/*- * Copyright (c) 1997, 1998, 1999, 2000-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver. * Used in the LinkSys USB200M and various other adapters. * * Manuals available from: * http://www.asix.com.tw/datasheet/mac/Ax88172.PDF * Note: you need the manual for the AX88170 chip (USB 1.x ethernet * controller) to find the definitions for the RX control register. * http://www.asix.com.tw/datasheet/mac/Ax88170.PDF * * Written by Bill Paul * Senior Engineer * Wind River Systems */ /* * The AX88172 provides USB ethernet supports at 10 and 100Mbps. * It uses an external PHY (reference designs use a RealTek chip), * and has a 64-bit multicast hash filter. There is some information * missing from the manual which one needs to know in order to make * the chip function: * * - You must set bit 7 in the RX control register, otherwise the * chip won't receive any packets. * - You must initialize all 3 IPG registers, or you won't be able * to send any packets. * * Note that this device appears to only support loading the station * address via autload from the EEPROM (i.e. there's no way to manaully * set it). * * (Adam Weinberger wanted me to name this driver if_gir.c.) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #include #include #include /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * AXE_178_MAX_FRAME_BURST * max frame burst size for Ax88178 and Ax88772 * 0 2048 bytes * 1 4096 bytes * 2 8192 bytes * 3 16384 bytes * use the largest your system can handle without usb stalling. * * NB: 88772 parts appear to generate lots of input errors with * a 2K rx buffer and 8K is only slightly faster than 4K on an * EHCI port on a T42 so change at your own risk. */ #define AXE_178_MAX_FRAME_BURST 1 #include /* * Various supported device vendors/products. */ const struct axe_type axe_devs[] = { { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UF200}, 0 }, { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2}, 0 }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET}, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172}, 0 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772}, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178}, AX178 }, { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T}, 0 }, { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 }, { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR}, 0}, { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772 }, { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0}, { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100}, 0 }, { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 }, { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E}, 0 }, { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 }, { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1}, 0 }, { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M}, 0 }, { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 }, { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX}, 0 }, { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120}, 0 }, { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 }, { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 }, { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 }, { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029}, 0 }, { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 } }; #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p)) static device_probe_t axe_match; static device_attach_t axe_attach; static device_detach_t axe_detach; static device_shutdown_t axe_shutdown; static miibus_readreg_t axe_miibus_readreg; static miibus_writereg_t axe_miibus_writereg; static miibus_statchg_t axe_miibus_statchg; static int axe_encap(struct axe_softc *, struct mbuf *, int); static void axe_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void axe_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void axe_tick(void *); static void axe_tick_task(void *); static void axe_start(struct ifnet *); static int axe_ioctl(struct ifnet *, u_long, caddr_t); static void axe_init(void *); static void axe_stop(struct axe_softc *); static void axe_watchdog(struct ifnet *); static int axe_cmd(struct axe_softc *, int, int, int, void *); static int axe_ifmedia_upd(struct ifnet *); static void