/*- * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ * Authors: Doug Rabson * Developed with Red Inc: Alfred Perlstein * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_inet6.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #if __FreeBSD_version >= 700000 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_NLM, "NLM", "Network Lock Manager"); /* * If a host is inactive (and holds no locks) for this amount of * seconds, we consider it idle and stop tracking it. */ #define NLM_IDLE_TIMEOUT 30 /* * We check the host list for idle every few seconds. */ #define NLM_IDLE_PERIOD 5 /* * We only look for GRANTED_RES messages for a little while. */ #define NLM_EXPIRE_TIMEOUT 10 /* * Support for sysctl vfs.nlm.sysid */ static SYSCTL_NODE(_vfs, OID_AUTO, nlm, CTLFLAG_RW, NULL, "Network Lock Manager"); static SYSCTL_NODE(_vfs_nlm, OID_AUTO, sysid, CTLFLAG_RW, NULL, ""); /* * Syscall hooks */ static int nlm_syscall_offset = SYS_nlm_syscall; static struct sysent nlm_syscall_prev_sysent; #if __FreeBSD_version < 700000 static struct sysent nlm_syscall_sysent = { (sizeof(struct nlm_syscall_args) / sizeof(register_t)) | SYF_MPSAFE, (sy_call_t *) nlm_syscall }; #else MAKE_SYSENT(nlm_syscall); #endif static bool_t nlm_syscall_registered = FALSE; /* * Debug level passed in from userland. We also support a sysctl hook * so that it can be changed on a live system. */ static int nlm_debug_level; SYSCTL_INT(_debug, OID_AUTO, nlm_debug, CTLFLAG_RW, &nlm_debug_level, 0, ""); #define NLM_DEBUG(_level, args...) \ do { \ if (nlm_debug_level >= (_level)) \ log(LOG_DEBUG, args); \ } while(0) #define NLM_ERR(args...) \ do { \ log(LOG_ERR, args); \ } while(0) /* * Grace period handling. The value of nlm_grace_threshold is the * value of time_uptime after which we are serving requests normally. */ static time_t nlm_grace_threshold; /* * We check for idle hosts if time_uptime is greater than * nlm_next_idle_check, */ static time_t nlm_next_idle_check; /* * A flag to indicate the server is already running. */ static int nlm_is_running; /* * A socket to use for RPC - shared by all IPv4 RPC clients. */ static struct socket *nlm_socket; #ifdef INET6 /* * A socket to use for RPC - shared by all IPv6 RPC clients. */ static struct socket *nlm_socket6; #endif /* * An RPC client handle that can be used to communicate with the local * NSM. */ static CLIENT *nlm_nsm; /* * An AUTH handle for the server's creds. */ static AUTH *nlm_auth; /* * A zero timeval for sending async RPC messages. */ struct timeval nlm_zero_tv = { 0, 0 }; /* * The local NSM state number */ int nlm_nsm_state; /* * A lock to protect the host list and waiting lock list. */ static struct mtx nlm_global_lock; /* * Locks: * (l) locked by nh_lock * (s) only accessed via server RPC which is single threaded * (g) locked by nlm_global_lock * (c) const until freeing * (a) modified using atomic ops */ /* * A pending client-side lock request, stored on the nlm_waiting_locks * list. */ struct nlm_waiting_lock { TAILQ_ENTRY(nlm_waiting_lock) nw_link; /* (g) */ bool_t nw_waiting; /* (g) */ nlm4_lock nw_lock; /* (c) */ union nfsfh nw_fh; /* (c) */ struct vnode *nw_vp; /* (c) */ }; TAILQ_HEAD(nlm_waiting_lock_list, nlm_waiting_lock); struct nlm_waiting_lock_list nlm_waiting_locks; /* (g) */ /* * A pending server-side asynchronous lock request, stored on the * nh_pending list of the NLM host. */ struct nlm_async_lock { TAILQ_ENTRY(nlm_async_lock) af_link; /* (l) host's list of locks */ struct task af_task; /* (c) async callback details */ void *af_cookie; /* (l) lock manager cancel token */ struct vnode *af_vp; /* (l) vnode to lock */ struct flock af_fl; /* (c) lock details */ struct nlm_host *af_host; /* (c) host which is locking */ CLIENT *af_rpc; /* (c) rpc client to send message */ nlm4_testargs af_granted; /* (c) notification details */ time_t af_expiretime; /* (c) notification time */ }; TAILQ_HEAD(nlm_async_lock_list, nlm_async_lock); /* * NLM host. */ enum nlm_host_state { NLM_UNMONITORED, NLM_MONITORED, NLM_MONITOR_FAILED, NLM_RECOVERING }; struct nlm_rpc { CLIENT *nr_client; /* (l) RPC client handle */ time_t nr_create_time; /* (l) when client was created */ }; struct nlm_host { struct mtx nh_lock; volatile u_int nh_refs; /* (a) reference count */ TAILQ_ENTRY(nlm_host) nh_link; /* (g) global list of hosts */ char nh_caller_name[MAXNAMELEN]; /* (c) printable name of host */ uint32_t nh_sysid; /* (c) our allocaed system ID */ char nh_sysid_string[10]; /* (c) string rep. of sysid */ struct sockaddr_storage nh_addr; /* (s) remote address of host */ struct nlm_rpc nh_srvrpc; /* (l) RPC for server replies */ struct nlm_rpc nh_clntrpc; /* (l) RPC for client requests */ rpcvers_t nh_vers; /* (s) NLM version of host */ int nh_state; /* (s) last seen NSM state of host */ enum nlm_host_state nh_monstate; /* (l) local NSM monitoring state */ time_t nh_idle_timeout; /* (s) Time at which host is idle */ struct sysctl_ctx_list nh_sysctl; /* (c) vfs.nlm.sysid nodes */ uint32_t nh_grantcookie; /* (l) grant cookie counter */ struct nlm_async_lock_list nh_pending; /* (l) pending async locks */ struct nlm_async_lock_list nh_granted; /* (l) granted locks */ struct nlm_async_lock_list nh_finished; /* (l) finished async locks */ }; TAILQ_HEAD(nlm_host_list, nlm_host); static struct nlm_host_list nlm_hosts; /* (g) */ static uint32_t nlm_next_sysid = 1; /* (g) */ static void nlm_host_unmonitor(struct nlm_host *); struct nlm_grantcookie { uint32_t ng_sysid; uint32_t ng_cookie; }; static inline uint32_t ng_sysid(struct netobj *src) { return ((struct nlm_grantcookie *)src->n_bytes)->ng_sysid; } static inline uint32_t ng_cookie(struct netobj *src) { return ((struct nlm_grantcookie *)src->n_bytes)->ng_cookie; } /**********************************************************************/ /* * Initialise NLM globals. */ static void nlm_init(void *dummy) { int error; mtx_init(&nlm_global_lock, "nlm_global_lock", NULL, MTX_DEF); TAILQ_INIT(&nlm_waiting_locks); TAILQ_INIT(&nlm_hosts); error = syscall_register(&nlm_syscall_offset, &nlm_syscall_sysent, &nlm_syscall_prev_sysent); if (error) NLM_ERR("Can't register NLM syscall\n"); else nlm_syscall_registered = TRUE; } SYSINIT(nlm_init, SI_SUB_LOCK, SI_ORDER_FIRST, nlm_init, NULL); static void nlm_uninit(void *dummy) { if (nlm_syscall_registered) syscall_deregister(&nlm_syscall_offset, &nlm_syscall_prev_sysent); } SYSUNINIT(nlm_uninit, SI_SUB_LOCK, SI_ORDER_FIRST, nlm_uninit, NULL); /* * Create a netobj from an arbitrary source. */ void nlm_make_netobj(struct netobj *dst, caddr_t src, size_t srcsize, struct malloc_type *type) { dst->n_len = srcsize; dst->n_bytes = malloc(srcsize, type, M_WAITOK); memcpy(dst->n_bytes, src, srcsize); } /* * Copy