/*- * THE BEER-WARE LICENSE * * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you * think this stuff is worth it, you can buy me a beer in return. * * Dan Moschuk */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #define ARC4_RESEED_BYTES 65536 #define ARC4_RESEED_SECONDS 300 #define ARC4_KEYBYTES 256 int arc4rand_iniseed_state = ARC4_ENTR_NONE; MALLOC_DEFINE(M_ARC4RANDOM, "arc4random", "arc4random structures"); struct arc4_s { struct mtx mtx; u_int8_t i, j; int numruns; u_int8_t sbox[256]; time_t t_reseed; } __aligned(CACHE_LINE_SIZE); static struct arc4_s *arc4inst = NULL; #define ARC4_FOREACH(_arc4) \ for (_arc4 = &arc4inst[0]; _arc4 <= &arc4inst[mp_maxid]; _arc4++) static u_int8_t arc4_randbyte(struct arc4_s *arc4); static __inline void arc4_swap(u_int8_t *a, u_int8_t *b) { u_int8_t c; c = *a; *a = *b; *b = c; } /* * Stir our S-box. */ static void arc4_randomstir(struct arc4_s* arc4) { u_int8_t key[ARC4_KEYBYTES]; int n; struct timeval tv_now; /* * XXX: FIX!! This isn't brilliant. Need more confidence. * This returns zero entropy before random(4) is seeded. */ (void)read_random(key, ARC4_KEYBYTES); getmicrouptime(&tv_now); mtx_lock(&arc4->mtx); for (n = 0; n < 256; n++) { arc4->j = (arc4->j + arc4->sbox[n] + key[n]) % 256; arc4_swap(&arc4->sbox[n], &arc4->sbox[arc4->j]); } arc4->i = arc4->j = 0; /* Reset for next reseed cycle. */ arc4->t_reseed = tv_now.tv_sec + ARC4_RESEED_SECONDS; arc4->numruns = 0; /* * Throw away the first N words of output, as suggested in the * paper "Weaknesses in the Key Scheduling Algorithm of RC4" * by Fluher, Mantin, and Shamir. (N = 768 in our case.) * * http://dl.acm.org/citation.cfm?id=646557.694759 */ for (n = 0; n < 768*4; n++) arc4_randbyte(arc4); mtx_unlock(&arc4->mtx); } /* * Initialize our S-box to its beginning defaults. */ static void arc4_init(void) { struct arc4_s *arc4; int n; arc4inst = malloc((mp_maxid + 1) * sizeof(struct arc4_s), M_ARC4RANDOM, M_NOWAIT | M_ZERO); KASSERT(arc4inst != NULL, ("arc4_init: memory allocation error")); ARC4_FOREACH(arc4) { mtx_init(&arc4->mtx, "arc4_mtx", NULL, MTX_DEF); arc4->i = arc4->j = 0; for (n = 0; n < 256; n++) arc4->sbox[n] = (u_int8_t) n; arc4->t_reseed = -1; arc4->numruns = 0; } } SYSINIT(arc4, SI_SUB_LOCK, SI_ORDER_ANY, arc4_init, NULL); static void arc4_uninit(void) { struct arc4_s *arc4; ARC4_FOREACH(arc4) { mtx_destroy(&arc4->mtx); } free(arc4inst, M_ARC4RANDOM); } SYSUNINIT(arc4, SI_SUB_LOCK, SI_ORDER_ANY, arc4_uninit, NULL); /* * Generate a random byte. */ static u_int8_t arc4_randbyte(struct arc4_s *arc4) { u_int8_t arc4_t; arc4->i = (arc4->i + 1) % 256; arc4->j = (arc4->j + arc4->sbox[arc4->i]) % 256; arc4_swap(&arc4->sbox[arc4->i], &arc4->sbox[arc4->j]); arc4_t = (arc4->sbox[arc4->i] + arc4->sbox[arc4->j]) % 256; return arc4->sbox[arc4_t]; } /* * MPSAFE */ void arc4rand(void *ptr, u_int len, int reseed) { u_char *p; struct timeval tv; struct arc4_s *arc4; if (reseed || atomic_cmpset_int(&arc4rand_iniseed_state, ARC4_ENTR_HAVE, ARC4_ENTR_SEED)) { ARC4_FOREACH(arc4) arc4_randomstir(arc4); } arc4 = &arc4inst[curcpu]; getmicrouptime(&tv); if ((arc4->numruns > ARC4_RESEED_BYTES) || (tv.tv_sec > arc4->t_reseed)) arc4_randomstir(arc4); mtx_lock(&arc4->mtx); arc4->numruns += len; p = ptr; while (len--) *p++ = arc4_randbyte(arc4); mtx_unlock(&arc4->mtx); } uint32_t arc4random(void) { uint32_t ret; arc4rand(&ret, sizeof ret, 0); return ret; }