/* * IP multicast forwarding procedures * * Written by David Waitzman, BBN Labs, August 1988. * Modified by Steve Deering, Stanford, February 1989. * Modified by Mark J. Steiglitz, Stanford, May, 1991 * Modified by Van Jacobson, LBL, January 1993 * Modified by Ajit Thyagarajan, PARC, August 1993 * Modified by Bill Fenner, PARC, April 1995 * Modified by Ahmed Helmy, SGI, June 1996 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 * Modified by Hitoshi Asaeda, WIDE, August 2000 * Modified by Pavlin Radoslavov, ICSI, October 2002 * * MROUTING Revision: 3.5 * and PIM-SMv2 and PIM-DM support, advanced API support, * bandwidth metering and signaling * * $FreeBSD$ */ #include "opt_mac.h" #include "opt_mrouting.h" #include "opt_random_ip_id.h" #ifdef PIM #define _PIM_VT 1 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PIM #include #include #endif #include #include /* * Control debugging code for rsvp and multicast routing code. * Can only set them with the debugger. */ static u_int rsvpdebug; /* non-zero enables debugging */ static u_int mrtdebug; /* any set of the flags below */ #define DEBUG_MFC 0x02 #define DEBUG_FORWARD 0x04 #define DEBUG_EXPIRE 0x08 #define DEBUG_XMIT 0x10 #define DEBUG_PIM 0x20 #define VIFI_INVALID ((vifi_t) -1) #define M_HASCL(m) ((m)->m_flags & M_EXT) static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables"); /* * Locking. We use two locks: one for the virtual interface table and * one for the forwarding table. These locks may be nested in which case * the VIF lock must always be taken first. Note that each lock is used * to cover not only the specific data structure but also related data * structures. It may be better to add more fine-grained locking later; * it's not clear how performance-critical this code is. */ static struct mrtstat mrtstat; SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW, &mrtstat, mrtstat, "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)"); static struct mfc *mfctable[MFCTBLSIZ]; SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]", "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)"); static struct mtx mfc_mtx; #define MFC_LOCK() mtx_lock(&mfc_mtx) #define MFC_UNLOCK() mtx_unlock(&mfc_mtx) #define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED) #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF) #define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx) static struct vif viftable[MAXVIFS]; SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD, &viftable, sizeof(viftable), "S,vif[MAXVIFS]", "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); static struct mtx vif_mtx; #define VIF_LOCK() mtx_lock(&vif_mtx) #define VIF_UNLOCK() mtx_unlock(&vif_mtx) #define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED) #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF) #define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx) static u_char nexpire[MFCTBLSIZ]; static struct callout expire_upcalls_ch; #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ #define UPCALL_EXPIRE 6 /* number of timeouts */ /* * Define the token bucket filter structures * tbftable -> each vif has one of these for storing info */ static struct tbf tbftable[MAXVIFS]; #define TBF_REPROCESS (hz / 100) /* 100x / second */ /* * 'Interfaces' associated with decapsulator (so we can tell * packets that went through it from ones that get reflected * by a broken gateway). These interfaces are never linked into * the system ifnet list & no routes point to them. I.e., packets * can't be sent this way. They only exist as a placeholder for * multicast source verification. */ static struct ifnet multicast_decap_if[MAXVIFS]; #define ENCAP_TTL 64 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ /* prototype IP hdr for encapsulated packets */ static struct ip multicast_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ ENCAP_TTL, ENCAP_PROTO, 0, /* checksum */ }; /* * Bandwidth meter variables and constants */ static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); /* * Pending timeouts are stored in a hash table, the key being the * expiration time. Periodically, the entries are analysed and processed. */ #define BW_METER_BUCKETS 1024 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; static struct callout bw_meter_ch; #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ /* * Pending upcalls are stored in a vector which is flushed when * full, or periodically */ static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; static u_int bw_upcalls_n; /* # of pending upcalls */ static struct callout bw_upcalls_ch; #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ #ifdef PIM static struct pimstat pimstat; SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD, &pimstat, pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); /* * Note: the PIM Register encapsulation adds the following in front of a * data packet: * * struct pim_encap_hdr { * struct ip ip; * struct pim_encap_pimhdr pim; * } * */ struct pim_encap_pimhdr { struct pim pim; uint32_t flags; }; static struct ip pim_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ ENCAP_TTL, IPPROTO_PIM, 0, /* checksum */ }; static struct pim_encap_pimhdr pim_encap_pimhdr = { { PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 0, /* reserved */ 0, /* checksum */ }, 0 /* flags */ }; static struct ifnet multicast_register_if; static vifi_t reg_vif_num = VIFI_INVALID; #endif /* PIM */ /* * Private variables. */ static vifi_t numvifs; static const struct encaptab *encap_cookie; /* * one-back cache used by mroute_encapcheck to locate a tunnel's vif * given a datagram's src ip address. */ static u_long last_encap_src; static struct vif *last_encap_vif; /* * Callout for queue processing. */ static struct callout tbf_reprocess_ch; static u_long X_ip_mcast_src(int vifi); static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo); static int X_ip_mrouter_done(void); static int X_ip_mrouter_get(struct socket *so, struct sockopt *m); static int X_ip_mrouter_set(struct socket *so, struct sockopt *m); static int X_legal_vif_num(int vif); static int X_mrt_ioctl(int cmd, caddr_t data); static int get_sg_cnt(struct sioc_sg_req *); static int get_vif_cnt(struct sioc_vif_req *); static int ip_mrouter_init(struct socket *, int); static int add_vif(struct vifctl *); static int del_vif(vifi_t); static int add_mfc(struct mfcctl2 *); static int del_mfc(struct mfcctl2 *); static int set_api_config(uint32_t *); /* chose API capabilities */ static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); static int set_assert(int); static void expire_upcalls(void *); static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); static void phyint_send(struct ip *, struct vif *, struct mbuf *); static void encap_send(struct ip *, struct vif *, struct mbuf *); static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long); static void tbf_queue(struct vif *, struct mbuf *); static void tbf_process_q(struct vif *); static void tbf_reprocess_q(void *); static int tbf_dq_sel(struct vif *, struct ip *); static void tbf_send_packet(struct vif *, struct mbuf *); static void tbf_update_tokens(struct vif *); static int priority(struct vif *, struct ip *); /* * Bandwidth monitoring */ static void free_bw_list(struct bw_meter *list); static int add_bw_upcall(struct bw_upcall *); static int del_bw_upcall(struct bw_upcall *); static void bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp); static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp); static void bw_upcalls_send(void); static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp); static void unschedule_bw_meter(struct bw_meter *x); static void bw_meter_process(void); static void expire_bw_upcalls_send(void *); static void expire_bw_meter_process(void *); #ifdef PIM static int pim_register_send(struct ip *, struct vif *, struct mbuf *, struct mfc *); static int pim_register_send_rp(struct ip *, struct vif *, struct mbuf *, struct mfc *); static int pim_register_send_upcall(struct ip *, struct vif *, struct mbuf *, struct mfc *); static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); #endif /* * whether or not special PIM assert processing is enabled. */ static int pim_assert; /* * Rate limit for assert notification messages, in usec */ #define ASSERT_MSG_TIME 3000000 /* * Kernel multicast routing API capabilities and setup. * If more API capabilities are added to the kernel, they should be * recorded in `mrt_api_support'. */ static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | MRT_MFC_FLAGS_BORDER_VIF | MRT_MFC_RP | MRT_MFC_BW_UPCALL); static uint32_t mrt_api_config = 0; /* * Hash function for a source, group entry */ #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ ((g) >> 20) ^ ((g) >> 10) ^ (g)) /* * Find a route for a given origin IP address and Multicast group address * Type of service parameter to be added in the future!!! * Statistics are updated by the caller if needed * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) */ static struct mfc * mfc_find(in_addr_t o, in_addr_t g) { struct mfc *rt; MFC_LOCK_ASSERT(); for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next) if ((rt->mfc_origin.s_addr == o) && (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL)) break; return