a struct netobj. */ void nlm_copy_netobj(struct netobj *dst, struct netobj *src, struct malloc_type *type) { nlm_make_netobj(dst, src->n_bytes, src->n_len, type); } /* * Create an RPC client handle for the given (address,prog,vers) * triple using UDP. */ static CLIENT * nlm_get_rpc(struct sockaddr *sa, rpcprog_t prog, rpcvers_t vers) { char *wchan = "nlmrcv"; const char* protofmly; struct sockaddr_storage ss; struct socket *so; CLIENT *rpcb; struct timeval timo; RPCB parms; char *uaddr; enum clnt_stat stat = RPC_SUCCESS; int rpcvers = RPCBVERS4; bool_t do_tcp = FALSE; bool_t tryagain = FALSE; struct portmap mapping; u_short port = 0; /* * First we need to contact the remote RPCBIND service to find * the right port. */ memcpy(&ss, sa, sa->sa_len); switch (ss.ss_family) { case AF_INET: ((struct sockaddr_in *)&ss)->sin_port = htons(111); protofmly = "inet"; so = nlm_socket; break; #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)&ss)->sin6_port = htons(111); protofmly = "inet6"; so = nlm_socket6; break; #endif default: /* * Unsupported address family - fail. */ return (NULL); } rpcb = clnt_dg_create(so, (struct sockaddr *)&ss, RPCBPROG, rpcvers, 0, 0); if (!rpcb) return (NULL); try_tcp: parms.r_prog = prog; parms.r_vers = vers; if (do_tcp) parms.r_netid = "tcp"; else parms.r_netid = "udp"; parms.r_addr = ""; parms.r_owner = ""; /* * Use the default timeout. */ timo.tv_sec = 25; timo.tv_usec = 0; again: switch (rpcvers) { case RPCBVERS4: case RPCBVERS: /* * Try RPCBIND 4 then 3. */ uaddr = NULL; stat = CLNT_CALL(rpcb, (rpcprog_t) RPCBPROC_GETADDR, (xdrproc_t) xdr_rpcb, &parms, (xdrproc_t) xdr_wrapstring, &uaddr, timo); if (stat == RPC_SUCCESS) { /* * We have a reply from the remote RPCBIND - turn it * into an appropriate address and make a new client * that can talk to the remote NLM. * * XXX fixup IPv6 scope ID. */ struct netbuf *a; a = __rpc_uaddr2taddr_af(ss.ss_family, uaddr); if (!a) { tryagain = TRUE; } else { tryagain = FALSE; memcpy(&ss, a->buf, a->len); free(a->buf, M_RPC); free(a, M_RPC); xdr_free((xdrproc_t) xdr_wrapstring, &uaddr); } } if (tryagain || stat == RPC_PROGVERSMISMATCH) { if (rpcvers == RPCBVERS4) rpcvers = RPCBVERS; else if (rpcvers == RPCBVERS) rpcvers = PMAPVERS; CLNT_CONTROL(rpcb, CLSET_VERS, &rpcvers); goto again; } break; case PMAPVERS: /* * Try portmap. */ mapping.pm_prog = parms.r_prog; mapping.pm_vers = parms.r_vers; mapping.pm_prot = do_tcp ? IPPROTO_TCP : IPPROTO_UDP; mapping.pm_port = 0; stat = CLNT_CALL(rpcb, (rpcprog_t) PMAPPROC_GETPORT, (xdrproc_t) xdr_portmap, &mapping, (xdrproc_t) xdr_u_short, &port, timo); if (stat == RPC_SUCCESS) { switch (ss.ss_family) { case AF_INET: ((struct sockaddr_in *)&ss)->sin_port = htons(port); break; #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)&ss)->sin6_port = htons(port); break; #endif } } break; default: panic("invalid rpcvers %d", rpcvers); } /* * We may have a positive response from the portmapper, but the NLM * service was not found. Make sure we received a valid port. */ switch (ss.ss_family) { case AF_INET: port = ((struct sockaddr_in *)&ss)->sin_port; break; #ifdef INET6 case AF_INET6: port = ((struct sockaddr_in6 *)&ss)->sin6_port; break; #endif } if (stat != RPC_SUCCESS || !port) { /* * If we were able to talk to rpcbind or portmap, but the udp * variant wasn't available, ask about tcp. * * XXX - We could also check for a TCP portmapper, but * if the host is running a portmapper at all, we should be able * to hail it over UDP. */ if (stat == RPC_SUCCESS && !do_tcp) { do_tcp = TRUE; goto try_tcp; } /* Otherwise, bad news. */ NLM_ERR("NLM: failed to contact remote rpcbind, " "stat = %d, port = %d\n", (int) stat, port); CLNT_DESTROY(rpcb); return (NULL); } if (do_tcp) { /* * Destroy the UDP client we used to speak to rpcbind and * recreate as a TCP client. */ struct netconfig *nconf = NULL; CLNT_DESTROY(rpcb); switch (ss.ss_family) { case AF_INET: nconf = getnetconfigent("tcp"); break; #ifdef INET6 case AF_INET6: nconf = getnetconfigent("tcp6"); break; #endif } rpcb = clnt_reconnect_create(nconf, (struct sockaddr *)&ss, prog, vers, 0, 0); CLNT_CONTROL(rpcb, CLSET_WAITCHAN, wchan); rpcb->cl_auth = nlm_auth; } else { /* * Re-use the client we used to speak to rpcbind. */ CLNT_CONTROL(rpcb, CLSET_SVC_ADDR, &ss); CLNT_CONTROL(rpcb, CLSET_PROG, &prog); CLNT_CONTROL(rpcb, CLSET_VERS, &vers); CLNT_CONTROL(rpcb, CLSET_WAITCHAN, wchan); rpcb->cl_auth = nlm_auth; } return (rpcb); } /* * This async callback after when an async lock request has been * granted. We notify the host which initiated the request. */ static void nlm_lock_callback(void *arg, int pending) { struct nlm_async_lock *af = (struct nlm_async_lock *) arg; struct rpc_callextra ext; NLM_DEBUG(2, "NLM: async lock %p for %s (sysid %d) granted," " cookie %d:%d\n", af, af->af_host->nh_caller_name, af->af_host->nh_sysid, ng_sysid(&af->af_granted.cookie), ng_cookie(&af->af_granted.cookie)); /* * Send the results back to the host. * * Note: there is a possible race here with nlm_host_notify * destroying the RPC client. To avoid problems, the first * thing nlm_host_notify does is to cancel pending async lock * requests. */ memset(&ext, 0, sizeof(ext)); ext.rc_auth = nlm_auth; if (af->af_host->nh_vers == NLM_VERS4) { nlm4_granted_msg_4(&af->af_granted, NULL, af->af_rpc, &ext, nlm_zero_tv); } else { /* * Back-convert to legacy protocol */ nlm_testargs granted; granted.cookie = af->af_granted.cookie; granted.exclusive = af->af_granted.exclusive; granted.alock.caller_name = af->af_granted.alock.caller_name; granted.alock.fh = af->af_granted.alock.fh; granted.alock.oh = af->af_granted.alock.oh; granted.alock.svid = af->af_granted.alock.svid; granted.alock.l_offset = af->af_granted.alock.l_offset; granted.alock.l_len = af->af_granted.alock.l_len; nlm_granted_msg_1(&granted, NULL, af->af_rpc, &ext, nlm_zero_tv); } /* * Move this entry to the nh_granted list. */ af->af_expiretime = time_uptime + NLM_EXPIRE_TIMEOUT; mtx_lock(&af->af_host->nh_lock); TAILQ_REMOVE(&af->af_host->nh_pending, af, af_link); TAILQ_INSERT_TAIL(&af->af_host->nh_granted, af, af_link); mtx_unlock(&af->af_host->nh_lock); } /* * Free an async lock request. The request must have been removed from * any list. */ static void nlm_free_async_lock(struct nlm_async_lock *af) { /* * Free an async lock. */ if (af->af_rpc) CLNT_RELEASE(af->af_rpc); xdr_free((xdrproc_t) xdr_nlm4_testargs, &af->af_granted); if (af->af_vp) vrele(af->af_vp); free(af, M_NLM); } /* * Cancel our async request - this must be called with * af->nh_host->nh_lock held. This is slightly complicated by a * potential race with our own callback. If we fail to cancel the * lock, it must already have