/* $FreeBSD$ */ /* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.2 (Berkeley) 11/15/93 */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address"); /* * Definitions of some costant IP6 addresses. */ const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; const struct in6_addr in6addr_nodelocal_allnodes = IN6ADDR_NODELOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; const struct in6_addr in6mask0 = IN6MASK0; const struct in6_addr in6mask32 = IN6MASK32; const struct in6_addr in6mask64 = IN6MASK64; const struct in6_addr in6mask96 = IN6MASK96; const struct in6_addr in6mask128 = IN6MASK128; const struct sockaddr_in6 sa6_any = { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, struct ifnet *, struct thread *)); static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *, struct sockaddr_in6 *, int)); static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *)); struct in6_multihead in6_multihead; /* XXX BSS initialization */ int (*faithprefix_p)(struct in6_addr *); /* * Subroutine for in6_ifaddloop() and in6_ifremloop(). * This routine does actual work. */ static void in6_ifloop_request(int cmd, struct ifaddr *ifa) { struct sockaddr_in6 all1_sa; struct rtentry *nrt = NULL; int e; bzero(&all1_sa, sizeof(all1_sa)); all1_sa.sin6_family = AF_INET6; all1_sa.sin6_len = sizeof(struct sockaddr_in6); all1_sa.sin6_addr = in6mask128; /* * We specify the address itself as the gateway, and set the * RTF_LLINFO flag, so that the corresponding host route would have * the flag, and thus applications that assume traditional behavior * would be happy. Note that we assume the caller of the function * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, * which changes the outgoing interface to the loopback interface. */ e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr, (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); if (e != 0) { /* XXX need more descriptive message */ log(LOG_ERR, "in6_ifloop_request: " "%s operation failed for %s (errno=%d)\n", cmd == RTM_ADD ? "ADD" : "DELETE", ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); } if (nrt) { RT_LOCK(nrt); /* * Make sure rt_ifa be equal to IFA, the second argument of * the function. We need this because when we refer to * rt_ifa->ia6_flags in ip6_input, we assume that the rt_ifa * points to the address instead of the loopback address. */ if (cmd == RTM_ADD && ifa != nrt->rt_ifa) { IFAFREE(nrt->rt_ifa); IFAREF(ifa); nrt->rt_ifa = ifa; } /* * Report the addition/removal of the address to the routing * socket. * * XXX: since we called rtinit for a p2p interface with a * destination, we end up reporting twice in such a case. * Should we rather omit the second report? */ rt_newaddrmsg(cmd, ifa, e, nrt); if (cmd == RTM_DELETE) { rtfree(nrt); } else { /* the cmd must be RTM_ADD here */ RT_REMREF(nrt); RT_UNLOCK(nrt); } } } /* * Add ownaddr as loopback rtentry. We previously add the route only if * necessary (ex. on a p2p link). However, since we now manage addresses * separately from prefixes, we should always add the route. We can't * rely on the cloning mechanism from the corresponding interface route * any more. */ static void in6_ifaddloop(struct ifaddr *ifa) { struct rtentry *rt; int need_loop; /* If there is no loopback entry, allocate one. */ rt = rtalloc1(ifa->ifa_addr, 0, 0); need_loop = (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0); if (rt) rtfree(rt); if (need_loop) in6_ifloop_request(RTM_ADD, ifa); } /* * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), * if it exists. */ static void in6_ifremloop(struct ifaddr *ifa) { struct in6_ifaddr *ia; struct rtentry *rt; int ia_count = 0; /* * Some of BSD variants do not remove cloned routes * from an interface direct route, when removing the direct route * (see comments in net/net_osdep.h). Even for variants that do remove * cloned routes, they could fail to remove the cloned routes when * we handle multple addresses that share a common prefix. * So, we should remove the route corresponding to the deleted address * regardless of the result of in6_is_ifloop_auto(). */ /* * Delete the entry only if exact one ifa exists. More than one ifa * can exist if we assign a same single address to multiple * (probably p2p) interfaces. * XXX: we should avoid such a configuration in IPv6... */ for (ia = in6_ifaddr; ia; ia = ia->ia_next) { if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { ia_count++; if (ia_count > 1) break; } } if (ia_count == 1) { /* * Before deleting, check if a corresponding loopbacked host * route surely exists. With this check, we can avoid to * delete an interface direct route whose destination is same * as the address being removed. This can happen when removing * a subnet-router anycast address on an interface attahced * to a shared medium. */ rt = rtalloc1(ifa->ifa_addr, 0, 0); if (rt != NULL) { if ((rt->rt_flags & RTF_HOST) != 0 && (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { rtfree(rt); in6_ifloop_request(RTM_DELETE, ifa); } else RT_UNLOCK(rt); } } } int in6_mask2len(mask, lim0) struct in6_addr *mask; u_char *lim0; { int x = 0, y; u_char *lim = lim0, *p; /* ignore the scope_id part */ if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) lim = (u_char *)mask + sizeof(*mask); for (p = (u_char *)mask; p < lim; x++, p++) { if (*p != 0xff) break; } y = 0; if (p < lim) { for (y = 0; y < 8; y++) { if ((*p & (0x80 >> y)) == 0) break; } } /* * when the limit pointer is given, do a stricter check on the * remaining bits. */ if (p < lim) { if (y != 0 && (*p & (0x00ff >> y)) != 0) return (-1); for (p = p + 1; p < lim; p++) if (*p != 0) return (-1); } return