/* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.3 (Berkeley) 1/4/94 * $Id: if.c,v 1.20 1995/09/22 17:57:46 wollman Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * System initialization */ static void ifinit __P((void *)); SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL) int ifqmaxlen = IFQ_MAXLEN; struct ifnet *ifnet; /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. * * This routine assumes that it will be called at splimp() or higher. */ /* ARGSUSED*/ void ifinit(udata) void *udata; /* not used*/ { register struct ifnet *ifp; for (ifp = ifnet; ifp; ifp = ifp->if_next) if (ifp->if_snd.ifq_maxlen == 0) ifp->if_snd.ifq_maxlen = ifqmaxlen; if_slowtimo(0); } #ifdef vax /* * Call each interface on a Unibus reset. */ void ifubareset(uban) int uban; { register struct ifnet *ifp; for (ifp = ifnet; ifp; ifp = ifp->if_next) if (ifp->if_reset) (*ifp->if_reset)(ifp->if_unit, uban); } #endif int if_index = 0; struct ifaddr **ifnet_addrs; static char *sprint_d __P((u_int, char *, int)); /* * Attach an interface to the * list of "active" interfaces. */ void if_attach(ifp) struct ifnet *ifp; { unsigned socksize, ifasize; int namelen, unitlen, masklen; char workbuf[12], *unitname; register struct ifnet **p = &ifnet; register struct sockaddr_dl *sdl; register struct ifaddr *ifa; static int if_indexlim = 8; while (*p) p = &((*p)->if_next); *p = ifp; ifp->if_index = ++if_index; if (ifnet_addrs == 0 || if_index >= if_indexlim) { unsigned n = (if_indexlim <<= 1) * sizeof(ifa); struct ifaddr **q = (struct ifaddr **) malloc(n, M_IFADDR, M_WAITOK); bzero((caddr_t)q, n); if (ifnet_addrs) { bcopy((caddr_t)ifnet_addrs, (caddr_t)q, n/2); free((caddr_t)ifnet_addrs, M_IFADDR); } ifnet_addrs = q; } /* * create a Link Level name for this device */ unitname = sprint_d((u_int)ifp->if_unit, workbuf, sizeof(workbuf)); namelen = strlen(ifp->if_name); unitlen = strlen(unitname); #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m)) masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + unitlen + namelen; socksize = masklen + ifp->if_addrlen; #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) socksize = ROUNDUP(socksize); if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); ifasize = sizeof(*ifa) + 2 * socksize; ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK); if (ifa) { bzero((caddr_t)ifa, ifasize); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_name, sdl->sdl_data, namelen); bcopy(unitname, namelen + (caddr_t)sdl->sdl_data, unitlen); sdl->sdl_nlen = (namelen += unitlen); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifnet_addrs[if_index - 1] = ifa; ifa->ifa_ifp = ifp; ifa->ifa_next = ifp->if_addrlist; ifa->ifa_rtrequest = link_rtrequest; ifp->if_addrlist = ifa; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; } /* XXX -- Temporary fix before changing 10 ethernet drivers */ #if NETHER > 0 if (ifp->if_output == ether_output) ether_ifattach(ifp); #endif } /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(addr) register struct sockaddr *addr; { register struct ifnet *ifp; register struct ifaddr *ifa; #define equal(a1, a2) \ (bcmp((caddr_t)(a1), (caddr_t)(a2), ((struct sockaddr *)(a1))->sa_len) == 0) for (ifp = ifnet; ifp; ifp = ifp->if_next) for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (equal(addr, ifa->ifa_addr)) return (ifa); if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && equal(ifa->ifa_broadaddr, addr)) return (ifa); } return ((struct ifaddr *)0); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(addr) register struct sockaddr *addr; { register struct ifnet *ifp; register struct ifaddr *ifa; for (ifp = ifnet; ifp; ifp = ifp->if_next) if (ifp->if_flags & IFF_POINTOPOINT) for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr)) return (ifa); } return ((struct ifaddr *)0); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(addr) struct sockaddr *addr; { register struct ifnet *ifp; register struct ifaddr *ifa; struct ifaddr *ifa_maybe = (struct ifaddr *) 0; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; if (af == AF_LINK) { register struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= if_index) return (ifnet_addrs[sdl->sdl_index - 1]); } for (ifp = ifnet; ifp; ifp = ifp->if_next) { for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) { register char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (ifp->if_flags & IFF_POINTOPOINT) { if (equal(addr, ifa->ifa_dstaddr)) return (ifa); } else { if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; if (ifa_maybe == 0 || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) ifa_maybe = ifa; } } } return (ifa_maybe); } /* * Find an interface using a specific address family */ struct ifaddr * ifa_ifwithaf(af) register int af; { register struct ifnet *ifp; register struct ifaddr *ifa; for (ifp = ifnet; ifp; ifp = ifp->if_next) for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) if (ifa->ifa_addr->sa_family == af) return (ifa); return ((struct ifaddr *)0); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(addr, ifp) struct sockaddr *addr; register struct ifnet *ifp; { register struct ifaddr *ifa; register char *cp, *cp2, *cp3; register char *cplim; struct ifaddr *ifa_maybe = 0; u_int af = addr->sa_family; if (af >= AF_MAX) return (0); for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) { if (ifa->ifa_addr->sa_family != af) continue; ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))) return (ifa); continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (equal(addr, ifa->ifa_dstaddr)) return (ifa); } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) return (ifa); } } return (ifa_maybe); } #include /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ void link_rtrequest(cmd, rt, sa) int cmd; register struct rtentry *rt; struct sockaddr *sa; { register struct ifaddr *ifa; struct sockaddr *dst; struct ifnet *ifp; if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa) { IFAFREE(rt->rt_ifa); rt->rt_ifa = ifa; ifa->ifa_refcnt++; if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, sa); } } /* * Mark an interface down and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_down(ifp) register struct ifnet *ifp; { register struct ifaddr *ifa; ifp->if_flags &= ~IFF_UP; for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); if_qflush(&ifp->if_snd); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_up(ifp) register struct ifnet *ifp; { ifp->if_flags |= IFF_UP; #ifdef notyet register struct ifaddr *ifa; /* this has no effect on IP, and will kill all iso connections XXX */ for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) pfctlinput(PRC_IFUP, ifa->ifa_addr); #endif rt_ifmsg(ifp); } /* * Flush an interface queue. */ void if_qflush(ifq) register struct ifqueue *ifq; { register struct mbuf *m, *n; n = ifq->ifq_head; while ((m = n) != 0) { n = m->m_act; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; } /* * Handle interface watchdog timer routines. Called * from softclock, we decrement timers (if set) and * call the appropriate interface routine on expiration. */ void if_slowtimo(arg) void *arg; { register struct ifnet *ifp; int s = splimp(); for (ifp = ifnet; ifp; ifp = ifp->if_next) { if (ifp->if_timer == 0 || --ifp->if_timer) continue; if (ifp->if_watchdog) (*ifp->if_watchdog)(ifp->if_unit); } splx(s); timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ); } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(name) register char *name; { register char *cp; register struct ifnet *ifp; int unit; unsigned len; char *ep, c; for (cp = name; cp < name + IFNAMSIZ && *cp; cp++) if (*cp >= '0' && *cp <= '9') break; if (*cp == '\0' || cp == name + IFNAMSIZ) return ((struct ifnet *)0); /* * Save first char of unit, and pointer to it, * so we can put a null there to avoid matching * initial substrings of interface names. */ len = cp - name + 1; c = *cp; ep = cp; for (unit = 0; *cp >= '0' && *cp <= '9'; ) unit = unit * 10 + *cp++ - '0'; *ep = 0; for (ifp = ifnet; ifp; ifp = ifp->if_next) { if (bcmp(ifp->if_name, name, len)) continue; if (unit == ifp->if_unit) break; } *ep = c; return (ifp); } /* * Interface ioctls. */ int ifioctl(so, cmd, data, p) struct socket *so; int cmd; caddr_t data; struct proc *p; { register struct ifnet *ifp; register struct ifreq *ifr; int error; switch (cmd) { case SIOCGIFCONF: case OSIOCGIFCONF: return (ifconf(cmd, data)); } ifr = (struct ifreq *)data; ifp = ifunit(ifr->ifr_name); if (ifp == 0) return (ENXIO); switch (cmd) { case SIOCGIFFLAGS: ifr->ifr_flags = ifp->if_flags; break; case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: ifr->ifr_phys = ifp->if_physical; break; case SIOCSIFFLAGS: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { int s = splimp(); if_down(ifp); splx(s); } if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { int s = splimp(); if_up(ifp); splx(s); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (ifr->ifr_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) (void) (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCSIFMETRIC: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); ifp->if_metric = ifr->ifr_metric; break; case SIOCSIFPHYS: error = suser(p->p_ucred, &p->p_acflag); if (error) return error; if (!ifp->if_ioctl) return EOPNOTSUPP; return ifp->if_ioctl(ifp, cmd, data); case SIOCSIFMTU: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); /* * 72 was chosen below because it is the size of a TCP/IP * header (40) + the minimum mss (32). */ if (ifr->ifr_mtu < 72 || ifr->ifr_mtu > 65535) return (EINVAL); return ((*ifp->if_ioctl)(ifp, cmd, data)); case SIOCADDMULTI: case SIOCDELMULTI: error = suser(p->p_ucred, &p->p_acflag); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); default: if (so->so_proto == 0) return (EOPNOTSUPP); #ifndef COMPAT_43 return ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL, cmd, data, ifp)); #else { int ocmd = cmd; switch (cmd) { case SIOCSIFDSTADDR: case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFNETMASK: #if BYTE_ORDER != BIG_ENDIAN if (ifr->ifr_addr.sa_family == 0 && ifr->ifr_addr.sa_len < 16) { ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len; ifr->ifr_addr.sa_len = 16; } #else if (ifr->ifr_addr.sa_len == 0) ifr->ifr_addr.sa_len = 16; #endif break; case OSIOCGIFADDR: cmd = SIOCGIFADDR; break; case OSIOCGIFDSTADDR: cmd = SIOCGIFDSTADDR; break; case OSIOCGIFBRDADDR: cmd = SIOCGIFBRDADDR; break; case OSIOCGIFNETMASK: cmd = SIOCGIFNETMASK; } error = ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL, cmd, data, ifp)); switch (ocmd) { case OSIOCGIFADDR: case OSIOCGIFDSTADDR: case OSIOCGIFBRDADDR: case OSIOCGIFNETMASK: *(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family; } return (error); } #endif } return (0); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(ifp, pswitch) struct ifnet *ifp; int pswitch; { struct ifreq ifr; if (pswitch) { /* * If the device is not configured up, we cannot put it in * promiscuous mode. */ if ((ifp->if_flags & IFF_UP) == 0) return (ENETDOWN); if (ifp->if_pcount++ != 0) return (0); ifp->if_flags |= IFF_PROMISC; log(LOG_INFO, "%s%d: promiscuous mode enabled\n", ifp->if_name, ifp->if_unit); } else { if (--ifp->if_pcount > 0) return (0); ifp->if_flags &= ~IFF_PROMISC; } ifr.ifr_flags = ifp->if_flags; return ((*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr)); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ int ifconf(cmd, data) int cmd; caddr_t data; { register struct ifconf *ifc = (struct ifconf *)data; register struct ifnet *ifp = ifnet; register struct ifaddr *ifa; struct ifreq ifr, *ifrp; int space = ifc->ifc_len, error = 0; ifrp = ifc->ifc_req; for (; space > sizeof (ifr) && ifp; ifp = ifp->if_next) { char workbuf[12], *unitname; int unitlen, ifnlen; unitname = sprint_d(ifp->if_unit, workbuf, sizeof workbuf); unitlen = strlen(unitname); ifnlen = strlen(ifp->if_name); if(unitlen + ifnlen + 1 > sizeof ifr.ifr_name) { error = ENAMETOOLONG; } else { strcpy(ifr.ifr_name, ifp->if_name); strcpy(&ifr.ifr_name[ifnlen], unitname); } if ((ifa = ifp->if_addrlist) == 0) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); if (error) break; space -= sizeof (ifr), ifrp++; } else for ( ; space > sizeof (ifr) && ifa; ifa = ifa->ifa_next) { register struct sockaddr *sa = ifa->ifa_addr; #ifdef COMPAT_43 if (cmd == OSIOCGIFCONF) { struct osockaddr *osa = (struct osockaddr *)&ifr.ifr_addr; ifr.ifr_addr = *sa; osa->sa_family = sa->sa_family; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); ifrp++; } else #endif if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); ifrp++; } else { space -= sa->sa_len - sizeof(*sa); if (space < sizeof (ifr)) break; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr.ifr_name)); if (error == 0) error = copyout((caddr_t)sa, (caddr_t)&ifrp->ifr_addr, sa->sa_len); ifrp = (struct ifreq *) (sa->sa_len + (caddr_t)&ifrp->ifr_addr); } if (error) break; space -= sizeof (ifr); } } ifc->ifc_len -= space; return (error); } static char * sprint_d(n, buf, buflen) u_int n; char *buf; int buflen; { register char *cp = buf + buflen - 1; *cp = 0; do { cp--; *cp = "0123456789"[n % 10]; n /= 10; } while (n != 0); return (cp); }