been granted - we make sure our async * task has completed by calling taskqueue_drain in this case. */ static int nlm_cancel_async_lock(struct nlm_async_lock *af) { struct nlm_host *host = af->af_host; int error; mtx_assert(&host->nh_lock, MA_OWNED); mtx_unlock(&host->nh_lock); error = VOP_ADVLOCKASYNC(af->af_vp, NULL, F_CANCEL, &af->af_fl, F_REMOTE, NULL, &af->af_cookie); if (error) { /* * We failed to cancel - make sure our callback has * completed before we continue. */ taskqueue_drain(taskqueue_thread, &af->af_task); } mtx_lock(&host->nh_lock); if (!error) { NLM_DEBUG(2, "NLM: async lock %p for %s (sysid %d) " "cancelled\n", af, host->nh_caller_name, host->nh_sysid); /* * Remove from the nh_pending list and free now that * we are safe from the callback. */ TAILQ_REMOVE(&host->nh_pending, af, af_link); mtx_unlock(&host->nh_lock); nlm_free_async_lock(af); mtx_lock(&host->nh_lock); } return (error); } static void nlm_check_expired_locks(struct nlm_host *host) { struct nlm_async_lock *af; time_t uptime = time_uptime; mtx_lock(&host->nh_lock); while ((af = TAILQ_FIRST(&host->nh_granted)) != NULL && uptime >= af->af_expiretime) { NLM_DEBUG(2, "NLM: async lock %p for %s (sysid %d) expired," " cookie %d:%d\n", af, af->af_host->nh_caller_name, af->af_host->nh_sysid, ng_sysid(&af->af_granted.cookie), ng_cookie(&af->af_granted.cookie)); TAILQ_REMOVE(&host->nh_granted, af, af_link); mtx_unlock(&host->nh_lock); nlm_free_async_lock(af); mtx_lock(&host->nh_lock); } while ((af = TAILQ_FIRST(&host->nh_finished)) != NULL) { TAILQ_REMOVE(&host->nh_finished, af, af_link); mtx_unlock(&host->nh_lock); nlm_free_async_lock(af); mtx_lock(&host->nh_lock); } mtx_unlock(&host->nh_lock); } /* * Free resources used by a host. This is called after the reference * count has reached zero so it doesn't need to worry about locks. */ static void nlm_host_destroy(struct nlm_host *host) { mtx_lock(&nlm_global_lock); TAILQ_REMOVE(&nlm_hosts, host, nh_link); mtx_unlock(&nlm_global_lock); if (host->nh_srvrpc.nr_client) CLNT_RELEASE(host->nh_srvrpc.nr_client); if (host->nh_clntrpc.nr_client) CLNT_RELEASE(host->nh_clntrpc.nr_client); mtx_destroy(&host->nh_lock); sysctl_ctx_free(&host->nh_sysctl); free(host, M_NLM); } /* * Thread start callback for client lock recovery */ static void nlm_client_recovery_start(void *arg) { struct nlm_host *host = (struct nlm_host *) arg; NLM_DEBUG(1, "NLM: client lock recovery for %s started\n", host->nh_caller_name); nlm_client_recovery(host); NLM_DEBUG(1, "NLM: client lock recovery for %s completed\n", host->nh_caller_name); host->nh_monstate = NLM_MONITORED; nlm_host_release(host); kthread_exit(); } /* * This is called when we receive a host state change notification. We * unlock any active locks owned by the host. When rpc.lockd is * shutting down, this function is called with newstate set to zero * which allows us to cancel any pending async locks and clear the * locking state. */ static void nlm_host_notify(struct nlm_host *host, int newstate) { struct nlm_async_lock *af; if (newstate) { NLM_DEBUG(1, "NLM: host %s (sysid %d) rebooted, new " "state is %d\n", host->nh_caller_name, host->nh_sysid, newstate); } /* * Cancel any pending async locks for this host. */ mtx_lock(&host->nh_lock); while ((af = TAILQ_FIRST(&host->nh_pending)) != NULL) { /* * nlm_cancel_async_lock will remove the entry from * nh_pending and free it. */ nlm_cancel_async_lock(af); } mtx_unlock(&host->nh_lock); nlm_check_expired_locks(host); /* * The host just rebooted - trash its locks. */ lf_clearremotesys(host->nh_sysid); host->nh_state = newstate; /* * If we have any remote locks for this host (i.e. it * represents a remote NFS server that our local NFS client * has locks for), start a recovery thread. */ if (newstate != 0 && host->nh_monstate != NLM_RECOVERING && lf_countlocks(NLM_SYSID_CLIENT | host->nh_sysid) > 0) { struct thread *td; host->nh_monstate = NLM_RECOVERING; refcount_acquire(&host->nh_refs); kthread_add(nlm_client_recovery_start, host, curproc, &td, 0, 0, "NFS lock recovery for %s", host->nh_caller_name); } } /* * Sysctl handler to count the number of locks for a sysid. */ static int nlm_host_lock_count_sysctl(SYSCTL_HANDLER_ARGS) { struct nlm_host *host; int count; host = oidp->oid_arg1; count = lf_countlocks(host->nh_sysid); return sysctl_handle_int(oidp, &count, 0, req); } /* * Sysctl handler to count the number of client locks for a sysid. */ static int nlm_host_client_lock_count_sysctl(SYSCTL_HANDLER_ARGS) { struct nlm_host *host; int count; host = oidp->oid_arg1; count = lf_countlocks(NLM_SYSID_CLIENT | host->nh_sysid); return sysctl_handle_int(oidp, &count, 0, req); } /* * Create a new NLM host. */ static struct nlm_host * nlm_create_host(const char* caller_name) { struct nlm_host *host; struct sysctl_oid *oid; mtx_assert(&nlm_global_lock, MA_OWNED); NLM_DEBUG(1, "NLM: new host %s (sysid %d)\n", caller_name, nlm_next_sysid); host = malloc(sizeof(struct nlm_host), M_NLM, M_NOWAIT|M_ZERO); if (!host) return (NULL); mtx_init(&host->nh_lock, "nh_lock", NULL, MTX_DEF); host->nh_refs = 1; strlcpy(host->nh_caller_name, caller_name, MAXNAMELEN); host->nh_sysid = nlm_next_sysid++; snprintf(host->nh_sysid_string, sizeof(host->nh_sysid_string), "%d", host->nh_sysid); host->nh_vers = 0; host->nh_state = 0; host->nh_monstate = NLM_UNMONITORED; host->nh_grantcookie = 1; TAILQ_INIT(&host->nh_pending); TAILQ_INIT(&host->nh_granted); TAILQ_INIT(&host->nh_finished); TAILQ_INSERT_TAIL(&nlm_hosts, host, nh_link); mtx_unlock(&nlm_global_lock); sysctl_ctx_init(&host->nh_sysctl); oid = SYSCTL_ADD_NODE(&host->nh_sysctl, SYSCTL_STATIC_CHILDREN(_vfs_nlm_sysid), OID_AUTO, host->nh_sysid_string, CTLFLAG_RD, NULL, ""); SYSCTL_ADD_STRING(&host->nh_sysctl, SYSCTL_CHILDREN(oid), OID_AUTO, "hostname", CTLFLAG_RD, host->nh_caller_name, 0, ""); SYSCTL_ADD_UINT(&host->nh_sysctl, SYSCTL_CHILDREN(oid), OID_AUTO, "version", CTLFLAG_RD, &host->nh_vers, 0, ""); SYSCTL_ADD_UINT(&host->nh_sysctl, SYSCTL_CHILDREN(oid), OID_AUTO, "monitored", CTLFLAG_RD, &host->nh_monstate, 0, ""); SYSCTL_ADD_PROC(&host->nh_sysctl, SYSCTL_CHILDREN(oid), OID_AUTO, "lock_count", CTLTYPE_INT | CTLFLAG_RD, host, 0, nlm_host_lock_count_sysctl, "I", ""); SYSCTL_ADD_PROC(&host->nh_sysctl, SYSCTL_CHILDREN(oid), OID_AUTO, "client_lock_count", CTLTYPE_INT | CTLFLAG_RD, host, 0, nlm_host_client_lock_count_sysctl, "I", ""); mtx_lock(&nlm_global_lock); return (host); } /* * Acquire the next sysid for remote locks not handled by the NLM. */ uint32_t nlm_acquire_next_sysid(void) { uint32_t next_sysid; mtx_lock(&nlm_global_lock); next_sysid = nlm_next_sysid++; mtx_unlock(&nlm_global_lock); return (next_sysid); } /* * Return non-zero if the address parts