x * 8 + y; } #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) #define ia62ifa(ia6) (&((ia6)->ia_ifa)) int in6_control(so, cmd, data, ifp, td) struct socket *so; u_long cmd; caddr_t data; struct ifnet *ifp; struct thread *td; { struct in6_ifreq *ifr = (struct in6_ifreq *)data; struct in6_ifaddr *ia = NULL; struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; int privileged; privileged = 0; if (td == NULL || !suser(td)) privileged++; switch (cmd) { case SIOCGETSGCNT_IN6: case SIOCGETMIFCNT_IN6: return (mrt6_ioctl(cmd, data)); } switch(cmd) { case SIOCAADDRCTL_POLICY: case SIOCDADDRCTL_POLICY: if (!privileged) return (EPERM); return (in6_src_ioctl(cmd, data)); } if (ifp == NULL) return (EOPNOTSUPP); switch (cmd) { case SIOCSNDFLUSH_IN6: case SIOCSPFXFLUSH_IN6: case SIOCSRTRFLUSH_IN6: case SIOCSDEFIFACE_IN6: case SIOCSIFINFO_FLAGS: if (!privileged) return (EPERM); /* FALLTHROUGH */ case OSIOCGIFINFO_IN6: case SIOCGIFINFO_IN6: case SIOCGDRLST_IN6: case SIOCGPRLST_IN6: case SIOCGNBRINFO_IN6: case SIOCGDEFIFACE_IN6: return (nd6_ioctl(cmd, data, ifp)); } switch (cmd) { case SIOCSIFPREFIX_IN6: case SIOCDIFPREFIX_IN6: case SIOCAIFPREFIX_IN6: case SIOCCIFPREFIX_IN6: case SIOCSGIFPREFIX_IN6: case SIOCGIFPREFIX_IN6: log(LOG_NOTICE, "prefix ioctls are now invalidated. " "please use ifconfig.\n"); return (EOPNOTSUPP); } switch (cmd) { case SIOCSSCOPE6: if (!privileged) return (EPERM); return (scope6_set(ifp, (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); case SIOCGSCOPE6: return (scope6_get(ifp, (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id)); case SIOCGSCOPE6DEF: return (scope6_get_default((struct scope6_id *) ifr->ifr_ifru.ifru_scope_id)); } switch (cmd) { case SIOCALIFADDR: case SIOCDLIFADDR: if (!privileged) return (EPERM); /* FALLTHROUGH */ case SIOCGLIFADDR: return in6_lifaddr_ioctl(so, cmd, data, ifp, td); } /* * Find address for this interface, if it exists. */ if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */ struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)&ifra->ifra_addr; if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { if (sa6->sin6_addr.s6_addr16[1] == 0) { /* link ID is not embedded by the user */ sa6->sin6_addr.s6_addr16[1] = htons(ifp->if_index); } else if (sa6->sin6_addr.s6_addr16[1] != htons(ifp->if_index)) { return (EINVAL); /* link ID contradicts */ } if (sa6->sin6_scope_id) { if (sa6->sin6_scope_id != (u_int32_t)ifp->if_index) return (EINVAL); sa6->sin6_scope_id = 0; /* XXX: good way? */ } } ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr); } switch (cmd) { case SIOCSIFADDR_IN6: case SIOCSIFDSTADDR_IN6: case SIOCSIFNETMASK_IN6: /* * Since IPv6 allows a node to assign multiple addresses * on a single interface, SIOCSIFxxx ioctls are not suitable * and should be unused. */ /* we decided to obsolete this command (20000704) */ return (EINVAL); case SIOCDIFADDR_IN6: /* * for IPv4, we look for existing in_ifaddr here to allow * "ifconfig if0 delete" to remove first IPv4 address on the * interface. For IPv6, as the spec allow multiple interface * address from the day one, we consider "remove the first one" * semantics to be not preferable. */ if (ia == NULL) return (EADDRNOTAVAIL); /* FALLTHROUGH */ case SIOCAIFADDR_IN6: /* * We always require users to specify a valid IPv6 address for * the corresponding operation. */ if (ifra->ifra_addr.sin6_family != AF_INET6 || ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) return (EAFNOSUPPORT); if (!privileged) return (EPERM); break; case SIOCGIFADDR_IN6: /* This interface is basically deprecated. use SIOCGIFCONF. */ /* FALLTHROUGH */ case SIOCGIFAFLAG_IN6: case SIOCGIFNETMASK_IN6: case SIOCGIFDSTADDR_IN6: case SIOCGIFALIFETIME_IN6: /* must think again about its semantics */ if (ia == NULL) return (EADDRNOTAVAIL); break; case SIOCSIFALIFETIME_IN6: { struct in6_addrlifetime *lt; if (!privileged) return (EPERM); if (ia == NULL) return (EADDRNOTAVAIL); /* sanity for overflow - beware unsigned */ lt = &ifr->ifr_ifru.ifru_lifetime; if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && lt->ia6t_vltime + time_second < time_second) { return EINVAL; } if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && lt->ia6t_pltime + time_second < time_second) { return EINVAL; } break; } } switch (cmd) { case SIOCGIFADDR_IN6: ifr->ifr_addr = ia->ia_addr; break; case SIOCGIFDSTADDR_IN6: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) return (EINVAL); /* * XXX: should we check if ifa_dstaddr is NULL and return * an error? */ ifr->ifr_dstaddr = ia->ia_dstaddr; break; case SIOCGIFNETMASK_IN6: ifr->ifr_addr = ia->ia_prefixmask; break; case SIOCGIFAFLAG_IN6: ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; break; case SIOCGIFSTAT_IN6: if (ifp == NULL) return EINVAL; bzero(&ifr->ifr_ifru.ifru_stat, sizeof(ifr->ifr_ifru.ifru_stat)); ifr->ifr_ifru.ifru_stat = *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat; break; case SIOCGIFSTAT_ICMP6: if (ifp == NULL) return EINVAL; bzero(&ifr->ifr_ifru.ifru_stat, sizeof(ifr->ifr_ifru.ifru_icmp6stat)); ifr->ifr_ifru.ifru_icmp6stat = *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat; break; case SIOCGIFALIFETIME_IN6: ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; break; case SIOCSIFALIFETIME_IN6: ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime; /* for sanity */ if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_expire = time_second + ia->ia6_lifetime.ia6t_vltime; } else ia->ia6_lifetime.ia6t_expire = 0; if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_preferred = time_second + ia->ia6_lifetime.ia6t_pltime; } else