rt; } /* * Macros to compute elapsed time efficiently * Borrowed from Van Jacobson's scheduling code */ #define TV_DELTA(a, b, delta) { \ int xxs; \ delta = (a).tv_usec - (b).tv_usec; \ if ((xxs = (a).tv_sec - (b).tv_sec)) { \ switch (xxs) { \ case 2: \ delta += 1000000; \ /* FALLTHROUGH */ \ case 1: \ delta += 1000000; \ break; \ default: \ delta += (1000000 * xxs); \ } \ } \ } #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \ (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec) /* * Handle MRT setsockopt commands to modify the multicast routing tables. */ static int X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) { int error, optval; vifi_t vifi; struct vifctl vifc; struct mfcctl2 mfc; struct bw_upcall bw_upcall; uint32_t i; if (so != ip_mrouter && sopt->sopt_name != MRT_INIT) return EPERM; error = 0; switch (sopt->sopt_name) { case MRT_INIT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; error = ip_mrouter_init(so, optval); break; case MRT_DONE: error = ip_mrouter_done(); break; case MRT_ADD_VIF: error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); if (error) break; error = add_vif(&vifc); break; case MRT_DEL_VIF: error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); if (error) break; error = del_vif(vifi); break; case MRT_ADD_MFC: case MRT_DEL_MFC: /* * select data size depending on API version. */ if (sopt->sopt_name == MRT_ADD_MFC && mrt_api_config & MRT_API_FLAGS_ALL) { error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), sizeof(struct mfcctl2)); } else { error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), sizeof(struct mfcctl)); bzero((caddr_t)&mfc + sizeof(struct mfcctl), sizeof(mfc) - sizeof(struct mfcctl)); } if (error) break; if (sopt->sopt_name == MRT_ADD_MFC) error = add_mfc(&mfc); else error = del_mfc(&mfc); break; case MRT_ASSERT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; set_assert(optval); break; case MRT_API_CONFIG: error = sooptcopyin(sopt, &i, sizeof i, sizeof i); if (!error) error = set_api_config(&i); if (!error) error = sooptcopyout(sopt, &i, sizeof i); break; case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, sizeof bw_upcall); if (error) break; if (sopt->sopt_name == MRT_ADD_BW_UPCALL) error = add_bw_upcall(&bw_upcall); else error = del_bw_upcall(&bw_upcall); break; default: error = EOPNOTSUPP; break; } return error; } /* * Handle MRT getsockopt commands */ static int X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) { int error; static int version = 0x0305; /* !!! why is this here? XXX */ switch (sopt->sopt_name) { case MRT_VERSION: error = sooptcopyout(sopt, &version, sizeof version); break; case MRT_ASSERT: error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert); break; case MRT_API_SUPPORT: error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); break; case MRT_API_CONFIG: error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config); break; default: error = EOPNOTSUPP; break; } return error; } /* * Handle ioctl commands to obtain information from the cache */ static int X_mrt_ioctl(int cmd, caddr_t data) { int error = 0; switch (cmd) { case (SIOCGETVIFCNT): error = get_vif_cnt((struct sioc_vif_req *)data); break; case (SIOCGETSGCNT): error = get_sg_cnt((struct sioc_sg_req *)data); break; default: error = EINVAL; break; } return error; } /* * returns the packet, byte, rpf-failure count for the source group provided */ static int get_sg_cnt(struct sioc_sg_req *req) { struct mfc *rt; MFC_LOCK(); rt = mfc_find(req->src.s_addr, req->grp.s_addr); if (rt == NULL) { MFC_UNLOCK(); req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; return EADDRNOTAVAIL; } req->pktcnt = rt->mfc_pkt_cnt; req->bytecnt = rt->mfc_byte_cnt; req->wrong_if = rt->mfc_wrong_if; MFC_UNLOCK(); return 0; } /* * returns the input and output packet and byte counts on the vif provided */ static int get_vif_cnt(struct sioc_vif_req *req) { vifi_t vifi = req->vifi; VIF_LOCK(); if (vifi >= numvifs) { VIF_UNLOCK(); return EINVAL; } req->icount = viftable[vifi].v_pkt_in; req->ocount = viftable[vifi].v_pkt_out; req->ibytes = viftable[vifi].v_bytes_in; req->obytes = viftable[vifi].v_bytes_out; VIF_UNLOCK(); return 0; } /* * Enable multicast routing */ static int ip_mrouter_init(struct socket *so, int version) { if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP; if (version != 1) return ENOPROTOOPT; if (ip_mrouter != NULL) return EADDRINUSE; ip_mrouter = so; bzero((caddr_t)mfctable, sizeof(mfctable)); MFC_LOCK_INIT(); VIF_LOCK_INIT(); bzero((caddr_t)nexpire, sizeof(nexpire)); pim_assert = 0; callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE); callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); bw_upcalls_n = 0; bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers)); callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE); callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, NULL); callout_init(&bw_meter_ch, CALLOUT_MPSAFE); callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); callout_init(&tbf_reprocess_ch, CALLOUT_MPSAFE); mrt_api_config = 0; if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init\n"); return 0; } /* * Disable multicast routing */ static int X_ip_mrouter_done(void) { vifi_t vifi; int i; struct ifnet *ifp; struct ifreq ifr; struct mfc *rt; struct rtdetq *rte; /* * Detach/disable hooks to the reset of the system. */ ip_mrouter = NULL; mrt_api_config = 0; VIF_LOCK(); if (encap_cookie) { encap_detach(encap_cookie); encap_cookie = NULL; } callout_stop(&tbf_reprocess_ch); /* * For each phyint in use, disable promiscuous reception of all IP * multicasts. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_lcl_addr.s_addr != 0 && !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr); so->sin_len = sizeof(struct sockaddr_in); so->sin_family = AF_INET; so->sin_addr.s_addr = INADDR_ANY; ifp = viftable[vifi].v_ifp; if_allmulti(ifp, 0); } } bzero((caddr_t)tbftable, sizeof(tbftable)); bzero((caddr_t)viftable, sizeof(viftable)); numvifs = 0; pim_assert = 0; VIF_UNLOCK(); VIF_LOCK_DESTROY(); /* * Free all multicast forwarding cache entries. */ MFC_LOCK(); callout_stop(&expire_upcalls_ch); callout_stop(&bw_upcalls_ch); callout_stop(&bw_meter_ch); for (i = 0; i < MFCTBLSIZ; i++) { for (rt = mfctable[i]; rt != NULL; ) { struct mfc *nr = rt->mfc_next; for (rte = rt->mfc_stall; rte != NULL; ) { struct rtdetq *n = rte->next; m_freem(rte->m); free(rte, M_MRTABLE); rte = n; } free_bw_list(rt->mfc_bw_meter); free(rt, M_MRTABLE); rt = nr; } } bzero((caddr_t)mfctable, sizeof(mfctable)); bw_upcalls_n = 0; bzero(bw_meter_timers, sizeof(bw_meter_timers)); MFC_UNLOCK(); MFC_LOCK_DESTROY(); /* * Reset de-encapsulation cache */ last_encap_src = INADDR_ANY; last_encap_vif = NULL; #ifdef PIM reg_vif_num = VIFI_INVALID; #endif if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_done\n"); return 0; } /* * Set PIM assert processing global */ static int set_assert(int i) { if ((i != 1) && (i != 0)) return EINVAL; pim_assert = i; return 0; } /* * Configure API capabilities */ int set_api_config(uint32_t *apival) { int i; /* * We can set the API capabilities only if it is the first operation * after MRT_INIT. I.e.: * - there are no vifs installed * - pim_assert is not enabled * - the MFC table is empty */ if (numvifs > 0) { *apival = 0; return EPERM; } if (pim_assert) { *apival = 0; return EPERM; } for (i = 0; i < MFCTBLSIZ; i++) { if (mfctable[i] != NULL) { *apival = 0; return EPERM; } } mrt_api_config = *apival & mrt_api_support; *apival = mrt_api_config; return 0; } /* * Decide if a packet is from a tunnelled peer. * Return 0 if not, 64 if so. XXX yuck.. 64 ??? */ static int mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg) { struct ip *ip = mtod(m, struct ip *); int hlen = ip->ip_hl << 2; /* * don't claim the packet if it's not to a multicast destination or if * we don't have an encapsulating tunnel with the source. * Note: This code assumes that the remote site IP address * uniquely identifies the tunnel (i.e., that this site has * at most one tunnel with the remote site). */ if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr))) return 0; if (ip->ip_src.s_addr != last_encap_src) { struct vif *vifp = viftable; struct vif *vife = vifp + numvifs; last_encap_src = ip->ip_src.s_addr; last_encap_vif = NULL; for ( ; vifp < vife; ++vifp) if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) { if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL) last_encap_vif = vifp; break; } } if (last_encap_vif == NULL) { last_encap_src = INADDR_ANY; return 0; } return 64; } /* * De-encapsulate a packet and feed it back through ip input (this * routine is called whenever IP gets a packet that mroute_encap_func() * claimed). */ static void mroute_encap_input(struct mbuf *m, int off) { struct ip *ip = mtod(m, struct ip *); int hlen = ip->ip_hl << 2; if (hlen > sizeof(struct ip)) ip_stripoptions(m, (struct mbuf *) 0); m->m_data += sizeof(struct ip); m->m_len -= sizeof(struct ip); m->m_pkthdr.len -= sizeof(struct ip); m->m_pkthdr.rcvif = last_encap_vif->v_ifp; netisr_queue(NETISR_IP, m); /* * normally we would need a "schednetisr(NETISR_IP)" * here but we were called by ip_input and it is going * to loop back & try to