axe_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void axe_setmulti(struct axe_softc *); static device_method_t axe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, axe_match), DEVMETHOD(device_attach, axe_attach), DEVMETHOD(device_detach, axe_detach), DEVMETHOD(device_shutdown, axe_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, axe_miibus_readreg), DEVMETHOD(miibus_writereg, axe_miibus_writereg), DEVMETHOD(miibus_statchg, axe_miibus_statchg), { 0, 0 } }; static driver_t axe_driver = { "axe", axe_methods, sizeof(struct axe_softc) }; static devclass_t axe_devclass; DRIVER_MODULE(axe, uhub, axe_driver, axe_devclass, usbd_driver_load, 0); DRIVER_MODULE(miibus, axe, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(axe, usb, 1, 1, 1); MODULE_DEPEND(axe, miibus, 1, 1, 1); static int axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf) { usb_device_request_t req; usbd_status err; AXE_SLEEPLOCKASSERT(sc); if (sc->axe_dying) return(0); if (AXE_CMD_DIR(cmd)) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AXE_CMD_CMD(cmd); USETW(req.wValue, val); USETW(req.wIndex, index); USETW(req.wLength, AXE_CMD_LEN(cmd)); err = usbd_do_request(sc->axe_udev, &req, buf); if (err) return(-1); return(0); } static int axe_miibus_readreg(device_t dev, int phy, int reg) { struct axe_softc *sc = device_get_softc(dev); usbd_status err; u_int16_t val; if (sc->axe_dying) return(0); AXE_SLEEPLOCKASSERT(sc); #ifdef notdef /* * The chip tells us the MII address of any supported * PHYs attached to the chip, so only read from those. */ if (sc->axe_phyaddrs[0] != AXE_NOPHY && phy != sc->axe_phyaddrs[0]) return (0); if (sc->axe_phyaddrs[1] != AXE_NOPHY && phy != sc->axe_phyaddrs[1]) return (0); #endif if (sc->axe_phyaddrs[0] != 0xFF && sc->axe_phyaddrs[0] != phy) return (0); AXE_LOCK(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, (void *)&val); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); AXE_UNLOCK(sc); if (err) { device_printf(sc->axe_dev, "read PHY failed\n"); return(-1); } if (val && val != 0xffff) sc->axe_phyaddrs[0] = phy; return (le16toh(val)); } static int axe_miibus_writereg(device_t dev, int phy, int reg, int val) { struct axe_softc *sc = device_get_softc(dev); usbd_status err; if (sc->axe_dying) return(0); AXE_SLEEPLOCKASSERT(sc); AXE_LOCK(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); val = htole32(val); err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, (void *)&val); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); AXE_UNLOCK(sc); if (err) { device_printf(sc->axe_dev, "write PHY failed\n"); return(-1); } return (0); } static void axe_miibus_statchg(device_t dev) { struct axe_softc *sc = device_get_softc(dev); struct mii_data *mii = GET_MII(sc); int val, err; val = (mii->mii_media_active & IFM_GMASK) == IFM_FDX ? AXE_MEDIA_FULL_DUPLEX : 0; if (sc->axe_flags & (AX178|AX772)) { val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK; break; case IFM_100_TX: val |= AXE_178_MEDIA_100TX; break; case IFM_10_T: /* doesn't need to be handled */ break; } } err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL); if (err) device_printf(dev, "media change failed, error %d\n", err); } /* * Set media options. */ static int axe_ifmedia_upd(struct ifnet *ifp) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); sc->axe_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return (0); } /* * Report current media status. */ static void axe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = GET_MII(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static void axe_setmulti(struct axe_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; u_int32_t h = 0; u_int16_t rxmode; u_int8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; ifp = sc->axe_ifp; AXE_LOCK(sc); axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, (void *)&rxmode); rxmode = le16toh(rxmode); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxmode |= AXE_RXCMD_ALLMULTI; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); AXE_UNLOCK(sc); return; } else rxmode &= ~AXE_RXCMD_ALLMULTI; IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; hashtbl[h / 8] |= 1 << (h % 8); } IF_ADDR_UNLOCK(ifp); axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, (void *)&hashtbl); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); AXE_UNLOCK(sc); return; } static void axe_ax88178_init(struct axe_softc *sc) { int gpio0 = 0, phymode = 0; u_int16_t eeprom; axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL); /* XXX magic */ axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom); eeprom = le16toh(eeprom); axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL); /* if EEPROM is invalid we have to use to GPIO0 */ if (eeprom == 0xffff) { phymode = 0; gpio0 = 1; } else { phymode = eeprom & 7; gpio0 = (eeprom & 0x80) ? 