ia->ia6_lifetime.ia6t_preferred = 0; break; case SIOCAIFADDR_IN6: { int i, error = 0; struct nd_prefix pr0, *pr; /* * first, make or update the interface address structure, * and link it to the list. */ if ((error = in6_update_ifa(ifp, ifra, ia)) != 0) return (error); /* * then, make the prefix on-link on the interface. * XXX: we'd rather create the prefix before the address, but * we need at least one address to install the corresponding * interface route, so we configure the address first. */ /* * convert mask to prefix length (prefixmask has already * been validated in in6_update_ifa(). */ bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, NULL); if (pr0.ndpr_plen == 128) { break; /* we don't need to install a host route. */ } pr0.ndpr_prefix = ifra->ifra_addr; pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; /* apply the mask for safety. */ for (i = 0; i < 4; i++) { pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; } /* * XXX: since we don't have an API to set prefix (not address) * lifetimes, we just use the same lifetimes as addresses. * The (temporarily) installed lifetimes can be overridden by * later advertised RAs (when accept_rtadv is non 0), which is * an intended behavior. */ pr0.ndpr_raf_onlink = 1; /* should be configurable? */ pr0.ndpr_raf_auto = ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; /* add the prefix if not yet. */ if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { /* * nd6_prelist_add will install the corresponding * interface route. */ if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) return (error); if (pr == NULL) { log(LOG_ERR, "nd6_prelist_add succeeded but " "no prefix\n"); return (EINVAL); /* XXX panic here? */ } } if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) == NULL) { /* XXX: this should not happen! */ log(LOG_ERR, "in6_control: addition succeeded, but" " no ifaddr\n"); } else { if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && ia->ia6_ndpr == NULL) { /* new autoconfed addr */ ia->ia6_ndpr = pr; pr->ndpr_refcnt++; /* * If this is the first autoconf address from * the prefix, create a temporary address * as well (when specified). */ if (ip6_use_tempaddr && pr->ndpr_refcnt == 1) { int e; if ((e = in6_tmpifadd(ia, 1)) != 0) { log(LOG_NOTICE, "in6_control: " "failed to create a " "temporary address, " "errno=%d\n", e); } } } /* * this might affect the status of autoconfigured * addresses, that is, this address might make * other addresses detached. */ pfxlist_onlink_check(); } if (error == 0 && ia) EVENTHANDLER_INVOKE(ifaddr_event, ifp); break; } case SIOCDIFADDR_IN6: { int i = 0; struct nd_prefix pr0, *pr; /* * If the address being deleted is the only one that owns * the corresponding prefix, expire the prefix as well. * XXX: theoretically, we don't have to worry about such * relationship, since we separate the address management * and the prefix management. We do this, however, to provide * as much backward compatibility as possible in terms of * the ioctl operation. */ bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); if (pr0.ndpr_plen == 128) goto purgeaddr; pr0.ndpr_prefix = ia->ia_addr; pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; for (i = 0; i < 4; i++) { pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= ia->ia_prefixmask.sin6_addr.s6_addr32[i]; } /* * The logic of the following condition is a bit complicated. * We expire the prefix when * 1. the address obeys autoconfiguration and it is the * only owner of the associated prefix, or * 2. the address does not obey autoconf and there is no * other owner of the prefix. */ if ((pr = nd6_prefix_lookup(&pr0)) != NULL && (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && pr->ndpr_refcnt == 1) || ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && pr->ndpr_refcnt == 0))) { pr->ndpr_expire = 1; /* XXX: just for expiration */ } purgeaddr: in6_purgeaddr(&ia->ia_ifa); EVENTHANDLER_INVOKE(ifaddr_event, ifp); break; } default: if (ifp == NULL || ifp->if_ioctl == 0) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); } return (0); } /* * Update parameters of an IPv6 interface address. * If necessary, a new entry is created and linked into address chains. * This function is separated from in6_control(). * XXX: should this be performed under splnet()? */ int in6_update_ifa(ifp, ifra, ia) struct ifnet *ifp; struct in6_aliasreq *ifra; struct in6_ifaddr *ia; { int error = 0, hostIsNew = 0, plen = -1; struct in6_ifaddr *oia; struct sockaddr_in6 dst6; struct in6_addrlifetime *lt; /* Validate parameters */ if (ifp == NULL || ifra == NULL) /* this maybe redundant */ return (EINVAL); /* * The destination address for a p2p link must have a family * of AF_UNSPEC or AF_INET6. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ifra->ifra_dstaddr.sin6_family != AF_INET6 && ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) return (EAFNOSUPPORT); /* * validate ifra_prefixmask. don't check sin6_family, netmask * does not carry fields other than sin6_len. */ if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) return (EINVAL); /* * Because the IPv6 address architecture is classless, we require * users to specify a (non 0) prefix length (mask) for a new address. * We also require the prefix (when specified) mask is valid, and thus * reject a non-consecutive mask. */ if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) return (EINVAL); if (ifra->ifra_prefixmask.sin6_len != 0) { plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, (u_char *)&ifra->ifra_prefixmask + ifra->ifra_prefixmask.sin6_len); if (plen <= 0) return (EINVAL); } else { /* * In this case, ia must