT_EIGHT_HIGH; *(int*)arg = tmp_int; break; /* */ case BT848_SVSAT: /* set chroma V saturation */ tmp_int = *(int*)arg; temp = bt848->e_control; temp1 = bt848->o_control; if ( tmp_int & BIT_EIGHT_HIGH) { temp |= BT848_E_CONTROL_SAT_V_MSB; temp1 |= BT848_O_CONTROL_SAT_V_MSB; } else { temp &= ~BT848_E_CONTROL_SAT_V_MSB; temp1 &= ~BT848_O_CONTROL_SAT_V_MSB; } bt848->sat_v_lo = (u_char)(tmp_int & 0xff); bt848->e_control = temp; bt848->o_control = temp1; break; case BT848_GVSAT: /* get chroma V saturation */ tmp_int = (int)bt848->sat_v_lo & 0xff; if ( bt848->e_control & BT848_E_CONTROL_SAT_V_MSB ) tmp_int |= BIT_EIGHT_HIGH; *(int*)arg = tmp_int; break; /* */ case BT848_SUSAT: /* set chroma U saturation */ tmp_int = *(int*)arg; temp = bt848->e_control; temp1 = bt848->o_control; if ( tmp_int & BIT_EIGHT_HIGH ) { temp |= BT848_E_CONTROL_SAT_U_MSB; temp1 |= BT848_O_CONTROL_SAT_U_MSB; } else { temp &= ~BT848_E_CONTROL_SAT_U_MSB; temp1 &= ~BT848_O_CONTROL_SAT_U_MSB; } bt848->sat_u_lo = (u_char)(tmp_int & 0xff); bt848->e_control = temp; bt848->o_control = temp1; break; case BT848_GUSAT: /* get chroma U saturation */ tmp_int = (int)bt848->sat_u_lo & 0xff; if ( bt848->e_control & BT848_E_CONTROL_SAT_U_MSB ) tmp_int |= BIT_EIGHT_HIGH; *(int*)arg = tmp_int; break; /* lr 970528 luma notch etc - 3 high bits of e_control/o_control */ case BT848_SLNOTCH: /* set luma notch */ tmp_int = (*(int *)arg & 0x7) << 5 ; bt848->e_control &= ~0xe0 ; bt848->o_control &= ~0xe0 ; bt848->e_control |= tmp_int ; bt848->o_control |= tmp_int ; break; case BT848_GLNOTCH: /* get luma notch */ *(int *)arg = (int) ( (bt848->e_control & 0xe0) >> 5) ; break; /* */ case BT848_SCONT: /* set contrast */ tmp_int = *(int*)arg; temp = bt848->e_control; temp1 = bt848->o_control; if ( tmp_int & BIT_EIGHT_HIGH ) { temp |= BT848_E_CONTROL_CON_MSB; temp1 |= BT848_O_CONTROL_CON_MSB; } else { temp &= ~BT848_E_CONTROL_CON_MSB; temp1 &= ~BT848_O_CONTROL_CON_MSB; } bt848->contrast_lo = (u_char)(tmp_int & 0xff); bt848->e_control = temp; bt848->o_control = temp1; break; case BT848_GCONT: /* get contrast */ tmp_int = (int)bt848->contrast_lo & 0xff; if ( bt848->e_control & BT848_E_CONTROL_CON_MSB ) tmp_int |= BIT_EIGHT_HIGH; *(int*)arg = tmp_int; break; /* FIXME: SCBARS and CCBARS require a valid int * */ /* argument to succeed, but its not used; consider */ /* using the arg to store the on/off state so */ /* there's only one ioctl() needed to turn cbars on/off */ case BT848_SCBARS: /* set colorbar output */ bt848->color_ctl_color_bars = 1; break; case BT848_CCBARS: /* clear colorbar output */ bt848->color_ctl_color_bars = 0; break; case BT848_GAUDIO: /* get audio channel */ temp = bktr->audio_mux_select; if ( bktr->audio_mute_state == TRUE ) temp |= AUDIO_MUTE; *(int*)arg = temp; break; case BT848_SBTSC: /* set audio channel */ if ( set_BTSC( bktr, *(int*)arg ) < 0 ) return( EIO ); break; case BT848_WEEPROM: /* write eeprom */ offset = (((struct eeProm *)arg)->offset); count = (((struct eeProm *)arg)->count); buf = &(((struct eeProm *)arg)->bytes[ 0 ]); if ( writeEEProm( bktr, offset, count, buf ) < 0 ) return( EIO ); break; case BT848_REEPROM: /* read eeprom */ offset = (((struct eeProm *)arg)->offset); count = (((struct eeProm *)arg)->count); buf = &(((struct eeProm *)arg)->bytes[ 0 ]); if ( readEEProm( bktr, offset, count, buf ) < 0 ) return( EIO ); break; case BT848_SIGNATURE: offset = (((struct eeProm *)arg)->offset); count = (((struct eeProm *)arg)->count); buf = &(((struct eeProm *)arg)->bytes[ 0 ]); if ( signCard( bktr, offset, count, buf ) < 0 ) return( EIO ); break; /* Ioctl's for direct gpio access */ #ifdef BKTR_GPIO_ACCESS case BT848_GPIO_GET_EN: *(int*)arg = bt848->gpio_out_en; break; case BT848_GPIO_SET_EN: bt848->gpio_out_en = *(int*)arg; break; case BT848_GPIO_GET_DATA: *(int*)arg = bt848->gpio_data; break; case BT848_GPIO_SET_DATA: bt848->gpio_data = *(int*)arg; break; #endif /* BKTR_GPIO_ACCESS */ /* Ioctl's for running the tuner device in radio mode */ case RADIO_GETMODE: *(unsigned char *)arg = bktr->tuner.radio_mode; break; case RADIO_SETMODE: bktr->tuner.radio_mode = *(unsigned char *)arg; break; case RADIO_GETFREQ: *(unsigned long *)arg = (bktr->tuner.frequency+407)*5; break; case RADIO_SETFREQ: /* The argument to this ioctl is NOT freq*16. It is ** freq*100. */ /* The radio in my stereo and the linear regression function ** in my HP48 have reached the conclusion that in order to ** set the radio tuner of the FM1216 to f MHz, the value to ** enter into the PLL is: f*20-407 ** If anyone has the exact values from the spec. sheet ** please forward them -- fj@login.dknet.dk */ temp=(int)*(unsigned long *)arg/5-407 +RADIO_OFFSET; #ifdef BKTR_RADIO_DEBUG printf("bktr%d: arg=%d temp=%d\n",unit,(int)*(unsigned long *)arg,temp); #endif #ifndef BKTR_RADIO_NOFREQCHECK /* According to the spec. sheet the band: 87.5MHz-108MHz */ /* is supported. */ if(temp<1343+RADIO_OFFSET || temp>1753+RADIO_OFFSET) { printf("bktr%d: Radio frequency out of range\n",unit); return(EINVAL); } #endif temp_mute( bktr, TRUE ); temp = tv_freq( bktr, temp ); temp_mute( bktr, FALSE ); #ifdef BKTR_RADIO_DEBUG if(temp) printf("bktr%d: tv_freq returned: %d\n",unit,temp); #endif if ( temp < 0 ) return( EINVAL ); *(unsigned long *)arg = temp; break; /* Luigi's I2CWR ioctl */ case BT848_I2CWR: par = *(u_long *)arg; write = (par >> 24) & 0xff ; i2c_addr = (par >> 16) & 0xff ; i2c_port = (par >> 8) & 0xff ; data = (par) & 0xff ; if (write) { i2cWrite( bktr, i2c_addr, i2c_port, data); } else { data = i2cRead( bktr, i2c_addr); } *(u_long *)arg = (par & 0xffffff00) | ( data & 0xff ); break; default: return common_ioctl( bktr, bt848, cmd, arg ); } return( 0 ); } /* * common ioctls */ int common_ioctl( bktr_ptr_t bktr, bt848_ptr_t bt848, int cmd, caddr_t arg ) { int pixfmt; unsigned int temp; struct meteor_pixfmt *pf_pub; switch (cmd) { case METEORSINPUT: /* set input device */ /* Bt848 has 3 MUX Inputs. Bt848a/849/878/879 has 4 MUX Inputs*/ /* On the original bt848 boards, */ /* Tuner is MUX0, RCA is MUX1, S-Video is MUX2 */ /* On the Hauppauge bt878 boards, */ /* Tuner is MUX0, RCA is MUX3 */ /* Unfortunatly Meteor driver codes DEV_RCA as DEV_0, so we */ /* stick with this system in our Meteor Emulation */ switch(*(unsigned long *)arg & METEOR_DEV_MASK) { /* this is the RCA video input */ case 0: /* default */ case METEOR_INPUT_DEV0: /* METEOR_INPUT_DEV_RCA: */ bktr->flags = (bktr->flags & ~METEOR_DEV_MASK) | METEOR_DEV0; bt848->iform &= ~BT848_IFORM_MUXSEL; /* work around for new Hauppauge 878 cards */ if ((bktr->card.card_id == CARD_HAUPPAUGE) && (bktr->id==BROOKTREE_878 || bktr->id==BROOKTREE_879) ) bt848->iform |= BT848_IFORM_M_MUX3; else bt848->iform |= BT848_IFORM_M_MUX1; bt848->e_control &= ~BT848_E_CONTROL_COMP; bt848->o_control &= ~BT848_O_CONTROL_COMP; set_audio( bktr, AUDIO_EXTERN ); break; /* this is the tuner input */ case METEOR_INPUT_DEV1: bktr->flags = (bktr->flags & ~METEOR_DEV_MASK) | METEOR_DEV1; bt848->iform &= ~BT848_IFORM_MUXSEL; bt848->iform |= BT848_IFORM_M_MUX0; bt848->e_control &= ~BT848_E_CONTROL_COMP; bt848->o_control &= ~BT848_O_CONTROL_COMP; set_audio( bktr, AUDIO_TUNER ); break; /* this is the S-VHS input, but with a composite camera */ case METEOR_INPUT_DEV2: bktr->flags = (bktr->flags & ~METEOR_DEV_MASK) | METEOR_DEV2; bt848->iform &= ~BT848_IFORM_MUXSEL; bt848->iform |= BT848_IFORM_M_MUX2; bt848->e_control &= ~BT848_E_CONTROL_COMP; bt848->o_control &= ~BT848_O_CONTROL_COMP; set_audio( bktr, AUDIO_EXTERN ); break; /* this is the S-VHS input */ case METEOR_INPUT_DEV_SVIDEO: bktr->flags = (bktr->flags & ~METEOR_DEV_MASK) | METEOR_DEV_SVIDEO; bt848->iform &= ~BT848_IFORM_MUXSEL; bt848->iform |= BT848_IFORM_M_MUX2; bt848->e_control |= BT848_E_CONTROL_COMP; bt848->o_control |= BT848_O_CONTROL_COMP; set_audio( bktr, AUDIO_EXTERN ); break; case METEOR_INPUT_DEV3: if ((bktr->id == BROOKTREE_848A) || (bktr->id == BROOKTREE_849) || (bktr->id == BROOKTREE_878) || (bktr->id == BROOKTREE_879) ) { bktr->flags = (bktr->flags & ~METEOR_DEV_MASK) | METEOR_DEV3; bt848->iform &= ~BT848_IFORM_MUXSEL; /* work around for new Hauppauge 878 cards */ if ((bktr->card.card_id == CARD_HAUPPAUGE) && (bktr->id==BROOKTREE_878 || bktr->id==BROOKTREE_879) ) bt848->iform |= BT848_IFORM_M_MUX1; else bt848->iform |= BT848_IFORM_M_MUX3; bt848->e_control &= ~BT848_E_CONTROL_COMP; bt848->o_control &= ~BT848_O_CONTROL_COMP; set_audio( bktr, AUDIO_EXTERN ); break; } default: return( EINVAL ); } break; case METEORGINPUT: /* get input device */ *(u_long *)arg = bktr->flags & METEOR_DEV_MASK; break; case METEORSACTPIXFMT: if (( *(int *)arg < 0 ) || ( *(int *)arg >= PIXFMT_TABLE_SIZE )) return( EINVAL ); bktr->pixfmt = *(int *)arg; bt848->color_ctl_swap = pixfmt_swap_flags( bktr->pixfmt ); bktr->pixfmt_compat = FALSE; break; case METEORGACTPIXFMT: *(int *)arg = bktr->pixfmt; break; case METEORGSUPPIXFMT : pf_pub = (struct meteor_pixfmt *)arg; pixfmt = pf_pub->index; if (( pixfmt < 0 ) || ( pixfmt >= PIXFMT_TABLE_SIZE )) return( EINVAL ); memcpy( pf_pub, &pixfmt_table[ pixfmt ].public, sizeof( *pf_pub ) ); /* Patch in our format index */ pf_pub->index = pixfmt; break; #if defined( STATUS_SUM ) case BT848_GSTATUS: /* reap status */ disable_intr(); temp = status_sum; status_sum = 0; enable_intr(); *(u_int*)arg = temp; break; #endif /* STATUS_SUM */ default: return( ENOTTY ); } return( 0 ); } /* * */ int bktr_mmap( dev_t dev, vm_offset_t offset, int nprot ) { int unit; bktr_ptr_t bktr; unit = UNIT(minor(dev)); if (unit >= NBKTR || MINOR(minor(dev)) > 0)/* could this happen here? */ return( -1 ); bktr = &(brooktree[ unit ]); if (nprot & PROT_EXEC) return( -1 ); if (offset < 0) return( -1 ); if (offset >= bktr->alloc_pages * PAGE_SIZE) return( -1 ); return( i386_btop(vtophys(bktr->bigbuf) + offset) ); } /****************************************************************************** * bt848 RISC programming routines: */ /* * */ #ifdef BT848_DEBUG static int dump_bt848( bt848_ptr_t bt848 ) { volatile u_char *bt848r = (u_char *)bt848; int r[60]={ 4, 8, 0xc, 0x8c, 0x10, 0x90, 0x14, 0x94, 0x18, 0x98, 0x1c, 0x9c, 0x20, 0xa0, 0x24, 0xa4, 0x28, 0x2c, 0xac, 0x30, 0x34, 0x38, 0x3c, 0x40, 0xc0, 0x48, 0x4c, 0xcc, 0x50, 0xd0, 0xd4, 0x60, 0x64, 0x68, 0x6c, 0xec, 0xd8, 0xdc, 0xe0, 0xe4, 0, 0, 0, 0 }; int i; for (i = 0; i < 40; i+=4) { printf(" Reg:value : \t%x:%x \t%x:%x \t %x:%x \t %x:%x\n", r[i], bt848r[r[i]], r[i+1], bt848r[r[i+1]], r[i+2], bt848r[r[i+2]], r[i+3], bt848r[r[i+3]]); } printf(" INT STAT %x \n", bt848->int_stat); printf(" Reg INT_MASK %x \n", bt848->int_mask); printf(" Reg GPIO_DMA_CTL %x \n", bt848->gpio_dma_ctl); return( 0 ); } #endif /* * build write instruction */ #define BKTR_FM1 0x6 /* packed data to follow */ #define BKTR_FM3 0xe /* planar data to follow */ #define BKTR_VRE 0x4 /* even field to follow */ #define BKTR_VRO 0xC /* odd field to follow */ #define BKTR_PXV 0x0 /* valid word (never used) */ #define BKTR_EOL 0x1 /* last dword, 4 bytes */ #define BKTR_SOL 0x2 /* first dword */ #define OP_WRITE (0x1 << 28) #define OP_SKIP (0x2 << 28) #define OP_WRITEC (0x5 << 28) #define OP_JUMP (0x7 << 28) #define OP_SYNC (0x8 << 28) #define OP_WRITE123 (0x9 << 28) #define OP_WRITES123 (0xb << 28) #define OP_SOL (1 << 27) /* first instr for scanline */ #define OP_EOL (1 << 26) bool_t notclipped (bktr_reg_t * bktr, int x, int width) { int i; bktr_clip_t * clip_node; bktr->clip_start = -1; bktr->last_y = 0; bktr->y = 0; bktr->y2 = width; bktr->line_length = width; bktr->yclip = -1; bktr->yclip2 = -1; bktr->current_col = 0; if (bktr->max_clip_node == 0 ) return TRUE; clip_node = (bktr_clip_t *) &bktr->clip_list[0]; for (i = 0; i < bktr->max_clip_node; i++ ) { clip_node = (bktr_clip_t *) &bktr->clip_list[i]; if (x >= clip_node->x_min && x <= clip_node->x_max ) { bktr->clip_start = i; return FALSE; } } return TRUE; } bool_t getline(bktr_reg_t *bktr, int x ) { int i, j; bktr_clip_t * clip_node ; if (bktr->line_length == 0 || bktr->current_col >= bktr->line_length) return FALSE; bktr->y = min(bktr->last_y, bktr->line_length); bktr->y2 = bktr->line_length; bktr->yclip = bktr->yclip2 = -1; for (i = bktr->clip_start; i < bktr->max_clip_node; i++ ) { clip_node = (bktr_clip_t *) &bktr->clip_list[i]; if (x >= clip_node->x_min && x <= clip_node->x_max) { if (bktr->last_y <= clip_node->y_min) { bktr->y = min(bktr->last_y, bktr->line_length); bktr->y2 = min(clip_node->y_min, bktr->line_length); bktr->yclip = min(clip_node->y_min, bktr->line_length); bktr->yclip2 = min(clip_node->y_max, bktr->line_length); bktr->last_y = bktr->yclip2; bktr->clip_start = i; for (j = i+1; j < bktr->max_clip_node; j++ ) { clip_node = (bktr_clip_t *) &bktr->clip_list[j]; if (x >= clip_node->x_min && x <= clip_node->x_max) { if (bktr->last_y >= clip_node->y_min) { bktr->yclip2 = min(clip_node->y_max, bktr->line_length); bktr->last_y = bktr->yclip2; bktr->clip_start = j; } } else break ; } return TRUE; } } } if (bktr->current_col <= bktr->line_length) { bktr->current_col = bktr->line_length; return TRUE; } return FALSE; } static bool_t split(bktr_reg_t * bktr, volatile u_long **dma_prog, int width , u_long operation, int pixel_width, volatile u_char ** target_buffer, int cols ) { u_long flag, flag2; struct meteor_pixfmt *pf = &pixfmt_table[ bktr->pixfmt ].public; u_int skip, start_skip; /* For RGB24, we need to align the component in FIFO Byte Lane 0 */ /* to the 1st byte in the mem dword containing our start addr. */ /* BTW, we know this pixfmt's 1st byte is Blue; thus the start addr */ /* must be Blue. */ start_skip = 0; if (( pf->type == METEOR_PIXTYPE_RGB ) && ( pf->Bpp == 3 )) switch ( ((uintptr_t) (volatile void *) *target_buffer) % 4 ) { case 2 : start_skip = 4 ; break; case 1 : start_skip = 8 ; break; } if ((width * pixel_width) < DMA_BT848_SPLIT ) { if ( width == cols) { flag = OP_SOL | OP_EOL; } else if (bktr->current_col == 0 ) { flag = OP_SOL; } else if (bktr->current_col == cols) { flag = OP_EOL; } else flag = 0; skip = 0; if (( flag & OP_SOL ) && ( start_skip > 0 )) { *(*dma_prog)++ = OP_SKIP | OP_SOL | start_skip; flag &= ~OP_SOL; skip = start_skip; } *(*dma_prog)++ = operation | flag | (width * pixel_width - skip); if (operation != OP_SKIP ) *(*dma_prog)++ = (uintptr_t) (volatile void *) *target_buffer; *target_buffer += width * pixel_width; bktr->current_col += width; } else { if (bktr->current_col == 0 && width == cols) { flag = OP_SOL ; flag2 = OP_EOL; } else if (bktr->current_col == 0 ) { flag = OP_SOL; flag2 = 0; } else if (bktr->current_col >= cols) { flag = 0; flag2 = OP_EOL; } else { flag = 0; flag2 = 0; } skip = 0; if (( flag & OP_SOL ) && ( start_skip > 0 )) { *(*dma_prog)++ = OP_SKIP | OP_SOL | start_skip; flag &= ~OP_SOL; skip = start_skip; } *(*dma_prog)++ = operation | flag | (width * pixel_width / 2 - skip); if (operation != OP_SKIP ) *(*dma_prog)++ = (uintptr_t) (volatile void *) *target_buffer ; *target_buffer += (width * pixel_width / 2) ; if ( operation == OP_WRITE ) operation = OP_WRITEC; *(*dma_prog)++ = operation | flag2 | (width * pixel_width / 2); *target_buffer += (width * pixel_width / 2) ; bktr->current_col += width; } return TRUE; } static void rgb_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ) { int i; bt848_ptr_t bt848; volatile u_long target_buffer, buffer, target,width; volatile u_long pitch; volatile u_long *dma_prog; struct meteor_pixfmt_internal *pf_int = &pixfmt_table[ bktr->pixfmt ]; u_int Bpp = pf_int->public.Bpp; bt848 = bktr->base; bt848->color_fmt = pf_int->color_fmt; bt848->vbi_pack_size = 0; bt848->vbi_pack_del = 0; bt848->adc = SYNC_LEVEL; bt848->oform = 0x00; bt848->e_vscale_hi |= 0x40; /* set chroma comb */ bt848->o_vscale_hi |= 0x40; bt848->e_vscale_hi &= ~0x80; /* clear Ycomb */ bt848->o_vscale_hi &= ~0x80; /* disable gamma correction removal */ bt848->color_ctl_gamma = 1; if (cols > 385 ) { bt848->e_vtc = 0; bt848->o_vtc = 0; } else { bt848->e_vtc = 1; bt848->o_vtc = 1; } bktr->capcontrol = 3 << 2 | 3; dma_prog = (u_long *) bktr->dma_prog; /* Construct Write */ if (bktr->video.addr) { target_buffer = (u_long) bktr->video.addr; pitch = bktr->video.width; } else { target_buffer = (u_long) vtophys(bktr->bigbuf); pitch = cols*Bpp; } buffer = target_buffer; /* contruct sync : for video packet format */ *dma_prog++ = OP_SYNC | 1 << 15 | BKTR_FM1; /* sync, mode indicator packed data */ *dma_prog++ = 0; /* NULL WORD */ width = cols; for (i = 0; i < (rows/interlace); i++) { target = target_buffer; if ( notclipped(bktr, i, width)) { split(bktr, (volatile u_long **) &dma_prog, bktr->y2 - bktr->y, OP_WRITE, Bpp, (volatile u_char **) &target, cols); } else { while(getline(bktr, i)) { if (bktr->y != bktr->y2 ) { split(bktr, (volatile u_long **) &dma_prog, bktr->y2 - bktr->y, OP_WRITE, Bpp, (volatile u_char **) &target, cols); } if (bktr->yclip != bktr->yclip2 ) { split(bktr,(volatile u_long **) &dma_prog, bktr->yclip2 - bktr->yclip, OP_SKIP, Bpp, (volatile u_char **) &target, cols); } } } target_buffer += interlace * pitch; } switch (i_flag) { case 1: /* sync vre */ *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRO; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 2: /* sync vro */ *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRE; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 3: /* sync vro */ *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRO; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; ; *dma_prog = (u_long ) vtophys(bktr->odd_dma_prog); break; } if (interlace == 2) { target_buffer = buffer + pitch; dma_prog = (u_long *) bktr->odd_dma_prog; /* sync vre IRQ bit */ *dma_prog++ = OP_SYNC | 1 << 15 | BKTR_FM1; *dma_prog++ = 0; /* NULL WORD */ width = cols; for (i = 0; i < (rows/interlace); i++) { target = target_buffer; if ( notclipped(bktr, i, width)) { split(bktr, (volatile u_long **) &dma_prog, bktr->y2 - bktr->y, OP_WRITE, Bpp, (volatile u_char **) &target, cols); } else { while(getline(bktr, i)) { if (bktr->y != bktr->y2 ) { split(bktr, (volatile u_long **) &dma_prog, bktr->y2 - bktr->y, OP_WRITE, Bpp, (volatile u_char **) &target, cols); } if (bktr->yclip != bktr->yclip2 ) { split(bktr, (volatile u_long **) &dma_prog, bktr->yclip2 - bktr->yclip, OP_SKIP, Bpp, (volatile u_char **) &target, cols); } } } target_buffer += interlace * pitch; } } /* sync vre IRQ bit */ *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRE; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP ; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog) ; *dma_prog++ = 0; /* NULL WORD */ } /* * */ static void yuvpack_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ) { int i; volatile unsigned int inst; volatile unsigned int inst3; volatile u_long target_buffer, buffer; bt848_ptr_t bt848; volatile u_long *dma_prog; struct meteor_pixfmt_internal *pf_int = &pixfmt_table[ bktr->pixfmt ]; int b; bt848 = bktr->base; bt848->color_fmt = pf_int->color_fmt; bt848->e_scloop |= BT848_E_SCLOOP_CAGC; /* enable chroma comb */ bt848->o_scloop |= BT848_O_SCLOOP_CAGC; bt848->color_ctl_rgb_ded = 1; bt848->color_ctl_gamma = 1; bt848->adc = SYNC_LEVEL; bktr->capcontrol = 1 << 6 | 1 << 4 | 1 << 2 | 3; bktr->capcontrol = 3 << 2 | 3; dma_prog = (u_long *) bktr->dma_prog; /* Construct Write */ /* write , sol, eol */ inst = OP_WRITE | OP_SOL | (cols); /* write , sol, eol */ inst3 = OP_WRITE | OP_EOL | (cols); if (bktr->video.addr) target_buffer = (u_long) bktr->video.addr; else target_buffer = (u_long) vtophys(bktr->bigbuf); buffer = target_buffer; /* contruct sync : for video packet format */ /* sync, mode indicator packed data */ *dma_prog++ = OP_SYNC | 1 << 15 | BKTR_FM1; *dma_prog++ = 0; /* NULL WORD */ b = cols; for (i = 0; i < (rows/interlace); i++) { *dma_prog++ = inst; *dma_prog++ = target_buffer; *dma_prog++ = inst3; *dma_prog++ = target_buffer + b; target_buffer += interlace*(cols * 2); } switch (i_flag) { case 1: /* sync vre */ *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRE; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 