/*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_mac.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ #define SIN6(s) ((struct sockaddr_in6 *)s) #define SDL(s) ((struct sockaddr_dl *)s) /* timer values */ int nd6_prune = 1; /* walk list every 1 seconds */ int nd6_delay = 5; /* delay first probe time 5 second */ int nd6_umaxtries = 3; /* maximum unicast query */ int nd6_mmaxtries = 3; /* maximum multicast query */ int nd6_useloopback = 1; /* use loopback interface for local traffic */ int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ /* preventing too many loops in ND option parsing */ int nd6_maxndopt = 10; /* max # of ND options allowed */ int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ #ifdef ND6_DEBUG int nd6_debug = 1; #else int nd6_debug = 0; #endif /* for debugging? */ static int nd6_inuse, nd6_allocated; struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; struct nd_drhead nd_defrouter; struct nd_prhead nd_prefix = { 0 }; int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; static struct sockaddr_in6 all1_sa; static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *, struct ifnet *)); static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); static void nd6_slowtimo(void *); static int regen_tmpaddr(struct in6_ifaddr *); static struct llinfo_nd6 *nd6_free(struct rtentry *, int); static void nd6_llinfo_timer(void *); static void clear_llinfo_pqueue(struct llinfo_nd6 *); struct callout nd6_slowtimo_ch; struct callout nd6_timer_ch; extern struct callout in6_tmpaddrtimer_ch; void nd6_init(void) { static int nd6_init_done = 0; int i; if (nd6_init_done) { log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); return; } all1_sa.sin6_family = AF_INET6; all1_sa.sin6_len = sizeof(struct sockaddr_in6); for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) all1_sa.sin6_addr.s6_addr[i] = 0xff; /* initialization of the default router list */ TAILQ_INIT(&V_nd_defrouter); /* start timer */ callout_init(&V_nd6_slowtimo_ch, 0); callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, NULL); nd6_init_done = 1; } struct nd_ifinfo * nd6_ifattach(struct ifnet *ifp) { struct nd_ifinfo *nd; nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); bzero(nd, sizeof(*nd)); nd->initialized = 1; nd->chlim = IPV6_DEFHLIM; nd->basereachable = REACHABLE_TIME; nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); nd->retrans = RETRANS_TIMER; /* * Note that the default value of ip6_accept_rtadv is 0, which means * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV * here. */ nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ nd6_setmtu0(ifp, nd); return nd; } void nd6_ifdetach(struct nd_ifinfo *nd) { free(nd, M_IP6NDP); } /* * Reset ND level link MTU. This function is called when the physical MTU * changes, which means we might have to adjust the ND level MTU. */ void nd6_setmtu(struct ifnet *ifp) { nd6_setmtu0(ifp, ND_IFINFO(ifp)); } /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ void nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) { u_int32_t omaxmtu; omaxmtu = ndi->maxmtu; switch (ifp->if_type) { case IFT_ARCNET: ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ break; case IFT_FDDI: ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ break; case IFT_ISO88025: ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); break; default: ndi->maxmtu = ifp->if_mtu; break; } /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for omaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu0: " "new link MTU on %s (%lu) is too small for IPv6\n", if_name(ifp), (unsigned long)ndi->maxmtu); } if (ndi->maxmtu > V_in6_maxmtu) in6_setmaxmtu(); /* check all interfaces just in case */ #undef MIN } void nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) { bzero(ndopts, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; if (ndopts == NULL) panic("ndopts == NULL in nd6_option"); if (ndopts->nd_opts_last == NULL) panic("uninitialized ndopts in nd6_option"); if (ndopts->nd_opts_search == NULL) return NULL; if (ndopts->nd_opts_done) return NULL; nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { bzero(ndopts, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ bzero(ndopts, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ bzero(ndopts, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; if (ndopts == NULL) panic("ndopts == NULL in nd6_options"); if (ndopts->nd_opts_last == NULL) panic("uninitialized ndopts in nd6_options"); if (ndopts->nd_opts_search == NULL) return 0; while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ V_icmp6stat.icp6s_nd_badopt++; bzero(ndopts, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) goto skip1; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log((LOG_INFO, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type)); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; default: /* * Unknown options must be silently ignored, * to accomodate future extension to the protocol. */ nd6log((LOG_DEBUG, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type)); } skip1: i++; if (i > V_nd6_maxndopt) { V_icmp6stat.icp6s_nd_toomanyopt++; nd6log((LOG_INFO, "too many loop in nd opt\n")); break; } if (ndopts->nd_opts_done) break; } return 0; } /* * ND6 timer routine to handle ND6 entries */ void nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick) { if (tick < 0) { ln->ln_expire = 0; ln->ln_ntick = 0; callout_stop(&ln->ln_timer_ch); } else { ln->ln_expire = time_second + tick / hz; if (tick > INT_MAX) { ln->ln_ntick = tick - INT_MAX; callout_reset(&ln->ln_timer_ch, INT_MAX, nd6_llinfo_timer, ln); } else { ln->ln_ntick = 0; callout_reset(&ln->ln_timer_ch, tick, nd6_llinfo_timer, ln); } } } static void nd6_llinfo_timer(void *arg) { struct llinfo_nd6 *ln; struct rtentry *rt; struct in6_addr *dst; struct