not be NULL. We just use its prefix * length. */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); } /* * If the destination address on a p2p interface is specified, * and the address is a scoped one, validate/set the scope * zone identifier. */ dst6 = ifra->ifra_dstaddr; if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && (dst6.sin6_family == AF_INET6)) { u_int32_t zoneid; if ((error = in6_recoverscope(&dst6, &ifra->ifra_dstaddr.sin6_addr, ifp)) != 0) return (error); if (in6_addr2zoneid(ifp, &dst6.sin6_addr, &zoneid)) return (EINVAL); if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ dst6.sin6_scope_id = zoneid; else if (dst6.sin6_scope_id != zoneid) return (EINVAL); /* scope ID mismatch. */ if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL)) != 0) return (error); dst6.sin6_scope_id = 0; /* XXX */ } /* * The destination address can be specified only for a p2p or a * loopback interface. If specified, the corresponding prefix length * must be 128. */ if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { /* XXX: noisy message */ nd6log((LOG_INFO, "in6_update_ifa: a destination can " "be specified for a p2p or a loopback IF only\n")); return (EINVAL); } if (plen != 128) { nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " "be 128 when dstaddr is specified\n")); return (EINVAL); } } /* lifetime consistency check */ lt = &ifra->ifra_lifetime; if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME && lt->ia6t_vltime + time_second < time_second) { return EINVAL; } if (lt->ia6t_vltime == 0) { /* * the following log might be noisy, but this is a typical * configuration mistake or a tool's bug. */ nd6log((LOG_INFO, "in6_update_ifa: valid lifetime is 0 for %s\n", ip6_sprintf(&ifra->ifra_addr.sin6_addr))); } if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME && lt->ia6t_pltime + time_second < time_second) { return EINVAL; } /* * If this is a new address, allocate a new ifaddr and link it * into chains. */ if (ia == NULL) { hostIsNew = 1; /* * When in6_update_ifa() is called in a process of a received * RA, it is called under an interrupt context. So, we should * call malloc with M_NOWAIT. */ ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR, M_NOWAIT); if (ia == NULL) return (ENOBUFS); bzero((caddr_t)ia, sizeof(*ia)); /* Initialize the address and masks */ IFA_LOCK_INIT(&ia->ia_ifa); ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; ia->ia_addr.sin6_family = AF_INET6; ia->ia_addr.sin6_len = sizeof(ia->ia_addr); if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { /* * XXX: some functions expect that ifa_dstaddr is not * NULL for p2p interfaces. */ ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; } else { ia->ia_ifa.ifa_dstaddr = NULL; } ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; ia->ia_ifp = ifp; if ((oia = in6_ifaddr) != NULL) { for ( ; oia->ia_next; oia = oia->ia_next) continue; oia->ia_next = ia; } else in6_ifaddr = ia; ia->ia_ifa.ifa_refcnt = 1; TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); } /* set prefix mask */ if (ifra->ifra_prefixmask.sin6_len) { /* * We prohibit changing the prefix length of an existing * address, because * + such an operation should be rare in IPv6, and * + the operation would confuse prefix management. */ if (ia->ia_prefixmask.sin6_len && in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an" " existing (%s) address should not be changed\n", ip6_sprintf(&ia->ia_addr.sin6_addr))); error = EINVAL; goto unlink; } ia->ia_prefixmask = ifra->ifra_prefixmask; } /* * If a new destination address is specified, scrub the old one and * install the new destination. Note that the interface must be * p2p or loopback (see the check above.) */ if (dst6.sin6_family == AF_INET6 && !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { int e; if ((ia->ia_flags & IFA_ROUTE) != 0 && (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { nd6log((LOG_ERR, "in6_update_ifa: failed to remove " "a route to the old destination: %s\n", ip6_sprintf(&ia->ia_addr.sin6_addr))); /* proceed anyway... */ } else ia->ia_flags &= ~IFA_ROUTE; ia->ia_dstaddr = dst6; } /* reset the interface and routing table appropriately. */ if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) goto unlink; /* * Beyond this point, we should call in6_purgeaddr upon an error, * not just go to unlink. */ if ((ifp->if_flags & IFF_MULTICAST) != 0) { struct sockaddr_in6 mltaddr, mltmask; struct in6_multi *in6m; if (hostIsNew) { /* join solicited multicast addr for new host id */ struct in6_addr llsol; bzero(&llsol, sizeof(struct in6_addr)); llsol.s6_addr16[0] = htons(0xff02); llsol.s6_addr16[1] = htons(ifp->if_index); llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; llsol.s6_addr8[12] = 0xff; (void)in6_addmulti(&llsol, ifp, &error); if (error != 0) { nd6log((LOG_WARNING, "in6_update_ifa: addmulti failed for " "%s on %s (errno=%d)\n", ip6_sprintf(&llsol), if_name(ifp), error)); in6_purgeaddr((struct ifaddr *)ia); return (error); } } bzero(&mltmask, sizeof(mltmask)); mltmask.sin6_len = sizeof(struct sockaddr_in6); mltmask.sin6_family = AF_INET6; mltmask.sin6_addr = in6mask32; /* * join link-local all-nodes address */ bzero(&mltaddr, sizeof(mltaddr)); mltaddr.sin6_len = sizeof(struct sockaddr_in6); mltaddr.sin6_family = AF_INET6; mltaddr.sin6_addr = in6addr_linklocal_allnodes; mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index); IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); if (in6m == NULL) { rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, (struct sockaddr *)&ia->ia_addr, (struct sockaddr *)&mltmask, RTF_UP|RTF_CLONING, /* xxx */ (struct rtentry **)0); (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); if (error != 0) { nd6log((LOG_WARNING, "in6_update_ifa: addmulti failed for " "%s on %s (errno=%d)\n", ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); } } /* * join node information group address */ #define hostnamelen strlen(hostname) if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) == 0) { IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); if (in6m == NULL && ia != NULL) { (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); if (error != 0) { nd6log((LOG_WARNING, "in6_update_ifa: " "addmulti failed for " "%s on %s (errno=%d)\n", ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); } } } #undef hostnamelen /* * join node-local all-nodes address, on loopback. * XXX: since "node-local" is obsoleted by interface-local, * we have to join the group on every interface with * some interface-boundary restriction. */ if (ifp->if_flags & IFF_LOOPBACK) { struct in6_ifaddr *ia_loop; struct in6_addr loop6 = in6addr_loopback; ia_loop = in6ifa_ifpwithaddr(ifp, &loop6); mltaddr.sin6_addr = in6addr_nodelocal_allnodes; IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m); if (in6m == NULL && ia_loop != NULL) { rtrequest(RTM_ADD, (struct sockaddr *)&mltaddr, (struct sockaddr *)&ia_loop->ia_addr, (struct sockaddr *)&mltmask, RTF_UP, (struct rtentry **)0); (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error); if (error != 0) { nd6log((LOG_WARNING, "in6_update_ifa: " "addmulti failed for %s on %s " "(errno=%d)\n", ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); } } } } ia->ia6_flags = ifra->ifra_flags; ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/ ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */ ia->ia6_lifetime = ifra->ifra_lifetime; /* for sanity */ if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_expire = time_second + ia->ia6_lifetime.ia6t_vltime; } else ia->ia6_lifetime.ia6t_expire = 0; if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_preferred = time_second + ia->ia6_lifetime.ia6t_pltime; } else ia->ia6_lifetime.ia6t_preferred = 0; /* * Perform DAD, if needed. * XXX It may be of use, if we can administratively * disable DAD. */ if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) { ia->ia6_flags |= IN6_IFF_TENTATIVE; nd6_dad_start((struct ifaddr *)ia, NULL); } return (error); unlink: /* * XXX: if a change of an existing address failed, keep the entry * anyway. */ if (hostIsNew) in6_unlink_ifa(ia, ifp); return (error); } void in6_purgeaddr(ifa) struct ifaddr *ifa; { struct ifnet *ifp = ifa->ifa_ifp; struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; /* stop DAD processing */ nd6_dad_stop(ifa); /* * delete route to the destination of the address being purged. * The interface must be p2p or loopback in this case. */ if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { int e; if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { log(LOG_ERR, "in6_purgeaddr: failed to remove " "a route to the p2p destination: %s on %s, " "errno=%d\n", ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), e); /* proceed anyway... */ } else ia->ia_flags &= ~IFA_ROUTE; } /* Remove ownaddr's loopback rtentry, if it exists. */ in6_ifremloop(&(ia->ia_ifa)); if (ifp->if_flags & IFF_MULTICAST) { /* * delete solicited multicast addr for deleting host id */ struct in6_multi *in6m; struct in6_addr llsol; bzero(&llsol, sizeof(struct in6_addr)); llsol.s6_addr16[0] = htons(0xff02); llsol.s6_addr16[1] = htons(ifp->if_index); llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr32[3] = ia->ia_addr.sin6_addr.s6_addr32[3]; llsol.s6_addr8[12] = 0xff; IN6_LOOKUP_MULTI(llsol, ifp, in6m); if (in6m) in6_delmulti(in6m); } in6_unlink_ifa(ia, ifp); } static void in6_unlink_ifa(ia, ifp) struct in6_ifaddr *ia; struct ifnet *ifp; { int plen, iilen; struct in6_ifaddr *oia; int s = splnet(); TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list); oia = ia; if (oia == (ia = in6_ifaddr)) in6_ifaddr = ia->ia_next; else { while (ia->ia_next && (ia->ia_next != oia)) ia = ia->ia_next; if (ia->ia_next) ia->ia_next = oia->ia_next; else { /* search failed */ printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); } } if (oia->ia6_ifpr) { /* check for safety */ plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL); iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen; in6_prefix_remove_ifid(iilen, oia); } /* * When an autoconfigured address is being removed, release the * reference to the base prefix. Also, since the release might * affect the status of other (detached) addresses, call * pfxlist_onlink_check(). */ if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { if (oia->ia6_ndpr == NULL) { nd6log((LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " "%p has no prefix\n", oia)); } else { oia->ia6_ndpr->ndpr_refcnt--; oia->ia6_flags &= ~IN6_IFF_AUTOCONF; oia->ia6_ndpr = NULL; } pfxlist_onlink_check(); } /* * release another refcnt for the link from in6_ifaddr. * Note that we should decrement the refcnt at least once for all *BSD. */ IFAFREE(&oia->ia_ifa); splx(s); } void in6_purgeif(ifp) struct ifnet *ifp; { struct ifaddr *ifa, *nifa; for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) { nifa = TAILQ_NEXT(ifa, ifa_list); if (ifa->ifa_addr->sa_family != AF_INET6) continue; in6_purgeaddr(ifa); } in6_ifdetach(ifp); } /* * SIOC[GAD]LIFADDR. * SIOCGLIFADDR: get first address. (?) * SIOCGLIFADDR with IFLR_PREFIX: * get first address that matches the specified prefix. * SIOCALIFADDR: add the specified address. * SIOCALIFADDR with IFLR_PREFIX: * add the specified prefix, filling hostid part