2: /* sync vro */ *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRO; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 3: /* sync vro */ *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRO; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP ; *dma_prog = (u_long ) vtophys(bktr->odd_dma_prog); break; } if (interlace == 2) { target_buffer = (u_long) buffer + cols*2; dma_prog = (u_long * ) bktr->odd_dma_prog; /* sync vre */ *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_FM1; *dma_prog++ = 0; /* NULL WORD */ for (i = 0; i < (rows/interlace) ; i++) { *dma_prog++ = inst; *dma_prog++ = target_buffer; *dma_prog++ = inst3; *dma_prog++ = target_buffer + b; target_buffer += interlace * ( cols*2); } } /* sync vro IRQ bit */ *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRE; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP ; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); *dma_prog++ = 0; /* NULL WORD */ } /* * */ static void yuv422_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ){ int i; volatile unsigned int inst; volatile u_long target_buffer, t1, buffer; bt848_ptr_t bt848; volatile u_long *dma_prog; struct meteor_pixfmt_internal *pf_int = &pixfmt_table[ bktr->pixfmt ]; bt848 = bktr->base; bt848->color_fmt = pf_int->color_fmt; dma_prog = (u_long *) bktr->dma_prog; bktr->capcontrol = 1 << 6 | 1 << 4 | 3; bt848->adc = SYNC_LEVEL; bt848->oform = 0x00; bt848->e_control |= BT848_E_CONTROL_LDEC; /* disable luma decimation */ bt848->o_control |= BT848_O_CONTROL_LDEC; bt848->e_scloop |= BT848_O_SCLOOP_CAGC; /* chroma agc enable */ bt848->o_scloop |= BT848_O_SCLOOP_CAGC; bt848->e_vscale_hi &= ~0x80; /* clear Ycomb */ bt848->o_vscale_hi &= ~0x80; bt848->e_vscale_hi |= 0x40; /* set chroma comb */ bt848->o_vscale_hi |= 0x40; /* disable gamma correction removal */ bt848->color_ctl_gamma = 1; /* Construct Write */ inst = OP_WRITE123 | OP_SOL | OP_EOL | (cols); if (bktr->video.addr) target_buffer = (u_long) bktr->video.addr; else target_buffer = (u_long) vtophys(bktr->bigbuf); buffer = target_buffer; t1 = buffer; /* contruct sync : for video packet format */ *dma_prog++ = OP_SYNC | 1 << 15 | BKTR_FM3; /*sync, mode indicator packed data*/ *dma_prog++ = 0; /* NULL WORD */ for (i = 0; i < (rows/interlace ) ; i++) { *dma_prog++ = inst; *dma_prog++ = cols/2 | cols/2 << 16; *dma_prog++ = target_buffer; *dma_prog++ = t1 + (cols*rows) + i*cols/2 * interlace; *dma_prog++ = t1 + (cols*rows) + (cols*rows/2) + i*cols/2 * interlace; target_buffer += interlace*cols; } switch (i_flag) { case 1: *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRE; /*sync vre*/ *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP ; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 2: *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRO; /*sync vre*/ *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 3: *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRO; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP ; *dma_prog = (u_long ) vtophys(bktr->odd_dma_prog); break; } if (interlace == 2) { dma_prog = (u_long * ) bktr->odd_dma_prog; target_buffer = (u_long) buffer + cols; t1 = buffer + cols/2; *dma_prog++ = OP_SYNC | 1 << 15 | BKTR_FM3; *dma_prog++ = 0; /* NULL WORD */ for (i = 0; i < (rows/interlace ) ; i++) { *dma_prog++ = inst; *dma_prog++ = cols/2 | cols/2 << 16; *dma_prog++ = target_buffer; *dma_prog++ = t1 + (cols*rows) + i*cols/2 * interlace; *dma_prog++ = t1 + (cols*rows) + (cols*rows/2) + i*cols/2 * interlace; target_buffer += interlace*cols; } } *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRE; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP ; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog) ; *dma_prog++ = 0; /* NULL WORD */ } /* * */ static void yuv12_prog( bktr_ptr_t bktr, char i_flag, int cols, int rows, int interlace ){ int i; volatile unsigned int inst; volatile unsigned int inst1; volatile u_long target_buffer, t1, buffer; bt848_ptr_t bt848; volatile u_long *dma_prog; struct meteor_pixfmt_internal *pf_int = &pixfmt_table[ bktr->pixfmt ]; bt848 = bktr->base; bt848->color_fmt = pf_int->color_fmt; dma_prog = (u_long *) bktr->dma_prog; bktr->capcontrol = 1 << 6 | 1 << 4 | 3; bt848->adc = SYNC_LEVEL; bt848->oform = 0x0; /* Construct Write */ inst = OP_WRITE123 | OP_SOL | OP_EOL | (cols); inst1 = OP_WRITES123 | OP_SOL | OP_EOL | (cols); if (bktr->video.addr) target_buffer = (u_long) bktr->video.addr; else target_buffer = (u_long) vtophys(bktr->bigbuf); buffer = target_buffer; t1 = buffer; *dma_prog++ = OP_SYNC | 1 << 15 | BKTR_FM3; /*sync, mode indicator packed data*/ *dma_prog++ = 0; /* NULL WORD */ for (i = 0; i < (rows/interlace )/2 ; i++) { *dma_prog++ = inst; *dma_prog++ = cols/2 | (cols/2 << 16); *dma_prog++ = target_buffer; *dma_prog++ = t1 + (cols*rows) + i*cols/2 * interlace; *dma_prog++ = t1 + (cols*rows) + (cols*rows/4) + i*cols/2 * interlace; target_buffer += interlace*cols; *dma_prog++ = inst1; *dma_prog++ = cols/2 | (cols/2 << 16); *dma_prog++ = target_buffer; target_buffer += interlace*cols; } switch (i_flag) { case 1: *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRE; /*sync vre*/ *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 2: *dma_prog++ = OP_SYNC | 1 << 24 | BKTR_VRO; /*sync vro*/ *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); return; case 3: *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRO; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP ; *dma_prog = (u_long ) vtophys(bktr->odd_dma_prog); break; } if (interlace == 2) { dma_prog = (u_long * ) bktr->odd_dma_prog; target_buffer = (u_long) buffer + cols; t1 = buffer + cols/2; *dma_prog++ = OP_SYNC | 1 << 15 | BKTR_FM3; *dma_prog++ = 0; /* NULL WORD */ for (i = 0; i < ((rows/interlace )/2 ) ; i++) { *dma_prog++ = inst; *dma_prog++ = cols/2 | (cols/2 << 16); *dma_prog++ = target_buffer; *dma_prog++ = t1 + (cols*rows) + i*cols/2 * interlace; *dma_prog++ = t1 + (cols*rows) + (cols*rows/4) + i*cols/2 * interlace; target_buffer += interlace*cols; *dma_prog++ = inst1; *dma_prog++ = cols/2 | (cols/2 << 16); *dma_prog++ = target_buffer; target_buffer += interlace*cols; } } *dma_prog++ = OP_SYNC | 1 << 24 | 1 << 15 | BKTR_VRE; *dma_prog++ = 0; /* NULL WORD */ *dma_prog++ = OP_JUMP; *dma_prog++ = (u_long ) vtophys(bktr->dma_prog); *dma_prog++ = 0; /* NULL WORD */ } /* * */ static void build_dma_prog( bktr_ptr_t bktr, char i_flag ) { int rows, cols, interlace; bt848_ptr_t bt848; int tmp_int; unsigned int temp; struct format_params *fp; struct meteor_pixfmt_internal *pf_int = &pixfmt_table[ bktr->pixfmt ]; fp = &format_params[bktr->format_params]; bt848 = bktr->base; bt848->int_mask = ALL_INTS_DISABLED; /* disable FIFO & RISC, leave other bits alone */ bt848->gpio_dma_ctl &= ~FIFO_RISC_ENABLED; /* set video parameters */ if (bktr->capture_area_enabled) temp = ((quad_t ) fp->htotal* (quad_t) bktr->capture_area_x_size * 4096 / fp->scaled_htotal / bktr->cols) - 4096; else temp = ((quad_t ) fp->htotal* (quad_t) fp->scaled_hactive * 4096 / fp->scaled_htotal / bktr->cols) - 4096; /* printf("HSCALE value is %d\n",temp); */ bt848->e_hscale_lo = temp & 0xff; bt848->o_hscale_lo = temp & 0xff; bt848->e_hscale_hi = (temp >> 8) & 0xff; bt848->o_hscale_hi = (temp >> 8) & 0xff; /* horizontal active */ temp = bktr->cols; /* printf("HACTIVE value is %d\n",temp); */ bt848->e_hactive_lo = temp & 0xff; bt848->o_hactive_lo = temp & 0xff; bt848->e_crop &= ~0x3; bt848->o_crop &= ~0x3; bt848->e_crop |= (temp >> 8) & 0x3; bt848->o_crop |= (temp >> 8) & 0x3; /* horizontal delay */ if (bktr->capture_area_enabled) temp = ( (fp->hdelay* fp->scaled_hactive + bktr->capture_area_x_offset* fp->scaled_htotal) * bktr->cols) / (bktr->capture_area_x_size * fp->hactive); else temp = (fp->hdelay * bktr->cols) / fp->hactive; temp = temp & 0x3fe; /* printf("HDELAY value is %d\n",temp); */ bt848->e_delay_lo = temp & 0xff; bt848->o_delay_lo = temp & 0xff; bt848->e_crop &= ~0xc; bt848->o_crop &= ~0xc; bt848->e_crop |= (temp >> 6) & 0xc; bt848->o_crop |= (temp >> 6) & 0xc; /* vertical scale */ if (bktr->capture_area_enabled) { if (bktr->flags & METEOR_ONLY_ODD_FIELDS || bktr->flags & METEOR_ONLY_EVEN_FIELDS) tmp_int = 65536 - (((bktr->capture_area_y_size * 256 + (bktr->rows/2)) / bktr->rows) - 512); else { tmp_int = 65536 - (((bktr->capture_area_y_size * 512 + (bktr->rows / 2)) / bktr->rows) - 512); } } else { if (bktr->flags & METEOR_ONLY_ODD_FIELDS || bktr->flags & METEOR_ONLY_EVEN_FIELDS) tmp_int = 65536 - (((fp->vactive * 256 + (bktr->rows/2)) / bktr->rows) - 512); else { tmp_int = 65536 - (((fp->vactive * 512 + (bktr->rows / 2)) / bktr->rows) - 512); } } tmp_int &= 0x1fff; /* printf("VSCALE value is %d\n",tmp_int); */ bt848->e_vscale_lo = tmp_int & 0xff; bt848->o_vscale_lo = tmp_int & 0xff; bt848->e_vscale_hi &= ~0x1f; bt848->o_vscale_hi &= ~0x1f; bt848->e_vscale_hi |= (tmp_int >> 8) & 0x1f; bt848->o_vscale_hi |= (tmp_int >> 8) & 0x1f; /* vertical active */ if (bktr->capture_area_enabled) temp = bktr->capture_area_y_size; else temp = fp->vactive; /* printf("VACTIVE is %d\n",temp); */ bt848->e_crop &= ~0x30; bt848->e_crop |= (temp >> 4) & 0x30; bt848->e_vactive_lo = temp & 0xff; bt848->o_crop &= ~0x30; bt848->o_crop |= (temp >> 4) & 0x30; bt848->o_vactive_lo = temp & 0xff; /* vertical delay */ if (bktr->capture_area_enabled) temp = fp->vdelay + (bktr->capture_area_y_offset); else temp = fp->vdelay; /* printf("VDELAY is %d\n",temp); */ bt848->e_crop &= ~0xC0; bt848->e_crop |= (temp >> 2) & 0xC0; bt848->e_vdelay_lo = temp & 0xff; bt848->o_crop &= ~0xC0; bt848->o_crop |= (temp >> 2) & 0xC0; bt848->o_vdelay_lo = temp & 0xff; /* end of video params */ if ((bktr->xtal_pll_mode == BT848_USE_PLL) && (fp->iform_xtsel==BT848_IFORM_X_XT1)) { bt848->tgctrl=8; /* Select PLL mode */ } else { bt848->tgctrl=0; /* Select Normal xtal 0/xtal 1 mode */ } /* capture control */ switch (i_flag) { case 1: bktr->bktr_cap_ctl = (BT848_CAP_CTL_DITH_FRAME | BT848_CAP_CTL_EVEN); bt848->e_vscale_hi &= ~0x20; bt848->o_vscale_hi &= ~0x20; interlace = 1; break; case 2: bktr->bktr_cap_ctl = (BT848_CAP_CTL_DITH_FRAME | BT848_CAP_CTL_ODD); bt848->e_vscale_hi &= ~0x20; bt848->o_vscale_hi &= ~0x20; interlace = 1; break; default: bktr->bktr_cap_ctl = (BT848_CAP_CTL_DITH_FRAME | BT848_CAP_CTL_EVEN | BT848_CAP_CTL_ODD); bt848->e_vscale_hi |= 0x20; bt848->o_vscale_hi |= 0x20; interlace = 2; break; } bt848->risc_strt_add = vtophys(bktr->dma_prog); rows = bktr->rows; cols = bktr->cols; if ( pf_int->public.type == METEOR_PIXTYPE_RGB ) { rgb_prog(bktr, i_flag, cols, rows, interlace); return; } if ( pf_int->public.type == METEOR_PIXTYPE_YUV ) { yuv422_prog(bktr, i_flag, cols, rows, interlace); bt848->color_ctl_swap = pixfmt_swap_flags( bktr->pixfmt ); return; } if ( pf_int->public.type == METEOR_PIXTYPE_YUV_PACKED ) { yuvpack_prog(bktr, i_flag, cols, rows, interlace); bt848->color_ctl_swap = pixfmt_swap_flags( bktr->pixfmt ); return; } if ( pf_int->public.type == METEOR_PIXTYPE_YUV_12 ) { yuv12_prog(bktr, i_flag, cols, rows, interlace); bt848->color_ctl_swap = pixfmt_swap_flags( bktr->pixfmt ); return; } return; } /****************************************************************************** * video & video capture specific routines: */ /* * */ static void start_capture( bktr_ptr_t bktr, unsigned type ) { bt848_ptr_t bt848; u_char i_flag; struct format_params *fp; fp = &format_params[bktr->format_params]; /* If requested, clear out capture buf first */ if (bktr->clr_on_start && (bktr->video.addr == 0)) { bzero((caddr_t)bktr->bigbuf, (size_t)bktr->rows * bktr->cols * bktr->frames * pixfmt_table[ bktr->pixfmt ].public.Bpp); } bt848 = bktr->base; bt848->dstatus = 0; bt848->int_stat = bt848->int_stat; bktr->flags |= type; bktr->flags &= ~METEOR_WANT_MASK; switch(bktr->flags & METEOR_ONLY_FIELDS_MASK) { case METEOR_ONLY_EVEN_FIELDS: bktr->flags |= METEOR_WANT_EVEN; i_flag = 1; break; case METEOR_ONLY_ODD_FIELDS: bktr->flags |= METEOR_WANT_ODD; i_flag = 2; break; default: bktr->flags |= METEOR_WANT_MASK; i_flag = 3; break; } /* TDEC is only valid for continuous captures */ if ( type == METEOR_SINGLE ) { u_short fps_save = bktr->fps; set_fps(bktr, fp->frame_rate); bktr->fps = fps_save; } else set_fps(bktr, bktr->fps); if (bktr->dma_prog_loaded == FALSE) { build_dma_prog(bktr, i_flag); bktr->dma_prog_loaded = TRUE; } bt848->risc_strt_add = vtophys(bktr->dma_prog); } /* * */ static void set_fps( bktr_ptr_t bktr, u_short fps ) { bt848_ptr_t bt848; struct format_params *fp; int i_flag; fp = &format_params[bktr->format_params]; bt848 = bktr->base; switch(bktr->flags & METEOR_ONLY_FIELDS_MASK) { case METEOR_ONLY_EVEN_FIELDS: bktr->flags |= METEOR_WANT_EVEN; i_flag = 1; break; case METEOR_ONLY_ODD_FIELDS: bktr->flags |= METEOR_WANT_ODD; i_flag = 1; break; default: bktr->flags |= METEOR_WANT_MASK; i_flag = 2; break; } bt848->gpio_dma_ctl = FIFO_RISC_DISABLED; bt848->int_stat = ALL_INTS_CLEARED; bktr->fps = fps; bt848->tdec = 0; if (fps < fp->frame_rate) bt848->tdec = i_flag*(fp->frame_rate - fps) & 0x3f; else bt848->tdec = 0; return; } /* * There is also a problem with range checking on the 7116. * It seems to only work for 22 bits, so the max size we can allocate * is 22 bits long or 4194304 bytes assuming that we put the beginning * of the buffer on a 2^24 bit boundary. The range registers will use * the top 8 bits of the dma start registers along with the bottom 22 * bits of the range register to determine if we go out of range. * This makes getting memory a real kludge. * */ #define RANGE_BOUNDARY (1<<22) static vm_offset_t get_bktr_mem( int unit, unsigned size ) { vm_offset_t addr = 0; addr = vm_page_alloc_contig(size, 0x100000, 0xffffffff, 1<<24); if (addr == 0) addr = vm_page_alloc_contig(size, 0x100000, 0xffffffff, PAGE_SIZE); if (addr == 0) { printf("bktr%d: Unable to allocate %d bytes of memory.\n", unit, size); } return( addr ); } /* * Given a pixfmt index, compute the bt848 swap_flags necessary to * achieve the specified swapping. * Note that without bt swapping, 2Bpp and 3Bpp modes are written * byte-swapped, and 4Bpp modes are byte and word swapped (see Table 6 * and read R->L). * Note also that for 3Bpp, we may additionally need to do some creative * SKIPing to align the FIFO bytelines with the target buffer (see split()). * This is abstracted here: e.g. no swaps = RGBA; byte & short swap = ABGR * as one would expect. */ static u_int pixfmt_swap_flags( int pixfmt ) { struct meteor_pixfmt *pf = &pixfmt_table[ pixfmt ].public; u_int swapf = 0; switch ( pf->Bpp ) { case 2 : swapf = ( pf->swap_bytes ? 0 : BSWAP ); break; case 3 : /* no swaps supported for 3bpp - makes no sense w/ bt848 */ break; case 4 : if ( pf->swap_bytes ) swapf = pf->swap_shorts ? 0 : WSWAP; else swapf = pf->swap_shorts ? BSWAP : (BSWAP | WSWAP); break; } return swapf; } /* * Converts meteor-defined pixel formats (e.g. METEOR_GEO_RGB16) into * our pixfmt_table indices. */ static int oformat_meteor_to_bt( u_long format ) { int i; struct meteor_pixfmt *pf1, *pf2; /* Find format in compatibility table */ for ( i = 0; i < METEOR_PIXFMT_TABLE_SIZE; i++ ) if ( meteor_pixfmt_table[i].meteor_format == format ) break; if ( i >= METEOR_PIXFMT_TABLE_SIZE ) return -1; pf1 = &meteor_pixfmt_table[i].public; /* Match it with an entry in master pixel format table */ for ( i = 0; i < PIXFMT_TABLE_SIZE; i++ ) { pf2 = &pixfmt_table[i].public; if (( pf1->type == pf2->type ) && ( pf1->Bpp == pf2->Bpp ) && !memcmp( pf1->masks, pf2->masks, sizeof( pf1->masks )) && ( pf1->swap_bytes == pf2->swap_bytes ) && ( pf1->swap_shorts == pf2->swap_shorts )) break; } if ( i >= PIXFMT_TABLE_SIZE ) return -1; return i; } /****************************************************************************** * i2c primitives: */ /* */ #define I2CBITTIME (0x5<<4) /* 5 * 0.48uS */ #define I2CBITTIME_878 (1 << 7) #define I2C_READ 0x01 #define I2C_COMMAND (I2CBITTIME | \ BT848_DATA_CTL_I2CSCL | \ BT848_DATA_CTL_I2CSDA) #define I2C_COMMAND_878 (I2CBITTIME_878 | \ BT848_DATA_CTL_I2CSCL | \ BT848_DATA_CTL_I2CSDA) /* Select between old i2c code and new iicbus / smbus code */ #if defined(__FreeBSD__) /* * The hardware interface is actually SMB commands */ static int i2cWrite( bktr_ptr_t bktr, int addr, int byte1, int byte2 ) { char cmd; if (bktr->id == BROOKTREE_848 || bktr->id == BROOKTREE_848A || bktr->id == BROOKTREE_849) cmd = I2C_COMMAND; else cmd = I2C_COMMAND_878; if (byte2 != -1) { if (smbus_writew(bktr->i2c_sc.smbus, addr, cmd, (short)(((byte2 & 0xff) << 8) | (byte1 & 0xff)))) return (-1); } else { if (smbus_writeb(bktr->i2c_sc.smbus, addr, cmd, (char)(byte1 & 0xff))) return (-1); } /* return OK */ return( 0 ); } static int i2cRead( bktr_ptr_t bktr, int addr ) { char result; char cmd; if (bktr->id == BROOKTREE_848 || bktr->id == BROOKTREE_848A || bktr->id == BROOKTREE_849) cmd = I2C_COMMAND; else cmd = I2C_COMMAND_878; if (smbus_readb(bktr->i2c_sc.smbus, addr, cmd, &result)) return (-1); return ((int)((unsigned char)result)); } #define IICBUS(bktr) ((bktr)->i2c_sc.iicbus) /* The MSP34xx Audio chip require i2c bus writes of up to 5 bytes which the */ /* bt848 automated i2c bus controller cannot handle */ /* Therefore we need low level control of the i2c bus hardware */ /* Write to the MSP registers */ static void msp_write(bktr_ptr_t bktr, unsigned char dev, unsigned int addr, unsigned int data) { unsigned char addr_l, addr_h, data_h, data_l ; addr_h = (addr >>8) & 0xff; addr_l = addr & 0xff; data_h = (data >>8) & 0xff; data_l = data & 0xff; iicbus_start(IICBUS(bktr), MSP3400C_WADDR, 0 /* no timeout? */); iicbus_write_byte(IICBUS(bktr), dev, 0); iicbus_write_byte(IICBUS(bktr), addr_h, 0); iicbus_write_byte(IICBUS(bktr), addr_l, 0); iicbus_write_byte(IICBUS(bktr), data_h, 0); iicbus_write_byte(IICBUS(bktr), data_l, 0); iicbus_stop(IICBUS(bktr)); return; } /* Write to the MSP registers */ static unsigned int msp_read(bktr_ptr_t bktr, unsigned char dev, unsigned int addr) { unsigned int data; unsigned char addr_l, addr_h, dev_r; int read; u_char data_read[2]; addr_h = (addr >>8) & 0xff; addr_l = addr & 0xff; dev_r = dev+1; /* XXX errors ignored */ iicbus_start(IICBUS(bktr), MSP3400C_WADDR, 0 /* no timeout? */); iicbus_write_byte(IICBUS(bktr), dev_r, 0); iicbus_write_byte(IICBUS(bktr), addr_h, 0); iicbus_write_byte(IICBUS(bktr), addr_l, 0); iicbus_repeated_start(IICBUS(bktr), MSP3400C_RADDR, 0 /* no timeout? */); iicbus_read(IICBUS(bktr), data_read, 2, &read, IIC_LAST_READ, 0); iicbus_stop(IICBUS(bktr)); data = (data_read[0]<<8) | data_read[1]; return (data); } /* Reset the MSP chip */ static void msp_reset( bktr_ptr_t bktr ) { /* put into reset mode */ iicbus_start(IICBUS(bktr), MSP3400C_WADDR, 0 /* no timeout? */); iicbus_write_byte(IICBUS(bktr), 0x00, 0); iicbus_write_byte(IICBUS(bktr), 0x80, 0); iicbus_write_byte(IICBUS(bktr), 0x00, 0); iicbus_stop(IICBUS(bktr)); /* put back to operational mode */ iicbus_start(IICBUS(bktr), MSP3400C_WADDR, 0 /* no timeout? */); iicbus_write_byte(IICBUS(bktr), 0x00, 0); iicbus_write_byte(IICBUS(bktr), 0x00, 0); iicbus_write_byte(IICBUS(bktr), 0x00, 0); iicbus_stop(IICBUS(bktr)); return; } static void remote_read(bktr_ptr_t bktr, struct bktr_remote *remote) { int read; /* XXX errors ignored */ iicbus_start(IICBUS(bktr), bktr->remote_control_addr, 0 /* no timeout? */); iicbus_read(IICBUS(bktr), remote->data, 3, &read, IIC_LAST_READ, 0); iicbus_stop(IICBUS(bktr)); return; } #else /* defined(__FreeBSD__) */ /* * Program the i2c bus directly */ static int i2cWrite( bktr_ptr_t bktr, int addr, int byte1, int byte2 ) { u_long x; u_long data; bt848_ptr_t bt848; bt848 = bktr->base; /* clear status bits */ bt848->int_stat = (BT848_INT_RACK | BT848_INT_I2CDONE); /* build the command datum */ if (bktr->id == BROOKTREE_848 || bktr->id == BROOKTREE_848A || bktr->id == BROOKTREE_849) { data = ((addr & 0xff) << 24) | ((byte1 & 0xff) << 16) | I2C_COMMAND; } else { data = ((addr & 0xff) << 24) | ((byte1 & 0xff) << 16) | I2C_COMMAND_878; } if ( byte2 != -1 ) { data |= ((byte2 & 0xff) << 8); data |= BT848_DATA_CTL_I2CW3B; } /* write the address and data */ bt848->i2c_data_ctl = data; /* wait for completion */ for ( x = 0x7fffffff; x; --x ) { /* safety valve */ if ( bt848->int_stat & BT848_INT_I2CDONE ) break; } /* check for ACK */ if ( !x || !