dequeue the packet we just * queued as soon as we return so we avoid the * unnecessary software interrrupt. * * XXX * This no longer holds - we may have direct-dispatched the packet, * or there may be a queue processing limit. */ } extern struct domain inetdomain; static struct protosw mroute_encap_protosw = { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, mroute_encap_input, 0, 0, rip_ctloutput, 0, 0, 0, 0, 0, &rip_usrreqs }; /* * Add a vif to the vif table */ static int add_vif(struct vifctl *vifcp) { struct vif *vifp = viftable + vifcp->vifc_vifi; struct sockaddr_in sin = {sizeof sin, AF_INET}; struct ifaddr *ifa; struct ifnet *ifp; int error; struct tbf *v_tbf = tbftable + vifcp->vifc_vifi; VIF_LOCK(); if (vifcp->vifc_vifi >= MAXVIFS) { VIF_UNLOCK(); return EINVAL; } if (vifp->v_lcl_addr.s_addr != INADDR_ANY) { VIF_UNLOCK(); return EADDRINUSE; } if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) { VIF_UNLOCK(); return EADDRNOTAVAIL; } /* Find the interface with an address in AF_INET family */ #ifdef PIM if (vifcp->vifc_flags & VIFF_REGISTER) { /* * XXX: Because VIFF_REGISTER does not really need a valid * local interface (e.g. it could be 127.0.0.2), we don't * check its address. */ ifp = NULL; } else #endif { sin.sin_addr = vifcp->vifc_lcl_addr; ifa = ifa_ifwithaddr((struct sockaddr *)&sin); if (ifa == NULL) { VIF_UNLOCK(); return EADDRNOTAVAIL; } ifp = ifa->ifa_ifp; } if (vifcp->vifc_flags & VIFF_TUNNEL) { if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) { /* * An encapsulating tunnel is wanted. Tell * mroute_encap_input() to start paying attention * to encapsulated packets. */ if (encap_cookie == NULL) { int i; encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, mroute_encapcheck, (struct protosw *)&mroute_encap_protosw, NULL); if (encap_cookie == NULL) { printf("ip_mroute: unable to attach encap\n"); VIF_UNLOCK(); return EIO; /* XXX */ } for (i = 0; i < MAXVIFS; ++i) { multicast_decap_if[i].if_name = "mdecap"; multicast_decap_if[i].if_unit = i; } } /* * Set interface to fake encapsulator interface */ ifp = &multicast_decap_if[vifcp->vifc_vifi]; /* * Prepare cached route entry */ bzero(&vifp->v_route, sizeof(vifp->v_route)); } else { log(LOG_ERR, "source routed tunnels not supported\n"); VIF_UNLOCK(); return EOPNOTSUPP; } #ifdef PIM } else if (vifcp->vifc_flags & VIFF_REGISTER) { ifp = &multicast_register_if; if (mrtdebug) log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", (void *)&multicast_register_if); if (reg_vif_num == VIFI_INVALID) { multicast_register_if.if_name = "register_vif"; multicast_register_if.if_unit = 0; multicast_register_if.if_flags = IFF_LOOPBACK; bzero(&vifp->v_route, sizeof(vifp->v_route)); reg_vif_num = vifcp->vifc_vifi; } #endif } else { /* Make sure the interface supports multicast */ if ((ifp->if_flags & IFF_MULTICAST) == 0) { VIF_UNLOCK(); return EOPNOTSUPP; } /* Enable promiscuous reception of all IP multicasts from the if */ error = if_allmulti(ifp, 1); if (error) { VIF_UNLOCK(); return error; } } /* define parameters for the tbf structure */ vifp->v_tbf = v_tbf; GET_TIME(vifp->v_tbf->tbf_last_pkt_t); vifp->v_tbf->tbf_n_tok = 0; vifp->v_tbf->tbf_q_len = 0; vifp->v_tbf->tbf_max_q_len = MAXQSIZE; vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL; vifp->v_flags = vifcp->vifc_flags; vifp->v_threshold = vifcp->vifc_threshold; vifp->v_lcl_addr = vifcp->vifc_lcl_addr; vifp->v_rmt_addr = vifcp->vifc_rmt_addr; vifp->v_ifp = ifp; /* scaling up here allows division by 1024 in critical code */ vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000; vifp->v_rsvp_on = 0; vifp->v_rsvpd = NULL; /* initialize per vif pkt counters */ vifp->v_pkt_in = 0; vifp->v_pkt_out = 0; vifp->v_bytes_in = 0; vifp->v_bytes_out = 0; /* Adjust numvifs up if the vifi is higher than numvifs */ if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; VIF_UNLOCK(); if (mrtdebug) log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n", vifcp->vifc_vifi, (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr), (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr), vifcp->vifc_threshold, vifcp->vifc_rate_limit); return 0; } /* * Delete a vif from the vif table */ static int del_vif(vifi_t vifi) { struct vif *vifp; VIF_LOCK(); if (vifi >= numvifs) { VIF_UNLOCK(); return EINVAL; } vifp = &viftable[vifi]; if (vifp->v_lcl_addr.s_addr == INADDR_ANY) { VIF_UNLOCK(); return EADDRNOTAVAIL; } if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) if_allmulti(vifp->v_ifp, 0); if (vifp == last_encap_vif) { last_encap_vif = NULL; last_encap_src = INADDR_ANY; } /* * Free packets queued at the interface */ while (vifp->v_tbf->tbf_q) { struct mbuf *m = vifp->v_tbf->tbf_q; vifp->v_tbf->tbf_q = m->m_act; m_freem(m); } #ifdef PIM if (vifp->v_flags & VIFF_REGISTER) reg_vif_num = VIFI_INVALID; #endif bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf))); bzero((caddr_t)vifp, sizeof (*vifp)); if (mrtdebug) log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs); /* Adjust numvifs down */ for (vifi = numvifs; vifi > 0; vifi--) if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY) break; numvifs = vifi; VIF_UNLOCK(); return 0; } /* * update an mfc entry without resetting counters and S,G addresses. */ static void update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) { int i; rt->mfc_parent = mfccp->mfcc_parent; for (i = 0; i < numvifs; i++) { rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & MRT_MFC_FLAGS_ALL; } /* set the RP address */ if (mrt_api_config & MRT_MFC_RP) rt->mfc_rp = mfccp->mfcc_rp; else rt->mfc_rp.s_addr = INADDR_ANY; } /* * fully initialize an mfc entry from the parameter. */ static void init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) { rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; update_mfc_params(rt, mfccp); /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0; } /* * Add an mfc entry */ static int add_mfc(struct mfcctl2 *mfccp) { struct mfc *rt; u_long hash; struct rtdetq *rte; u_short nstl; VIF_LOCK(); MFC_LOCK(); rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); /* If an entry already exists, just update the fields */ if (rt) { if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n", (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); update_mfc_params(rt, mfccp); MFC_UNLOCK(); VIF_UNLOCK(); return 0; } /* * Find the entry for which the upcall was made and update */ hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) { if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) && (rt->mfc_stall != NULL)) { if (nstl++) log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n", "multiple kernel entries", (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, (void *)rt->mfc_stall); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n", (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, (void *)rt->mfc_stall); init_mfc_params(rt, mfccp); rt->mfc_expire = 0; /* Don't clean this guy up */ nexpire[hash]--; /* free packets Qed at the end of this entry */ for (rte = rt->mfc_stall; rte != NULL; ) { struct rtdetq *n = rte->next; ip_mdq(rte->m, rte->ifp, rt, -1); m_freem(rte->m); free(rte, M_MRTABLE); rte = n; } rt->mfc_stall = NULL; } } /* * It is possible that an entry is being inserted without an upcall */ if (nstl == 0) { if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n", hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) { if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) && (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) { init_mfc_params(rt, mfccp); if (rt->mfc_expire) nexpire[hash]--; rt->mfc_expire = 0; break; /* XXX */ } } if (rt == NULL) { /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) { MFC_UNLOCK(); VIF_UNLOCK(); return ENOBUFS; } init_mfc_params(rt, mfccp); rt->mfc_expire = 0; rt->mfc_stall = NULL; rt->mfc_bw_meter = NULL; /* insert new entry at head of hash chain */ rt->mfc_next = mfctable[hash]; mfctable[hash] = rt; } } MFC_UNLOCK(); VIF_UNLOCK(); return 0; } /* * Delete an mfc entry */ static int del_mfc(struct mfcctl2 *mfccp) { struct in_addr origin; struct in_addr mcastgrp; struct mfc *rt; struct mfc **nptr; u_long hash; struct bw_meter *list; origin = mfccp->mfcc_origin; mcastgrp = mfccp->mfcc_mcastgrp; if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n", (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); MFC_LOCK(); hash = MFCHASH(origin.s_addr, mcastgrp.s_addr); for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next) if (origin.s_addr == rt->mfc_origin.s_addr && mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr && rt->mfc_stall == NULL) break; if (rt == NULL) { MFC_UNLOCK(); return EADDRNOTAVAIL; } *nptr = rt->mfc_next; /* * free the bw_meter entries */ list = rt->mfc_bw_meter; rt->mfc_bw_meter = NULL; free(rt, M_MRTABLE); free_bw_list(list); MFC_UNLOCK(); return 0; } /* * Send a message to mrouted on the multicast routing socket */ static int socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) { if (s) { if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) { sorwakeup(s); return 0; } } m_freem(mm); return -1; } /* * IP multicast forwarding function. This function assumes that the packet * pointed to by "ip" has arrived on (or is about to be sent to) the interface * pointed to by "ifp", and the packet is to be relayed to other networks * that have members of the packet's destination IP multicast group. * * The packet is returned unscathed to the caller, unless it is * erroneous, in which case a non-zero return value tells the caller to * discard it. */ #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo) { struct mfc *rt; int error; vifi_t vifi; if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n", (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), (void *)ifp); if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) { /* * Packet arrived via a physical interface or * an encapsulated tunnel or a register_vif. */ } else { /* * Packet arrived through a source-route tunnel. * Source-route tunnels are no longer supported. */ static int last_log; if (last_log != time_second) { last_log = time_second; log(LOG_ERR, "ip_mforward: received source-routed packet from %lx\n", (u_long)ntohl(ip->ip_src.s_addr)); } return 1; } VIF_LOCK(); MFC_LOCK(); if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { if (ip->ip_ttl < 255) ip->ip_ttl++; /* compensate for -1 in *_send routines */ if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { struct vif *vifp = viftable + vifi; printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n", (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr), vifi, (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", vifp->v_ifp->if_name, vifp->v_ifp->if_unit); } error = ip_mdq(m, ifp, NULL, vifi); MFC_UNLOCK(); VIF_UNLOCK(); return error; } if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n", (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr)); if (!imo) printf("In fact, no options were specified at all\n"); } /* * Don't forward a packet with time-to-live of zero or one, * or a packet destined to a local-only group. */ if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) { MFC_UNLOCK(); VIF_UNLOCK(); return 0; } /* * Determine forwarding vifs from the forwarding cache table */ ++mrtstat.mrts_mfc_lookups; rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr); /* Entry exists, so forward if necessary */ if (rt != NULL) { error = ip_mdq(m, ifp, rt, -1); MFC_UNLOCK(); VIF_UNLOCK(); return error; } else { /* * If we don't have a route for packet's origin, * Make a copy of the packet & send message to routing daemon */ struct mbuf *mb0; struct rtdetq *rte; u_long hash; int hlen = ip->ip_hl << 2; ++mrtstat.mrts_mfc_misses; mrtstat.mrts_no_route++; if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n", (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); /* * Allocate mbufs early so that we don't do extra work if we are * just going to fail anyway. Make sure to pullup the header so * that other people can't step on it. */ rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT); if (rte == NULL) { MFC_UNLOCK(); VIF_UNLOCK(); return ENOBUFS; } mb0 = m_copypacket(m, M_DONTWAIT); if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen)) mb0 = m_pullup(mb0, hlen); if (mb0 == NULL) { free(rte, M_MRTABLE); MFC_UNLOCK(); VIF_UNLOCK(); return ENOBUFS; } /* is there an upcall waiting for this flow ? */ hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); for (rt = mfctable[hash]; rt; rt = rt->mfc_next) { if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) && (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) && (rt->mfc_stall != NULL)) break; } if (rt == NULL) { int i; struct igmpmsg *im; struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; struct mbuf *mm; /* * Locate the vifi for the incoming interface for this packet. * If none found, drop packet. */ for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) ; if (vifi >= numvifs) /* vif not found, drop packet */ goto non_fatal; /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) goto fail; /* Make a copy of the header to send to the user level process */ mm = m_copy(mb0, 0, hlen); if (mm == NULL) goto fail1; /* * Send message to routing daemon to install * a route into the kernel table */ im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_NOCACHE; im->im_mbz = 0; im->im_vif = vifi; mrtstat.mrts_upcalls++; k_igmpsrc.sin_addr = ip->ip_src; if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; fail1: free(rt, M_MRTABLE); fail: free(rte, M_MRTABLE); m_freem(mb0); MFC_UNLOCK(); VIF_UNLOCK(); return ENOBUFS; } /* insert new entry at head of hash chain */ rt->mfc_origin.s_addr = ip->ip_src.s_addr; rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; rt->mfc_expire = UPCALL_EXPIRE; nexpire[hash]++; for (i = 0; i < numvifs; i++) { rt->mfc_ttls[i] = 0; rt->mfc_flags[i] = 0; } rt->mfc_parent = -1; rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */ rt->mfc_bw_meter = NULL; /* link into table */ rt->mfc_next = mfctable[hash]; mfctable[hash] = rt; rt->mfc_stall = rte; } else { /* determine if q has overflowed */ int npkts = 0; struct rtdetq **p; /* * XXX ouch! we need to append to the list, but we * only have a pointer to the front, so we have to * scan the entire list every time. */ for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) npkts++; if (npkts > MAX_UPQ) { mrtstat.mrts_upq_ovflw++; non_fatal: free(rte, M_MRTABLE); m_freem(mb0); MFC_UNLOCK(); VIF_UNLOCK(); return 0; } /* Add this entry to the end of the queue */ *p = rte; } rte->m = mb0; rte->ifp = ifp; rte->next = NULL; MFC_UNLOCK(); VIF_UNLOCK(); return 0; } } /* * Clean up the cache entry if upcall is not serviced */ static void expire_upcalls(void *unused) { struct rtdetq *rte; struct mfc *mfc, **nptr; int i; MFC_LOCK(); for (i = 0; i < MFCTBLSIZ; i++) { if (nexpire[i] == 0) continue; nptr = &mfctable[i]; for (mfc = *nptr; mfc != NULL; mfc = *nptr) { /* * Skip real cache entries * Make sure it wasn't marked to not expire (shouldn't happen) * If it expires now */ if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 && --mfc->mfc_expire == 0) { if (mrtdebug & DEBUG_EXPIRE) log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n", (u_long)ntohl(mfc->mfc_origin.s_addr), (u_long)ntohl(mfc->mfc_mcastgrp.s_addr)); /* * drop all the packets * free the mbuf with the pkt, if, timing info */ for (rte = mfc->mfc_stall; rte; ) { struct rtdetq *n = rte->next; m_freem(rte->m); free(rte, M_MRTABLE); rte = n; } ++mrtstat.mrts_cache_cleanups; nexpire[i]--; /* * free the bw_meter entries */ while (mfc->mfc_bw_meter != NULL) { struct bw_meter *x = mfc->mfc_bw_meter; mfc->mfc_bw_meter = x->bm_mfc_next; free(x, M_BWMETER); } *nptr = mfc->mfc_next; free(mfc, M_MRTABLE); } else { nptr = &mfc->mfc_next; } } } MFC_UNLOCK(); callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); } /* * Packet forwarding routine once entry in the cache is made */ static int ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) { struct ip *ip = mtod(m, struct ip *); vifi_t vifi; int plen = ip->ip_len; VIF_LOCK_ASSERT(); /* * Macro to send packet on vif. Since RSVP packets don't get counted on * input, they shouldn't get counted on output, so statistics keeping is * separate. */ #define MC_SEND(ip,vifp,m) { \ if ((vifp)->v_flags & VIFF_TUNNEL) \ encap_send((ip), (vifp), (m)); \ else \ phyint_send((ip), (vifp), (m)); \ } /* * If xmt_vif is not -1, send on only the requested vif. * * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) */ if (xmt_vif < numvifs) { #ifdef PIM if (viftable[xmt_vif].v_flags & VIFF_REGISTER) pim_register_send(ip, viftable + xmt_vif, m, rt); else #endif MC_SEND(ip, viftable + xmt_vif, m); return 1; } /* * Don't forward if it didn't arrive from the parent vif for its origin. */ vifi = rt->mfc_parent; if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { /* came in the wrong interface */ if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); ++mrtstat.mrts_wrong_if; ++rt->mfc_wrong_if; /* * If we are doing PIM assert processing, send a message * to the routing daemon. * * XXX: A PIM-SM router needs the WRONGVIF detection so it * can complete the SPT switch, regardless of the type * of the iif (broadcast media, GRE tunnel, etc). */ if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { struct timeval now; u_long delta; #ifdef PIM if (ifp == &multicast_register_if) pimstat.pims_rcv_registers_wrongiif++; #endif /* Get vifi for the incoming packet */ for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) ; if (vifi >= numvifs) return 0; /* The iif is not found: ignore the packet. */ if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) return 0; /* WRONGVIF disabled: ignore the packet */ GET_TIME(now); TV_DELTA(rt->mfc_last_assert, now, delta); if (delta > ASSERT_MSG_TIME) { struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; struct igmpmsg *im; int hlen = ip->ip_hl << 2; struct mbuf *mm = m_copy(m, 0, hlen); if (mm && (M_HASCL(mm) || mm->m_len < hlen)) mm = m_pullup(mm, hlen); if (mm == NULL) return ENOBUFS; rt->mfc_last_assert = now; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_WRONGVIF; im->im_mbz = 0; im->im_vif = vifi; mrtstat.mrts_upcalls++; k_igmpsrc.sin_addr = im->im_src; if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) { log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; return ENOBUFS; } } } return 0; } /* If I sourced this packet, it counts as output, else it was input. */ if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { viftable[vifi].v_pkt_out++; viftable[vifi].v_bytes_out += plen; } else { viftable[vifi].v_pkt_in++; viftable[vifi].v_bytes_in += plen; } rt->mfc_pkt_cnt++; rt->mfc_byte_cnt += plen; /* * For each vif, decide if a copy of the packet should be forwarded. * Forward if: * - the ttl exceeds the vif's threshold * - there are group members downstream on interface */ for (vifi = 0; vifi < numvifs; vifi++) if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { viftable[vifi].v_pkt_out++; viftable[vifi].v_bytes_out += plen; #ifdef PIM if (viftable[vifi].v_flags & VIFF_REGISTER) pim_register_send(ip, viftable + vifi, m, rt); else #endif MC_SEND(ip, viftable+vifi, m); } /* * Perform upcall-related bw measuring. */ if (rt->mfc_bw_meter != NULL) { struct bw_meter *x; struct timeval now; GET_TIME(now); MFC_LOCK_ASSERT(); for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) bw_meter_receive_packet(x, plen, &now); } return 0; } /* * check if a vif number is legal/ok. This is used by ip_output. */ static int X_legal_vif_num(int vif) { /* XXX unlocked, matter? */ return (vif >= 0 && vif < numvifs); } /* * Return the local address used by this vif */ static u_long X_ip_mcast_src(int vifi) { /* XXX unlocked, matter? */ if (vifi >= 0 && vifi < numvifs) return viftable[vifi].v_lcl_addr.s_addr; else return INADDR_ANY; } static void phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) { struct mbuf *mb_copy; int hlen = ip->ip_hl << 2; VIF_LOCK_ASSERT(); /* * Make a new reference to the packet; make sure that * the IP header is actually copied, not just referenced, * so that ip_output() only scribbles on the copy. */ mb_copy = m_copypacket(m, M_DONTWAIT); if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen)) mb_copy = m_pullup(mb_copy, hlen); if (mb_copy == NULL) return; if (vifp->v_rate_limit == 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len); } static void encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) { struct mbuf *mb_copy; struct ip *ip_copy; int i, len = ip->ip_len; VIF_LOCK_ASSERT(); /* Take care of delayed checksums */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } /* * copy the old packet & pullup its IP header into the * new mbuf so we can modify it. Try to fill the new * mbuf since if we don't the ethernet driver will. */ MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER); if (mb_copy == NULL) return; #ifdef MAC mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy); #endif mb_copy->m_data += max_linkhdr; mb_copy->m_len = sizeof(multicast_encap_iphdr); if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) { m_freem(mb_copy); return; } i = MHLEN - M_LEADINGSPACE(mb_copy); if (i > len) i = len; mb_copy = m_pullup(mb_copy, i); if (mb_copy == NULL) return; mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr); /* * fill in the encapsulating IP header. */ ip_copy = mtod(mb_copy, struct ip *); *ip_copy = multicast_encap_iphdr; #ifdef RANDOM_IP_ID ip_copy->ip_id = ip_randomid(); #else ip_copy->ip_id = htons(ip_id++); #endif ip_copy->ip_len += len; ip_copy->ip_src = vifp->v_lcl_addr; ip_copy->ip_dst = vifp->v_rmt_addr; /* * turn the encapsulated IP header back into a valid one. */ ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); --ip->ip_ttl; ip->ip_len = htons(ip->ip_len); ip->ip_off = htons(ip->ip_off); ip->ip_sum = 0; mb_copy->m_data += sizeof(multicast_encap_iphdr); ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); mb_copy->m_data -= sizeof(multicast_encap_iphdr); if (vifp->v_rate_limit == 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, ip, ip_copy->ip_len); } /* * Token bucket filter module */ static void tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len) { struct tbf *t = vifp->v_tbf; VIF_LOCK_ASSERT(); if (p_len > MAX_BKT_SIZE) { /* drop if packet is too large */ mrtstat.mrts_pkt2large++; m_freem(m); return; } tbf_update_tokens(vifp); if (t->tbf_q_len == 0) { /* queue empty... */ if (p_len <= t->tbf_n_tok) { /* send packet if enough tokens */ t->tbf_n_tok -= p_len; tbf_send_packet(vifp, m); } else { /* no, queue packet and try later */ tbf_queue(vifp, m); callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp); } } else if (t->tbf_q_len < t->tbf_max_q_len) { /* finite queue length, so queue pkts and process queue */ tbf_queue(vifp, m); tbf_process_q(vifp); } else { /* queue full, try to dq and queue and process */ if (!tbf_dq_sel(vifp, ip)) { mrtstat.mrts_q_overflow++; m_freem(m); } else { tbf_queue(vifp, m); tbf_process_q(vifp); } } } /* * adds a packet to the queue at the interface */ static void tbf_queue(struct vif *vifp, struct mbuf *m) { struct tbf *t = vifp->v_tbf; VIF_LOCK_ASSERT(); if (t->tbf_t == NULL) /* Queue was empty */ t->tbf_q = m; else /* Insert at tail */ t->tbf_t->m_act = m; t->tbf_t = m; /* Set new tail pointer */ #ifdef DIAGNOSTIC /* Make sure we didn't get fed a bogus mbuf */ if (m->m_act) panic("tbf_queue: m_act"); #endif m->m_act = NULL; t->tbf_q_len++; } /* * processes the queue at the interface */ static void tbf_process_q(struct vif *vifp) { struct tbf *t = vifp->v_tbf; VIF_LOCK_ASSERT(); /* loop through the queue at the interface and send as many packets * as possible */ while (t->tbf_q_len > 0) { struct mbuf *m = t->tbf_q; int len = mtod(m, struct ip *)->ip_len; /* determine if the packet can be sent */ if (len > t->tbf_n_tok) /* not enough tokens, we are done */ break; /* ok, reduce no of tokens, dequeue and send the packet. */ t->tbf_n_tok -= len; t->tbf_q = m->m_act; if (--t->tbf_q_len == 0) t->tbf_t = NULL; m->m_act = NULL; tbf_send_packet(vifp, m); } } static void tbf_reprocess_q(void *xvifp) { struct vif *vifp = xvifp; if (ip_mrouter == NULL) return; VIF_LOCK(); tbf_update_tokens(vifp); tbf_process_q(vifp); if (vifp->v_tbf->tbf_q_len) callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp); VIF_UNLOCK(); } /* function that will selectively discard a member of the queue * based on the precedence value and the priority */ static int tbf_dq_sel(struct vif *vifp, struct ip *ip) { u_int p; struct mbuf *m, *last; struct mbuf **np; struct tbf *t = vifp->v_tbf; VIF_LOCK_ASSERT(); p = priority(vifp, ip); np = &t->tbf_q; last = NULL; while ((m = *np) != NULL) { if (p > priority(vifp, mtod(m, struct ip *))) { *np = m->m_act; /* If we're removing the last packet, fix the tail pointer */ if (m == t->tbf_t) t->tbf_t = last; m_freem(m); /* It's impossible for the queue to be empty, but check anyways. */ if (--t->tbf_q_len == 0) t->tbf_t = NULL; mrtstat.mrts_drop_sel++; return 1; } np = &m->m_act; last = m; } return 0; } static void tbf_send_packet(struct vif *vifp, struct mbuf *m) { VIF_LOCK_ASSERT(); if (vifp->v_flags & VIFF_TUNNEL) /* If tunnel options */ ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL); else { struct ip_moptions imo; int error; static struct route ro; /* XXX check this */ imo.imo_multicast_ifp = vifp->v_ifp; imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; imo.imo_multicast_loop = 1; imo.imo_multicast_vif = -1; /* * Re-entrancy should not be a problem here, because * the packets that we send out and are looped back at us * should get rejected because they appear to come from * the loopback interface, thus preventing looping. */ error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL); if (mrtdebug & DEBUG_XMIT) log(LOG_DEBUG, "phyint_send on vif %d err %d\n", (int)(vifp - viftable), error); } } /* determine the current time and then * the elapsed time (between the last time and time now) * in milliseconds & update the no. of tokens in the bucket */ static void tbf_update_tokens(struct vif *vifp) { struct timeval tp; u_long tm; struct tbf *t = vifp->v_tbf; VIF_LOCK_ASSERT(); GET_TIME(tp); TV_DELTA(tp, t->tbf_last_pkt_t, tm); /* * This formula is actually * "time in seconds" * "bytes/second". * * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) * * The (1000/1024) was introduced in add_vif to optimize * this divide into a shift. */ t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8; t->tbf_last_pkt_t = tp; if (t->tbf_n_tok > MAX_BKT_SIZE) t->tbf_n_tok = MAX_BKT_SIZE; } static int priority(struct vif *vifp, struct ip *ip) { int prio = 50; /* the lowest priority -- default case */ /* temporary hack; may add general packet classifier some day */ /* * The UDP port space is divided up into four priority ranges: * [0, 16384) : unclassified - lowest priority * [16384, 32768) : audio - highest priority * [32768, 49152) : whiteboard - medium priority * [49152, 65536) : video - low priority * * Everything else gets lowest priority. */ if (ip->ip_p == IPPROTO_UDP) { struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); switch (ntohs(udp->uh_dport) & 0xc000) { case 0x4000: prio = 70; break; case 0x8000: prio = 60; break; case 0xc000: prio = 55; break; } } return prio; } /* * End of token bucket filter modifications */ static int X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt) { int error, vifi; if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return EOPNOTSUPP; error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); if (error) return error; VIF_LOCK(); if (vifi < 0 || vifi >= numvifs) { /* Error if vif is invalid */ VIF_UNLOCK(); return EADDRNOTAVAIL; } if (sopt->sopt_name == IP_RSVP_VIF_ON) { /* Check if socket is available. */ if (viftable[vifi].v_rsvpd != NULL) { VIF_UNLOCK(); return EADDRINUSE; } viftable[vifi].v_rsvpd = so; /* This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 1; rsvp_on++; } } else { /* must be VIF_OFF */ /* * XXX as an additional consistency check, one could make sure * that viftable[vifi].v_rsvpd == so, otherwise passing so as * first parameter is pretty useless. */ viftable[vifi].v_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 0; rsvp_on--; } } VIF_UNLOCK(); return 0; } static void X_ip_rsvp_force_done(struct socket *so) { int vifi; /* Don't bother if it is not the right type of socket. */ if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return; VIF_LOCK(); /* The socket may be attached to more than one vif...this * is perfectly legal. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_rsvpd == so) { viftable[vifi].v_rsvpd = NULL; /* This may seem silly, but we need to be sure we don't * over-decrement the RSVP counter, in case something slips up. */ if (viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 0; rsvp_on--; } } } VIF_UNLOCK(); } static void X_rsvp_input(struct mbuf *m, int off) { int vifi; struct ip *ip = mtod(m, struct ip *); struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET }; struct ifnet *ifp; if (rsvpdebug) printf("rsvp_input: rsvp_on %d\n",rsvp_on); /* Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!rsvp_on) { m_freem(m); return; } if (rsvpdebug) printf("rsvp_input: check vifs\n"); #ifdef DIAGNOSTIC M_ASSERTPKTHDR(m); #endif ifp = m->m_pkthdr.rcvif; VIF_LOCK(); /* Find which vif the packet arrived on. */ for (vifi = 0; vifi < numvifs; vifi++) if (viftable[vifi].v_ifp == ifp) break; if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) { /* * Drop the lock here to avoid holding it across rip_input. * This could make rsvpdebug printfs wrong. If you care, * record the state of stuff before dropping the lock. */ VIF_UNLOCK(); /* * If the old-style non-vif-associated socket is set, * then use it. Otherwise, drop packet since there * is no specific socket for this vif. */ if (ip_rsvpd != NULL) { if (rsvpdebug) printf("rsvp_input: Sending packet up old-style socket\n"); rip_input(m, off); /* xxx */ } else { if (rsvpdebug && vifi == numvifs) printf("rsvp_input: Can't find vif for packet.\n"); else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL) printf("rsvp_input: No socket defined for vif %d\n",vifi); m_freem(m); } return; } rsvp_src.sin_addr = ip->ip_src; if (rsvpdebug && m) printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n", m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv))); if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) { if (rsvpdebug) printf("rsvp_input: Failed to append to socket\n"); } else { if (rsvpdebug) printf("rsvp_input: send packet up\n"); } VIF_UNLOCK(); } /* * Code for bandwidth monitors */ /* * Define common interface for timeval-related methods */ #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) static uint32_t compute_bw_meter_flags(struct bw_upcall *req) { uint32_t flags = 0; if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) flags |= BW_METER_UNIT_PACKETS; if (req->bu_flags & BW_UPCALL_UNIT_BYTES) flags |= BW_METER_UNIT_BYTES; if (req->bu_flags & BW_UPCALL_GEQ) flags |= BW_METER_GEQ; if (req->bu_flags & BW_UPCALL_LEQ) flags |= BW_METER_LEQ; return flags; } /* * Add a bw_meter entry */ static int add_bw_upcall(struct bw_upcall *req) { struct mfc *mfc; struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; struct timeval now; struct bw_meter *x; uint32_t flags; if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) return EOPNOTSUPP; /* Test if the flags are valid */ if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) return EINVAL; if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) return EINVAL; if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) return EINVAL; /* Test if the threshold time interval is valid */ if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) return EINVAL; flags = compute_bw_meter_flags(req); /* * Find if we have already same bw_meter entry */ MFC_LOCK(); mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); if (mfc == NULL) { MFC_UNLOCK(); return EADDRNOTAVAIL; } for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && (x->bm_flags & BW_METER_USER_FLAGS) == flags) { MFC_UNLOCK(); return 0; /* XXX Already installed */ } } /* Allocate the new bw_meter entry */ x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); if (x == NULL) { MFC_UNLOCK(); return ENOBUFS; } /* Set the new bw_meter entry */ x->bm_threshold.b_time = req->bu_threshold.b_time; GET_TIME(now); x->bm_start_time = now; x->bm_threshold.b_packets = req->bu_threshold.b_packets; x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags = flags; x->bm_time_next = NULL; x->bm_time_hash = BW_METER_BUCKETS; /* Add the new bw_meter entry to the front of entries for this MFC */ x->bm_mfc = mfc; x->bm_mfc_next = mfc->mfc_bw_meter; mfc->mfc_bw_meter = x; schedule_bw_meter(x, &now); MFC_UNLOCK(); return 0; } static void free_bw_list(struct bw_meter *list) { while (list != NULL) { struct bw_meter *x = list; list = list->bm_mfc_next; unschedule_bw_meter(x); free(x, M_BWMETER); } } /* * Delete one or multiple bw_meter entries */ static int del_bw_upcall(struct bw_upcall *req) { struct mfc *mfc; struct bw_meter *x; if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) return EOPNOTSUPP; MFC_LOCK(); /* Find the corresponding MFC entry */ mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr); if (mfc == NULL) { MFC_UNLOCK(); return EADDRNOTAVAIL; } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { /* * Delete all bw_meter entries for this mfc */ struct bw_meter *list; list = mfc->mfc_bw_meter; mfc->mfc_bw_meter = NULL; free_bw_list(list); MFC_UNLOCK(); return 0; } else { /* Delete a single bw_meter entry */ struct bw_meter *prev; uint32_t flags = 0; flags = compute_bw_meter_flags(req); /* Find the bw_meter entry to delete */ for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && (x->bm_flags & BW_METER_USER_FLAGS) == flags) break; } if (x != NULL) { /* Delete entry from the list for this MFC */ if (prev != NULL) prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ else x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */ unschedule_bw_meter(x); MFC_UNLOCK(); /* Free the bw_meter entry */ free(x, M_BWMETER); return 0; } else { MFC_UNLOCK(); return EINVAL; } } /* NOTREACHED */ } /* * Perform bandwidth measurement processing that may result in an upcall */ static void bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) { struct timeval delta; MFC_LOCK_ASSERT(); delta = *nowp; BW_TIMEVALDECR(&delta, &x->bm_start_time); if (x->bm_flags & BW_METER_GEQ) { /* * Processing for ">=" type of bw_meter entry */ if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { /* Reset the bw_meter entry */ x->bm_start_time = *nowp; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; } /* Record that a packet is received */ x->bm_measured.b_packets++; x->bm_measured.b_bytes += plen; /* * Test if we should deliver an upcall */ if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, nowp); x->bm_flags |= BW_METER_UPCALL_DELIVERED; } } } else if (x->bm_flags & BW_METER_LEQ) { /* * Processing for "<=" type of bw_meter entry */ if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { /* * We are behind time with the multicast forwarding table * scanning for "<=" type of bw_meter entries, so test now * if we should deliver an upcall. */ if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, nowp); } /* Reschedule the bw_meter entry */ unschedule_bw_meter(x); schedule_bw_meter(x, nowp); } /* Record that a packet is received */ x->bm_measured.b_packets++; x->bm_measured.b_bytes += plen; /* * Test if we should restart the measuring interval */ if ((x->bm_flags & BW_METER_UNIT_PACKETS && x->bm_measured.b_packets <= x->bm_threshold.b_packets) || (x->bm_flags & BW_METER_UNIT_BYTES && x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { /* Don't restart the measuring interval */ } else { /* Do restart the measuring interval */ /* * XXX: note that we don't unschedule and schedule, because this * might be too much overhead per packet. Instead, when we process * all entries for a given timer hash bin, we check whether it is * really a timeout. If not, we reschedule at that time. */ x->bm_start_time = *nowp; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; } } } /* * Prepare a bandwidth-related upcall */ static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) { struct timeval delta; struct bw_upcall *u; MFC_LOCK_ASSERT(); /* * Compute the measured time interval */ delta = *nowp; BW_TIMEVALDECR(&delta, &x->bm_start_time); /* * If there are too many pending upcalls, deliver them now */ if (bw_upcalls_n >= BW_UPCALLS_MAX) bw_upcalls_send(); /* * Set the bw_upcall entry */ u = &bw_upcalls[bw_upcalls_n++]; u->bu_src = x->bm_mfc->mfc_origin; u->bu_dst = x->bm_mfc->mfc_mcastgrp; u->bu_threshold.b_time = x->bm_threshold.b_time; u->bu_threshold.b_packets = x->bm_threshold.b_packets; u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; u->bu_measured.b_time = delta; u->bu_measured.b_packets = x->bm_measured.b_packets; u->bu_measured.b_bytes = x->bm_measured.b_bytes; u->bu_flags = 0; if (x->bm_flags & BW_METER_UNIT_PACKETS) u->bu_flags |= BW_UPCALL_UNIT_PACKETS; if (x->bm_flags & BW_METER_UNIT_BYTES) u->bu_flags |= BW_UPCALL_UNIT_BYTES; if (x->bm_flags & BW_METER_GEQ) u->bu_flags |= BW_UPCALL_GEQ; if (x->bm_flags & BW_METER_LEQ) u->bu_flags |= BW_UPCALL_LEQ; } /* * Send the pending bandwidth-related upcalls */ static void bw_upcalls_send(void) { struct mbuf *m; int len = bw_upcalls_n * sizeof(bw_upcalls[0]); struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; static struct igmpmsg igmpmsg = { 0, /* unused1 */ 0, /* unused2 */ IGMPMSG_BW_UPCALL,/* im_msgtype */ 0, /* im_mbz */ 0, /* im_vif */ 0, /* unused3 */ { 0 }, /* im_src */ { 0 } }; /* im_dst */ MFC_LOCK_ASSERT(); if (bw_upcalls_n == 0) return; /* No pending upcalls */ bw_upcalls_n = 0; /* * Allocate a new mbuf, initialize it with the header and * the payload for the pending calls. */ MGETHDR(m, M_DONTWAIT, MT_HEADER); if (m == NULL) { log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); return; } m->m_len = m->m_pkthdr.len = 0; m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); /* * Send the upcalls * XXX do we need to set the address in k_igmpsrc ? */ mrtstat.mrts_upcalls++; if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; } } /* * Compute the timeout hash value for the bw_meter entries */ #define BW_METER_TIMEHASH(bw_meter, hash) \ do { \ struct timeval next_timeval = (bw_meter)->bm_start_time; \ \ BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ (hash) = next_timeval.tv_sec; \ if (next_timeval.tv_usec) \ (hash)++; /* XXX: make sure we don't timeout early */ \ (hash) %= BW_METER_BUCKETS; \ } while (0) /* * Schedule a timer to process periodically bw_meter entry of type "<=" * by linking the entry in the proper hash bucket. */ static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) { int time_hash; MFC_LOCK_ASSERT(); if (!(x->bm_flags & BW_METER_LEQ)) return; /* XXX: we schedule timers only for "<=" entries */ /* * Reset the bw_meter entry */ x->bm_start_time = *nowp; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; /* * Compute the timeout hash value and insert the entry */ BW_METER_TIMEHASH(x, time_hash); x->bm_time_next = bw_meter_timers[time_hash]; bw_meter_timers[time_hash] = x; x->bm_time_hash = time_hash; } /* * Unschedule the periodic timer that processes bw_meter entry of type "<=" * by removing the entry from the proper hash bucket. */ static void unschedule_bw_meter(struct bw_meter *x) { int time_hash; struct bw_meter *prev, *tmp; MFC_LOCK_ASSERT(); if (!(x->bm_flags & BW_METER_LEQ)) return; /* XXX: we schedule timers only for "<=" entries */ /* * Compute the timeout hash value and delete the entry */ time_hash = x->bm_time_hash; if (time_hash >= BW_METER_BUCKETS) return; /* Entry was not scheduled */ for (prev = NULL, tmp = bw_meter_timers[time_hash]; tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) if (tmp == x) break; if (tmp == NULL) panic("unschedule_bw_meter: bw_meter entry not found"); if (prev != NULL) prev->bm_time_next = x->bm_time_next; else bw_meter_timers[time_hash] = x->bm_time_next; x->bm_time_next = NULL; x->bm_time_hash = BW_METER_BUCKETS; } /* * Process all "<=" type of bw_meter that should be processed now, * and for each entry prepare an upcall if necessary. Each processed * entry is rescheduled again for the (periodic) processing. * * This is run periodically (once per second normally). On each round, * all the potentially matching entries are in the hash slot that we are * looking at. */ static void bw_meter_process() { static uint32_t last_tv_sec; /* last time we processed this */ uint32_t loops; int i; struct timeval now, process_endtime; GET_TIME(now); if (last_tv_sec == now.tv_sec) return; /* nothing to do */ loops = now.tv_sec - last_tv_sec; last_tv_sec = now.tv_sec; if (loops > BW_METER_BUCKETS) loops = BW_METER_BUCKETS; MFC_LOCK(); /* * Process all bins of bw_meter entries from the one after the last * processed to the current one. On entry, i points to the last bucket * visited, so we need to increment i at the beginning of the loop. */ for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { struct bw_meter *x, *tmp_list; if (++i >= BW_METER_BUCKETS) i = 0; /* Disconnect the list of bw_meter entries from the bin */ tmp_list = bw_meter_timers[i]; bw_meter_timers[i] = NULL; /* Process the list of bw_meter entries */ while (tmp_list != NULL) { x = tmp_list; tmp_list = tmp_list->bm_time_next; /* Test if the time interval is over */ process_endtime = x->bm_start_time; BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); if (BW_TIMEVALCMP(&process_endtime, &now, >)) { /* Not yet: reschedule, but don't reset */ int time_hash; BW_METER_TIMEHASH(x, time_hash); if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { /* * XXX: somehow the bin processing is a bit ahead of time. * Put the entry in the next bin. */ if (++time_hash >= BW_METER_BUCKETS) time_hash = 0; } x->bm_time_next = bw_meter_timers[time_hash]; bw_meter_timers[time_hash] = x; x->bm_time_hash = time_hash; continue; } /* * Test if we should deliver an upcall */ if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, &now); } /* * Reschedule for next processing */ schedule_bw_meter(x, &now); } } /* Send all upcalls that are pending delivery */ bw_upcalls_send(); MFC_UNLOCK(); } /* * A periodic function for sending all upcalls that are pending delivery */ static void expire_bw_upcalls_send(void *unused) { MFC_LOCK(); bw_upcalls_send(); MFC_UNLOCK(); callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, NULL); } /* * A periodic function for periodic scanning of the multicast forwarding * table for processing all "<=" bw_meter entries. */ static void expire_bw_meter_process(void *unused) { if (mrt_api_config & MRT_MFC_BW_UPCALL) bw_meter_process(); callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL); } /* * End of bandwidth monitoring code */ #ifdef PIM /* * Send the packet up to the user daemon, or eventually do kernel encapsulation * */ static int pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, struct mfc *rt) { struct mbuf *mb_copy, *mm; if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_register_send: "); mb_copy = pim_register_prepare(ip, m); if (mb_copy == NULL) return ENOBUFS; /* * Send all the fragments. Note that the mbuf for each fragment * is freed by the sending machinery. */ for (mm = mb_copy; mm; mm = mb_copy) { mb_copy = mm->m_nextpkt; mm->m_nextpkt = 0; mm = m_pullup(mm, sizeof(struct ip)); if (mm != NULL) { ip = mtod(mm, struct ip *); if ((mrt_api_config & MRT_MFC_RP) && (rt->mfc_rp.s_addr != INADDR_ANY)) { pim_register_send_rp(ip, vifp, mm, rt); } else { pim_register_send_upcall(ip, vifp, mm, rt); } } } return 0; } /* * Return a copy of the data packet that is ready for PIM Register * encapsulation. * XXX: Note that in the returned copy the IP header is a valid one. */ static struct mbuf * pim_register_prepare(struct ip *ip, struct mbuf *m) { struct mbuf *mb_copy = NULL; int mtu; /* Take care of delayed checksums */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } /* * Copy the old packet & pullup its IP header into the * new mbuf so we can modify it. */ mb_copy = m_copypacket(m, M_DONTWAIT); if (mb_copy == NULL) return NULL; mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); if (mb_copy == NULL) return NULL; /* take care of the TTL */ ip = mtod(mb_copy, struct ip *); --ip->ip_ttl; /* Compute the MTU after the PIM Register encapsulation */ mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); if (ip->ip_len <= mtu) { /* Turn the IP header into a valid one */ ip->ip_len = htons(ip->ip_len); ip->ip_off = htons(ip->ip_off); ip->ip_sum = 0; ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); } else { /* Fragment the packet */ if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) { m_freem(mb_copy); return NULL; } } return mb_copy; } /* * Send an upcall with the data packet to the user-level process. */ static int pim_register_send_upcall(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, struct mfc *rt) { struct mbuf *mb_first; int len = ntohs(ip->ip_len); struct igmpmsg *im; struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; VIF_LOCK_ASSERT(); /* * Add a new mbuf with an upcall header */ MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); if (mb_first == NULL) { m_freem(mb_copy); return ENOBUFS; } mb_first->m_data += max_linkhdr; mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); mb_first->m_len = sizeof(struct igmpmsg); mb_first->m_next = mb_copy; /* Send message to routing daemon */ im = mtod(mb_first, struct igmpmsg *); im->im_msgtype = IGMPMSG_WHOLEPKT; im->im_mbz = 0; im->im_vif = vifp - viftable; im->im_src = ip->ip_src; im->im_dst = ip->ip_dst; k_igmpsrc.sin_addr = ip->ip_src; mrtstat.mrts_upcalls++; if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { if (mrtdebug & DEBUG_PIM) log(LOG_WARNING, "mcast: pim_register_send_upcall: ip_mrouter socket queue full"); ++mrtstat.mrts_upq_sockfull; return ENOBUFS; } /* Keep statistics */ pimstat.pims_snd_registers_msgs++; pimstat.pims_snd_registers_bytes += len; return 0; } /* * Encapsulate the