/* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 * $FreeBSD$ */ #include "opt_inet.h" #include "opt_key.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #include "faith.h" */ #ifdef IPSEC #include #ifdef INET6 #include #endif /* INET6 */ #include #ifdef KEY_DEBUG #include #ifdef INET6 #include #endif /* INET6 */ #else #define DPRINTF(lev,arg) #define DDO(lev, stmt) #define DP(x, y, z) #endif /* KEY_DEBUG */ #endif /* IPSEC */ struct in6_addr zeroin6_addr; int in6_pcbbind(inp, nam, p) register struct inpcb *inp; struct sockaddr *nam; struct proc *p; { struct socket *so = inp->inp_socket; unsigned short *lastport; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)NULL; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0; int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; if (!in6_ifaddr) /* XXX broken! */ return (EADDRNOTAVAIL); if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) return(EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) wild = 1; if (nam) { sin6 = (struct sockaddr_in6 *)nam; if (nam->sa_len != sizeof(*sin6)) return(EINVAL); /* * family check. */ if (nam->sa_family != AF_INET6) return(EAFNOSUPPORT); /* * If the scope of the destination is link-local, embed the * interface index in the address. */ if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) { /* XXX boundary check is assumed to be already done. */ /* XXX sin6_scope_id is weaker than advanced-api. */ struct in6_pktinfo *pi; if (inp->in6p_outputopts && (pi = inp->in6p_outputopts->ip6po_pktinfo) && pi->ipi6_ifindex) { sin6->sin6_addr.s6_addr16[1] = htons(pi->ipi6_ifindex); } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) && inp->in6p_moptions && inp->in6p_moptions->im6o_multicast_ifp) { sin6->sin6_addr.s6_addr16[1] = htons(inp->in6p_moptions->im6o_multicast_ifp->if_index); } else if (sin6->sin6_scope_id) { /* boundary check */ if (sin6->sin6_scope_id < 0 || if_index < sin6->sin6_scope_id) { return ENXIO; /* XXX EINVAL? */ } sin6->sin6_addr.s6_addr16[1] = htons(sin6->sin6_scope_id & 0xffff);/*XXX*/ /* this must be cleared for ifa_ifwithaddr() */ sin6->sin6_scope_id = 0; } } lport = sin6->sin6_port; if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow compepte duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct ifaddr *ia = NULL; sin6->sin6_port = 0; /* yech... */ if ((ia = ifa_ifwithaddr((struct sockaddr *)sin6)) == 0) return(EADDRNOTAVAIL); /* * XXX: bind to an anycast address might accidentally * cause sending a packet with anycast source address. */ if (ia && ((struct in6_ifaddr *)ia)->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY| IN6_IFF_DETACHED|IN6_IFF_DEPRECATED)) { return(EADDRNOTAVAIL); } } if (lport) { struct inpcb *t; /* GROSS */ if (ntohs(lport) < IPV6PORT_RESERVED && p && suser_xxx(0, p, PRISON_ROOT)) return(EACCES); if (so->so_cred->cr_uid != 0 && !IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { t = in6_pcblookup_local(inp->inp_pcbinfo, &sin6->sin6_addr, lport, INPLOOKUP_WILDCARD); if (t && (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || !IN6_IS_ADDR_UNSPECIFIED(&t->in6p_laddr) || (t->inp_socket->so_options & SO_REUSEPORT) == 0) && (so->so_cred->cr_uid != t->inp_socket->so_cred->cr_uid)) return (EADDRINUSE); } t = in6_pcblookup_local(pcbinfo, &sin6->sin6_addr, lport, wild); if (t && (reuseport & t->inp_socket->so_options) == 0) return(EADDRINUSE); } inp->in6p_laddr = sin6->sin6_addr; } if (lport == 0) { ushort first, last; int count; inp->inp_flags |= INP_ANONPORT; if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; lastport = &pcbinfo->lasthi; } else if (inp->inp_flags & INP_LOWPORT) { if (p && (error = suser_xxx(0, p, PRISON_ROOT))) return error; first = ipport_lowfirstauto; /* 1023 */ last = ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->lastlow; } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; lastport = &pcbinfo->lastport; } /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ if (first > last) { /* * counting down */ count = first - last; do { if (count-- < 0) { /* completely used? */ /* * Undo any address bind that may have * occurred above. */ inp->in6p_laddr = in6addr_any; return (EAGAIN); } --*lastport; if (*lastport > first || *lastport < last) *lastport = first; lport = htons(*lastport); } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, wild)); } else { /* * counting up */ count = last - first; do { if (count-- < 0) { /* completely used? */ /* * Undo any address bind that may have * occurred above. */ inp->in6p_laddr = in6addr_any; return (EAGAIN); } ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); } while (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, wild)); } } inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->in6p_laddr = in6addr_any; inp->inp_lport = 0; return (EAGAIN); } inp->in6p_flowinfo = sin6 ? sin6->sin6_flowinfo : 0; /*XXX*/ return(0); } /* * Transform old in6_pcbconnect() into an inner subroutine for new * in6_pcbconnect(): Do some validity-checking on the remote * address (in mbuf 'nam') and then determine local host address * (i.e., which interface) to use to access that remote host. * * This preserves definition of in6_pcbconnect(), while supporting a * slightly different version for T/TCP. (This is more than * a bit of a kludge, but cleaning up the internal interfaces would * have forced minor changes in every protocol). */ int in6_pcbladdr(inp, nam, plocal_addr6) register struct inpcb *inp; struct sockaddr *nam; struct in6_addr **plocal_addr6; { register struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; struct in6_pktinfo *pi; struct ifnet *ifp = NULL; int error = 0; if (nam->sa_len != sizeof (*sin6)) return (EINVAL); if (sin6->sin6_family != AF_INET6) return (EAFNOSUPPORT); if (sin6->sin6_port == 0) return (EADDRNOTAVAIL); /* * If the scope of the destination is link-local, embed the interface * index in the address. */ if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) { /* XXX boundary check is assumed to be already done. */ /* XXX sin6_scope_id is weaker than advanced-api. */ if (inp->in6p_outputopts && (pi = inp->in6p_outputopts->ip6po_pktinfo) && pi->ipi6_ifindex) { sin6->sin6_addr.s6_addr16[1] = htons(pi->ipi6_ifindex); ifp = ifindex2ifnet[pi->ipi6_ifindex]; } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) && inp->in6p_moptions && inp->in6p_moptions->im6o_multicast_ifp) { sin6->sin6_addr.s6_addr16[1] = htons(inp->in6p_moptions->im6o_multicast_ifp->if_index); ifp = ifindex2ifnet[inp->in6p_moptions->im6o_multicast_ifp->if_index]; } else if (sin6->sin6_scope_id) { /* boundary check */ if (sin6->sin6_scope_id < 0 || if_index < sin6->sin6_scope_id) { return ENXIO; /* XXX EINVAL? */ } sin6->sin6_addr.s6_addr16[1] = htons(sin6->sin6_scope_id & 0xffff);/*XXX*/ ifp = ifindex2ifnet[sin6->sin6_scope_id]; } } if (in6_ifaddr) { /* * If the destination address is UNSPECIFIED addr, * use the loopback addr, e.g ::1. */ if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) sin6->sin6_addr = in6addr_loopback; } { /* * XXX: in6_selectsrc might replace the bound local address * with the address specified by setsockopt(IPV6_PKTINFO). * Is it the intended behavior? */ *plocal_addr6 = in6_selectsrc(sin6, inp->in6p_outputopts, inp->in6p_moptions, &inp->in6p_route, &inp->in6p_laddr, &error); if (*plocal_addr6 == 0) { if (error == 0) error = EADDRNOTAVAIL; return(error); } /* * Don't do pcblookup call here; return interface in * plocal_addr6 * and exit to caller, that will do the lookup. */ } if (inp->in6p_route.ro_rt) ifp = inp->in6p_route.ro_rt->rt_ifp; inp->in6p_ip6_hlim = (u_int8_t)in6_selecthlim(inp, ifp); return(0); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in6_pcbconnect(inp, nam, p) register struct inpcb *inp; struct sockaddr *nam; struct proc *p; { struct in6_addr *addr6; register struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; int error; /* * Call inner routine, to assign local interface address. */ if ((error = in6_pcbladdr(inp, nam, &addr6)) != 0) return(error); if (in6_pcblookup_hash(inp->inp_pcbinfo, &sin6->sin6_addr, sin6->sin6_port, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? addr6 : &inp->in6p_laddr, inp->inp_lport, 0, NULL) != NULL) { return (EADDRINUSE); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (inp->inp_lport == 0) { error = in6_pcbbind(inp, (struct sockaddr *)0, p); if (error) return (error); } inp->in6p_laddr = *addr6; } inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; /* * xxx kazu flowlabel is necessary for connect? * but if this line is missing, the garbage value remains. */ inp->in6p_flowinfo = sin6->sin6_flowinfo; in_pcbrehash(inp); return (0); } /* * Return an IPv6 address, which is the most appropriate for given * destination and user specified options. * If necessary, this function lookups the routing table and return * an entry to the caller for later use. */ struct in6_addr * in6_selectsrc(dstsock, opts, mopts, ro, laddr, errorp) struct sockaddr_in6 *dstsock; struct ip6_pktopts *opts; struct ip6_moptions *mopts; struct route_in6 *ro; struct in6_addr *laddr; int *errorp; { struct in6_addr *dst; struct in6_ifaddr *ia6 = 0; struct in6_pktinfo *pi = NULL; dst = &dstsock->sin6_addr; *errorp = 0; /* * If the source address is explicitly specified by the caller, * use it. */ if (opts && (pi = opts->ip6po_pktinfo) && !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) return(&pi->ipi6_addr); /* * If the source address is not specified but the socket(if any) * is already bound, use the bound address. */ if (laddr && !IN6_IS_ADDR_UNSPECIFIED(laddr)) return(laddr); /* * If the caller doesn't specify the source address but * the outgoing interface, use an address associated with * the interface. */ if (pi && pi->ipi6_ifindex) { /* XXX boundary check is assumed to be already done. */ ia6 = in6_ifawithscope(ifindex2ifnet[pi->ipi6_ifindex], dst); if (ia6 == 0) { *errorp = EADDRNOTAVAIL; return(0); } return(&satosin6(&ia6->ia_addr)->sin6_addr); } /* * If the destination address is a link-local unicast address or * a multicast address, and if the outgoing interface is specified * by the sin6_scope_id filed, use an address associated with the * interface. * XXX: We're now trying to define more specific semantics of * sin6_scope_id field, so this part will be rewritten in * the near future. */ if ((IN6_IS_ADDR_LINKLOCAL(dst) || IN6_IS_ADDR_MULTICAST(dst)) && dstsock->sin6_scope_id) { /* * I'm not sure if boundary check for scope_id is done * somewhere... */ if (dstsock->sin6_scope_id < 0 || if_index < dstsock->sin6_scope_id) { *errorp = ENXIO; /* XXX: better error? */ return(0); } ia6 = in6_ifawithscope(ifindex2ifnet[dstsock->sin6_scope_id], dst); if (ia6 == 0) { *errorp = EADDRNOTAVAIL; return(0); } return(&satosin6(&ia6->ia_addr)->sin6_addr); } /* * If the destination address is a multicast address and * the outgoing interface for the address is specified * by the caller, use an address associated with the interface. * There is a sanity check here; if the destination has node-local * scope, the outgoing interfacde should be a loopback address. * Even if the outgoing interface is not specified, we also * choose a loopback interface as the outgoing interface. */ if (IN6_IS_ADDR_MULTICAST(dst)) { struct ifnet *ifp = mopts ? mopts->im6o_multicast_ifp : NULL; if (ifp == NULL && IN6_IS_ADDR_MC_NODELOCAL(dst)) { ifp = &loif[0]; } if (ifp) { ia6 = in6_ifawithscope(ifp, dst); if (ia6 == 0) { *errorp = EADDRNOTAVAIL; return(0); } return(&ia6->ia_addr.sin6_addr); } } /* * If the next hop address for the packet is specified * by caller, use an address associated with the route * to the next hop. */ { struct sockaddr_in6 *sin6_next; struct rtentry *rt; if (opts && opts->ip6po_nexthop) { sin6_next = satosin6(opts->ip6po_nexthop); rt = nd6_lookup(&sin6_next->sin6_addr, 1, NULL); if (rt) { ia6 = in6_ifawithscope(rt->rt_ifp, dst); if (ia6 == 0) ia6 = ifatoia6(rt->rt_ifa); } if (ia6 == 0) { *errorp = EADDRNOTAVAIL; return(0); } return(&satosin6(&ia6->ia_addr)->sin6_addr); } } /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. */ if (ro) { if (ro->ro_rt && !IN6_ARE_ADDR_EQUAL(&satosin6(&ro->ro_dst)->sin6_addr, dst)) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *)0; } if (ro->ro_rt == (struct rtentry *)0 || ro->ro_rt->rt_ifp == (struct ifnet *)0) { /* No route yet, so try to acquire one */ bzero(&ro->ro_dst, sizeof(struct sockaddr_in6)); ro->ro_dst.sin6_family = AF_INET6; ro->ro_dst.sin6_len = sizeof(struct sockaddr_in6); ro->ro_dst.sin6_addr = *dst; if (IN6_IS_ADDR_MULTICAST(dst)) { ro->ro_rt = rtalloc1(&((struct route *)ro) ->ro_dst, 0, 0UL); } else { rtcalloc((struct route *)ro); } } /* * in_pcbconnect() checks out IFF_LOOPBACK to skip using * the address. But we don't know why it does so. * It is necessary to ensure the scope even for lo0 * so doesn't check out IFF_LOOPBACK. */ if (ro->ro_rt) { ia6 = in6_ifawithscope(ro->ro_rt->rt_ifa->ifa_ifp, dst); if (ia6 == 0) /* xxx scope error ?*/ ia6 = ifatoia6(ro->ro_rt->rt_ifa); } if (ia6 == 0) { *errorp = EHOSTUNREACH; /* no route */ return(0); } return(&satosin6(&ia6->ia_addr)->sin6_addr); } *errorp = EADDRNOTAVAIL; return(0); } /* * Default hop limit selection. The precedence is as follows: * 1. Hoplimit valued specified via ioctl. * 2. (If the outgoing interface is detected) the current * hop limit of the interface specified by router advertisement. * 3. The system default hoplimit. */ int in6_selecthlim(in6p, ifp) struct in6pcb *in6p; struct ifnet *ifp; { if (in6p && in6p->in6p_hops >= 0) return(in6p->in6p_hops); else if (ifp) return(nd_ifinfo[ifp->if_index].chlim); else return(ip6_defhlim); } void in6_pcbdisconnect(inp) struct inpcb *inp; { bzero((caddr_t)&inp->in6p_faddr, sizeof(inp->in6p_faddr)); inp->inp_fport = 0; in_pcbrehash(inp); if (inp->inp_socket->so_state & SS_NOFDREF) in6_pcbdetach(inp); } void in6_pcbdetach(inp) struct inpcb *inp; { struct socket *so = inp->inp_socket; struct inpcbinfo *ipi = inp->inp_pcbinfo; #ifdef IPSEC if (sotoinpcb(so) != 0) key_freeso(so); ipsec6_delete_pcbpolicy(inp); #endif /* IPSEC */ inp->inp_gencnt = ++ipi->ipi_gencnt; in_pcbremlists(inp); sotoinpcb(so) = 0; sofree(so); if (inp->in6p_options) m_freem(inp->in6p_options); if (inp->in6p_outputopts) { if (inp->in6p_outputopts->ip6po_rthdr && inp->in6p_outputopts->ip6po_route.ro_rt) RTFREE(inp->in6p_outputopts->ip6po_route.ro_rt); if (inp->in6p_outputopts->ip6po_m) (void)m_free(inp->in6p_outputopts->ip6po_m); free(inp->in6p_outputopts, M_IP6OPT); } if (inp->in6p_route.ro_rt) rtfree(inp->in6p_route.ro_rt); ip6_freemoptions(inp->in6p_moptions); inp->inp_vflag = 0; zfreei(ipi->ipi_zone, inp); } /* * The calling convention of in6_setsockaddr() and in6_setpeeraddr() was * modified to match the pru_sockaddr() and pru_peeraddr() entry points * in struct pr_usrreqs, so that protocols can just reference then directly * without the need for a wrapper function. The socket must have a valid * (i.e., non-nil) PCB, but it should be impossible to get an invalid one * except through a kernel programming error, so it is acceptable to panic * (or in