(bt848->int_stat & BT848_INT_RACK) ) return( -1 ); /* return OK */ return( 0 ); } /* * */ static int i2cRead( bktr_ptr_t bktr, int addr ) { u_long x; bt848_ptr_t bt848; bt848 = bktr->base; /* clear status bits */ bt848->int_stat = (BT848_INT_RACK | BT848_INT_I2CDONE); /* write the READ address */ /* The Bt878 and Bt879 differed on the treatment of i2c commands */ if (bktr->id == BROOKTREE_848 || bktr->id == BROOKTREE_848A || bktr->id == BROOKTREE_849) { bt848->i2c_data_ctl = ((addr & 0xff) << 24) | I2C_COMMAND; } else { bt848->i2c_data_ctl = ((addr & 0xff) << 24) | I2C_COMMAND_878; } /* wait for completion */ for ( x = 0x7fffffff; x; --x ) { /* safety valve */ if ( bt848->int_stat & BT848_INT_I2CDONE ) break; } /* check for ACK */ if ( !x || !(bt848->int_stat & BT848_INT_RACK) ) return( -1 ); /* it was a read */ return( (bt848->i2c_data_ctl >> 8) & 0xff ); } /* The MSP34xx Audio chip require i2c bus writes of up to 5 bytes which the */ /* bt848 automated i2c bus controller cannot handle */ /* Therefore we need low level control of the i2c bus hardware */ /* Idea for the following functions are from elsewhere in this driver and */ /* from the Linux BTTV i2c driver by Gerd Knorr */ #define BITD 40 static void i2c_start( bktr_ptr_t bktr) { bt848_ptr_t bt848; bt848 = bktr->base; bt848->i2c_data_ctl = 1; DELAY( BITD ); /* release data */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* release clock */ bt848->i2c_data_ctl = 2; DELAY( BITD ); /* lower data */ bt848->i2c_data_ctl = 0; DELAY( BITD ); /* lower clock */ } static void i2c_stop( bktr_ptr_t bktr) { bt848_ptr_t bt848; bt848 = bktr->base; bt848->i2c_data_ctl = 0; DELAY( BITD ); /* lower clock & data */ bt848->i2c_data_ctl = 2; DELAY( BITD ); /* release clock */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* release data */ } static int i2c_write_byte( bktr_ptr_t bktr, unsigned char data) { int x; int status; bt848_ptr_t bt848; bt848 = bktr->base; /* write out the byte */ for ( x = 7; x >= 0; --x ) { if ( data & (1<i2c_data_ctl = 1; DELAY( BITD ); /* assert HI data */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* strobe clock */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* release clock */ } else { bt848->i2c_data_ctl = 0; DELAY( BITD ); /* assert LO data */ bt848->i2c_data_ctl = 2; DELAY( BITD ); /* strobe clock */ bt848->i2c_data_ctl = 0; DELAY( BITD ); /* release clock */ } } /* look for an ACK */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* float data */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* strobe clock */ status = bt848->i2c_data_ctl & 1; /* read the ACK bit */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* release clock */ return( status ); } static int i2c_read_byte( bktr_ptr_t bktr, unsigned char *data, int last ) { int x; int bit; int byte = 0; bt848_ptr_t bt848; bt848 = bktr->base; /* read in the byte */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* float data */ for ( x = 7; x >= 0; --x ) { bt848->i2c_data_ctl = 3; DELAY( BITD ); /* strobe clock */ bit = bt848->i2c_data_ctl & 1; /* read the data bit */ if ( bit ) byte |= (1<i2c_data_ctl = 1; DELAY( BITD ); /* release clock */ } /* After reading the byte, send an ACK */ /* (unless that was the last byte, for which we send a NAK */ if (last) { /* send NAK - same a writing a 1 */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* set data bit */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* strobe clock */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* release clock */ } else { /* send ACK - same as writing a 0 */ bt848->i2c_data_ctl = 0; DELAY( BITD ); /* set data bit */ bt848->i2c_data_ctl = 2; DELAY( BITD ); /* strobe clock */ bt848->i2c_data_ctl = 0; DELAY( BITD ); /* release clock */ } *data=byte; return 0; } #undef BITD /* Write to the MSP registers */ static void msp_write( bktr_ptr_t bktr, unsigned char dev, unsigned int addr, unsigned int data){ unsigned int msp_w_addr = MSP3400C_WADDR; unsigned char addr_l, addr_h, data_h, data_l ; addr_h = (addr >>8) & 0xff; addr_l = addr & 0xff; data_h = (data >>8) & 0xff; data_l = data & 0xff; i2c_start(bktr); i2c_write_byte(bktr, msp_w_addr); i2c_write_byte(bktr, dev); i2c_write_byte(bktr, addr_h); i2c_write_byte(bktr, addr_l); i2c_write_byte(bktr, data_h); i2c_write_byte(bktr, data_l); i2c_stop(bktr); } /* Write to the MSP registers */ static unsigned int msp_read(bktr_ptr_t bktr, unsigned char dev, unsigned int addr){ unsigned int data; unsigned char addr_l, addr_h, data_1, data_2, dev_r ; addr_h = (addr >>8) & 0xff; addr_l = addr & 0xff; dev_r = dev+1; i2c_start(bktr); i2c_write_byte(bktr,MSP3400C_WADDR); i2c_write_byte(bktr,dev_r); i2c_write_byte(bktr,addr_h); i2c_write_byte(bktr,addr_l); i2c_start(bktr); i2c_write_byte(bktr,MSP3400C_RADDR); i2c_read_byte(bktr,&data_1, 0); i2c_read_byte(bktr,&data_2, 1); i2c_stop(bktr); data = (data_1<<8) | data_2; return data; } /* Reset the MSP chip */ static void msp_reset( bktr_ptr_t bktr ) { /* put into reset mode */ i2c_start(bktr); i2c_write_byte(bktr, MSP3400C_WADDR); i2c_write_byte(bktr, 0x00); i2c_write_byte(bktr, 0x80); i2c_write_byte(bktr, 0x00); i2c_stop(bktr); /* put back to operational mode */ i2c_start(bktr); i2c_write_byte(bktr, MSP3400C_WADDR); i2c_write_byte(bktr, 0x00); i2c_write_byte(bktr, 0x00); i2c_write_byte(bktr, 0x00); i2c_stop(bktr); } static void remote_read(bktr_ptr_t bktr, struct bktr_remote *remote) { int read; /* XXX errors ignored */ i2c_start(bktr); i2c_write_byte(bktr,bktr->remote_control_addr); i2c_read_byte(bktr,&(remote->data[0]), 0); i2c_read_byte(bktr,&(remote->data[1]), 0); i2c_read_byte(bktr,&(remote->data[2]), 0); i2c_stop(bktr); return; } #endif /* !define(__FreeBSD__) */ #if defined( I2C_SOFTWARE_PROBE ) /* * we are keeping this around for any parts that we need to probe * but that CANNOT be probed via an i2c read. * this is necessary because the hardware i2c mechanism * cannot be programmed for 1 byte writes. * currently there are no known i2c parts that we need to probe * and that cannot be safely read. */ static int i2cProbe( bktr_ptr_t bktr, int addr ); #define BITD 40 #define EXTRA_START /* * probe for an I2C device at addr. */ static int i2cProbe( bktr_ptr_t bktr, int addr ) { int x, status; bt848_ptr_t bt848; bt848 = bktr->base; /* the START */ #if defined( EXTRA_START ) bt848->i2c_data_ctl = 1; DELAY( BITD ); /* release data */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* release clock */ #endif /* EXTRA_START */ bt848->i2c_data_ctl = 2; DELAY( BITD ); /* lower data */ bt848->i2c_data_ctl = 0; DELAY( BITD ); /* lower clock */ /* write addr */ for ( x = 7; x >= 0; --x ) { if ( addr & (1<i2c_data_ctl = 1; DELAY( BITD ); /* assert HI data */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* strobe clock */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* release clock */ } else { bt848->i2c_data_ctl = 0; DELAY( BITD ); /* assert LO data */ bt848->i2c_data_ctl = 2; DELAY( BITD ); /* strobe clock */ bt848->i2c_data_ctl = 0; DELAY( BITD ); /* release clock */ } } /* look for an ACK */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* float data */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* strobe clock */ status = bt848->i2c_data_ctl & 1; /* read the ACK bit */ bt848->i2c_data_ctl = 1; DELAY( BITD ); /* release clock */ /* the STOP */ bt848->i2c_data_ctl = 0; DELAY( BITD ); /* lower clock & data */ bt848->i2c_data_ctl = 2; DELAY( BITD ); /* release clock */ bt848->i2c_data_ctl = 3; DELAY( BITD ); /* release data */ return( status ); } #undef EXTRA_START #undef BITD #endif /* I2C_SOFTWARE_PROBE */ /* * */ static int writeEEProm( bktr_ptr_t bktr, int offset, int count, u_char *data ) { return( -1 ); } /* * */ static int readEEProm( bktr_ptr_t bktr, int offset, int count, u_char *data ) { int x; int addr; int max; int byte; /* get the address of the EEProm */ addr = (int)(bktr->card.eepromAddr & 0xff); if ( addr == 0 ) return( -1 ); max = (int)(bktr->card.eepromSize * EEPROMBLOCKSIZE); if ( (offset + count) > max ) return( -1 ); /* set the start address */ if ( i2cWrite( bktr, addr, offset, -1 ) == -1 ) return( -1 ); /* the read cycle */ for ( x = 0; x < count; ++x ) { if ( (byte = i2cRead( bktr, (addr | 1) )) == -1 ) return( -1 ); data[ x ] = byte; } return( 0 ); } #define ABSENT (-1) /* * get a signature of the card * read all 128 possible i2c read addresses from 0x01 thru 0xff * build a bit array with a 1 bit for each i2c device that responds * * XXX FIXME: use offset & count args */ static int signCard( bktr_ptr_t bktr, int offset, int count, u_char* sig ) { int x; for ( x = 0; x < 16; ++x ) sig[ x ] = 0; for ( x = 0; x < count; ++x ) { if ( i2cRead( bktr, (2 * x) + 1 ) != ABSENT ) { sig[ x / 8 ] |= (1 << (x % 8) ); } } return( 0 ); } /* * any_i2c_devices. * Some BT848/BT848A cards have no tuner and no additional i2c devices * eg stereo decoder. These are used for video conferencing or capture from * a video camera. (VideoLogic Captivator PCI, Intel SmartCapture card). * * Determine if there are any i2c devices present. There are none present if * a) reading from all 128 devices returns ABSENT (-1) for each one * (eg VideoLogic Captivator PCI with BT848) * b) reading from all 128 devices returns 0 for each one * (eg VideoLogic Captivator PCI rev. 2F with BT848A) */ static int check_for_i2c_devices( bktr_ptr_t bktr ){ int x, temp_read; int i2c_all_0 = 1; int i2c_all_absent = 1; for ( x = 0; x < 128; ++x ) { temp_read = i2cRead( bktr, (2 * x) + 1 ); if (temp_read != 0) i2c_all_0 = 0; if (temp_read != ABSENT) i2c_all_absent = 0; } if ((i2c_all_0) || (i2c_all_absent)) return 0; else return 1; } /* * Temic/Philips datasheets say tuners can be at