data packet in PIM Register message and send it to the RP. */ static int pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, struct mfc *rt) { struct mbuf *mb_first; struct ip *ip_outer; struct pim_encap_pimhdr *pimhdr; int len = ntohs(ip->ip_len); vifi_t vifi = rt->mfc_parent; VIF_LOCK_ASSERT(); if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) { m_freem(mb_copy); return EADDRNOTAVAIL; /* The iif vif is invalid */ } /* * Add a new mbuf with the encapsulating header */ MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); if (mb_first == NULL) { m_freem(mb_copy); return ENOBUFS; } mb_first->m_data += max_linkhdr; mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); mb_first->m_next = mb_copy; mb_first->m_pkthdr.len = len + mb_first->m_len; /* * Fill in the encapsulating IP and PIM header */ ip_outer = mtod(mb_first, struct ip *); *ip_outer = pim_encap_iphdr; #ifdef RANDOM_IP_ID ip_outer->ip_id = ip_randomid(); #else ip_outer->ip_id = htons(ip_id++); #endif ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); ip_outer->ip_src = viftable[vifi].v_lcl_addr; ip_outer->ip_dst = rt->mfc_rp; /* * Copy the inner header TOS to the outer header, and take care of the * IP_DF bit. */ ip_outer->ip_tos = ip->ip_tos; if (ntohs(ip->ip_off) & IP_DF) ip_outer->ip_off |= IP_DF; pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer + sizeof(pim_encap_iphdr)); *pimhdr = pim_encap_pimhdr; /* If the iif crosses a border, set the Border-bit */ if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) pimhdr->flags |= htonl(PIM_BORDER_REGISTER); mb_first->m_data += sizeof(pim_encap_iphdr); pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); mb_first->m_data -= sizeof(pim_encap_iphdr); if (vifp->v_rate_limit == 0) tbf_send_packet(vifp, mb_first); else tbf_control(vifp, mb_first, ip, ip_outer->ip_len); /* Keep statistics */ pimstat.pims_snd_registers_msgs++; pimstat.pims_snd_registers_bytes += len; return 0; } /* * PIM-SMv2 and PIM-DM messages processing. * Receives and verifies the PIM control messages, and passes them * up to the listening socket, using rip_input(). * The only message with special processing is the PIM_REGISTER message * (used by PIM-SM): the PIM header is stripped off, and the inner packet * is passed to if_simloop(). */ void pim_input(struct mbuf *m, int off) { struct ip *ip = mtod(m, struct ip *); struct pim *pim; int minlen; int datalen = ip->ip_len; int ip_tos; int iphlen = off; /* Keep statistics */ pimstat.pims_rcv_total_msgs++; pimstat.pims_rcv_total_bytes += datalen; /* * Validate lengths */ if (datalen < PIM_MINLEN) { pimstat.pims_rcv_tooshort++; log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", datalen, (u_long)ip->ip_src.s_addr); m_freem(m); return; } /* * If the packet is at least as big as a REGISTER, go agead * and grab the PIM REGISTER header size, to avoid another * possible m_pullup() later. * * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 */ minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); /* * Get the IP and PIM headers in contiguous memory, and * possibly the PIM REGISTER header. */ if ((m->m_flags & M_EXT || m->m_len < minlen) && (m = m_pullup(m, minlen)) == 0) { log(LOG_ERR, "pim_input: m_pullup failure\n"); return; } /* m_pullup() may have given us a new mbuf so reset ip. */ ip = mtod(m, struct ip *); ip_tos = ip->ip_tos; /* adjust mbuf to point to the PIM header */ m->m_data += iphlen; m->m_len -= iphlen; pim = mtod(m, struct pim *); /* * Validate checksum. If PIM REGISTER, exclude the data packet. * * XXX: some older PIMv2 implementations don't make this distinction, * so for compatibility reason perform the checksum over part of the * message, and if error, then over the whole message. */ if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { /* do nothing, checksum okay */ } else if (in_cksum(m, datalen)) { pimstat.pims_rcv_badsum++; if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_input: invalid checksum"); m_freem(m); return; } /* PIM version check */ if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { pimstat.pims_rcv_badversion++; log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", PIM_VT_V(pim->pim_vt), PIM_VERSION); m_freem(m); return; } /* restore mbuf back to the outer IP */ m->m_data -= iphlen; m->m_len += iphlen; if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { /* * Since this is a REGISTER, we'll make a copy of the register * headers ip + pim + u_int32 + encap_ip, to be passed up to the * routing daemon. */ struct sockaddr_in dst = { sizeof(dst), AF_INET }; struct mbuf *mcp; struct ip *encap_ip; u_int32_t *reghdr; struct ifnet *vifp; VIF_LOCK(); if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { VIF_UNLOCK(); if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_input: register vif not set: %d\n", reg_vif_num); m_freem(m); return; } /* XXX need refcnt? */ vifp = viftable[reg_vif_num].v_ifp; VIF_UNLOCK(); /* * Validate length */ if (datalen < PIM_REG_MINLEN) { pimstat.pims_rcv_tooshort++; pimstat.pims_rcv_badregisters++; log(LOG_ERR, "pim_input: register packet size too small %d from %lx\n", datalen, (u_long)ip->ip_src.s_addr); m_freem(m); return; } reghdr = (u_int32_t *)(pim + 1); encap_ip = (struct ip *)(reghdr + 1); if (mrtdebug & DEBUG_PIM) { log(LOG_DEBUG, "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n", (u_long)ntohl(encap_ip->ip_src.s_addr), (u_long)ntohl(encap_ip->ip_dst.s_addr), ntohs(encap_ip->ip_len)); } /* verify the version number of the inner packet */ if (encap_ip->ip_v != IPVERSION) { pimstat.pims_rcv_badregisters++; if (mrtdebug & DEBUG_PIM) { log(LOG_DEBUG, "pim_input: invalid IP version (%d) " "of the inner packet\n", encap_ip->ip_v); } m_freem(m); return; } /* verify the inner packet is destined to a mcast group */ if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { pimstat.pims_rcv_badregisters++; if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_input: inner packet of register is not " "multicast %lx\n", (u_long)ntohl(encap_ip->ip_dst.s_addr)); m_freem(m); return; } /* * Copy the TOS from the outer IP header to the inner IP header. */ if (encap_ip->ip_tos != ip_tos) { /* Outer TOS -> inner TOS */ encap_ip->ip_tos = ip_tos; /* Recompute the inner header checksum. Sigh... */ /* adjust mbuf to point to the inner IP header */ m->m_data += (iphlen + PIM_MINLEN); m->m_len -= (iphlen + PIM_MINLEN); encap_ip->ip_sum = 0; encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); /* restore mbuf to point back to the outer IP header */ m->m_data -= (iphlen + PIM_MINLEN); m->m_len += (iphlen + PIM_MINLEN); } /* If a NULL_REGISTER, pass it to the daemon */ if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) goto pim_input_to_daemon; /* * Decapsulate the inner IP packet and loopback to forward it * as a normal multicast packet. Also, make a copy of the * outer_iphdr + pimhdr + reghdr + encap_iphdr * to pass to the daemon later, so it can take the appropriate * actions (e.g., send back PIM_REGISTER_STOP). * XXX: here m->m_data points to the outer IP header. */ mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); if (mcp == NULL) { log(LOG_ERR, "pim_input: pim register: could not copy register head\n"); m_freem(m); return; } /* Keep statistics */ /* XXX: registers_bytes include only the encap. mcast pkt */ pimstat.pims_rcv_registers_msgs++; pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); /* * forward the inner ip packet; point m_data at the inner ip. */ m_adj(m, iphlen + PIM_MINLEN); if (mrtdebug & DEBUG_PIM) { log(LOG_DEBUG, "pim_input: forwarding decapsulated register: " "src %lx, dst %lx, vif %d\n", (u_long)ntohl(encap_ip->ip_src.s_addr), (u_long)ntohl(encap_ip->ip_dst.s_addr), reg_vif_num); } /* NB: vifp was collected above; can it change on us? */ if_simloop(vifp, m, dst.sin_family, 0); /* prepare the register head to send to the mrouting daemon */ m = mcp; } pim_input_to_daemon: /* * Pass the PIM message up to the daemon; if it is a Register message, * pass the 'head' only up to the daemon. This includes the * outer IP header, PIM header, PIM-Register header and the * inner IP header. * XXX: the outer IP header pkt size of a Register is not adjust to * reflect the fact that the inner multicast data is truncated. */ rip_input(m, iphlen); return; } #endif /* PIM */ static int ip_mroute_modevent(module_t mod, int type, void *unused) { int s; switch (type) { case MOD_LOAD: s = splnet(); /* XXX Protect against multiple loading */ ip_mcast_src = X_ip_mcast_src; ip_mforward = X_ip_mforward; ip_mrouter_done = X_ip_mrouter_done; ip_mrouter_get = X_ip_mrouter_get; ip_mrouter_set = X_ip_mrouter_set; ip_rsvp_force_done = X_ip_rsvp_force_done; ip_rsvp_vif = X_ip_rsvp_vif; legal_vif_num = X_legal_vif_num; mrt_ioctl = X_mrt_ioctl; rsvp_input_p = X_rsvp_input; splx(s); break; case MOD_UNLOAD: if (ip_mrouter) return EINVAL; s = splnet(); ip_mcast_src = NULL; ip_mforward = NULL; ip_mrouter_done = NULL; ip_mrouter_get = NULL; ip_mrouter_set = NULL; ip_rsvp_force_done = NULL; ip_rsvp_vif = NULL; legal_vif_num = NULL; mrt_ioctl = NULL; rsvp_input_p = NULL; splx(s); break; } return 0; } static moduledata_t ip_mroutemod = { "ip_mroute", ip_mroute_modevent, 0 }; DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);