of the two sockaddrs are the * same. */ static int nlm_compare_addr(const struct sockaddr *a, const struct sockaddr *b) { const struct sockaddr_in *a4, *b4; #ifdef INET6 const struct sockaddr_in6 *a6, *b6; #endif if (a->sa_family != b->sa_family) return (FALSE); switch (a->sa_family) { case AF_INET: a4 = (const struct sockaddr_in *) a; b4 = (const struct sockaddr_in *) b; return !memcmp(&a4->sin_addr, &b4->sin_addr, sizeof(a4->sin_addr)); #ifdef INET6 case AF_INET6: a6 = (const struct sockaddr_in6 *) a; b6 = (const struct sockaddr_in6 *) b; return !memcmp(&a6->sin6_addr, &b6->sin6_addr, sizeof(a6->sin6_addr)); #endif } return (0); } /* * Check for idle hosts and stop monitoring them. We could also free * the host structure here, possibly after a larger timeout but that * would require some care to avoid races with * e.g. nlm_host_lock_count_sysctl. */ static void nlm_check_idle(void) { struct nlm_host *host; mtx_assert(&nlm_global_lock, MA_OWNED); if (time_uptime <= nlm_next_idle_check) return; nlm_next_idle_check = time_uptime + NLM_IDLE_PERIOD; TAILQ_FOREACH(host, &nlm_hosts, nh_link) { if (host->nh_monstate == NLM_MONITORED && time_uptime > host->nh_idle_timeout) { mtx_unlock(&nlm_global_lock); if (lf_countlocks(host->nh_sysid) > 0 || lf_countlocks(NLM_SYSID_CLIENT + host->nh_sysid)) { host->nh_idle_timeout = time_uptime + NLM_IDLE_TIMEOUT; mtx_lock(&nlm_global_lock); continue; } nlm_host_unmonitor(host); mtx_lock(&nlm_global_lock); } } } /* * Search for an existing NLM host that matches the given name * (typically the caller_name element of an nlm4_lock). If none is * found, create a new host. If 'addr' is non-NULL, record the remote * address of the host so that we can call it back for async * responses. If 'vers' is greater than zero then record the NLM * program version to use to communicate with this client. */ struct nlm_host * nlm_find_host_by_name(const char *name, const struct sockaddr *addr, rpcvers_t vers) { struct nlm_host *host; mtx_lock(&nlm_global_lock); /* * The remote host is determined by caller_name. */ TAILQ_FOREACH(host, &nlm_hosts, nh_link) { if (!strcmp(host->nh_caller_name, name)) break; } if (!host) { host = nlm_create_host(name); if (!host) { mtx_unlock(&nlm_global_lock); return (NULL); } } refcount_acquire(&host->nh_refs); host->nh_idle_timeout = time_uptime + NLM_IDLE_TIMEOUT; /* * If we have an address for the host, record it so that we * can send async replies etc. */ if (addr) { KASSERT(addr->sa_len < sizeof(struct sockaddr_storage), ("Strange remote transport address length")); /* * If we have seen an address before and we currently * have an RPC client handle, make sure the address is * the same, otherwise discard the client handle. */ if (host->nh_addr.ss_len && host->nh_srvrpc.nr_client) { if (!nlm_compare_addr( (struct sockaddr *) &host->nh_addr, addr) || host->nh_vers != vers) { CLIENT *client; mtx_lock(&host->nh_lock); client = host->nh_srvrpc.nr_client; host->nh_srvrpc.nr_client = NULL; mtx_unlock(&host->nh_lock); if (client) { CLNT_RELEASE(client); } } } memcpy(&host->nh_addr, addr, addr->sa_len); host->nh_vers = vers; } nlm_check_idle(); mtx_unlock(&nlm_global_lock); return (host); } /* * Search for an existing NLM host that matches the given remote * address. If none is found, create a new host with the requested * address and remember 'vers' as the NLM protocol version to use for * that host. */ struct nlm_host * nlm_find_host_by_addr(const struct sockaddr *addr, int vers) { /* * Fake up a name using inet_ntop. This buffer is * large enough for an IPv6 address. */ char tmp[sizeof "ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255"]; struct nlm_host *host; switch (addr->sa_family) { case AF_INET: inet_ntop(AF_INET, &((const struct sockaddr_in *) addr)->sin_addr, tmp, sizeof tmp); break; #ifdef INET6 case AF_INET6: inet_ntop(AF_INET6, &((const struct sockaddr_in6 *) addr)->sin6_addr, tmp, sizeof tmp); break; #endif default: strlcpy(tmp, "", sizeof(tmp)); } mtx_lock(&nlm_global_lock); /* * The remote host is determined by caller_name. */ TAILQ_FOREACH(host, &nlm_hosts, nh_link) { if (nlm_compare_addr(addr, (const struct sockaddr *) &host->nh_addr)) break; } if (!host) { host = nlm_create_host(tmp); if (!host) { mtx_unlock(&nlm_global_lock); return (NULL); } memcpy(&host->nh_addr, addr, addr->sa_len); host->nh_vers = vers; } refcount_acquire(&host->nh_refs); host->nh_idle_timeout = time_uptime + NLM_IDLE_TIMEOUT; nlm_check_idle(); mtx_unlock(&nlm_global_lock); return (host); } /* * Find the NLM host that matches the value of 'sysid'. If none * exists, return NULL. */ static struct nlm_host * nlm_find_host_by_sysid(int sysid) { struct nlm_host *host; TAILQ_FOREACH(host, &nlm_hosts, nh_link) { if (host->nh_sysid == sysid) { refcount_acquire(&host->nh_refs); return (host); } } return (NULL); } void nlm_host_release(struct nlm_host *host) { if (refcount_release(&host->nh_refs)) { /* * Free the host */ nlm_host_destroy(host); } } /* * Unregister this NLM host with the local NSM due to idleness. */ static void nlm_host_unmonitor(struct nlm_host *host) { mon_id smmonid; sm_stat_res smstat; struct timeval timo; enum clnt_stat stat; NLM_DEBUG(1, "NLM: unmonitoring %s (sysid %d)\n", host->nh_caller_name, host->nh_sysid); /* * We put our assigned system ID value in the priv field to * make it simpler to find the host if we are notified of a * host restart. */ smmonid.mon_name = host->nh_caller_name; smmonid.my_id.my_name = "localhost"; smmonid.my_id.my_prog = NLM_PROG; smmonid.my_id.my_vers = NLM_SM; smmonid.my_id.my_proc = NLM_SM_NOTIFY; timo.tv_sec = 25; timo.tv_usec = 0; stat = CLNT_CALL(nlm_nsm, SM_UNMON, (xdrproc_t) xdr_mon, &smmonid, (xdrproc_t) xdr_sm_stat, &smstat, timo); if (stat != RPC_SUCCESS) { NLM_ERR("Failed to contact local NSM - rpc error %d\n", stat); return; } if (smstat.res_stat == stat_fail) { NLM_ERR("Local NSM refuses to unmonitor %s\n", host->nh_caller_name); return; } host->nh_monstate = NLM_UNMONITORED; } /* * Register this NLM host with the local NSM so that we can be * notified if it reboots. */ void nlm_host_monitor(struct nlm_host *host, int state) { mon smmon; sm_stat_res smstat; struct timeval timo; enum clnt_stat stat; if (state && !host->nh_state) { /* * This is the first time we have seen an NSM state * value for this host. We record it here to help * detect host reboots. */ host->nh_state = state; NLM_DEBUG(1, "NLM: host %s (sysid %d) has NSM state %d\n", host->nh_caller_name, host->nh_sysid, state); } mtx_lock(&host->nh_lock); if (host->nh_monstate != NLM_UNMONITORED) { mtx_unlock(&host->nh_lock); return; } host->nh_monstate = NLM_MONITORED; mtx_unlock(&host->nh_lock); NLM_DEBUG(1, "NLM: monitoring %s (sysid %d)\n", host->nh_caller_name, host->nh_sysid); /* * We put our assigned system ID value in the priv field to * make it simpler to find the host if we are notified of a * host restart. */ smmon.mon_id.mon_name = host->nh_caller_name; smmon.mon_id.my_id.my_name = "localhost"; smmon.mon_id.my_id.my_prog = NLM_PROG; smmon.mon_id.my_id.my_vers = NLM_SM; smmon.mon_id.my_id.my_proc = NLM_SM_NOTIFY; memcpy(smmon.priv, &host->nh_sysid, sizeof(host->nh_sysid)); timo.tv_sec = 25; timo.tv_usec = 0; stat = CLNT_CALL(nlm_nsm, SM_MON, (xdrproc_t) xdr_mon, &smmon, (xdrproc_t) xdr_sm_stat, &smstat, timo); if (stat != RPC_SUCCESS) { NLM_ERR("Failed to contact local NSM - rpc error %d\n", stat); return; } if (smstat.res_stat == stat_fail) { NLM_ERR("Local NSM refuses to monitor %s\n", host->nh_caller_name); mtx_lock(&host->nh_lock); host->nh_monstate = NLM_MONITOR_FAILED; mtx_unlock(&host->nh_lock); return; } host->nh_monstate = NLM_MONITORED; } /* * Return an RPC client handle that can be used to talk to the NLM * running on the given host. */ CLIENT * nlm_host_get_rpc(struct nlm_host *host, bool_t isserver) { struct nlm_rpc *rpc; CLIENT *client; mtx_lock(&host->nh_lock); if (isserver) rpc = &host->nh_srvrpc; else rpc = &host->nh_clntrpc; /* * We can't hold onto RPC handles for too long - the async * call/reply protocol used by some NLM clients makes it hard * to tell when they change port numbers (e.g. after a * reboot). Note that if a client reboots while it isn't * holding any locks, it won't bother to notify us. We * expire the RPC handles after two minutes. */ if (rpc->nr_client && time_uptime > rpc->nr_create_time + 2*60) { client = rpc->nr_client; rpc->nr_client = NULL; mtx_unlock(&host->nh_lock); CLNT_RELEASE(client); mtx_lock(&host->nh_lock); } if (!rpc->nr_client) { mtx_unlock(&host->nh_lock); client = nlm_get_rpc((struct sockaddr *)&host->nh_addr, NLM_PROG, host->nh_vers); mtx_lock(&host->nh_lock); if (client) { if (rpc->nr_client) { mtx_unlock(&host->nh_lock); CLNT_DESTROY(client); mtx_lock(&host->nh_lock); } else { rpc->nr_client = client; rpc->nr_create_time = time_uptime; } } } client = rpc->nr_client; if (client) CLNT_ACQUIRE(client); mtx_unlock(&host->nh_lock); return (client); } int nlm_host_get_sysid(struct nlm_host *host) { return (host->nh_sysid); } int nlm_host_get_state(struct nlm_host *host) { return (host->nh_state); } void * nlm_register_wait_lock(struct nlm4_lock *lock, struct vnode *vp) { struct nlm_waiting_lock *nw; nw = malloc(sizeof(struct nlm_waiting_lock), M_NLM, M_WAITOK); nw->nw_lock = *lock; memcpy(&nw->nw_fh.fh_bytes, nw->nw_lock.fh.n_bytes, nw->nw_lock.fh.n_len); nw->nw_lock.fh.n_bytes = nw->nw_fh.fh_bytes; nw->nw_waiting = TRUE; nw->nw_vp = vp; mtx_lock(&nlm_global_lock); TAILQ_INSERT_TAIL(&nlm_waiting_locks, nw, nw_link); mtx_unlock(&nlm_global_lock); return nw; } void nlm_deregister_wait_lock(void *handle) { struct nlm_waiting_lock *nw = handle; mtx_lock(&nlm_global_lock); TAILQ_REMOVE(&nlm_waiting_locks, nw, nw_link); mtx_unlock(&nlm_global_lock); free(nw, M_NLM); } int nlm_wait_lock(void *handle, int timo) { struct nlm_waiting_lock *nw = handle; int error; /* * If the granted message arrived before we got here, * nw->nw_waiting will be FALSE - in that case, don't sleep. */ mtx_lock(&nlm_global_lock); error = 0; if (nw->nw_waiting) error = msleep(nw, &nlm_global_lock, PCATCH, "nlmlock", timo); TAILQ_REMOVE(&nlm_waiting_locks, nw, nw_link); if (error) { /* * The granted message may arrive after the * interrupt/timeout but before we manage to lock the * mutex. Detect this by examining nw_lock. */ if (!nw->nw_waiting) error = 0; } else { /* * If nlm_cancel_wait is called, then error will be * zero but nw_waiting will still be TRUE. We * translate this into EINTR. */ if (nw->nw_waiting) error = EINTR; } mtx_unlock(&nlm_global_lock); free(nw, M_NLM); return (error); } void nlm_cancel_wait(struct vnode *vp) { struct nlm_waiting_lock *nw; mtx_lock(&nlm_global_lock); TAILQ_FOREACH(nw, &nlm_waiting_locks, nw_link) { if (nw->nw_vp == vp) { wakeup(nw); } } mtx_unlock(&nlm_global_lock); } /**********************************************************************/ /* * Syscall interface with userland. */ extern void nlm_prog_0(struct svc_req *rqstp, SVCXPRT *transp); extern void nlm_prog_1(struct svc_req *rqstp, SVCXPRT *transp); extern void nlm_prog_3(struct svc_req *rqstp, SVCXPRT *transp); extern void nlm_prog_4(struct svc_req *rqstp, SVCXPRT *transp); static int nlm_register_services(SVCPOOL *pool, int addr_count, char **addrs) { static rpcvers_t versions[] = { NLM_SM, NLM_VERS, NLM_VERSX, NLM_VERS4 }; static void (*dispatchers[])(struct svc_req *, SVCXPRT *) = { nlm_prog_0, nlm_prog_1, nlm_prog_3, nlm_prog_4 }; static const int version_count = sizeof(versions) / sizeof(versions[0]); SVCXPRT **xprts; char netid[16]; char uaddr[128]; struct netconfig *nconf; int i, j, error; if (!addr_count) { NLM_ERR("NLM: no service addresses given - can't start server"); return (EINVAL); } xprts = malloc(addr_count * sizeof(SVCXPRT *), M_NLM, M_WAITOK|M_ZERO); for (i = 0; i < version_count; i++) { for (j = 0; j < addr_count; j++) { /* * Create transports for the first version and * then just register everything else to the * same transports. */ if (i == 0) { char *up; error = copyin(&addrs[2*j], &up, sizeof(char*)); if (error) goto out; error = copyinstr(up, netid, sizeof(netid), NULL); if (error) goto out; error = copyin(&addrs[2*j+1], &up, sizeof(char*)); if (error) goto out; error = copyinstr(up, uaddr, sizeof(uaddr), NULL); if (error) goto out; nconf = getnetconfigent(netid); if (!nconf) { NLM_ERR("Can't lookup netid %s\n", netid); error = EINVAL; goto out; } xprts[j] = svc_tp_create(pool, dispatchers[i], NLM_PROG, versions[i], uaddr, nconf); if (!xprts[j]) { NLM_ERR("NLM: unable to create " "(NLM_PROG, %d).