ifnet *ifp; struct nd_ifinfo *ndi = NULL; ln = (struct llinfo_nd6 *)arg; if (ln->ln_ntick > 0) { if (ln->ln_ntick > INT_MAX) { ln->ln_ntick -= INT_MAX; nd6_llinfo_settimer(ln, INT_MAX); } else { ln->ln_ntick = 0; nd6_llinfo_settimer(ln, ln->ln_ntick); } return; } if ((rt = ln->ln_rt) == NULL) panic("ln->ln_rt == NULL"); if ((ifp = rt->rt_ifp) == NULL) panic("ln->ln_rt->rt_ifp == NULL"); ndi = ND_IFINFO(ifp); /* sanity check */ if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) panic("rt_llinfo(%p) is not equal to ln(%p)", rt->rt_llinfo, ln); if (rt_key(rt) == NULL) panic("rt key is NULL in nd6_timer(ln=%p)", ln); dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->ln_asked < V_nd6_mmaxtries) { ln->ln_asked++; nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); nd6_ns_output(ifp, NULL, dst, ln, 0); } else { struct mbuf *m = ln->ln_hold; if (m) { struct mbuf *m0; /* * assuming every packet in ln_hold has the * same IP header */ m0 = m->m_nextpkt; m->m_nextpkt = NULL; icmp6_error2(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp); ln->ln_hold = m0; clear_llinfo_pqueue(ln); } if (rt && rt->rt_llinfo) (void)nd6_free(rt, 0); ln = NULL; } break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(ln)) { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); } break; case ND6_LLINFO_STALE: /* Garbage Collection(RFC 2461 5.3) */ if (!ND6_LLINFO_PERMANENT(ln)) { if (rt && rt->rt_llinfo) (void)nd6_free(rt, 1); ln = NULL; } break; case ND6_LLINFO_DELAY: if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->ln_asked = 1; ln->ln_state = ND6_LLINFO_PROBE; nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); nd6_ns_output(ifp, dst, dst, ln, 0); } else { ln->ln_state = ND6_LLINFO_STALE; /* XXX */ nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); } break; case ND6_LLINFO_PROBE: if (ln->ln_asked < V_nd6_umaxtries) { ln->ln_asked++; nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); nd6_ns_output(ifp, dst, dst, ln, 0); } else if (rt->rt_ifa != NULL && rt->rt_ifa->ifa_addr->sa_family == AF_INET6 && (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) { /* * This is an unreachable neighbor whose address is * specified as the destination of a p2p interface * (see in6_ifinit()). We should not free the entry * since this is sort of a "static" entry generated * via interface address configuration. */ ln->ln_asked = 0; ln->ln_expire = 0; /* make it permanent */ ln->ln_state = ND6_LLINFO_STALE; } else { if (rt && rt->rt_llinfo) (void)nd6_free(rt, 0); ln = NULL; } break; } } /* * ND6 timer routine to expire default route list and prefix list */ void nd6_timer(void *ignored_arg) { int s; struct nd_defrouter *dr; struct nd_prefix *pr; struct in6_ifaddr *ia6, *nia6; struct in6_addrlifetime *lt6; callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, nd6_timer, NULL); /* expire default router list */ s = splnet(); dr = TAILQ_FIRST(&V_nd_defrouter); while (dr) { if (dr->expire && dr->expire < time_second) { struct nd_defrouter *t; t = TAILQ_NEXT(dr, dr_entry); defrtrlist_del(dr); dr = t; } else { dr = TAILQ_NEXT(dr, dr_entry); } } /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. */ addrloop: for (ia6 = V_in6_ifaddr; ia6; ia6 = nia6) { nia6 = ia6->ia_next; /* check address lifetime */ lt6 = &ia6->ia6_lifetime; if (IFA6_IS_INVALID(ia6)) { int regen = 0; /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { if (regen_tmpaddr(ia6) == 0) regen = 1; } in6_purgeaddr(&ia6->ia_ifa); if (regen) goto addrloop; /* XXX: see below */ } else if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; ia6->ia6_flags |= IN6_IFF_DEPRECATED; /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ goto addrloop; } } } else { /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; } } /* expire prefix list */ pr = V_nd_prefix.lh_first; while (pr) { /* * check prefix lifetime. * since pltime is just for autoconf, pltime processing for * prefix is not necessary. */ if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { struct nd_prefix *t; t = pr->ndpr_next; /* * address expiration and prefix expiration are * separate. NEVER perform in6_purgeaddr here. */ prelist_remove(pr); pr = t; } else pr = pr->ndpr_next; } splx(s); } /* * ia6 - deprecated/invalidated temporary address */ static int regen_tmpaddr(struct in6_ifaddr *ia6) { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; ifp = ia6->ia_ifa.ifa_ifp; for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) { struct in6_ifaddr *it6; if (ifa->ifa_addr->sa_family != AF_INET6) continue; it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) continue; /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) public_ifa6 = it6; } if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); return (-1); } return (0); } return (-1); } /* * Nuke neighbor cache/prefix/default router management table, right before * ifp goes away. */ void nd6_purge(struct ifnet *ifp) { struct llinfo_nd6 *ln, *nln; struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; /* * Nuke default router list entries toward ifp. * We defer removal of default router list entries that is installed * in the routing table, in order to keep additional side effects as * small as possible. */ for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) { ndr = TAILQ_NEXT(dr, dr_entry); if (dr->installed) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) { ndr = TAILQ_NEXT(dr, dr_entry); if (!dr->installed) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } /* Nuke prefix list entries toward ifp */ for (pr = V_nd_prefix.lh_first; pr; pr = npr) { npr = pr->ndpr_next; if (pr->ndpr_ifp == ifp) { /* * Because if_detach() does *not* release prefixes * while purging addresses the reference count will * still be above zero. We therefore reset it to * make sure that the prefix really gets purged. */ pr->ndpr_refcnt = 0; /* * Previously, pr->ndpr_addr is removed as well, * but I strongly believe we don't have to do it. * nd6_purge() is only called from in6_ifdetach(), * which removes all the associated interface addresses * by itself. * (jinmei@kame.net 20010129) */ prelist_remove(pr); } } /* cancel default outgoing interface setting */ if (V_nd6_defifindex == ifp->if_index) nd6_setdefaultiface(0); if (!V_ip6_forwarding && V_ip6_accept_rtadv) { /* XXX: too restrictive? */ /* refresh default router list */ defrouter_select(); } /* * Nuke neighbor cache entries for the ifp. * Note that rt->rt_ifp may not be the same as ifp, * due to KAME goto ours hack. See RTM_RESOLVE case in * nd6_rtrequest(), and ip6_input(). */ ln = V_llinfo_nd6.ln_next; while (ln && ln != &V_llinfo_nd6) { struct rtentry *rt; struct sockaddr_dl *sdl; nln = ln->ln_next; rt = ln->ln_rt; if (rt && rt->rt_gateway && rt->rt_gateway->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)rt->rt_gateway; if (sdl->sdl_index == ifp->if_index) nln = nd6_free(rt, 0); } ln = nln; } } struct rtentry * nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp) { struct rtentry *rt; struct sockaddr_in6 sin6; char ip6buf[INET6_ADDRSTRLEN]; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); if (rt) { if ((rt->rt_flags & RTF_LLINFO) == 0 && create) { /* * This is the case for the default route. * If we want to create a neighbor cache for the * address, we should free the route for the * destination and allocate an interface route. */ RTFREE_LOCKED(rt); rt = NULL; } } if (rt == NULL) { if (create && ifp) { int e; /* * If no route is available and create is set, * we allocate a host route for the destination * and treat it like an interface route. * This hack is necessary for a neighbor which can't * be covered by our own prefix. */ struct ifaddr *ifa = ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); if (ifa == NULL) return (NULL); /* * Create a new route. RTF_LLINFO is necessary * to create a Neighbor Cache entry for the * destination in nd6_rtrequest which will be * called in rtrequest via ifa->ifa_rtrequest. */ if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, ifa->ifa_addr, (struct sockaddr *)&all1_sa, (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & ~RTF_CLONING, &rt)) != 0) { log(LOG_ERR, "nd6_lookup: failed to add route for a " "neighbor(%s), errno=%d\n", ip6_sprintf(ip6buf, addr6), e); } if (rt == NULL) return (NULL); RT_LOCK(rt); if (rt->rt_llinfo) { struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; ln->ln_state = ND6_LLINFO_NOSTATE; } } else return (NULL); } RT_LOCK_ASSERT(rt); RT_REMREF(rt); /* * Validation for the entry. * Note that the check for rt_llinfo is necessary because a cloned * route from a parent route that has the L flag (e.g. the default * route to a p2p interface) may have the flag, too, while the * destination is not actually a neighbor. * XXX: we can't use rt->rt_ifp to check for the interface, since * it might be the loopback interface if the entry is for our * own address on a non-loopback interface. Instead, we should * use rt->rt_ifa->ifa_ifp, which would specify the REAL * interface. * Note also that ifa_ifp and ifp may differ when we connect two * interfaces to a same link, install a link prefix to an interface, * and try to install a neighbor cache on an interface that does not * have a route to the prefix. */ if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || (ifp && rt->rt_ifa->ifa_ifp != ifp)) { if (create) { nd6log((LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", ip6_sprintf(ip6buf, addr6), ifp ? if_name(ifp) : "unspec")); } RT_UNLOCK(rt); return (NULL); } RT_UNLOCK(rt); /* XXX not ready to return rt locked */ return (rt); } /* * Test whether a given IPv6 address is a neighbor or not, ignoring * the actual neighbor cache. The neighbor cache is ignored in order * to not reenter the routing code from within itself. */ static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct ifaddr *dstaddr; /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy)) return (0); /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return (0); if (sin6_copy.sin6_scope_id == zone) return (1); else return (0); } /* * If the address matches one of our addresses, * it should be a neighbor. * If the address matches one of our on-link prefixes, it should be a * neighbor. */ for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) { if (pr->ndpr_ifp != ifp) continue; if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) continue; if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) return (1); } /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp)) return (1); /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. * XXX: we restrict the condition to hosts, because routers usually do * not have the "default router list". */ if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL && V_nd6_defifindex == ifp->if_index) { return (1); } return (0); } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) { if (nd6_is_new_addr_neighbor(addr, ifp)) return (1); /* * Even if the address matches none of our addresses, it might be * in the neighbor cache. */ if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) return (1); return (0); } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. */ static struct llinfo_nd6 * nd6_free(struct rtentry *rt, int gc) { struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; struct nd_defrouter *dr; /* * we used to have pfctlinput(PRC_HOSTDEAD) here. * even though it is not harmful, it was not really necessary. */ /* cancel timer */ nd6_llinfo_settimer(ln, -1); if (!V_ip6_forwarding) { int s; s = splnet(); dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, rt->rt_ifp); if (dr != NULL && dr->expire && ln->ln_state == ND6_LLINFO_STALE && gc) { /* * If the reason for the deletion is just garbage * collection, and the neighbor is an active default * router, do not delete it. Instead, reset the GC * timer using the router's lifetime. * Simply deleting the entry would affect default * router selection, which is not necessarily a good * thing, especially when we're using router preference * values. * XXX: the check for ln_state would be redundant, * but we intentionally keep it just in case. */ if (dr->expire > time_second) nd6_llinfo_settimer(ln, (dr->expire - time_second) * hz); else nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); splx(s); return (ln->ln_next); } if (ln->ln_router || dr) { /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ rt6_flush(&in6, rt->rt_ifp); } if (dr) { /* * Unreachablity of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ ln->ln_state = ND6_LLINFO_INCOMPLETE; /* * Since defrouter_select() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ pfxlist_onlink_check(); /* * refresh default router list */ defrouter_select(); } splx(s); } /* * Before deleting the entry, remember the next entry as the * return value. We need this because pfxlist_onlink_check() above * might have freed other entries (particularly the old next entry) as * a side effect (XXX). */ next = ln->ln_next; /* * Detach the route from the routing tree and the list of neighbor * caches, and disable the route entry not to be used in already * cached routes. */ rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, rt_mask(rt), 0, (struct rtentry **)0); return (next); } /* * Upper-layer reachability hint for Neighbor Unreachability Detection. * * XXX cost-effective methods? */ void nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) { struct llinfo_nd6 *ln; /* * If the caller specified "rt", use that. Otherwise, resolve the * routing table by supplied "dst6". */ if (rt == NULL) { if (dst6 == NULL) return; if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL) return; } if ((rt->rt_flags & RTF_GATEWAY) != 0 || (rt->rt_flags & RTF_LLINFO) == 0 || rt->rt_llinfo == NULL || rt->rt_gateway == NULL || rt->rt_gateway->sa_family != AF_LINK) { /* This is not a host route. */ return; } ln = (struct llinfo_nd6 *)rt->rt_llinfo; if (ln->ln_state < ND6_LLINFO_REACHABLE) return; /* * if we get upper-layer reachability confirmation many times, * it is possible we have false information. */ if (!force) { ln->ln_byhint++; if (ln->ln_byhint > V_nd6_maxnudhint) return; } ln->ln_state = ND6_LLINFO_REACHABLE; if (!ND6_LLINFO_PERMANENT(ln)) { nd6_llinfo_settimer(ln, (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); } } /* * info - XXX unused */ void nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) { struct sockaddr *gate = rt->rt_gateway; struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; struct ifnet *ifp = rt->rt_ifp; struct ifaddr *ifa; RT_LOCK_ASSERT(rt); if ((rt->rt_flags & RTF_GATEWAY) != 0) return; if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { /* * This is probably an interface direct route for a link * which does not need neighbor caches (e.g. fe80::%lo0/64). * We do not need special treatment below for such a route. * Moreover, the RTF_LLINFO flag which would be set below * would annoy the ndp(8) command. */ return; } if (req == RTM_RESOLVE && (nd6_need_cache(ifp) == 0 || /* stf case */ !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { /* * FreeBSD and BSD/OS often make a cloned host route based * on a less-specific route (e.g. the default route). * If the less specific route does not have a "gateway" * (this is the case when the route just goes to a p2p or an * stf interface), we'll mistakenly make a neighbor cache for * the host route, and will see strange neighbor solicitation * for the corresponding destination. In order to avoid the * confusion, we check if the destination of the route is * a neighbor in terms of neighbor discovery, and stop the * process if not. Additionally, we remove the LLINFO flag * so that ndp(8) will not try to get the neighbor information * of the destination. */ rt->rt_flags &= ~RTF_LLINFO; return; } switch (req) { case RTM_ADD: /* * There is no backward compatibility :) * * if ((rt->rt_flags & RTF_HOST) == 0 && * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) * rt->rt_flags |= RTF_CLONING; */ if ((rt->rt_flags & RTF_CLONING) || ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { /* * Case 1: This route should come from a route to * interface (RTF_CLONING case) or the route should be * treated as on-link but is currently not * (RTF_LLINFO && ln == NULL case). */ rt_setgate(rt, rt_key(rt), (struct sockaddr *)&null_sdl); gate = rt->rt_gateway; SDL(gate)->sdl_type = ifp->if_type; SDL(gate)->sdl_index = ifp->if_index; if (ln) nd6_llinfo_settimer(ln, 0); if ((rt->rt_flags & RTF_CLONING) != 0) break; } /* * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. * We don't do that here since llinfo is not ready yet. * * There are also couple of other things to be discussed: * - unsolicited NA code needs improvement beforehand * - RFC2461 says we MAY send multicast unsolicited NA * (7.2.6 paragraph 4), however, it also says that we * SHOULD provide a mechanism to prevent multicast NA storm. * we don't have anything like it right now. * note that the mechanism needs a mutual agreement * between proxies, which means that we need to implement * a new protocol, or a new kludge. * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. * we need to check ip6forwarding before sending it. * (or should we allow proxy ND configuration only for * routers? there's no mention about proxy ND from hosts) */ /* FALLTHROUGH */ case RTM_RESOLVE: if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { /* * Address resolution isn't necessary for a point to * point link, so we