from * the first link-local address. prefixlen must be <= 64. * SIOCDLIFADDR: delete the specified address. * SIOCDLIFADDR with IFLR_PREFIX: * delete the first address that matches the specified prefix. * return values: * EINVAL on invalid parameters * EADDRNOTAVAIL on prefix match failed/specified address not found * other values may be returned from in6_ioctl() * * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. * this is to accomodate address naming scheme other than RFC2374, * in the future. * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 * address encoding scheme. (see figure on page 8) */ static int in6_lifaddr_ioctl(so, cmd, data, ifp, td) struct socket *so; u_long cmd; caddr_t data; struct ifnet *ifp; struct thread *td; { struct if_laddrreq *iflr = (struct if_laddrreq *)data; struct ifaddr *ifa; struct sockaddr *sa; /* sanity checks */ if (!data || !ifp) { panic("invalid argument to in6_lifaddr_ioctl"); /* NOTREACHED */ } switch (cmd) { case SIOCGLIFADDR: /* address must be specified on GET with IFLR_PREFIX */ if ((iflr->flags & IFLR_PREFIX) == 0) break; /* FALLTHROUGH */ case SIOCALIFADDR: case SIOCDLIFADDR: /* address must be specified on ADD and DELETE */ sa = (struct sockaddr *)&iflr->addr; if (sa->sa_family != AF_INET6) return EINVAL; if (sa->sa_len != sizeof(struct sockaddr_in6)) return EINVAL; /* XXX need improvement */ sa = (struct sockaddr *)&iflr->dstaddr; if (sa->sa_family && sa->sa_family != AF_INET6) return EINVAL; if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) return EINVAL; break; default: /* shouldn't happen */ #if 0 panic("invalid cmd to in6_lifaddr_ioctl"); /* NOTREACHED */ #else return EOPNOTSUPP; #endif } if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) return EINVAL; switch (cmd) { case SIOCALIFADDR: { struct in6_aliasreq ifra; struct in6_addr *hostid = NULL; int prefixlen; if ((iflr->flags & IFLR_PREFIX) != 0) { struct sockaddr_in6 *sin6; /* * hostid is to fill in the hostid part of the * address. hostid points to the first link-local * address attached to the interface. */ ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); if (!ifa) return EADDRNOTAVAIL; hostid = IFA_IN6(ifa); /* prefixlen must be <= 64. */ if (64 < iflr->prefixlen) return EINVAL; prefixlen = iflr->prefixlen; /* hostid part must be zero. */ sin6 = (struct sockaddr_in6 *)&iflr->addr; if (sin6->sin6_addr.s6_addr32[2] != 0 || sin6->sin6_addr.s6_addr32[3] != 0) { return EINVAL; } } else prefixlen = iflr->prefixlen; /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ bzero(&ifra, sizeof(ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); bcopy(&iflr->addr, &ifra.ifra_addr, ((struct sockaddr *)&iflr->addr)->sa_len); if (hostid) { /* fill in hostid part */ ifra.ifra_addr.sin6_addr.s6_addr32[2] = hostid->s6_addr32[2]; ifra.ifra_addr.sin6_addr.s6_addr32[3] = hostid->s6_addr32[3]; } if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */ bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, ((struct sockaddr *)&iflr->dstaddr)->sa_len); if (hostid) { ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = hostid->s6_addr32[2]; ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = hostid->s6_addr32[3]; } } ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td); } case SIOCGLIFADDR: case SIOCDLIFADDR: { struct in6_ifaddr *ia; struct in6_addr mask, candidate, match; struct sockaddr_in6 *sin6; int cmp; bzero(&mask, sizeof(mask)); if (iflr->flags & IFLR_PREFIX) { /* lookup a prefix rather than address. */ in6_prefixlen2mask(&mask, iflr->prefixlen); sin6 = (struct sockaddr_in6 *)&iflr->addr; bcopy(&sin6->sin6_addr, &match, sizeof(match)); match.s6_addr32[0] &= mask.s6_addr32[0]; match.s6_addr32[1] &= mask.s6_addr32[1]; match.s6_addr32[2] &= mask.s6_addr32[2]; match.s6_addr32[3] &= mask.s6_addr32[3]; /* if you set extra bits, that's wrong */ if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) return EINVAL; cmp = 1; } else { if (cmd == SIOCGLIFADDR) { /* on getting an address, take the 1st match */ cmp = 0; /* XXX */ } else { /* on deleting an address, do exact match */ in6_prefixlen2mask(&mask, 128); sin6 = (struct sockaddr_in6 *)&iflr->addr; bcopy(&sin6->sin6_addr, &match, sizeof(match)); cmp = 1; } } TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (!cmp) break; bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); /* * XXX: this is adhoc, but is necessary to allow * a user to specify fe80::/64 (not /10) for a * link-local address. */ if (IN6_IS_ADDR_LINKLOCAL(&candidate)) candidate.s6_addr16[1] = 0; candidate.s6_addr32[0] &= mask.s6_addr32[0]; candidate.s6_addr32[1] &= mask.s6_addr32[1]; candidate.s6_addr32[2] &= mask.s6_addr32[2]; candidate.s6_addr32[3] &= mask.s6_addr32[3]; if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) break; } if (!ifa) return EADDRNOTAVAIL; ia = ifa2ia6(ifa); if (cmd == SIOCGLIFADDR) { struct sockaddr_in6 *s6; /* fill in the if_laddrreq structure */ bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); s6 = (struct sockaddr_in6 *)&iflr->addr; if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { s6->sin6_addr.s6_addr16[1] = 0; if (in6_addr2zoneid(ifp, &s6->sin6_addr, &s6->sin6_scope_id)) return (EINVAL); /* XXX */ } if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &iflr->dstaddr, ia->ia_dstaddr.sin6_len); s6 = (struct sockaddr_in6 *)&iflr->dstaddr; if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { s6->sin6_addr.s6_addr16[1] = 0; if (in6_addr2zoneid(ifp, &s6->sin6_addr, &s6->sin6_scope_id)) return (EINVAL); /* EINVAL */ } } else bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); iflr->prefixlen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); iflr->flags = ia->ia6_flags; /* XXX */ return 0; } else { struct in6_aliasreq ifra; /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ bzero(&ifra, sizeof(ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); bcopy(&ia->ia_addr, &ifra.ifra_addr, ia->ia_addr.sin6_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, ia->ia_dstaddr.sin6_len); } else { bzero(&ifra.ifra_dstaddr, sizeof(ifra.ifra_dstaddr)); } bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, ia->ia_prefixmask.sin6_len); ifra.ifra_flags = ia->ia6_flags; return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, ifp, td); } } } return EOPNOTSUPP; /* just for safety */ } /* * Initialize an interface's intetnet6 address * and routing table entry. */ static int in6_ifinit(ifp, ia, sin6, newhost) struct ifnet *ifp; struct in6_ifaddr *ia; struct sockaddr_in6 *sin6; int newhost; { int error = 0, plen, ifacount = 0; int s = splimp(); struct ifaddr *ifa; /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr == NULL) continue; /* just for safety */ if (ifa->ifa_addr->sa_family != AF_INET6) continue; ifacount++; } ia->ia_addr = *sin6; if (ifacount <= 1 && ifp->if_ioctl && (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { splx(s); return (error); } splx(s); ia->ia_ifa.ifa_metric = ifp->if_metric; /* we could do in(6)_socktrim here, but just omit it at this moment. */ /* * Special case: * If a new destination address is specified for a point-to-point * interface, install a route to the destination as an interface * direct route. * XXX: the logic below rejects assigning multiple addresses on a p2p * interface that share a same destination. */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_UP | RTF_HOST)) != 0) return (error); ia->ia_flags |= IFA_ROUTE; } if (plen < 128) { /* * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). */ ia->ia_ifa.ifa_flags |= RTF_CLONING; } /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ if (newhost) { /* set the rtrequest function to create llinfo */ ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; in6_ifaddloop(&(ia->ia_ifa)); } return (error); } /* * Find an IPv6 interface link-local address specific to an interface. */ struct in6_ifaddr * in6ifa_ifpforlinklocal(ifp, ignoreflags) struct ifnet *ifp; int ignoreflags; { struct ifaddr *ifa; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr == NULL) continue; /* just for safety */ if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0) continue; break; } } return ((struct in6_ifaddr *)ifa); } /* * find the internet address corresponding to a given interface and address. */ struct in6_ifaddr * in6ifa_ifpwithaddr(ifp, addr) struct ifnet *ifp; struct in6_addr *addr; { struct ifaddr *ifa; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr == NULL) continue; /* just for safety */ if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) break; } return ((struct in6_ifaddr *)ifa); } /* * Convert IP6 address to printable (loggable) representation. */ static char digits[] = "0123456789abcdef"; static int ip6round = 0; char * ip6_sprintf(addr) const struct in6_addr *addr; { static char ip6buf[8][48]; int i; char *cp; const u_int16_t *a = (const u_int16_t *)addr; const u_int8_t *d; int dcolon = 0; ip6round = (ip6round + 1) & 7; cp = ip6buf[ip6round]; for (i = 0; i < 8; i++) { if (dcolon == 1) { if (*a == 0) { if (i == 7) *cp++ = ':'; a++; continue; } else dcolon = 2; } if (*a == 0) { if (dcolon == 0 && *(a + 1) == 0) { if (i == 0) *cp++ = ':'; *cp++ = ':'; dcolon = 1; } else { *cp++ = '0'; *cp++ = ':'; } a++; continue; } d = (const u_char *)a; *cp++ = digits[*d >> 4]; *cp++ = digits[*d++ & 0xf]; *cp++ = digits[*d >> 4]; *cp++ = digits[*d & 0xf]; *cp++ = ':'; a++; } *--cp = 0; return (ip6buf[ip6round]); } int in6_localaddr(in6) struct in6_addr *in6; { struct in6_ifaddr *ia; if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) return 1; for (ia = in6_ifaddr; ia; ia = ia->ia_next) { if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, &ia->ia_prefixmask.sin6_addr)) { return 1; } } return (0); } int in6_is_addr_deprecated(sa6) struct sockaddr_in6 *sa6; { struct in6_ifaddr *ia; for (ia = in6_ifaddr; ia; ia = ia->ia_next) { if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, &sa6->sin6_addr) && (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) return (1); /* true */ /* XXX: do we still have to go thru the rest of the list? */ } return (0); /* false */ } /* * return length of part which dst and src are equal * hard coding... */ int in6_matchlen(src, dst) struct in6_addr *src, *dst; { int match = 0; u_char *s = (u_char *)src, *d = (u_char *)dst; u_char *lim = s + 16, r; while (s < lim) if ((r = (*d++ ^ *s++)) != 0) { while (r < 128) { match++; r <<= 1; } break; } else match += 8; return match; } /* XXX: to be scope conscious */ int in6_are_prefix_equal(p1, p2, len) struct in6_addr *p1, *p2; int len; { int bytelen, bitlen; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", len); return (0); } bytelen = len / 8; bitlen = len % 8; if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) return (0); if (bitlen != 0 && p1->s6_addr[bytelen] >> (8 - bitlen) != p2->s6_addr[bytelen] >> (8 - bitlen)) return (0); return (1); } void in6_prefixlen2mask(maskp, len) struct in6_addr *maskp; int len; { u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; int bytelen, bitlen, i; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", len); return; } bzero(maskp, sizeof(*maskp)); bytelen = len / 8; bitlen = len % 8; for (i = 0; i < bytelen; i++) maskp->s6_addr[i] = 0xff; if (bitlen) maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; } /* * return the best address out of the same scope. if no address was * found, return the first valid address from designated IF. */ struct in6_ifaddr * in6_ifawithifp(ifp, dst) struct ifnet *ifp; struct in6_addr *dst; { int dst_scope = in6_addrscope(dst), blen = -1, tlen; struct ifaddr *ifa; struct in6_ifaddr *besta = 0; struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ dep[0] = dep[1] = NULL; /* * We first look for addresses in the same scope. * If there is one, return it. * If two or more, return one which matches the dst longest. * If none, return one of global addresses assigned other ifs. */ TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) continue; /* XXX: is there any case to allow anycast? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) continue; /* don't use this interface */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (ip6_use_deprecated) dep[0] = (struct in6_ifaddr *)ifa; continue; } if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { /* * call in6_matchlen() as few as possible */ if (besta) { if (blen == -1) blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); tlen = in6_matchlen(IFA_IN6(ifa), dst); if (tlen > blen) { blen = tlen; besta = (struct in6_ifaddr *)ifa; } } else besta = (struct in6_ifaddr *)ifa; } } if (besta) return (besta); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) continue; /* XXX: is there any case to allow anycast? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) continue; /* don't use this interface */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (ip6_use_deprecated) dep[1] = (struct in6_ifaddr *)ifa; continue; } return (struct in6_ifaddr *)ifa; } /* use the last-resort values, that are, deprecated addresses */ if (dep[0]) return dep[0]; if (dep[1]) return dep[1]; return NULL; } /* * perform DAD when interface becomes IFF_UP. */ void in6_if_up(ifp) struct ifnet *ifp; { struct ifaddr *ifa; struct in6_ifaddr *ia; int dad_delay; /* delay ticks before DAD output */ /* * special cases, like 6to4, are handled in in6_ifattach */ in6_ifattach(ifp, NULL); dad_delay = 0; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (ia->ia6_flags & IN6_IFF_TENTATIVE) nd6_dad_start(ifa, &dad_delay); } } int in6if_do_dad(ifp) struct ifnet *ifp; { if ((ifp->if_flags & IFF_LOOPBACK) != 0) return (0); switch (ifp->if_type) { #ifdef IFT_DUMMY case IFT_DUMMY: #endif case IFT_FAITH: /* * These interfaces do not have the IFF_LOOPBACK flag, * but loop packets back. We do not have to do DAD on such * interfaces. We should even omit it, because loop-backed * NS would confuse the DAD procedure. */ return (0); default: /* * Our DAD routine requires the interface up and running. * However, some interfaces can be up before the RUNNING * status. Additionaly, users may try to assign addresses * before the interface becomes up (or running). * We simply skip DAD in such a case as a work around. * XXX: we should rather mark "tentative" on such addresses, * and do DAD after the interface becomes ready. */ if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) return (0); return (1); } } /* * Calculate max IPv6 MTU through all the interfaces and store it * to in6_maxmtu. */ void in6_setmaxmtu() { unsigned long maxmtu = 0; struct ifnet *ifp; IFNET_RLOCK(); for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { /* this function can be called during ifnet initialization */ if (!ifp->if_afdata[AF_INET6]) continue; if ((ifp->if_flags & IFF_LOOPBACK) == 0 && IN6_LINKMTU(ifp) > maxmtu) maxmtu = IN6_LINKMTU(ifp); } IFNET_RUNLOCK(); if (maxmtu) /* update only when maxmtu is positive */ in6_maxmtu = maxmtu; } void * in6_domifattach(ifp) struct ifnet *ifp; { struct in6_ifextra *ext; ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); bzero(ext, sizeof(*ext)); ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat), M_IFADDR, M_WAITOK); bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat)); ext->icmp6_ifstat = (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat), M_IFADDR, M_WAITOK); bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat)); ext->nd_ifinfo = nd6_ifattach(ifp); ext->scope6_id = scope6_ifattach(ifp); return ext; } void in6_domifdetach(ifp, aux) struct ifnet *ifp; void *aux; { struct in6_ifextra *ext = (struct in6_ifextra *)aux; scope6_ifdetach(ext->scope6_id); nd6_ifdetach(ext->nd_ifinfo); free(ext->in6_ifstat, M_IFADDR); free(ext->icmp6_ifstat, M_IFADDR); free(ext, M_IFADDR); } /* * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be * v4 mapped addr or v4 compat addr */ void in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin, sizeof(*sin)); sin->sin_len = sizeof(struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_port = sin6->sin6_port; sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; } /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_family = AF_INET6; sin6->sin6_port = sin->sin_port; sin6->sin6_addr.s6_addr32[0] = 0; sin6->sin6_addr.s6_addr32[1] = 0; sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; } /* Convert sockaddr_in6 into sockaddr_in. */ void in6_sin6_2_sin_in_sock(struct sockaddr *nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 sin6; /* * Save original sockaddr_in6 addr and convert it * to sockaddr_in. */ sin6 = *(struct sockaddr_in6 *)nam; sin_p = (struct sockaddr_in *)nam; in6_sin6_2_sin(sin_p, &sin6); } /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 *sin6_p; MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, M_WAITOK); sin_p = (struct sockaddr_in *)*nam; in6_sin_2_v4mapsin6(sin_p, sin6_p); FREE(*nam, M_SONAME); *nam = (struct sockaddr *)sin6_p; }