i2c addresses 0xc0, 0xc2, * 0xc4 or 0xc6, settable by links on the tuner * Determine the actual address used on the TV card by probing read addresses */ static int locate_tuner_address( bktr_ptr_t bktr) { if (i2cRead( bktr, 0xc1) != ABSENT) return 0xc0; if (i2cRead( bktr, 0xc3) != ABSENT) return 0xc2; if (i2cRead( bktr, 0xc5) != ABSENT) return 0xc4; if (i2cRead( bktr, 0xc7) != ABSENT) return 0xc6; return -1; /* no tuner found */ } /* * determine the card brand/model * OVERRIDE_CARD, OVERRIDE_TUNER, OVERRIDE_DBX and OVERRIDE_MSP * can be used to select a specific device, regardless of the * autodetection and i2c device checks. * * The scheme used for probing cards has one major drawback: * on bt848/849 based cards, it is impossible to work out which type * of tuner is actually fitted, or if there is extra hardware on board * connected to GPIO pins (eg radio chips or MSP34xx reset logic) * The driver cannot tell if the Tuner is PAL,NTSC, Temic or Philips. * * All Hauppauge cards have a configuration eeprom which tells us the * tuner type and other features of the their cards. * Also, Bt878 based cards (certainly Hauppauge and AverMedia) should support * sub-system vendor id, identifying the make and model of the card. * * The current probe code works as follows * 1) Check if it is a BT878. If so, read the sub-system vendor id. * Select the required tuner and other onboard features. * 2) If it is a BT848, 848A or 849, continue on: * 3) Some cards have no I2C devices. Check if the i2c bus is empty * and if so, our detection job is nearly over. * 4) Check I2C address 0xa0. If present this will be a Hauppauge card * or an Osprey card. The Hauppauge EEPROM can determine on board tuner * type and other features. * 4) Check I2C address 0xa8. If present this is a STB card. * Still have to guess on the tuner type. * 5) Otherwise we are in the dark. Miro cards have the tuner type * hard-coded on the GPIO pins, but we do not actually know if we have * a Miro card. * Some older makes of card put Philips tuners and Temic tuners at * different I2C addresses, so an i2c bus probe can help, but it is * really just a guess. * * 6) After determining the Tuner Type, we probe the i2c bus for other * devices at known locations, eg IR-Remote Control, MSP34xx and TDA * stereo chips. */ #define VENDOR_AVER_MEDIA 0x1431 #define VENDOR_HAUPPAUGE 0x0070 static void probeCard( bktr_ptr_t bktr, int verbose ) { int card, i,j, card_found; int status; bt848_ptr_t bt848; u_char probe_signature[128], *probe_temp; int any_i2c_devices; u_char probe_eeprom[128]; u_char tuner_code = 0; int tuner_i2c_address = -1; u_int subsystem_vendor_id; /* vendors own PCI-SIG registered ID */ u_int subsystem_id; /* the boards revision/version number */ any_i2c_devices = check_for_i2c_devices( bktr ); bt848 = bktr->base; /* Select all GPIO bits as inputs */ bt848->gpio_out_en = 0; if (bootverbose) printf("bktr: GPIO is 0x%08x\n", bt848->gpio_data); #ifdef HAUPPAUGE_MSP_RESET /* Reset the MSP34xx audio chip. This resolves bootup card * detection problems with old Bt848 based Hauppauge cards with * MSP34xx stereo audio chips. This must be user enabled because * at this point the probe function does not know the card type. */ bt848->gpio_out_en = bt848->gpio_out_en | (1<<5); bt848->gpio_data = bt848->gpio_data | (1<<5); /* write '1' */ DELAY(2500); /* wait 2.5ms */ bt848->gpio_data = bt848->gpio_data & ~(1<<5); /* write '0' */ DELAY(2500); /* wait 2.5ms */ bt848->gpio_data = bt848->gpio_data | (1<<5); /* write '1' */ DELAY(2500); /* wait 2.5ms */ #endif /* Check for a user specified override on the card selection */ #if defined( OVERRIDE_CARD ) bktr->card = cards[ (card = OVERRIDE_CARD) ]; goto checkTuner; #endif if (bktr->bt848_card != -1 ) { bktr->card = cards[ (card = bktr->bt848_card) ]; goto checkTuner; } /* No override, so try and determine the make of the card */ /* On BT878/879 cards, read the sub-system vendor id */ if (bktr->id==BROOKTREE_878 || bktr->id==BROOKTREE_879) { subsystem_vendor_id = pci_conf_read( bktr->tag, PCIR_SUBVEND_0) & 0xffff; subsystem_id = (pci_conf_read( bktr->tag, PCIR_SUBVEND_0) >> 16) & 0xffff; if ( bootverbose ) printf("subsytem %x %x\n",subsystem_vendor_id,subsystem_id); if (subsystem_vendor_id == VENDOR_AVER_MEDIA) { bktr->card = cards[ (card = CARD_AVER_MEDIA) ]; bktr->card.eepromAddr = 0xa0; bktr->card.eepromSize = (u_char)(256 / EEPROMBLOCKSIZE); goto checkTuner; } if (subsystem_vendor_id == VENDOR_HAUPPAUGE) { bktr->card = cards[ (card = CARD_HAUPPAUGE) ]; goto checkTuner; } /* Vendor is unknown. We will use the standard probe code which */ /* may not give best results */ printf("Warning - card vendor %4x unknown. This can cause poor performance\n",subsystem_vendor_id); } /* end of subsystem vendor id code */ /* So, we must have a Bt848/848a/849 card or a Bt878 with an unknown */ /* subsystem vendor id */ /* Try and determine the make of card by clever i2c probing */ /* Check for i2c devices. If none, move on */ if (!any_i2c_devices) { bktr->card = cards[ (card = CARD_INTEL) ]; goto checkTuner; } /* Look for Hauppauge, STB and Osprey cards by the presence */ /* of an EEPROM */ /* Note: Bt878 based cards also use EEPROMs so we can only do this */ /* test on BT848/848a and 849 based cards. */ if ((bktr->id==BROOKTREE_848) || (bktr->id==BROOKTREE_848A) || (bktr->id==BROOKTREE_849)) { /* At i2c address 0xa0, look for Hauppauge and Osprey cards */ if ( (status = i2cRead( bktr, PFC8582_RADDR )) != ABSENT ) { /* Read the eeprom contents */ bktr->card.eepromAddr = PFC8582_WADDR; bktr->card.eepromSize = (u_char)(256 / EEPROMBLOCKSIZE); readEEProm(bktr, 0, 128, (u_char *) &probe_eeprom ); /* For Hauppauge, check the EEPROM begins with 0x84 */ if (probe_eeprom[0] == 0x84) { bktr->card = cards[ (card = CARD_HAUPPAUGE) ]; goto checkTuner; } /* For Osprey, check the EEPROM begins with "MMAC" */ if ( (probe_eeprom[0] == 'M') &&(probe_eeprom[1] == 'M') &&(probe_eeprom[2] == 'A') &&(probe_eeprom[3] == 'C')) { bktr->card = cards[ (card = CARD_OSPREY) ]; goto checkTuner; } printf("Warning: Unknown card type. EEPROM data not recognised\n"); printf("%x %x %x %x\n",probe_eeprom[0],probe_eeprom[1],probe_eeprom[2],probe_eeprom[3]); } /* look for an STB card */ if ( (status = i2cRead( bktr, X24C01_RADDR )) != ABSENT ) { bktr->card = cards[ (card = CARD_STB) ]; goto checkTuner; } } signCard( bktr, 1, 128, (u_char *) &probe_signature ); if (bootverbose) { printf("card signature \n"); for (j = 0; j < Bt848_MAX_SIGN; j++) { printf(" %02x ", probe_signature[j]); } printf("\n\n"); } for (i = 0; i < (sizeof bt848_card_signature)/ sizeof (struct bt848_card_sig); i++ ) { card_found = 1; probe_temp = (u_char *) &bt848_card_signature[i].signature; for (j = 0; j < Bt848_MAX_SIGN; j++) { if ((probe_temp[j] & 0xf) != (probe_signature[j] & 0xf)) { card_found = 0; break; } } if (card_found) { bktr->card = cards[ card = bt848_card_signature[i].card]; bktr->card.tuner = &tuners[ bt848_card_signature[i].tuner]; goto checkDBX; } } /* XXX FIXME: (how do I) look for a Miro card */ bktr->card = cards[ (card = CARD_MIRO) ]; checkTuner: /* look for a tuner */ tuner_i2c_address = locate_tuner_address( bktr ); if ( tuner_i2c_address == -1 ) { bktr->card.tuner = &tuners[ NO_TUNER ]; goto checkDBX; } #if defined( OVERRIDE_TUNER ) bktr->card.tuner = &tuners[ OVERRIDE_TUNER ]; goto checkDBX; #endif if (bktr->bt848_tuner != -1 ) { bktr->card.tuner = &tuners[ bktr->bt848_tuner & 0xff ]; goto checkDBX; } /* Check for i2c devices */ if (!any_i2c_devices) { bktr->card.tuner = &tuners[ NO_TUNER ]; goto checkDBX; } /* differentiate type of tuner */ switch (card) { case CARD_MIRO: switch (((bt848->gpio_data >> 10)-1)&7) { case 0: bktr->card.tuner = &tuners[ TEMIC_PAL ]; break; case 1: bktr->card.tuner = &tuners[ PHILIPS_PAL ]; break; case 2: bktr->card.tuner = &tuners[ PHILIPS_NTSC ]; break; case 3: bktr->card.tuner = &tuners[ PHILIPS_SECAM ]; break; case 4: bktr->card.tuner = &tuners[ NO_TUNER ]; break; case 5: bktr->card.tuner = &tuners[ PHILIPS_PALI ]; break; case 6: bktr->card.tuner = &tuners[ TEMIC_NTSC ]; break; case 7: bktr->card.tuner = &tuners[ TEMIC_PALI ]; break; } goto checkDBX; break; case CARD_HAUPPAUGE: /* Hauppauge kindly supplied the following Tuner Table */ /* FIXME: I think the tuners the driver selects for types */ /* 0x08, 0xa and 0x15 are incorrect but no one has complained. */ /* ID Tuner Model Format We select Format 0 NONE 1 EXTERNAL 2 OTHER 3 Philips FI1216 BG 4 Philips FI1216MF BGLL' 5 Philips FI1236 MN PHILIPS_NTSC 6 Philips FI1246 I 7 Philips FI1256 DK 8 Philips FI1216 MK2 BG PHILIPS_PALI 9 Philips FI1216MF MK2 BGLL' a Philips FI1236 MK2 MN PHILIPS_FR1236_NTSC b Philips FI1246 MK2 I PHILIPS_PALI c Philips FI1256 MK2 DK d Temic 4032FY5 NTSC TEMIC_NTSC e Temic 4002FH5 BG TEMIC_PAL f Temic 4062FY5 I TEMIC_PALI 10 Philips FR1216 MK2 BG 11 Philips FR1216MF MK2 BGLL' 12 Philips FR1236 MK2 MN PHILIPS_FR1236_NTSC 13 Philips FR1246 MK2 I 14 Philips FR1256 MK2 DK 15 Philips FM1216 BG PHILIPS_FR1216_PAL 16 Philips FM1216MF BGLL' 17 Philips FM1236 MN PHILIPS_FR1236_NTSC 18 Philips FM1246 I 19 Philips FM1256 DK 1a Temic 4036FY5 MN - FI1236 MK2 clone 1b Samsung TCPN9082D MN 1c Samsung TCPM9092P Pal BG/I/DK 1d Temic 4006FH5 BG 1e Samsung TCPN9085D MN/Radio 1f Samsung TCPB9085P Pal BG/I/DK / Radio 20 Samsung TCPL9091P Pal BG & Secam L/L' 21 Temic 4039FY5 NTSC Radio */ readEEProm(bktr, 0, 128, (u_char *) &probe_eeprom ); tuner_code = probe_eeprom[9]; switch (tuner_code) { case 0x5: case 0x1a: bktr->card.tuner = &tuners[ PHILIPS_NTSC ]; goto checkDBX; case 0x0a: case 0x12: case 0x17: bktr->card.tuner = &tuners[ PHILIPS_FR1236_NTSC ]; goto checkDBX; case 0x8: case 0xb: bktr->card.tuner = &tuners[ PHILIPS_PALI ]; goto checkDBX; case 0xd: bktr->card.tuner = &tuners[ TEMIC_NTSC ]; goto checkDBX; case 0xe: bktr->card.tuner = &tuners[ TEMIC_PAL]; goto checkDBX; case 0xf: bktr->card.tuner = &tuners[ TEMIC_PALI ]; goto checkDBX; case 0x15: bktr->card.tuner = &tuners[ PHILIPS_FR1216_PAL]; goto checkDBX; default : printf("Warning - Unknown Hauppauge Tuner 0x%x\n",tuner_code); } break; } /* end switch(card) */ /* At this point, a goto checkDBX has not occured */ /* We have not been able to select a Tuner */ /* Some cards make use of the tuner address to */ /* identify the make/model of tuner */ /* At address 0xc0/0xc1 we often find a TEMIC NTSC */ if ( i2cRead( bktr, 0xc1 ) != ABSENT ) { bktr->card.tuner = &tuners[ TEMIC_NTSC ]; goto checkDBX; } /* At address 0xc6/0xc7 we often find a PHILIPS NTSC Tuner */ if ( i2cRead( bktr, 0xc7 ) != ABSENT ) { bktr->card.tuner = &tuners[ PHILIPS_NTSC ]; goto checkDBX; } /* Address 0xc2/0xc3 is default (or common address) for several */ /* tuners and we cannot tell which is which. */ /* Default to No Tuner */ /* no tuner found */ bktr->card.tuner = &tuners[ NO_TUNER ]; checkDBX: #if defined( OVERRIDE_DBX ) bktr->card.dbx = OVERRIDE_DBX; goto checkMSP; #endif /* Check for i2c devices */ if (!any_i2c_devices) { goto checkMSP; } /* probe for BTSC (dbx) chip */ if ( i2cRead( bktr, TDA9850_RADDR ) != ABSENT ) bktr->card.dbx = 1; checkMSP: /* If this is a Hauppauge Bt878 card, we need to enable the * MSP 34xx audio chip. * The chip's reset line is wired to GPIO pin 5 and a pulldown * resistor holds the device in reset until we set GPIO pin 5 */ if (card == CARD_HAUPPAUGE) { bt848->gpio_out_en = bt848->gpio_out_en | (1<<5); bt848->gpio_data = bt848->gpio_data | (1<<5); /* write '1' */ DELAY(2500); /* wait 2.5ms */ bt848->gpio_data = bt848->gpio_data & ~(1<<5); /* write '0' */ DELAY(2500); /* wait 2.5ms */ bt848->gpio_data = bt848->gpio_data | (1<<5); /* write '1' */ DELAY(2500); /* wait 2.5ms */ } #if defined( OVERRIDE_MSP ) bktr->card.msp3400c = OVERRIDE_MSP; goto checkMSPEnd; #endif /* Check for i2c devices */ if (!any_i2c_devices) { goto checkMSPEnd; } if ( i2cRead( bktr, MSP3400C_RADDR ) != ABSENT ) bktr->card.msp3400c = 1; checkMSPEnd: /* Start of Check Remote */ /* Check for the Hauppauge IR Remote Control */ /* If there is an external unit, the internal will be ignored */ bktr->remote_control = 0; /* initial value */ if (any_i2c_devices) { if (i2cRead( bktr, HAUP_REMOTE_EXT_RADDR ) != ABSENT ) { bktr->remote_control = 1; bktr->remote_control_addr = HAUP_REMOTE_EXT_RADDR; } else if (i2cRead( bktr, HAUP_REMOTE_INT_RADDR ) != ABSENT ) { bktr->remote_control = 1; bktr->remote_control_addr = HAUP_REMOTE_INT_RADDR; } } /* If a remote control is found, poll it 5 times to turn off the LED */ if (bktr->remote_control) { int i; for (i=0; i<5; i++) i2cRead( bktr, bktr->remote_control_addr ); } /* End of Check Remote */ #if defined( BKTR_USE_PLL ) bktr->xtal_pll_mode = BT848_USE_PLL; goto checkPLLEnd; #endif /* Default is to use XTALS and not PLL mode */ bktr->xtal_pll_mode = BT848_USE_XTALS; /* Enable PLL mode for PAL/SECAM users on Hauppauge 878 cards */ if ((card == CARD_HAUPPAUGE) && (bktr->id==BROOKTREE_878 || bktr->id==BROOKTREE_879) ) bktr->xtal_pll_mode = BT848_USE_PLL; /* Enable PLL mode for OSPREY users */ if (card == CARD_OSPREY) bktr->xtal_pll_mode = BT848_USE_PLL; #if defined( BKTR_USE_PLL ) checkPLLEnd: #endif bktr->card.tuner_pllAddr = tuner_i2c_address; if ( verbose ) { printf( "%s", bktr->card.name ); if ( bktr->card.tuner ) printf( ", %s tuner", bktr->card.tuner->name ); if ( bktr->card.dbx ) printf( ", dbx stereo" ); if ( bktr->card.msp3400c ) printf( ", msp3400c stereo" ); if ( bktr->remote_control ) printf( ", remote control" ); printf( ".\n" ); } } #undef ABSENT /****************************************************************************** * tuner specific routines: */ /* scaling factor for frequencies expressed as ints */ #define FREQFACTOR 16 /* * Format: * entry 0: MAX legal channel * entry 1: IF frequency * expressed as fi{mHz} * 16, * eg 45.75mHz == 45.75 * 16 = 732 * entry 2: [place holder/future] * entry 3: base of channel record 0 * entry 3 + (x*3): base of channel record 'x' * entry LAST: NULL channel entry marking end of records * * Record: * int 0: base channel * int 1: frequency of base channel, * expressed as fb{mHz} * 16, * int 2: offset frequency between channels, * expressed as fo{mHz} * 16, */ /* * North American Broadcast Channels: * * 2: 55.25 mHz - 4: 67.25 mHz * 5: 77.25 mHz - 6: 83.25 mHz * 7: 175.25 mHz - 13: 211.25 mHz * 14: 471.25 mHz - 83: 885.25 mHz * * IF freq: 45.75 mHz */ #define OFFSET 6.00 static int nabcst[] = { 83, (int)( 45.75 * FREQFACTOR), 0, 14, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 0 }; #undef OFFSET /* * North American Cable Channels, IRC: * * 2: 55.25 mHz - 4: 67.25 mHz * 5: 77.25 mHz - 6: 83.25 mHz * 7: 175.25 mHz - 13: 211.25 mHz * 14: 121.25 mHz - 22: 169.25 mHz * 23: 217.25 mHz - 94: 643.25 mHz * 95: 91.25 mHz - 99: 115.25 mHz * * IF freq: 45.75 mHz */ #define OFFSET 6.00 static int irccable[] = { 99, (int)( 45.75 * FREQFACTOR), 0, 95, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 23, (int)(217.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 14, (int)(121.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 7, (int)(175.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 5, (int)( 77.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 2, (int)( 55.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 0 }; #undef OFFSET /* * North American Cable Channels, HRC: * * 2: 54 mHz - 4: 66 mHz * 5: 78 mHz - 6: 84 mHz * 7: 174 mHz - 13: 210 mHz * 14: 120 mHz - 22: 168 mHz * 23: 216 mHz - 94: 642 mHz * 95: 90 mHz - 99: 114 mHz * * IF freq: 45.75 mHz */ #define OFFSET 6.00 static int hrccable[] = { 99, (int)( 45.75 * FREQFACTOR), 0, 95, (int)( 90.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 23, (int)(216.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 14, (int)(120.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 7, (int)(174.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 5, (int)( 78.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 2, (int)( 54.00 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 0 }; #undef OFFSET /* * Western European broadcast channels: * * (there are others that appear to vary between countries - rmt) * * here's the table Philips provides: * caution, some of the offsets don't compute... * * 1 4525 700 N21 * * 2 4825 700 E2 * 3 5525 700 E3 * 4 6225 700 E4 * * 5 17525 700 E5 * 6 18225 700 E6 * 7 18925 700 E7 * 8 19625 700 E8 * 9 20325 700 E9 * 10 21025 700 E10 * 11 21725 700 E11 * 12 22425 700 E12 * * 13 5375 700 ITA * 14 6225 700 ITB * * 15 8225 700 ITC * * 16 17525 700 ITD * 17 18325 700 ITE * * 18 19225 700 ITF * 19 20125 700 ITG * 20 21025 700 ITH * * 21 47125 800 E21 * 22 47925 800 E22 * 23 48725 800 E23 * 24 49525 800 E24 * 25 50325 800 E25 * 26 51125 800 E26 * 27 51925 800 E27 * 28 52725 800 E28 * 29 53525 800 E29 * 30 54325 800 E30 * 31 55125 800 E31 * 32 55925 800 E32 * 33 56725 800 E33 * 34 57525 800 E34 * 35 58325 800 E35 * 36 59125 800 E36 * 37 59925 800 E37 * 38 60725 800 E38 * 39 61525 800 E39 * 40 62325 800 E40 * 41 63125 800 E41 * 42 63925 800 E42 * 43 64725 800 E43 * 44 65525 800 E44 * 45 66325 800 E45 * 46 67125 800 E46 * 47 67925 800 E47 * 48 68725 800 E48 * 49 69525 800 E49 * 50 70325 800 E50 * 51 71125 800 E51 * 52 71925 800 E52 * 53 72725 800 E53 * 54 73525 800 E54 * 55 74325 800 E55 * 56 75125 800 E56 * 57 75925 800 E57 * 58 76725 800 E58 * 59 77525 800 E59 * 60 78325 800 E60 * 61 79125 800 E61 * 62 79925 800 E62 * 63 80725 800 E63 * 64 81525 800 E64 * 65 82325 800 E65 * 66 83125 800 E66 * 67 83925 800 E67 * 68 84725 800 E68 * 69 85525 800 E69 * * 70 4575 800 IA * 71 5375 800 IB * 72 6175 800 IC * * 74 6925 700 S01 * 75 7625 700 S02 * 76 8325 700 S03 * * 80 10525 700 S1 * 81 11225 700 S2 * 82 11925 700 S3 * 83 12625 700 S4 * 84 13325 700 S5 * 85 14025 700 S6 * 86 14725 700 S7 * 87 15425 700 S8 * 88 16125 700 S9 * 89 16825 700 S10 * 90 23125 700 S11 * 91 23825 700 S12 * 92 24525 700 S13 * 93 25225 700 S14 * 94 25925 700 S15 * 95 26625 700 S16 * 96 27325 700 S17 * 97 28025 700 S18 * 98 28725 700 S19 * 99 29425 700 S20 * * * Channels S21 - S41 are taken from * http://gemma.apple.com:80/dev/technotes/tn/tn1012.html * * 100 30325 800 S21 * 101 31125 800 S22 * 102 31925 800 S23 * 103 32725 800 S24 * 104 33525 800 S25 * 105 34325 800 S26 * 106 35125 800 S27 * 107 35925 800 S28 * 108 36725 800 S29 * 109 37525 800 S30 * 110 38325 800 S31 * 111 39125 800 S32 * 112 39925 800 S33 * 113 40725 800 S34 * 114 41525 800 S35 * 115 42325 800 S36 * 116 43125 800 S37 * 117 43925 800 S38 * 118 44725 800 S39 * 119 45525 800 S40 * 120 46325 800 S41 * * 121 3890 000 IFFREQ * */ static int weurope[] = { 121, (int)( 38.90 * FREQFACTOR), 0, 100, (int)(303.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 90, (int)(231.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR), 80, (int)(105.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR), 74, (int)( 69.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR), 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 17, (int)(183.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR), 16, (int)(175.25 * FREQFACTOR), (int)(9.00 * FREQFACTOR), 15, (int)(82.25 * FREQFACTOR), (int)(8.50 * FREQFACTOR), 13, (int)(53.75 * FREQFACTOR), (int)(8.50 * FREQFACTOR), 5, (int)(175.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR), 2, (int)(48.25 * FREQFACTOR), (int)(7.00 * FREQFACTOR), 0 }; /* * Japanese Broadcast Channels: * * 1: 91.25MHz - 3: 103.25MHz * 4: 171.25MHz - 7: 189.25MHz * 8: 193.25MHz - 12: 217.25MHz (VHF) * 13: 471.25MHz - 62: 765.25MHz (UHF) * * IF freq: 45.75 mHz * OR * IF freq: 58.75 mHz */ #define OFFSET 6.00 #define IF_FREQ 45.75 static int jpnbcst[] = { 62, (int)(IF_FREQ * FREQFACTOR), 0, 13, (int)(471.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 0 }; #undef IF_FREQ #undef OFFSET /* * Japanese Cable Channels: * * 1: 91.25MHz - 3: 103.25MHz * 4: 171.25MHz - 7: 189.25MHz * 8: 193.25MHz - 12: 217.25MHz * 13: 109.25MHz - 21: 157.25MHz * 22: 165.25MHz * 23: 223.25MHz - 63: 463.25MHz * * IF freq: 45.75 mHz */ #define OFFSET 6.00 #define IF_FREQ 45.75 static int jpncable[] = { 63, (int)(IF_FREQ * FREQFACTOR), 0, 23, (int)(223.