/* * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``S IS''AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * $FreeBSD$ * * Definitions of constants and the structures used by the netmap * framework, for the part visible to both kernel and userspace. * Detailed info on netmap is available with "man netmap" or at * * http://info.iet.unipi.it/~luigi/netmap/ * * This API is also used to communicate with the VALE software switch */ #ifndef _NET_NETMAP_H_ #define _NET_NETMAP_H_ #define NETMAP_API 10 /* current API version */ /* * Some fields should be cache-aligned to reduce contention. * The alignment is architecture and OS dependent, but rather than * digging into OS headers to find the exact value we use an estimate * that should cover most architectures. */ #define NM_CACHE_ALIGN 128 /* * --- Netmap data structures --- * * The userspace data structures used by netmap are shown below. * They are allocated by the kernel and mmap()ed by userspace threads. * Pointers are implemented as memory offsets or indexes, * so that they can be easily dereferenced in kernel and userspace. KERNEL (opaque, obviously) ==================================================================== | USERSPACE | struct netmap_ring +---->+---------------+ / | head,cur,tail | struct netmap_if (nifp, 1 per fd) / | buf_ofs | +---------------+ / | other fields | | ni_tx_rings | / +===============+ | ni_rx_rings | / | buf_idx, len | slot[0] | | / | flags, ptr | | | / +---------------+ +===============+ / | buf_idx, len | slot[1] | txring_ofs[0] | (rel.to nifp)--' | flags, ptr | | txring_ofs[1] | +---------------+ (tx+1+extra_tx entries) (num_slots entries) | txring_ofs[t] | | buf_idx, len | slot[n-1] +---------------+ | flags, ptr | | rxring_ofs[0] | +---------------+ | rxring_ofs[1] | (rx+1+extra_rx entries) | rxring_ofs[r] | +---------------+ * For each "interface" (NIC, host stack, VALE switch port) attached to a * file descriptor, the mmap()ed region contains a (logically readonly) * struct netmap_if pointing to struct netmap_ring's. * There is one netmap_ring per physical NIC ring, plus one tx/rx ring * pair attached to the host stack (this pair is unused for VALE ports). * * All physical/host stack ports share the same memory region, * so that zero-copy can be implemented between them. * VALE switch ports instead have separate memory regions. * * The netmap_ring is the userspace-visible replica of the NIC ring. * Each slot has the index of a buffer (MTU-sized and residing in the * mmapped region), its length and some flags. An extra 64-bit pointer * is provided for user-supplied buffers in the tx path. * * In user space, the buffer address is computed as * (char *)ring + buf_ofs + index*NETMAP_BUF_SIZE */ /* * struct netmap_slot is a buffer descriptor */ struct netmap_slot { uint32_t buf_idx; /* buffer index */ uint16_t len; /* length for this slot */ uint16_t flags; /* buf changed, etc. */ uint64_t ptr; /* pointer for indirect buffers */ }; /* * The following flags control how the slot is used */ #define NS_BUF_CHANGED 0x0001 /* buf_idx changed */ /* * must be set whenever buf_idx is changed (as it might be * necessary to recompute the physical address and mapping) */ #define NS_REPORT 0x0002 /* ask the hardware to report results */ /* * Request notification when slot is used by the hardware. * Normally transmit completions are handled lazily and * may be unreported. This flag lets us know when a slot * has been sent (e.g. to terminate the sender). */ #define NS_FORWARD 0x0004 /* pass packet 'forward' */ /* * (Only for physical ports, rx rings with NR_FORWARD set). * Slot released to the kernel (i.e. before ring->head) with * this flag set are passed to the peer ring (host/NIC), * thus restoring the host-NIC connection for these slots. * This supports efficient traffic monitoring or firewalling. */ #define NS_NO_LEARN 0x0008 /* disable bridge learning */ /* * On a VALE switch, do not 'learn' the source port for * this buffer. */ #define NS_INDIRECT 0x0010 /* userspace buffer */ /* * (VALE tx rings only) data is in a userspace buffer, * whose address is in the 'ptr' field in the slot. */ #define NS_MOREFRAG 0x0020 /* packet has more fragments */ /* * (VALE ports only) * Set on all but the last slot of a multi-segment packet. * The 'len' field refers to the individual fragment. */ #define