can skip this test for a p2p link. */ if (gate->sa_family != AF_LINK || gate->sa_len < sizeof(null_sdl)) { log(LOG_DEBUG, "nd6_rtrequest: bad gateway value: %s\n", if_name(ifp)); break; } SDL(gate)->sdl_type = ifp->if_type; SDL(gate)->sdl_index = ifp->if_index; } if (ln != NULL) break; /* This happens on a route change */ /* * Case 2: This route may come from cloning, or a manual route * add with a LL address. */ R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); rt->rt_llinfo = (caddr_t)ln; if (ln == NULL) { log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); break; } V_nd6_inuse++; V_nd6_allocated++; bzero(ln, sizeof(*ln)); RT_ADDREF(rt); ln->ln_rt = rt; callout_init(&ln->ln_timer_ch, 0); /* this is required for "ndp" command. - shin */ if (req == RTM_ADD) { /* * gate should have some valid AF_LINK entry, * and ln->ln_expire should have some lifetime * which is specified by ndp command. */ ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; } else { /* * When req == RTM_RESOLVE, rt is created and * initialized in rtrequest(), so rt_expire is 0. */ ln->ln_state = ND6_LLINFO_NOSTATE; nd6_llinfo_settimer(ln, 0); } rt->rt_flags |= RTF_LLINFO; ln->ln_next = V_llinfo_nd6.ln_next; V_llinfo_nd6.ln_next = ln; ln->ln_prev = &V_llinfo_nd6; ln->ln_next->ln_prev = ln; /* * check if rt_key(rt) is one of my address assigned * to the interface. */ ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, &SIN6(rt_key(rt))->sin6_addr); if (ifa) { caddr_t macp = nd6_ifptomac(ifp); nd6_llinfo_settimer(ln, -1); ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; if (macp) { bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); SDL(gate)->sdl_alen = ifp->if_addrlen; } if (V_nd6_useloopback) { rt->rt_ifp = &V_loif[0]; /* XXX */ /* * Make sure rt_ifa be equal to the ifaddr * corresponding to the address. * We need this because when we refer * rt_ifa->ia6_flags in ip6_input, we assume * that the rt_ifa points to the address instead * of the loopback address. */ if (ifa != rt->rt_ifa) { IFAFREE(rt->rt_ifa); IFAREF(ifa); rt->rt_ifa = ifa; } } } else if (rt->rt_flags & RTF_ANNOUNCE) { nd6_llinfo_settimer(ln, -1); ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; /* join solicited node multicast for proxy ND */ if (ifp->if_flags & IFF_MULTICAST) { struct in6_addr llsol; int error; llsol = SIN6(rt_key(rt))->sin6_addr; llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL)) break; if (in6_addmulti(&llsol, ifp, &error, 0) == NULL) { char ip6buf[INET6_ADDRSTRLEN]; nd6log((LOG_ERR, "%s: failed to join " "%s (errno=%d)\n", if_name(ifp), ip6_sprintf(ip6buf, &llsol), error)); } } } break; case RTM_DELETE: if (ln == NULL) break; /* leave from solicited node multicast for proxy ND */ if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && (ifp->if_flags & IFF_MULTICAST) != 0) { struct in6_addr llsol; struct in6_multi *in6m; llsol = SIN6(rt_key(rt))->sin6_addr; llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL) == 0) { IN6_LOOKUP_MULTI(llsol, ifp, in6m); if (in6m) in6_delmulti(in6m); } else ; /* XXX: should not happen. bark here? */ } V_nd6_inuse--; ln->ln_next->ln_prev = ln->ln_prev; ln->ln_prev->ln_next = ln->ln_next; ln->ln_prev = NULL; nd6_llinfo_settimer(ln, -1); RT_REMREF(rt); rt->rt_llinfo = 0; rt->rt_flags &= ~RTF_LLINFO; clear_llinfo_pqueue(ln); Free((caddr_t)ln); } } int nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) { struct in6_drlist *drl = (struct in6_drlist *)data; struct in6_oprlist *oprl = (struct in6_oprlist *)data; struct in6_ndireq *ndi = (struct in6_ndireq *)data; struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; struct nd_defrouter *dr; struct nd_prefix *pr; struct rtentry *rt; int i = 0, error = 0; int s; switch (cmd) { case SIOCGDRLST_IN6: /* * obsolete API, use sysctl under net.inet6.icmp6 */ bzero(drl, sizeof(*drl)); s = splnet(); dr = TAILQ_FIRST(&V_nd_defrouter); while (dr && i < DRLSTSIZ) { drl->defrouter[i].rtaddr = dr->rtaddr; in6_clearscope(&drl->defrouter[i].rtaddr); drl->defrouter[i].flags = dr->flags; drl->defrouter[i].rtlifetime = dr->rtlifetime; drl->defrouter[i].expire = dr->expire; drl->defrouter[i].if_index = dr->ifp->if_index; i++; dr = TAILQ_NEXT(dr, dr_entry); } splx(s); break; case SIOCGPRLST_IN6: /* * obsolete API, use sysctl under net.inet6.icmp6 * * XXX the structure in6_prlist was changed in backward- * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, * in6_prlist is used for nd6_sysctl() - fill_prlist(). */ /* * XXX meaning of fields, especialy "raflags", is very * differnet between RA prefix list and RR/static prefix list. * how about separating ioctls into two? */ bzero(oprl, sizeof(*oprl)); s = splnet(); pr = V_nd_prefix.lh_first; while (pr && i < PRLSTSIZ) { struct nd_pfxrouter *pfr; int j; oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; oprl->prefix[i].raflags = pr->ndpr_raf; oprl->prefix[i].prefixlen = pr->ndpr_plen; oprl->prefix[i].vltime = pr->ndpr_vltime; oprl->prefix[i].pltime = pr->ndpr_pltime; oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) oprl->prefix[i].expire = 0; else { time_t maxexpire; /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) { oprl->prefix[i].expire = pr->ndpr_lastupdate + pr->ndpr_vltime; } else oprl->prefix[i].expire = maxexpire; } pfr = pr->ndpr_advrtrs.lh_first; j = 0; while (pfr) { if (j < DRLSTSIZ) { #define RTRADDR oprl->prefix[i].advrtr[j] RTRADDR = pfr->router->rtaddr; in6_clearscope(&RTRADDR); #undef RTRADDR } j++; pfr = pfr->pfr_next; } oprl->prefix[i].advrtrs = j; oprl->prefix[i].origin = PR_ORIG_RA; i++; pr = pr->ndpr_next; } splx(s); break; case OSIOCGIFINFO_IN6: #define ND ndi->ndi /* XXX: old ndp(8) assumes a positive value for linkmtu. */ bzero(&ND, sizeof(ND)); ND.linkmtu = IN6_LINKMTU(ifp); ND.maxmtu = ND_IFINFO(ifp)->maxmtu; ND.basereachable = ND_IFINFO(ifp)->basereachable; ND.reachable = ND_IFINFO(ifp)->reachable; ND.retrans = ND_IFINFO(ifp)->retrans; ND.flags = ND_IFINFO(ifp)->flags; ND.recalctm = ND_IFINFO(ifp)->recalctm; ND.chlim = ND_IFINFO(ifp)->chlim; break; case SIOCGIFINFO_IN6: ND = *ND_IFINFO(ifp); break; case SIOCSIFINFO_IN6: /* * used to change host variables from userland. * intented for a use on router to reflect RA configurations. */ /* 0 means 'unspecified' */ if (ND.linkmtu != 0) { if (ND.linkmtu < IPV6_MMTU || ND.linkmtu > IN6_LINKMTU(ifp)) { error = EINVAL; break; } ND_IFINFO(ifp)->linkmtu = ND.linkmtu; } if (ND.basereachable != 0) { int obasereachable = ND_IFINFO(ifp)->basereachable; ND_IFINFO(ifp)->basereachable = ND.basereachable; if (ND.basereachable != obasereachable) ND_IFINFO(ifp)->reachable = ND_COMPUTE_RTIME(ND.basereachable); } if (ND.retrans != 0) ND_IFINFO(ifp)->retrans = ND.retrans; if (ND.chlim != 0) ND_IFINFO(ifp)->chlim = ND.chlim; /* FALLTHROUGH */ case SIOCSIFINFO_FLAGS: ND_IFINFO(ifp)->flags = ND.flags; break; #undef ND case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ /* sync kernel routing table with the default router list */ defrouter_reset(); defrouter_select(); break; case SIOCSPFXFLUSH_IN6: { /* flush all the prefix advertised by routers */ struct nd_prefix *pr, *next; s = splnet(); for (pr = V_nd_prefix.lh_first; pr; pr = next) { struct in6_ifaddr *ia, *ia_next; next = pr->ndpr_next; if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) continue; /* XXX */ /* do we really have to remove addresses as well? */ for (ia = V_in6_ifaddr; ia; ia = ia_next) { /* ia might be removed. keep the next ptr. */ ia_next = ia->ia_next; if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ia->ia6_ndpr == pr) in6_purgeaddr(&ia->ia_ifa); } prelist_remove(pr); } splx(s); break; } case SIOCSRTRFLUSH_IN6: { /* flush all the default routers */ struct nd_defrouter *dr, *next; s = splnet(); defrouter_reset(); for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) { next = TAILQ_NEXT(dr, dr_entry); defrtrlist_del(dr); } defrouter_select(); splx(s); break; } case SIOCGNBRINFO_IN6: { struct llinfo_nd6 *ln; struct in6_addr nb_addr = nbi->addr; /* make local for safety */ if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) return (error); s = splnet(); if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { error = EINVAL; splx(s); break; } ln = (struct llinfo_nd6 *)rt->rt_llinfo; nbi->state = ln->ln_state; nbi->asked = ln->ln_asked; nbi->isrouter = ln->ln_router; nbi->expire = ln->ln_expire; splx(s); break; } case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ ndif->ifindex = V_nd6_defifindex; break; case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ return (nd6_setdefaultiface(ndif->ifindex)); } return (error); } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) * * type - ICMP6 type * code - type dependent information */ struct rtentry * nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, int lladdrlen, int type, int code) { struct rtentry *rt = NULL; struct llinfo_nd6 *ln = NULL; int is_newentry; struct sockaddr_dl *sdl = NULL; int do_update; int olladdr; int llchange; int newstate = 0; if (ifp == NULL) panic("ifp == NULL in nd6_cache_lladdr"); if (from == NULL) panic("from == NULL in nd6_cache_lladdr"); /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) return NULL; /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. * * XXX If the link does not have link-layer adderss, what should * we do? (ifp->if_addrlen == 0) * Spec says nothing in sections for RA, RS and NA. There's small * description on it in NS section (RFC 2461 7.2.3). */ rt = nd6_lookup(from, 0, ifp); if (rt == NULL) { rt = nd6_lookup(from, 1, ifp); is_newentry = 1; } else { /* do nothing if static ndp is set */ if (rt->rt_flags & RTF_STATIC) return NULL; is_newentry = 0; } if (rt == NULL) return NULL; if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { fail: (void)nd6_free(rt, 0); return NULL; } ln = (struct llinfo_nd6 *)rt->rt_llinfo; if (ln == NULL) goto fail; if (rt->rt_gateway == NULL) goto fail; if (rt->rt_gateway->sa_family != AF_LINK) goto fail; sdl = SDL(rt->rt_gateway); olladdr = (sdl->sdl_alen) ? 1 : 0; if (olladdr && lladdr) { if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) llchange = 1; else llchange = 0; } else llchange = 0; /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y -- (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ if (lladdr) { /* (3-5) and (7) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ sdl->sdl_alen = ifp->if_addrlen; bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); } if (!is_newentry) { if ((!olladdr && lladdr != NULL) || /* (3) */ (olladdr && lladdr != NULL && llchange)) { /* (5) */ do_update = 1; newstate = ND6_LLINFO_STALE; } else /* (1-2,4) */ do_update = 0; } else { do_update = 1; if (lladdr == NULL) /* (6) */ newstate = ND6_LLINFO_NOSTATE; else /* (7) */ newstate = ND6_LLINFO_STALE; } if (do_update) { /* * Update the state of the neighbor cache. */ ln->ln_state = newstate; if (ln->ln_state == ND6_LLINFO_STALE) { /* * XXX: since nd6_output() below will cause * state tansition to DELAY and reset the timer, * we must set the timer now, although it is actually * meaningless. */ nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); if (ln->ln_hold) { struct mbuf *m_hold, *m_hold_next; /* * reset the ln_hold in advance, to explicitly * prevent a ln_hold lookup in nd6_output() * (wouldn't happen, though...) */ for (m_hold = ln->ln_hold, ln->ln_hold = NULL; m_hold; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_hold->m_nextpkt = NULL; /* * we assume ifp is not a p2p here, so * just set the 2nd argument as the * 1st one. */ nd6_output(ifp, ifp, m_hold, (struct sockaddr_in6 *)rt_key(rt), rt); } } } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { /* probe right away */ nd6_llinfo_settimer((void *)ln, 0); } } /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * newentry olladdr lladdr llchange NS RS RA redir * D R * 0 n n -- (1) c ? s * 0 y n -- (2) c s s * 0 n y -- (3) c s s * 0 y y n (4) c s s * 0 y y y (5) c s s * 1 -- n -- (6) c c c s * 1 -- y -- (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_REDIRECT: /* * If the icmp is a redirect to a better router, always set the * is_router flag. Otherwise, if the entry is newly created, * clear the flag. [RFC 2461, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) ln->ln_router = 1; else if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln->ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ (is_newentry && lladdr)) { /* (7) */ ln->ln_router = 1; } break; } /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * XXX: when we hear an RA from a new router with the link-layer * address option, defrouter_select() is called twice, since * defrtrlist_update called the function as well. However, I believe * we can compromise the overhead, since it only happens the first * time. * XXX: although defrouter_select() should not have a bad effect * for those are not autoconfigured hosts, we explicitly avoid such * cases for safety. */ if (do_update && ln->ln_router && !V_ip6_forwarding && V_ip6_accept_rtadv) defrouter_select(); return rt; } static void nd6_slowtimo(void *ignored_arg) { struct nd_ifinfo *nd6if; struct ifnet *ifp; callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, NULL); IFNET_RLOCK(); for (ifp = TAILQ_FIRST(&V_ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { nd6if = ND_IFINFO(ifp); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 2461, 6.3.4) */ nd6if->recalctm = V_nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } } IFNET_RUNLOCK(); } #define senderr(e) { error = (e); goto bad;} int nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, struct sockaddr_in6 *dst, struct rtentry *rt0) { struct mbuf *m = m0; struct rtentry *rt = rt0; struct sockaddr_in6 *gw6 = NULL; struct llinfo_nd6 *ln = NULL; int error = 0; if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) goto sendpkt; if (nd6_need_cache(ifp) == 0) goto sendpkt; /* * next hop determination. This routine is derived from ether_output. */ /* NB: the locking here is tortuous... */ if (rt != NULL) RT_LOCK(rt); again: if (rt != NULL) { if ((rt->rt_flags & RTF_UP) == 0) { RT_UNLOCK(rt); rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL); if (rt != NULL) { RT_REMREF(rt); if (rt->rt_ifp != ifp) /* * XXX maybe we should update ifp too, * but the original code didn't and I * don't know what is correct here. */ goto again; } else senderr(EHOSTUNREACH); } if (rt->rt_flags & RTF_GATEWAY) { gw6 = (struct sockaddr_in6 *)rt->rt_gateway; /* * We skip link-layer address resolution and NUD * if the gateway is not a neighbor from ND point * of view, regardless of the value of nd_ifinfo.flags. * The second condition is a bit tricky; we skip * if the gateway is our own address, which is * sometimes used to install a route to a p2p link. */ if (!nd6_is_addr_neighbor(gw6, ifp) || in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { RT_UNLOCK(rt); /* * We allow this kind of tricky route only * when the outgoing interface is p2p. * XXX: we may need a more generic rule here. */ if ((ifp->if_flags & IFF_POINTOPOINT) == 0) senderr(EHOSTUNREACH); goto sendpkt; } if (rt->rt_gwroute == NULL) goto lookup; rt = rt->rt_gwroute; RT_LOCK(rt); /* NB: gwroute */ if ((rt->rt_flags & RTF_UP) == 0) { RTFREE_LOCKED(rt); /* unlock gwroute */ rt = rt0; rt0->rt_gwroute = NULL; lookup: RT_UNLOCK(rt0); rt = rtalloc1(rt->rt_gateway, 1, 0UL); if (rt == rt0) { RT_REMREF(rt0); RT_UNLOCK(rt0); senderr(EHOSTUNREACH); } RT_LOCK(rt0); if (rt0->rt_gwroute != NULL) RTFREE(rt0->rt_gwroute); rt0->rt_gwroute = rt; if (rt == NULL) { RT_UNLOCK(rt0); senderr(EHOSTUNREACH); } } RT_UNLOCK(rt0); } RT_UNLOCK(rt); } /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ /* Look up the neighbor cache for the nexthop */ if (rt && (rt->rt_flags & RTF_LLINFO) != 0) ln = (struct llinfo_nd6 *)rt->rt_llinfo; else { /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. */ if (nd6_is_addr_neighbor(dst, ifp) && (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) ln = (struct llinfo_nd6 *)rt->rt_llinfo; } if (ln == NULL || rt == NULL) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { char ip6buf[INET6_ADDRSTRLEN]; log(LOG_DEBUG, "nd6_output: can't allocate llinfo for %s " "(ln=%p, rt=%p)\n", ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt); senderr(EIO); /* XXX: good error? */ } goto sendpkt; /* send anyway */ } /* We don't have to do link-layer address resolution on a p2p link. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ln->ln_state < ND6_LLINFO_REACHABLE) { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); } /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 2461 7.3.3) */ if (ln->ln_state == ND6_LLINFO_STALE) { ln->ln_asked = 0; ln->ln_state = ND6_LLINFO_DELAY; nd6_llinfo_settimer(ln, (long)V_nd6_delay * hz); } /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (ln->ln_state > ND6_LLINFO_INCOMPLETE) goto sendpkt; /* * There is a neighbor cache entry, but no ethernet address * response yet. Append this latest packet to the end of the * packet queue in the mbuf, unless the number of the packet * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, * the oldest packet in the queue will be removed. */ if (ln->ln_state == ND6_LLINFO_NOSTATE) ln->ln_state = ND6_LLINFO_INCOMPLETE; if (ln->ln_hold) { struct mbuf *m_hold; int i; i = 0; for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { i++; if (m_hold->m_nextpkt == NULL) { m_hold->m_nextpkt = m; break; } } while (i >= V_nd6_maxqueuelen) { m_hold = ln->ln_hold; ln->ln_hold = ln->ln_hold->m_nextpkt; m_freem(m_hold); i--; } } else { ln->ln_hold = m; } /* * If there has been no NS for the neighbor after entering the * INCOMPLETE state, send the first solicitation. */ if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { ln->ln_asked++; nd6_llinfo_settimer(ln, (long)ND_IFINFO(ifp)->retrans * hz / 1000); nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); } return (0); sendpkt: /* discard the packet if IPv6 operation is disabled on the interface */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { error = ENETDOWN; /* better error? */ goto bad; } #ifdef MAC mac_netinet6_nd6_send(ifp, m); #endif if ((ifp->if_flags & IFF_LOOPBACK) != 0) { return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, rt)); } return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); bad: if (m) m_freem(m); return (error); } #undef senderr int nd6_need_cache(struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than ARCnet, Ethernet, FDDI and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ARCNET: case IFT_ETHER: case IFT_FDDI: case IFT_IEEE1394: #ifdef IFT_L2VLAN case IFT_L2VLAN: #endif #ifdef IFT_IEEE80211 case IFT_IEEE80211: #endif #ifdef IFT_CARP case IFT_CARP: #endif case IFT_GIF: /* XXX need more cases? */ case IFT_PPP: case IFT_TUNNEL: case IFT_BRIDGE: case IFT_PROPVIRTUAL: return (1); default: return (0); } } int nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m, struct sockaddr *dst, u_char *desten) { struct sockaddr_dl *sdl; struct rtentry *rt; int error; if (m->m_flags & M_MCAST) { int i; switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: #ifdef IFT_L2VLAN case IFT_L2VLAN: #endif #ifdef IFT_IEEE80211 case IFT_IEEE80211: #endif case IFT_BRIDGE: case IFT_ISO88025: ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, desten); return (0); case IFT_IEEE1394: /* * netbsd can use if_broadcastaddr, but we don't do so * to reduce # of ifdef. */ for (i = 0; i < ifp->if_addrlen; i++) desten[i] = ~0; return (0); case IFT_ARCNET: *desten = 0; return (0); default: m_freem(m); return (EAFNOSUPPORT); } } if (rt0 == NULL) { /* this could happen, if we could not allocate memory */ m_freem(m); return (ENOMEM); } error = rt_check(&rt, &rt0, dst); if (error) { m_freem(m); return (error); } RT_UNLOCK(rt); if (rt->rt_gateway->sa_family != AF_LINK) { printf("nd6_storelladdr: something odd happens\n"); m_freem(m); return (EINVAL); } sdl = SDL(rt->rt_gateway); if (sdl->sdl_alen == 0) { /* this should be impossible, but we bark here for debugging */ printf("nd6_storelladdr: sdl_alen == 0\n"); m_freem(m); return (EINVAL); } bcopy(LLADDR(sdl), desten, sdl->sdl_alen); return (0); } static void clear_llinfo_pqueue(struct llinfo_nd6 *ln) { struct mbuf *m_hold, *m_hold_next; for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_hold->m_nextpkt = NULL; m_freem(m_hold); } ln->ln_hold = NULL; return; } static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet6_icmp6); #endif SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, CTLFLAG_RD, nd6_sysctl_drlist, ""); SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, CTLFLAG_RD, nd6_sysctl_prlist, ""); SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, CTLFLAG_RW, &nd6_maxqueuelen, 1, ""); static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) { int error; char buf[1024] __aligned(4); struct in6_defrouter *d, *de; struct nd_defrouter *dr; if (req->newptr) return EPERM; error = 0; for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = TAILQ_NEXT(dr, dr_entry)) { d = (struct in6_defrouter *)buf; de = (struct in6_defrouter *)(buf + sizeof(buf)); if (d + 1 <= de) { bzero(d, sizeof(*d)); d->rtaddr.sin6_family = AF_INET6; d->rtaddr.sin6_len = sizeof(d->rtaddr); d->rtaddr.sin6_addr = dr->rtaddr; error = sa6_recoverscope(&d->rtaddr); if (error != 0) return (error); d->flags = dr->flags; d->rtlifetime = dr->rtlifetime; d->expire = dr->expire; d->if_index = dr->ifp->if_index; } else panic("buffer too short"); error = SYSCTL_OUT(req, buf, sizeof(*d)); if (error) break; } return (error); } static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) { int error; char buf[1024] __aligned(4); struct in6_prefix *p, *pe; struct nd_prefix *pr; char ip6buf[INET6_ADDRSTRLEN]; if (req->newptr) return EPERM; error = 0; for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) { u_short advrtrs; size_t advance; struct sockaddr_in6 *sin6, *s6; struct nd_pfxrouter *pfr; p = (struct in6_prefix *)buf; pe = (struct in6_prefix *)(buf + sizeof(buf)); if (p + 1 <= pe) { bzero(p, sizeof(*p)); sin6 = (struct sockaddr_in6 *)(p + 1); p->prefix = pr->ndpr_prefix; if (sa6_recoverscope(&p->prefix)) { log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &p->prefix.sin6_addr)); /* XXX: press on... */ } p->raflags = pr->ndpr_raf; p->prefixlen = pr->ndpr_plen; p->vltime = pr->ndpr_vltime; p->pltime = pr->ndpr_pltime; p->if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) p->expire = 0; else { time_t maxexpire; /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) { p->expire = pr->ndpr_lastupdate + pr->ndpr_vltime; } else p->expire = maxexpire; } p->refcnt = pr->ndpr_refcnt; p->flags = pr->ndpr_stateflags; p->origin = PR_ORIG_RA; advrtrs = 0; for (pfr = pr->ndpr_advrtrs.lh_first; pfr; pfr = pfr->pfr_next) { if ((void *)&sin6[advrtrs + 1] > (void *)pe) { advrtrs++; continue; } s6 = &sin6[advrtrs]; bzero(s6, sizeof(*s6)); s6->sin6_family = AF_INET6; s6->sin6_len = sizeof(*sin6); s6->sin6_addr = pfr->router->rtaddr; if (sa6_recoverscope(s6)) { log(LOG_ERR, "scope error in " "prefix list (%s)\n", ip6_sprintf(ip6buf, &pfr->router->rtaddr)); } advrtrs++; } p->advrtrs = advrtrs; } else panic("buffer too short"); advance = sizeof(*p) + sizeof(*sin6) * advrtrs; error = SYSCTL_OUT(req, buf, advance); if (error) break; } return (error); }