\n", versions[i]); error = EINVAL; goto out; } freenetconfigent(nconf); } else { nconf = getnetconfigent(xprts[j]->xp_netid); rpcb_unset(NLM_PROG, versions[i], nconf); if (!svc_reg(xprts[j], NLM_PROG, versions[i], dispatchers[i], nconf)) { NLM_ERR("NLM: can't register " "(NLM_PROG, %d)\n", versions[i]); error = EINVAL; goto out; } } } } error = 0; out: for (j = 0; j < addr_count; j++) { if (xprts[j]) SVC_RELEASE(xprts[j]); } free(xprts, M_NLM); return (error); } /* * Main server entry point. Contacts the local NSM to get its current * state and send SM_UNMON_ALL. Registers the NLM services and then * services requests. Does not return until the server is interrupted * by a signal. */ static int nlm_server_main(int addr_count, char **addrs) { struct thread *td = curthread; int error; SVCPOOL *pool = NULL; struct sockopt opt; int portlow; #ifdef INET6 struct sockaddr_in6 sin6; #endif struct sockaddr_in sin; my_id id; sm_stat smstat; struct timeval timo; enum clnt_stat stat; struct nlm_host *host, *nhost; struct nlm_waiting_lock *nw; vop_advlock_t *old_nfs_advlock; vop_reclaim_t *old_nfs_reclaim; if (nlm_is_running != 0) { NLM_ERR("NLM: can't start server - " "it appears to be running already\n"); return (EPERM); } if (nlm_socket == NULL) { memset(&opt, 0, sizeof(opt)); error = socreate(AF_INET, &nlm_socket, SOCK_DGRAM, 0, td->td_ucred, td); if (error) { NLM_ERR("NLM: can't create IPv4 socket - error %d\n", error); return (error); } opt.sopt_dir = SOPT_SET; opt.sopt_level = IPPROTO_IP; opt.sopt_name = IP_PORTRANGE; portlow = IP_PORTRANGE_LOW; opt.sopt_val = &portlow; opt.sopt_valsize = sizeof(portlow); sosetopt(nlm_socket, &opt); #ifdef INET6 nlm_socket6 = NULL; error = socreate(AF_INET6, &nlm_socket6, SOCK_DGRAM, 0, td->td_ucred, td); if (error) { NLM_ERR("NLM: can't create IPv6 socket - error %d\n", error); soclose(nlm_socket); nlm_socket = NULL; return (error); } opt.sopt_dir = SOPT_SET; opt.sopt_level = IPPROTO_IPV6; opt.sopt_name = IPV6_PORTRANGE; portlow = IPV6_PORTRANGE_LOW; opt.sopt_val = &portlow; opt.sopt_valsize = sizeof(portlow); sosetopt(nlm_socket6, &opt); #endif } nlm_auth = authunix_create(curthread->td_ucred); #ifdef INET6 memset(&sin6, 0, sizeof(sin6)); sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = in6addr_loopback; nlm_nsm = nlm_get_rpc((struct sockaddr *) &sin6, SM_PROG, SM_VERS); if (!nlm_nsm) { #endif memset(&sin, 0, sizeof(sin)); sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); nlm_nsm = nlm_get_rpc((struct sockaddr *) &sin, SM_PROG, SM_VERS); #ifdef INET6 } #endif if (!nlm_nsm) { NLM_ERR("Can't start NLM - unable to contact NSM\n"); error = EINVAL; goto out; } pool = svcpool_create("NLM", NULL); error = nlm_register_services(pool, addr_count, addrs); if (error) goto out; memset(&id, 0, sizeof(id)); id.my_name = "NFS NLM"; timo.tv_sec = 25; timo.tv_usec = 0; stat = CLNT_CALL(nlm_nsm, SM_UNMON_ALL, (xdrproc_t) xdr_my_id, &id, (xdrproc_t) xdr_sm_stat, &smstat, timo); if (stat != RPC_SUCCESS) { struct rpc_err err; CLNT_GETERR(nlm_nsm, &err); NLM_ERR("NLM: unexpected error contacting NSM, " "stat=%d, errno=%d\n", stat, err.re_errno); error = EINVAL; goto out; } nlm_is_running = 1; NLM_DEBUG(1, "NLM: local NSM state is %d\n", smstat.state); nlm_nsm_state = smstat.state; old_nfs_advlock = nfs_advlock_p; nfs_advlock_p = nlm_advlock; old_nfs_reclaim = nfs_reclaim_p; nfs_reclaim_p = nlm_reclaim; svc_run(pool); error = 0; nfs_advlock_p = old_nfs_advlock; nfs_reclaim_p = old_nfs_reclaim; out: nlm_is_running = 0; if (pool) svcpool_destroy(pool); /* * We are finished communicating with the NSM. */ if (nlm_nsm) { CLNT_RELEASE(nlm_nsm); nlm_nsm = NULL; } /* * Trash all the existing state so that if the server * restarts, it gets a clean slate. This is complicated by the * possibility that there may be other threads trying to make * client locking requests. * * First we fake a client reboot notification which will * cancel any pending async locks and purge remote lock state * from the local lock manager. We release the reference from * nlm_hosts to the host (which may remove it from the list * and free it). After this phase, the only entries in the * nlm_host list should be from other threads performing * client lock requests. */ mtx_lock(&nlm_global_lock); TAILQ_FOREACH(nw, &nlm_waiting_locks, nw_link) { wakeup(nw); } TAILQ_FOREACH_SAFE(host, &nlm_hosts, nh_link, nhost) { mtx_unlock(&nlm_global_lock); nlm_host_notify(host, 0); nlm_host_release(host); mtx_lock(&nlm_global_lock); } mtx_unlock(&nlm_global_lock); AUTH_DESTROY(nlm_auth); return (error); } int sys_nlm_syscall(struct thread *td, struct nlm_syscall_args *uap) { int error; #if __FreeBSD_version >= 700000 error = priv_check(td, PRIV_NFS_LOCKD); #else error = suser(td); #endif if (error) return (error); nlm_debug_level = uap->debug_level; nlm_grace_threshold = time_uptime + uap->grace_period; nlm_next_idle_check = time_uptime + NLM_IDLE_PERIOD; return nlm_server_main(uap->addr_count, uap->addrs); } /**********************************************************************/ /* * NLM implementation details, called from the RPC stubs. */ void nlm_sm_notify(struct nlm_sm_status *argp) { uint32_t sysid; struct nlm_host *host; NLM_DEBUG(3, "nlm_sm_notify(): mon_name = %s\n", argp->mon_name); memcpy(&sysid, &argp->priv, sizeof(sysid)); host = nlm_find_host_by_sysid(sysid); if (host) { nlm_host_notify(host, argp->state); nlm_host_release(host); } } static void nlm_convert_to_fhandle_t(fhandle_t *fhp, struct netobj *p) { memcpy(fhp, p->n_bytes, sizeof(fhandle_t)); } struct vfs_state { struct mount *vs_mp; struct vnode *vs_vp; int vs_vnlocked; }; static int nlm_get_vfs_state(struct nlm_host *host, struct svc_req *rqstp, fhandle_t *fhp, struct vfs_state *vs, accmode_t accmode) { int error, exflags; struct ucred *cred = NULL, *credanon = NULL; memset(vs, 0, sizeof(*vs)); vs->vs_mp = vfs_getvfs(&fhp->fh_fsid); if (!vs->vs_mp) { return (ESTALE); } /* accmode == 0 means don't check, since it is an unlock. */ if (accmode != 0) { error = VFS_CHECKEXP(vs->vs_mp, (struct sockaddr *)&host->nh_addr, &exflags, &credanon, NULL, NULL); if (error) goto out; if (exflags & MNT_EXRDONLY || (vs->vs_mp->mnt_flag & MNT_RDONLY)) { error = EROFS; goto out; } } error = VFS_FHTOVP(vs->vs_mp, &fhp->fh_fid, LK_EXCLUSIVE, &vs->vs_vp); if (error) goto out; vs->vs_vnlocked = TRUE; if (accmode != 0) { if (!svc_getcred(rqstp, &cred, NULL)) { error = EINVAL; goto out; } if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { crfree(cred); cred = credanon; credanon = NULL; } /* * Check cred. */ error = VOP_ACCESS(vs->vs_vp, accmode, cred, curthread); /* * If this failed and accmode != VWRITE, try again with * VWRITE to maintain backwards compatibility with the * old code that always used VWRITE. */ if (error != 0 && accmode != VWRITE) error = VOP_ACCESS(vs->vs_vp, VWRITE, cred, curthread); if (error) goto out; } #if __FreeBSD_version < 800011 VOP_UNLOCK(vs->vs_vp, 0, curthread); #else VOP_UNLOCK(vs->vs_vp, 0); #endif vs->vs_vnlocked = FALSE; out: if (cred) crfree(cred); if (credanon) crfree(credanon); return (error); } static void nlm_release_vfs_state(struct vfs_state *vs) { if (vs->vs_vp) { if (vs->vs_vnlocked) vput(vs->vs_vp); else vrele(vs->vs_vp); } if (vs->vs_mp) vfs_rel(vs->vs_mp); } static nlm4_stats nlm_convert_error(int error) { if (error == ESTALE) return nlm4_stale_fh; else if (error == EROFS) return nlm4_rofs; else return nlm4_failed; } int nlm_do_test(nlm4_testargs *argp, nlm4_testres *result, struct svc_req *rqstp, CLIENT **rpcp) { fhandle_t fh; struct vfs_state