this case trap) if the PCB is invalid. (Actually, we don't trap * because there actually /is/ a programming error somewhere... XXX) */ int in6_setsockaddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; register struct inpcb *inp; register struct sockaddr_in6 *sin6; /* * Do the malloc first in case it blocks. */ MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6, M_SONAME, M_WAITOK); bzero(sin6, sizeof *sin6); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin6, M_SONAME); return EINVAL; } sin6->sin6_port = inp->inp_lport; sin6->sin6_addr = inp->in6p_laddr; splx(s); if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) sin6->sin6_scope_id = ntohs(sin6->sin6_addr.s6_addr16[1]); else sin6->sin6_scope_id = 0; /*XXX*/ if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) sin6->sin6_addr.s6_addr16[1] = 0; *nam = (struct sockaddr *)sin6; return 0; } int in6_setpeeraddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; struct inpcb *inp; register struct sockaddr_in6 *sin6; /* * Do the malloc first in case it blocks. */ MALLOC(sin6, struct sockaddr_in6 *, sizeof(*sin6), M_SONAME, M_WAITOK); bzero((caddr_t)sin6, sizeof (*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin6, M_SONAME); return EINVAL; } sin6->sin6_port = inp->inp_fport; sin6->sin6_addr = inp->in6p_faddr; splx(s); if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) sin6->sin6_scope_id = ntohs(sin6->sin6_addr.s6_addr16[1]); else sin6->sin6_scope_id = 0; /*XXX*/ if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) sin6->sin6_addr.s6_addr16[1] = 0; *nam = (struct sockaddr *)sin6; return 0; } int in6_mapped_sockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp = sotoinpcb(so); int error; if (inp == NULL) return EINVAL; if (inp->inp_vflag & INP_IPV4) { error = in_setsockaddr(so, nam); if (error == NULL) in6_sin_2_v4mapsin6_in_sock(nam); } else error = in6_setsockaddr(so, nam); return error; } int in6_mapped_peeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp = sotoinpcb(so); int error; if (inp == NULL) return EINVAL; if (inp->inp_vflag & INP_IPV4) { error = in_setpeeraddr(so, nam); if (error == NULL) in6_sin_2_v4mapsin6_in_sock(nam); } else error = in6_setpeeraddr(so, nam); return error; } /* * Pass some notification to all connections of a protocol * associated with address dst. The local address and/or port numbers * may be specified to limit the search. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. * * Must be called at splnet. */ void in6_pcbnotify(head, dst, fport_arg, laddr6, lport_arg, cmd, notify) struct inpcbhead *head; struct sockaddr *dst; u_int fport_arg, lport_arg; struct in6_addr *laddr6; int cmd; void (*notify) __P((struct inpcb *, int)); { struct inpcb *inp, *oinp; struct in6_addr faddr6; u_short fport = fport_arg, lport = lport_arg; int errno, s; if ((unsigned)cmd > PRC_NCMDS || dst->sa_family != AF_INET6) return; faddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr; if (IN6_IS_ADDR_UNSPECIFIED(&faddr6)) return; /* * Redirects go to all references to the destination, * and use in_rtchange to invalidate the route cache. * Dead host indications: notify all references to the destination. * Otherwise, if we have knowledge of the local port and address, * deliver only to that socket. */ if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) { fport = 0; lport = 0; bzero((caddr_t)laddr6, sizeof(*laddr6)); if (cmd != PRC_HOSTDEAD) notify = in6_rtchange; } errno = inet6ctlerrmap[cmd]; s = splnet(); for (inp = LIST_FIRST(head); inp != NULL;) { if ((inp->inp_vflag & INP_IPV6) == NULL) { inp = LIST_NEXT(inp, inp_list); continue; } if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &faddr6) || inp->inp_socket == 0 || (lport && inp->inp_lport != lport) || (!IN6_IS_ADDR_UNSPECIFIED(laddr6) && !IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr6)) || (fport && inp->inp_fport != fport)) { inp = LIST_NEXT(inp, inp_list); continue; } oinp = inp; inp = LIST_NEXT(inp, inp_list); if (notify) (*notify)(oinp, errno); } splx(s); } /* * Lookup a PCB based on the local address and port. */ struct inpcb * in6_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay) struct inpcbinfo *pcbinfo; struct in6_addr *laddr; u_int lport_arg; int wild_okay; { register struct inpcb *inp; int matchwild = 3, wildcard; u_short lport = lport_arg; if (!wild_okay) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { if ((inp->inp_vflag & INP_IPV6) == NULL) continue; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_lport == lport) { /* * Found. */ return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, pcbinfo->porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if ((inp->inp_vflag & INP_IPV6) == NULL) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) wildcard++; if (!IN6_IS_ADDR_UNSPECIFIED( &inp->in6p_laddr)) { if (IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; else if (!IN6_ARE_ADDR_EQUAL( &inp->in6p_laddr, laddr)) continue; } else { if (!IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) { break; } } } } return (match); } } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in6_losing(in6p) struct inpcb *in6p; { struct rtentry *rt; struct rt_addrinfo info; if ((rt = in6p->in6p_route.ro_rt) != NULL) { in6p->in6p_route.ro_rt = 0; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&in6p->in6p_route.ro_dst; info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) (void)rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, (struct rtentry **)0); else /* * A new route can be allocated * the next time output is attempted. */ rtfree(rt); } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in6_rtchange(inp, errno) struct inpcb *inp; int errno; { if (inp->in6p_route.ro_rt) { rtfree(inp->in6p_route.ro_rt); inp->in6p_route.ro_rt = 0; /* * A new route can be allocated the next time * output is attempted. */ } } /* * Lookup PCB in hash list. */ struct inpcb * in6_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, ifp) struct inpcbinfo *pcbinfo; struct in6_addr *faddr, *laddr; u_int fport_arg, lport_arg; int wildcard; struct ifnet *ifp; { struct inpcbhead *head; register struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ head = &pcbinfo->hashbase[INP_PCBHASH(faddr->s6_addr32[3] /* XXX */, lport, fport, pcbinfo->hashmask)]; for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) { if ((inp->inp_vflag & INP_IPV6) == NULL) continue; if (IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) { /* * Found. */ return (inp); } } if (wildcard) { struct inpcb *local_wild = NULL; head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) { if ((inp->inp_vflag & INP_IPV6) == NULL) continue; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) && inp->inp_lport == lport) { #if defined(NFAITH) && NFAITH > 0 if (ifp && ifp->if_type == IFT_FAITH && (inp->inp_flags & INP_FAITH) == 0) continue; #endif if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) return (inp); else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) local_wild = inp; } } return (local_wild); } /* * Not found. */ return (NULL); } void init_sin6(struct sockaddr_in6 *sin6, struct mbuf *m) { struct ip6_hdr *ip; ip = mtod(m, struct ip6_hdr *); bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(*sin6); sin6->sin6_family = AF_INET6; sin6->sin6_addr = ip->ip6_src; if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) sin6->sin6_addr.s6_addr16[1] = 0; sin6->sin6_scope_id = (m->m_pkthdr.rcvif && IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) ? m->m_pkthdr.rcvif->if_index : 0; return; }