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 22, (int)(165.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 13, (int)(109.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 8, (int)(193.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 4, (int)(171.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 1, (int)( 91.25 * FREQFACTOR), (int)(OFFSET * FREQFACTOR), 0 }; #undef IF_FREQ #undef OFFSET /* * xUSSR Broadcast Channels: * * 1: 49.75MHz - 2: 59.25MHz * 3: 77.25MHz - 5: 93.25MHz * 6: 175.25MHz - 12: 223.25MHz * 13-20 - not exist * 21: 471.25MHz - 34: 575.25MHz * 35: 583.25MHz - 69: 855.25MHz * * Cable channels * * 70: 111.25MHz - 77: 167.25MHz * 78: 231.25MHz -107: 463.25MHz * * IF freq: 38.90 MHz */ #define IF_FREQ 38.90 static int xussr[] = { 107, (int)(IF_FREQ * FREQFACTOR), 0, 78, (int)(231.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 70, (int)(111.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 35, (int)(583.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 21, (int)(471.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 6, (int)(175.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 3, (int)( 77.25 * FREQFACTOR), (int)(8.00 * FREQFACTOR), 1, (int)( 49.75 * FREQFACTOR), (int)(9.50 * FREQFACTOR), 0 }; #undef IF_FREQ static struct { int *ptr; char name[BT848_MAX_CHNLSET_NAME_LEN]; } freqTable[] = { {NULL, ""}, {nabcst, "nabcst"}, {irccable, "cableirc"}, {hrccable, "cablehrc"}, {weurope, "weurope"}, {jpnbcst, "jpnbcst"}, {jpncable, "jpncable"}, {xussr, "xussr"}, }; #define TBL_CHNL freqTable[ bktr->tuner.chnlset ].ptr[ x ] #define TBL_BASE_FREQ freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ] #define TBL_OFFSET freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ] static int frequency_lookup( bktr_ptr_t bktr, int channel ) { int x; /* check for "> MAX channel" */ x = 0; if ( channel > TBL_CHNL ) return( -1 ); /* search the table for data */ for ( x = 3; TBL_CHNL; x += 3 ) { if ( channel >= TBL_CHNL ) { return( TBL_BASE_FREQ + ((channel - TBL_CHNL) * TBL_OFFSET) ); } } /* not found, must be below the MIN channel */ return( -1 ); } #undef TBL_OFFSET #undef TBL_BASE_FREQ #undef TBL_CHNL #define TBL_IF freqTable[ bktr->tuner.chnlset ].ptr[ 1 ] /* * set the frequency of the tuner */ static int tv_freq( bktr_ptr_t bktr, int frequency ) { const struct TUNER* tuner; u_char addr; u_char control; u_char band; int N; tuner = bktr->card.tuner; if ( tuner == NULL ) return( -1 ); /* * select the band based on frequency * XXX FIXME: get the cross-over points from the tuner struct */ if ( frequency < (160 * FREQFACTOR) ) N = 0; else if ( frequency < (454 * FREQFACTOR) ) N = 1; else N = 2; if(frequency > RADIO_OFFSET) { N=3; frequency -= RADIO_OFFSET; } /* set the address of the PLL */ addr = bktr->card.tuner_pllAddr; control = tuner->pllControl[ N ]; band = tuner->bandAddrs[ N ]; if(!(band && control)) /* Don't try to set un- */ return(-1); /* supported modes. */ if(N==3) band |= bktr->tuner.radio_mode; /* * N = 16 * { fRF(pc) + fIF(pc) } * where: * pc is picture carrier, fRF & fIF are in mHz * * frequency was passed in as mHz * 16 */ #if defined( TEST_TUNER_AFC ) if ( bktr->tuner.afc ) frequency -= 4; #endif N = frequency + TBL_IF; if ( frequency > bktr->tuner.frequency ) { i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff ); i2cWrite( bktr, addr, control, band ); } else { i2cWrite( bktr, addr, control, band ); i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff ); } #if defined( TUNER_AFC ) if ( bktr->tuner.afc == TRUE ) { if ( (N = do_afc( bktr, addr, N )) < 0 ) { /* AFC failed, restore requested frequency */ N = frequency + TBL_IF; i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff ); } else frequency = N - TBL_IF; } #endif /* TUNER_AFC */ /* update frequency */ bktr->tuner.frequency = frequency; return( 0 ); } #if defined( TUNER_AFC ) /* * */ static int do_afc( bktr_ptr_t bktr, int addr, int frequency ) { int step; int status; int origFrequency; origFrequency = frequency; /* wait for first setting to take effect */ tsleep( (caddr_t)bktr, PZERO, "tuning", hz/8 ); if ( (status = i2cRead( bktr, addr + 1 )) < 0 ) return( -1 ); #if defined( TEST_TUNER_AFC ) printf( "\nOriginal freq: %d, status: 0x%02x\n", frequency, status ); #endif for ( step = 0; step < AFC_MAX_STEP; ++step ) { if ( (status = i2cRead( bktr, addr + 1 )) < 0 ) goto fubar; if ( !(status & 0x40) ) { #if defined( TEST_TUNER_AFC ) printf( "no lock!\n" ); #endif goto fubar; } switch( status & AFC_BITS ) { case AFC_FREQ_CENTERED: #if defined( TEST_TUNER_AFC ) printf( "Centered, freq: %d, status: 0x%02x\n", frequency, status ); #endif return( frequency ); case AFC_FREQ_MINUS_125: case AFC_FREQ_MINUS_62: #if defined( TEST_TUNER_AFC ) printf( "Low, freq: %d, status: 0x%02x\n", frequency, status ); #endif --frequency; break; case AFC_FREQ_PLUS_62: case AFC_FREQ_PLUS_125: #if defined( TEST_TUNER_AFC ) printf( "Hi, freq: %d, status: 0x%02x\n", frequency, status ); #endif ++frequency; break; } i2cWrite( bktr, addr, (frequency>>8) & 0x7f, frequency & 0xff ); DELAY( AFC_DELAY ); } fubar: i2cWrite( bktr, addr, (origFrequency>>8) & 0x7f, origFrequency & 0xff ); return( -1 ); } #endif /* TUNER_AFC */ #undef TBL_IF /* * set the channel of the tuner */ static int tv_channel( bktr_ptr_t bktr, int channel ) { int frequency; /* calculate the frequency according to tuner type */ if ( (frequency = frequency_lookup( bktr, channel )) < 0 ) return( -1 ); /* set the new frequency */ if ( tv_freq( bktr, frequency ) < 0 ) return( -1 ); /* OK to update records */ return( (bktr->tuner.channel = channel) ); } /* * get channelset name */ static int tuner_getchnlset(struct bktr_chnlset *chnlset) { if (( chnlset->index < CHNLSET_MIN ) || ( chnlset->index > CHNLSET_MAX )) return( EINVAL ); memcpy(&chnlset->name, &freqTable[chnlset->index].name, BT848_MAX_CHNLSET_NAME_LEN); chnlset->max_channel=freqTable[chnlset->index].ptr[0]; return( 0 ); } /****************************************************************************** * audio specific routines: */ /* * */ #define AUDIOMUX_DISCOVER_NOT static int set_audio( bktr_ptr_t bktr, int cmd ) { bt848_ptr_t bt848; u_long temp; volatile u_char idx; #if defined( AUDIOMUX_DISCOVER ) if ( cmd >= 200 ) cmd -= 200; else #endif /* AUDIOMUX_DISCOVER */ /* check for existance of audio MUXes */ if ( !bktr->card.audiomuxs[ 4 ] ) return( -1 ); switch (cmd) { case AUDIO_TUNER: #ifdef BKTR_REVERSEMUTE bktr->audio_mux_select = 3; #else bktr->audio_mux_select = 0; #endif if (bktr->reverse_mute ) bktr->audio_mux_select = 0; else bktr->audio_mux_select = 3; break; case AUDIO_EXTERN: bktr->audio_mux_select = 1; break; case AUDIO_INTERN: bktr->audio_mux_select = 2; break; case AUDIO_MUTE: bktr->audio_mute_state = TRUE; /* set mute */ break; case AUDIO_UNMUTE: bktr->audio_mute_state = FALSE; /* clear mute */ break; default: printf("bktr: audio cmd error %02x\n", cmd); return( -1 ); } bt848 = bktr->base; /* * Leave the upper bits of the GPIO port alone in case they control * something like the dbx or teletext chips. This doesn't guarantee * success, but follows the rule of least astonishment. */ if ( bktr->audio_mute_state == TRUE ) { #ifdef BKTR_REVERSEMUTE idx = 0; #else idx = 3; #endif if (bktr->reverse_mute ) idx = 3; else idx = 0; } else idx = bktr->audio_mux_select; temp = bt848->gpio_data & ~GPIO_AUDIOMUX_BITS; bt848->gpio_data = #if defined( AUDIOMUX_DISCOVER ) bt848->gpio_data = temp | (cmd & 0xff); printf("cmd: %d audio mux %x temp %x \n", cmd,bktr->card.audiomuxs[ idx ], temp ); #else temp | bktr->card.audiomuxs[ idx ]; #endif /* AUDIOMUX_DISCOVER */ return( 0 ); } /* * */ static void temp_mute( bktr_ptr_t bktr, int flag ) { static int muteState = FALSE; if ( flag == TRUE ) { muteState = bktr->audio_mute_state; set_audio( bktr, AUDIO_MUTE ); /* prevent 'click' */ } else { tsleep( (caddr_t)bktr, PZERO, "tuning", hz/8 ); if ( muteState == FALSE ) set_audio( bktr, AUDIO_UNMUTE ); } } /* * setup the dbx chip * XXX FIXME: alot of work to be done here, this merely unmutes it. */ static int set_BTSC( bktr_ptr_t bktr, int control ) { return( i2cWrite( bktr, TDA9850_WADDR, CON3ADDR, control ) ); } /* * setup the MSP34xx Stereo Audio Chip * This uses the Auto Configuration Option on MSP3410D and MSP3415D * chips. For MSP3400C support, the full programming sequence is required * and so is not yet supported. */ /* Read the MSP version string */ static void msp_read_id( bktr_ptr_t bktr ){ int rev1=0, rev2=0; rev1 = msp_read(bktr, 0x12, 0x001e); rev2 = msp_read(bktr, 0x12, 0x001f); printf("Detected a MSP34%02d%c-%c%d \n", (rev2>>8)&0xff, (rev1&0xff)+'@', ((rev1>>8)&0xff)+'@', rev2&0x1f); } /* Configure the MSP chip to Auto-detect the audio format */ static void msp_autodetect( bktr_ptr_t bktr ) { msp_write(bktr, 0x12, 0x0000,0x7300); /* Set volume to 0db gain */ msp_write(bktr, 0x10, 0x0020,0x0001); /* Enable Auto format detection */ msp_write(bktr, 0x10, 0x0021,0x0001); /* Auto selection of NICAM/MONO mode */ /* uncomment the following line to enable the MSP34xx 1Khz Tone Generator */ /* msp_write(bktr, 0x12, 0x0014, 0x7f40); */ } /****************************************************************************** * magic: */ #ifdef __FreeBSD__ static bktr_devsw_installed = 0; static void bktr_drvinit( void *unused ) { dev_t dev; if ( ! bktr_devsw_installed ) { dev = makedev(CDEV_MAJOR, 0); cdevsw_add(&dev,&bktr_cdevsw, NULL); bktr_devsw_installed = 1; } } SYSINIT(bktrdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,bktr_drvinit,NULL) #endif /* __FreeBSD__ */ #endif /* !defined(__FreeBSD__) || (NBKTR > 0 && NPCI > 0) */ /* Local Variables: */ /* mode: C */ /* c-indent-level: 8 */ /* c-brace-offset: -8 */ /* c-argdecl-indent: 8 */ /* c-label-offset: -8 */ /* c-continued-statement-offset: 8 */ /* c-tab-always-indent: nil */ /* tab-width: 8 */ /* End: */