NS_PORT_SHIFT 8 #define NS_PORT_MASK (0xff << NS_PORT_SHIFT) /* * The high 8 bits of the flag, if not zero, indicate the * destination port for the VALE switch, overriding * the lookup table. */ #define NS_RFRAGS(_slot) ( ((_slot)->flags >> 8) & 0xff) /* * (VALE rx rings only) the high 8 bits * are the number of fragments. */ /* * struct netmap_ring * * Netmap representation of a TX or RX ring (also known as "queue"). * This is a queue implemented as a fixed-size circular array. * At the software level the important fields are: head, cur, tail. * * In TX rings: * * head first slot available for transmission. * cur wakeup point. select() and poll() will unblock * when 'tail' moves past 'cur' * tail (readonly) first slot reserved to the kernel * * [head .. tail-1] can be used for new packets to send; * 'head' and 'cur' must be incremented as slots are filled * with new packets to be sent; * 'cur' can be moved further ahead if we need more space * for new transmissions. * * In RX rings: * * head first valid received packet * cur wakeup point. select() and poll() will unblock * when 'tail' moves past 'cur' * tail (readonly) first slot reserved to the kernel * * [head .. tail-1] contain received packets; * 'head' and 'cur' must be incremented as slots are consumed * and can be returned to the kernel; * 'cur' can be moved further ahead if we want to wait for * new packets without returning the previous ones. * * DATA OWNERSHIP/LOCKING: * The netmap_ring, and all slots and buffers in the range * [head .. tail-1] are owned by the user program; * the kernel only accesses them during a netmap system call * and in the user thread context. * * Other slots and buffers are reserved for use by the kernel */ struct netmap_ring { /* * buf_ofs is meant to be used through macros. * It contains the offset of the buffer region from this * descriptor. */ const int64_t buf_ofs; const uint32_t num_slots; /* number of slots in the ring. */ const uint32_t nr_buf_size; const uint16_t ringid; const uint16_t dir; /* 0: tx, 1: rx */ uint32_t head; /* (u) first user slot */ uint32_t cur; /* (u) wakeup point */ uint32_t tail; /* (k) first kernel slot */ uint32_t flags; struct timeval ts; /* (k) time of last *sync() */ /* opaque room for a mutex or similar object */ uint8_t sem[128] __attribute__((__aligned__(NM_CACHE_ALIGN))); /* the slots follow. This struct has variable size */ struct netmap_slot slot[0]; /* array of slots. */ }; /* * RING FLAGS */ #define NR_TIMESTAMP 0x0002 /* set timestamp on *sync() */ /* * updates the 'ts' field on each netmap syscall. This saves * saves a separate gettimeofday(), and is not much worse than * software timestamps generated in the interrupt handler. */ #define NR_FORWARD 0x0004 /* enable NS_FORWARD for ring */ /* * Enables the NS_FORWARD slot flag for the ring. */ /* * Netmap representation of an interface and its queue(s). * This is initialized by the kernel when binding a file * descriptor to a port, and should be considered as readonly * by user programs. The kernel never uses it. * * There is one netmap_if for each file descriptor on which we want * to select/poll. * select/poll operates on one or all pairs depending on the value of * nmr_queueid passed on the ioctl. */ struct netmap_if { char ni_name[IFNAMSIZ]; /* name of the interface. */ const uint32_t ni_version; /* API version, currently unused */ const uint32_t ni_flags; /* properties */ #define NI_PRIV_MEM 0x1 /* private memory region */ /* * The number of packet rings available in netmap mode. * Physical NICs can have different numbers of tx and rx rings. * Physical NICs also have a 'host' ring pair. * Additionally, clients can request additional ring pairs to * be used for internal communication. */ const uint32_t ni_tx_rings; /* number of HW tx rings */ const uint32_t ni_rx_rings; /* number of HW rx rings */ const uint32_t ni_extra_tx_rings; const uint32_t ni_extra_rx_rings; /* * The following array contains the offset of each netmap ring * from this structure, in the following order: * NIC tx rings (ni_tx_rings); host tx ring (1); extra tx rings; * NIC rx rings (ni_rx_rings); host tx ring (1); extra rx rings. * * The area is filled up by the kernel on NIOCREGIF, * and then only read by userspace code. */ const ssize_t ring_ofs[0]; }; #ifndef NIOCREGIF /* * ioctl names and related fields * * NIOCTXSYNC, NIOCRXSYNC synchronize tx or rx queues, * whose identity is set in NIOCREGIF through nr_ringid. * These are non blocking and take no argument. * * NIOCGINFO takes a struct ifreq, the interface name is the input, * the outputs are number of queues and number of descriptor * for each queue (useful to set number of threads etc.). * The info returned is only advisory and may change before * the interface is bound to a file descriptor. * * NIOCREGIF takes an interface name within a struct nmre, * and activates netmap mode on the interface (if possible). * * The argument to NIOCGINFO/NIOCREGIF overlays struct ifreq so we * can pass it down to other NIC-related ioctls. * * The actual argument (struct nmreq) has a number of options to request * different functions. * * nr_name (in) * The name of the port (em0, valeXXX:YYY, etc.) * limited to IFNAMSIZ for backward compatibility. * * nr_version (in/out) * Must match NETMAP_API as used in the kernel, error otherwise. * Always returns the desired value on output. * * nr_tx_slots, nr_tx_slots, nr_tx_rings, nr_rx_rings (in/out) * On input, non-zero values may be used to reconfigure the port * according to the requested values, but this is not guaranteed. * On output the actual values in use are reported. * * nr_ringid (in) * Indicates how rings should be bound to the file descriptors. * 0 (default) binds all physical rings * NETMAP_HW_RING | ring number binds a single ring pair * NETMAP_SW_RING binds only the host tx/rx rings * * NETMAP_NO_TX_POLL can be OR-ed to make select()/poll() push * packets on tx rings only if POLLOUT is set. * The default is to push any pending packet. * * NETMAP_PRIV_MEM is set on return for ports that use private * memory regions and cannot use buffer swapping. * * nr_cmd (in) if non-zero indicates a special command: * NETMAP_BDG_ATTACH and nr_name = vale*:ifname * attaches the NIC to the switch; nr_ringid specifies * which rings to use. Used by vale-ctl -a ... * nr_arg1 = NETMAP_BDG_HOST also attaches the host port * as in vale-ctl -h ... * * NETMAP_BDG_DETACH and nr_name = vale*:ifname * disconnects a previously attached NIC. * Used by vale-ctl -d ... * * NETMAP_BDG_LIST * list the configuration of VALE switches. * * NETMAP_BDG_OFFSET XXX ? * Set the offset of data in packets. Used with VALE * switches where the clients use the vhost header. * * nr_arg1, nr_arg2 (in/out) command specific * */ /* * struct nmreq overlays a struct ifreq */ struct nmreq { char nr_name[IFNAMSIZ]; uint32_t nr_version; /* API version */ uint32_t nr_offset; /* nifp offset in the shared region */ uint32_t nr_memsize; /* size of the shared region */ uint32_t nr_tx_slots; /* slots in tx rings */ uint32_t nr_rx_slots; /* slots in rx rings */ uint16_t nr_tx_rings; /* number of tx rings */ uint16_t nr_rx_rings; /* number of rx rings */ uint16_t nr_ringid; /* ring(s) we care about */ #define NETMAP_PRIV_MEM 0x8000 /* rings use private memory */ #define NETMAP_HW_RING 0x4000 /* low bits indicate one hw ring */ #define NETMAP_SW_RING 0x2000 /* process the sw ring */ #define NETMAP_NO_TX_POLL 0x1000 /* no automatic txsync on poll */ #define NETMAP_RING_MASK 0xfff /* the ring number */ uint16_t nr_cmd; #define NETMAP_BDG_ATTACH 1 /* attach the NIC */ #define NETMAP_BDG_DETACH 2 /* detach the NIC */ #define NETMAP_BDG_LOOKUP_REG 3 /* register lookup function */ #define NETMAP_BDG_LIST 4 /* get bridge's info */ #define NETMAP_BDG_OFFSET 5 /* set the port offset */ uint16_t nr_arg1; #define NETMAP_BDG_HOST 1 /* attach the host stack on ATTACH */ #define NETMAP_BDG_MAX_OFFSET 12 uint16_t nr_arg2; uint32_t spare2[3]; }; /* * FreeBSD uses the size value embedded in the _IOWR to determine * how much to copy in/out. So we need it to match the actual * data structure we pass. We put some spares in the structure * to ease compatibility with other versions */ #define NIOCGINFO _IOWR('i', 145, struct nmreq) /* return IF info */ #define NIOCREGIF _IOWR('i', 146, struct nmreq) /* interface register */ #define NIOCTXSYNC _IO('i', 148) /* sync tx queues */ #define NIOCRXSYNC _IO('i', 149) /* sync rx queues */ #endif /* !NIOCREGIF */ /* * Helper functions for kernel and userspace */ /* * check if space is available in the ring. */ static inline int nm_ring_empty(struct netmap_ring *ring) { return (ring->cur == ring->tail); } #endif /* _NET_NETMAP_H_ */