vs; struct nlm_host *host, *bhost; int error, sysid; struct flock fl; accmode_t accmode; memset(result, 0, sizeof(*result)); memset(&vs, 0, sizeof(vs)); host = nlm_find_host_by_name(argp->alock.caller_name, svc_getrpccaller(rqstp), rqstp->rq_vers); if (!host) { result->stat.stat = nlm4_denied_nolocks; return (ENOMEM); } NLM_DEBUG(3, "nlm_do_test(): caller_name = %s (sysid = %d)\n", host->nh_caller_name, host->nh_sysid); nlm_check_expired_locks(host); sysid = host->nh_sysid; nlm_convert_to_fhandle_t(&fh, &argp->alock.fh); nlm_copy_netobj(&result->cookie, &argp->cookie, M_RPC); if (time_uptime < nlm_grace_threshold) { result->stat.stat = nlm4_denied_grace_period; goto out; } accmode = argp->exclusive ? VWRITE : VREAD; error = nlm_get_vfs_state(host, rqstp, &fh, &vs, accmode); if (error) { result->stat.stat = nlm_convert_error(error); goto out; } fl.l_start = argp->alock.l_offset; fl.l_len = argp->alock.l_len; fl.l_pid = argp->alock.svid; fl.l_sysid = sysid; fl.l_whence = SEEK_SET; if (argp->exclusive) fl.l_type = F_WRLCK; else fl.l_type = F_RDLCK; error = VOP_ADVLOCK(vs.vs_vp, NULL, F_GETLK, &fl, F_REMOTE); if (error) { result->stat.stat = nlm4_failed; goto out; } if (fl.l_type == F_UNLCK) { result->stat.stat = nlm4_granted; } else { result->stat.stat = nlm4_denied; result->stat.nlm4_testrply_u.holder.exclusive = (fl.l_type == F_WRLCK); result->stat.nlm4_testrply_u.holder.svid = fl.l_pid; bhost = nlm_find_host_by_sysid(fl.l_sysid); if (bhost) { /* * We don't have any useful way of recording * the value of oh used in the original lock * request. Ideally, the test reply would have * a space for the owning host's name allowing * our caller's NLM to keep track. * * As far as I can see, Solaris uses an eight * byte structure for oh which contains a four * byte pid encoded in local byte order and * the first four bytes of the host * name. Linux uses a variable length string * 'pid@hostname' in ascii but doesn't even * return that in test replies. * * For the moment, return nothing in oh * (already zero'ed above). */ nlm_host_release(bhost); } result->stat.nlm4_testrply_u.holder.l_offset = fl.l_start; result->stat.nlm4_testrply_u.holder.l_len = fl.l_len; } out: nlm_release_vfs_state(&vs); if (rpcp) *rpcp = nlm_host_get_rpc(host, TRUE); nlm_host_release(host); return (0); } int nlm_do_lock(nlm4_lockargs *argp, nlm4_res *result, struct svc_req *rqstp, bool_t monitor, CLIENT **rpcp) { fhandle_t fh; struct vfs_state vs; struct nlm_host *host; int error, sysid; struct flock fl; accmode_t accmode; memset(result, 0, sizeof(*result)); memset(&vs, 0, sizeof(vs)); host = nlm_find_host_by_name(argp->alock.caller_name, svc_getrpccaller(rqstp), rqstp->rq_vers); if (!host) { result->stat.stat = nlm4_denied_nolocks; return (ENOMEM); } NLM_DEBUG(3, "nlm_do_lock(): caller_name = %s (sysid = %d)\n", host->nh_caller_name, host->nh_sysid); if (monitor && host->nh_state && argp->state && host->nh_state != argp->state) { /* * The host rebooted without telling us. Trash its * locks. */ nlm_host_notify(host, argp->state); } nlm_check_expired_locks(host); sysid = host->nh_sysid; nlm_convert_to_fhandle_t(&fh, &argp->alock.fh); nlm_copy_netobj(&result->cookie, &argp->cookie, M_RPC); if (time_uptime < nlm_grace_threshold && !argp->reclaim) { result->stat.stat = nlm4_denied_grace_period; goto out; } accmode = argp->exclusive ? VWRITE : VREAD; error = nlm_get_vfs_state(host, rqstp, &fh, &vs, accmode); if (error) { result->stat.stat = nlm_convert_error(error); goto out; } fl.l_start = argp->alock.l_offset; fl.l_len = argp->alock.l_len; fl.l_pid = argp->alock.svid; fl.l_sysid = sysid; fl.l_whence = SEEK_SET; if (argp->exclusive) fl.l_type = F_WRLCK; else fl.l_type = F_RDLCK; if (argp->block) { struct nlm_async_lock *af; CLIENT *client; struct nlm_grantcookie cookie; /* * First, make sure we can contact the host's NLM. */ client = nlm_host_get_rpc(host, TRUE); if (!client) { result->stat.stat = nlm4_failed; goto out; } /* * First we need to check and see if there is an * existing blocked lock that matches. This could be a * badly behaved client or an RPC re-send. If we find * one, just return nlm4_blocked. */ mtx_lock(&host->nh_lock); TAILQ_FOREACH(af, &host->nh_pending, af_link) { if (af->af_fl.l_start == fl.l_start && af->af_fl.l_len == fl.l_len && af->af_fl.l_pid == fl.l_pid && af->af_fl.l_type == fl.l_type) { break; } } if (!af) { cookie.ng_sysid = host->nh_sysid; cookie.ng_cookie = host->nh_grantcookie++; } mtx_unlock(&host->nh_lock); if (af) { CLNT_RELEASE(client); result->stat.stat = nlm4_blocked; goto out; } af = malloc(sizeof(struct nlm_async_lock), M_NLM, M_WAITOK|M_ZERO); TASK_INIT(&af->af_task, 0, nlm_lock_callback, af); af->af_vp = vs.vs_vp; af->af_fl = fl; af->af_host = host; af->af_rpc = client; /* * We use M_RPC here so that we can xdr_free the thing * later. */ nlm_make_netobj(&af->af_granted.cookie, (caddr_t)&cookie, sizeof(cookie), M_RPC); af->af_granted.exclusive = argp->exclusive; af->af_granted.alock.caller_name = strdup(argp->alock.caller_name, M_RPC); nlm_copy_netobj(&af->af_granted.alock.fh, &argp->alock.fh, M_RPC); nlm_copy_netobj(&af->af_granted.alock.oh, &argp->alock.oh, M_RPC); af->af_granted.alock.svid = argp->alock.svid; af->af_granted.alock.l_offset = argp->alock.l_offset; af->af_granted.alock.l_len = argp->alock.l_len; /* * Put the entry on the pending list before calling * VOP_ADVLOCKASYNC. We do this in case the lock * request was blocked (returning EINPROGRESS) but * then granted before we manage to run again. The * client may receive the granted message before we * send our blocked reply but thats their problem. */ mtx_lock(&host->nh_lock); TAILQ_INSERT_TAIL(&host->nh_pending, af, af_link); mtx_unlock(&host->nh_lock); error = VOP_ADVLOCKASYNC(vs.vs_vp, NULL, F_SETLK, &fl, F_REMOTE, &af->af_task, &af->af_cookie); /* * If the lock completed synchronously, just free the * tracking structure now. */ if (error != EINPROGRESS) { CLNT_RELEASE(af->af_rpc); mtx_lock(&host->nh_lock); TAILQ_REMOVE(&host->nh_pending, af, af_link); mtx_unlock(&host->nh_lock); xdr_free((xdrproc_t) xdr_nlm4_testargs, &af->af_granted); free(af, M_NLM); } else { NLM_DEBUG(2, "NLM: pending async lock %p for %s " "(sysid %d)\n", af, host->nh_caller_name, sysid); /* * Don't vrele the vnode just yet - this must * wait until either the async callback * happens or the lock is cancelled. */ vs.vs_vp = NULL; } } else { error = VOP_ADVLOCK(vs.vs_vp, NULL, F_SETLK, &fl, F_REMOTE); } if (error) { if (error == EINPROGRESS) { result->stat.stat = nlm4_blocked; } else if (error == EDEADLK) { result->stat.stat = nlm4_deadlck; } else if (error == EAGAIN) { result->stat.stat = nlm4_denied; } else { result->stat.stat = nlm4_failed; } } else { if (monitor) nlm_host_monitor(host, argp->state); result->stat.stat = nlm4_granted; } out: nlm_release_vfs_state(&vs); if (rpcp) *rpcp = nlm_host_get_rpc(host, TRUE); nlm_host_release(host); return (0); } int nlm_do_cancel(nlm4_cancargs *argp, nlm4_res *result, struct svc_req *rqstp, CLIENT **rpcp) { fhandle_t fh; struct vfs_state vs; struct nlm_host *host; int error, sysid; struct flock fl; struct nlm_async_lock *af; memset(result, 0, sizeof(*result)); memset(&vs, 0, sizeof(vs)); host = nlm_find_host_by_name(argp->alock.caller_name, svc_getrpccaller(rqstp), rqstp->rq_vers); if (!host) { result->stat.stat = nlm4_denied_nolocks; return (ENOMEM); } NLM_DEBUG(3, "nlm_do_cancel(): caller_name = %s (sysid = %d)\n", host->nh_caller_name, host->nh_sysid); nlm_check_expired_locks(host); sysid = host->nh_sysid; nlm_convert_to_fhandle_t(&fh, &argp->alock.fh); nlm_copy_netobj(&result->cookie, &argp->cookie, M_RPC); if (time_uptime < nlm_grace_threshold) { result->stat.stat = nlm4_denied_grace_period; goto out; } error = nlm_get_vfs_state(host, rqstp, &fh, &vs, (accmode_t)0); if (error) { result->stat.stat = nlm_convert_error(error); goto out; } fl.l_start = argp->alock.l_offset; fl.l_len = argp->alock.l_len; fl.l_pid = argp->alock.svid; fl.l_sysid = sysid; fl.l_whence = SEEK_SET; if (argp->exclusive) fl.l_type = F_WRLCK; else fl.l_type = F_RDLCK; /* * First we need to try and find the async lock request - if * there isn't one, we give up and return nlm4_denied. */ mtx_lock(&host->nh_lock); TAILQ_FOREACH(af, &host->nh_pending, af_link) { if (af->af_fl.l_start == fl.l_start && af->af_fl.l_len == fl.l_len && af->af_fl.l_pid == fl.l_pid && af->af_fl.l_type == fl.l_type) { break; } } if (!af) { mtx_unlock(&host->nh_lock); result->stat.stat = nlm4_denied; goto out; } error = nlm_cancel_async_lock(af); if (error) { result->stat.stat = nlm4_denied; } else { result->stat.stat = nlm4_granted; } mtx_unlock(&host->nh_lock); out: nlm_release_vfs_state(&vs); if (rpcp) *rpcp = nlm_host_get_rpc(host, TRUE); nlm_host_release(host); return (0); } int nlm_do_unlock(nlm4_unlockargs *argp, nlm4_res *result, struct svc_req *rqstp, CLIENT **rpcp) { fhandle_t fh; struct vfs_state vs; struct nlm_host *host; int error, sysid; struct flock fl; memset(result, 0, sizeof(*result)); memset(&vs, 0, sizeof(vs)); host = nlm_find_host_by_name(argp->alock.caller_name, svc_getrpccaller(rqstp), rqstp->rq_vers); if (!host) { result->stat.stat = nlm4_denied_nolocks; return (ENOMEM); } NLM_DEBUG(3, "nlm_do_unlock(): caller_name = %s (sysid = %d)\n", host->nh_caller_name, host->nh_sysid); nlm_check_expired_locks(host); sysid = host->nh_sysid; nlm_convert_to_fhandle_t(&fh, &argp->alock.fh); nlm_copy_netobj(&result->cookie, &argp->cookie, M_RPC); if (time_uptime < nlm_grace_threshold) { result->stat.stat = nlm4_denied_grace_period; goto out; } error = nlm_get_vfs_state(host, rqstp, &fh, &vs, (accmode_t)0); if (error) { result->stat.stat = nlm_convert_error(error); goto out; } fl.l_start = argp->alock.l_offset; fl.l_len = argp->alock.l_len; fl.l_pid = argp->alock.svid; fl.l_sysid = sysid; fl.l_whence = SEEK_SET; fl.l_type = F_UNLCK; error = VOP_ADVLOCK(vs.vs_vp, NULL, F_UNLCK, &fl, F_REMOTE); /* * Ignore the error - there is no result code for failure, * only for grace period. */ result->stat.stat = nlm4_granted; out: nlm_release_vfs_state(&vs); if (rpcp) *rpcp = nlm_host_get_rpc(host, TRUE); nlm_host_release(host); return (0); } int nlm_do_granted(nlm4_testargs *argp, nlm4_res *result, struct svc_req *rqstp, CLIENT **rpcp) { struct nlm_host *host; struct nlm_waiting_lock *nw; memset(result, 0, sizeof(*result)); host = nlm_find_host_by_addr(svc_getrpccaller(rqstp), rqstp->rq_vers); if (!host) { result->stat.stat = nlm4_denied_nolocks; return (ENOMEM); } nlm_copy_netobj(&result->cookie, &argp->cookie, M_RPC); result->stat.stat = nlm4_denied; KFAIL_POINT_CODE(DEBUG_FP, nlm_deny_grant, goto out); mtx_lock(&nlm_global_lock); TAILQ_FOREACH(nw, &nlm_waiting_locks, nw_link) { if (!nw->nw_waiting) continue; if (argp->alock.svid == nw->nw_lock.svid && argp->alock.l_offset == nw->nw_lock.l_offset && argp->alock.l_len == nw->nw_lock.l_len && argp->alock.fh.n_len == nw->nw_lock.fh.n_len && !memcmp(argp->alock.fh.n_bytes, nw->nw_lock.fh.n_bytes, nw->nw_lock.fh.n_len)) { nw->nw_waiting = FALSE; wakeup(nw); result->stat.stat = nlm4_granted; break; } } mtx_unlock(&nlm_global_lock); out: if (rpcp) *rpcp = nlm_host_get_rpc(host, TRUE); nlm_host_release(host); return (0); } void nlm_do_granted_res(nlm4_res *argp, struct svc_req *rqstp) { struct nlm_host *host = NULL; struct nlm_async_lock *af = NULL; int error; if (argp->cookie.n_len != sizeof(struct nlm_grantcookie)) { NLM_DEBUG(1, "NLM: bogus grant cookie"); goto out; } host = nlm_find_host_by_sysid(ng_sysid(&argp->cookie)); if (!host) { NLM_DEBUG(1, "NLM: Unknown host rejected our grant"); goto out; } mtx_lock(&host->nh_lock); TAILQ_FOREACH(af, &host->nh_granted, af_link) if (ng_cookie(&argp->cookie) == ng_cookie(&af->af_granted.cookie)) break; if (af) TAILQ_REMOVE(&host->nh_granted, af, af_link); mtx_unlock(&host->nh_lock); if (!af) { NLM_DEBUG(1, "NLM: host %s (sysid %d) replied to our grant " "with unrecognized cookie %d:%d", host->nh_caller_name, host->nh_sysid, ng_sysid(&argp->cookie), ng_cookie(&argp->cookie)); goto out; } if (argp->stat.stat != nlm4_granted) { af->af_fl.l_type = F_UNLCK; error = VOP_ADVLOCK(af->af_vp, NULL, F_UNLCK, &af->af_fl, F_REMOTE); if (error) { NLM_DEBUG(1, "NLM: host %s (sysid %d) rejected our grant " "and we failed to unlock (%d)", host->nh_caller_name, host->nh_sysid, error); goto out; } NLM_DEBUG(5, "NLM: async lock %p rejected by host %s (sysid %d)", af, host->nh_caller_name, host->nh_sysid); } else { NLM_DEBUG(5, "NLM: async lock %p accepted by host %s (sysid %d)", af, host->nh_caller_name, host->nh_sysid); } out: if (af) nlm_free_async_lock(af); if (host) nlm_host_release(host); } void nlm_do_free_all(nlm4_notify *argp) { struct nlm_host *host, *thost; TAILQ_FOREACH_SAFE(host, &nlm_hosts, nh_link, thost) { if (!strcmp(host->nh_caller_name, argp->name)) nlm_host_notify(host, argp->state); } } /* * Kernel module glue */ static int nfslockd_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: return (0); case MOD_UNLOAD: /* The NLM module cannot be safely unloaded. */ /* FALLTHROUGH */ default: return (EOPNOTSUPP); } } static moduledata_t nfslockd_mod = { "nfslockd", nfslockd_modevent, NULL, }; DECLARE_MODULE(nfslockd, nfslockd_mod, SI_SUB_VFS, SI_ORDER_ANY); /* So that loader and kldload(2) can find us, wherever we are.. */ MODULE_DEPEND(nfslockd, krpc, 1, 1, 1); MODULE_DEPEND(nfslockd, nfslock, 1, 1, 1); MODULE_VERSION(nfslockd, 1);