0 : 1; } axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x008c, NULL); usbd_delay_ms(sc->axe_udev, 40); if ((eeprom >> 8) != 1) { axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x003c, NULL); usbd_delay_ms(sc->axe_udev, 30); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x001c, NULL); usbd_delay_ms(sc->axe_udev, 300); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x003c, NULL); usbd_delay_ms(sc->axe_udev, 30); } else { axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x0004, NULL); usbd_delay_ms(sc->axe_udev, 30); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x000c, NULL); usbd_delay_ms(sc->axe_udev, 30); } /* soft reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, 0, NULL); usbd_delay_ms(sc->axe_udev, 150); axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL); usbd_delay_ms(sc->axe_udev, 150); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } static void axe_ax88772_init(struct axe_softc *sc) { axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL); usbd_delay_ms(sc->axe_udev, 40); if (sc->axe_phyaddrs[1] == AXE_INTPHY) { /* ask for embedded PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x01, NULL); usbd_delay_ms(sc->axe_udev, 10); /* power down and reset state, pin reset state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); usbd_delay_ms(sc->axe_udev, 60); /* power down/reset state, pin operating state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); usbd_delay_ms(sc->axe_udev, 150); /* power up, reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL); /* power up, operating */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL); } else { /* ask for external PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x00, NULL); usbd_delay_ms(sc->axe_udev, 10); /* power down/reset state, pin operating state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); } usbd_delay_ms(sc->axe_udev, 150); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } static void axe_reset(struct axe_softc *sc) { if (sc->axe_dying) return; if (usbd_set_config_no(sc->axe_udev, AXE_CONFIG_NO, 1) || usbd_device2interface_handle(sc->axe_udev, AXE_IFACE_IDX, &sc->axe_iface)) { device_printf(sc->axe_dev, "getting interface handle failed\n"); } /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a AX88172 chip. */ static int axe_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (!uaa->iface) return(UMATCH_NONE); return (axe_lookup(uaa->vendor, uaa->product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int axe_attach(device_t self) { struct axe_softc *sc = device_get_softc(self); struct usb_attach_arg *uaa = device_get_ivars(self); const struct axe_type *type; u_char eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; sc->axe_udev = uaa->device; sc->axe_dev = self; type = axe_lookup(uaa->vendor, uaa->product); if (type != NULL) sc->axe_flags = type->axe_flags; if (usbd_set_config_no(sc->axe_udev, AXE_CONFIG_NO, 1)) { device_printf(sc->axe_dev, "getting interface handle failed\n"); return ENXIO; } usb_init_task(&sc->axe_tick_task, axe_tick_task, sc); if (usbd_device2interface_handle(uaa->device, AXE_IFACE_IDX, &sc->axe_iface)) { device_printf(sc->axe_dev, "getting interface handle failed\n"); return ENXIO; } sc->axe_boundary = 64; if (sc->axe_flags & (AX178|AX772)) { if (sc->axe_udev->speed == USB_SPEED_HIGH) { sc->axe_bufsz = AXE_178_MAX_BUFSZ; sc->axe_boundary = 512; } else sc->axe_bufsz = AXE_178_MIN_BUFSZ; } else sc->axe_bufsz = AXE_172_BUFSZ; { /* XXX debug */ device_printf(sc->axe_dev, "%s, bufsz %d, boundary %d\n", sc->axe_flags & AX178 ? "AX88178" : sc->axe_flags & AX772 ? "AX88772" : "AX88172", sc->axe_bufsz, sc->axe_boundary); } id = usbd_get_interface_descriptor(sc->axe_iface); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->axe_iface, i); if (!ed) { device_printf(sc->axe_dev, "couldn't get ep %d\n", i); return ENXIO; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->axe_ed[AXE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->axe_ed[AXE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->axe_ed[AXE_ENDPT_INTR] = ed->bEndpointAddress; } } mtx_init(&sc->axe_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); sx_init(&sc->axe_sleeplock, device_get_nameunit(self)); AXE_SLEEPLOCK(sc); AXE_LOCK(sc); /* We need the PHYID for the init dance in some cases */ axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, (void *)&sc->axe_phyaddrs); if (sc->axe_flags & AX178) axe_ax88178_init(sc); else if (sc->axe_flags & AX772) axe_ax88772_init(sc); /* * Get station address. */ if (sc->axe_flags & (AX178|AX772)) axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, &eaddr); else axe_cmd(sc, AXE_172_CMD_READ_NODEID, 0, 0, &eaddr); /* * Fetch IPG values. */ axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, (void *)&sc->axe_ipgs); /* * Work around broken adapters that appear to lie about * their PHY addresses. */ sc->axe_phyaddrs[0] = sc->axe_phyaddrs[1] = 0xFF; ifp = sc->axe_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(sc->axe_dev, "can not if_alloc()\n"); AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); sx_destroy(&sc->axe_sleeplock); mtx_destroy(&sc->axe_mtx); return ENXIO; } ifp->if_softc = sc; if_initname(ifp, "axe", device_get_unit(sc->axe_dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_NEEDSGIANT; ifp->if_ioctl = axe_ioctl; ifp->if_start = axe_start; ifp->if_watchdog = axe_watchdog; ifp->if_init = axe_init; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); if (mii_phy_probe(self, &sc->axe_miibus, axe_ifmedia_upd, axe_ifmedia_sts)) { device_printf(sc->axe_dev, "MII without any PHY!\n"); if_free(ifp); AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); sx_destroy(&sc->axe_sleeplock); mtx_destroy(&sc->axe_mtx); return ENXIO; } /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); callout_handle_init(&sc->axe_stat_ch); usb_register_netisr(); sc->axe_dying = 0; AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); return 0; } static int axe_detach(device_t dev) { struct axe_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); AXE_LOCK(sc); ifp = sc->axe_ifp; sc->axe_dying = 1; untimeout(axe_tick, sc, sc->axe_stat_ch); usb_rem_task(sc->axe_udev, &sc->axe_tick_task); ether_ifdetach(ifp); if_free(ifp); if (sc->axe_ep[AXE_ENDPT_TX] != NULL) usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_TX]); if (sc->axe_ep[AXE_ENDPT_RX] != NULL) usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_RX]); if (sc->axe_ep[AXE_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_INTR]); AXE_UNLOCK(sc); sx_destroy(&sc->axe_sleeplock); mtx_destroy(&sc->axe_mtx); return(0); } static int axe_rx_list_init(struct axe_softc *sc) { struct axe_cdata *cd; struct axe_chain *c; int i; cd = &sc->axe_cdata; for (i = 0; i < AXE_RX_LIST_CNT; i++) { c = &cd->axe_rx_chain[i]; c->axe_sc = sc; c->axe_idx = i; c->axe_mbuf = NULL; if (c->axe_xfer == NULL) { c->axe_xfer = usbd_alloc_xfer(sc->axe_udev); if (c->axe_xfer == NULL) return (ENOBUFS); c->axe_buf = usbd_alloc_buffer(c->axe_xfer, sc->axe_bufsz); if (c->axe_buf == NULL) { usbd_free_xfer(c->axe_xfer); return (ENOBUFS); } } } return (0); } static void axe_rx_list_free(struct axe_softc *sc) { int i; for (i = 0; i < AXE_RX_LIST_CNT; i++) { if (sc->axe_cdata.axe_rx_chain[i].axe_mbuf != NULL) { m_freem(sc->axe_cdata.axe_rx_chain[i].axe_mbuf); sc->axe_cdata.axe_rx_chain[i].axe_mbuf = NULL; } if (sc->axe_cdata.axe_rx_chain[i].axe_xfer != NULL) { usbd_free_xfer(sc->axe_cdata.axe_rx_chain[i].axe_xfer); sc->axe_cdata.axe_rx_chain[i].axe_xfer = NULL; } } } static int axe_tx_list_init(struct axe_softc *sc) { struct axe_cdata *cd; struct axe_chain *c; int i; cd = &sc->axe_cdata; for (i = 0; i < AXE_TX_LIST_CNT; i++) { c = &cd->axe_tx_chain[i]; c->axe_sc = sc; c->axe_idx = i; c->axe_mbuf = NULL; if (c->axe_xfer == NULL) { c->axe_xfer = usbd_alloc_xfer(sc->axe_udev); if (c->axe_xfer == NULL) return (ENOBUFS); c->axe_buf = usbd_alloc_buffer(c->axe_xfer, sc->axe_bufsz); if (c->axe_buf == NULL) { usbd_free_xfer(c->axe_xfer); return (ENOBUFS); } } } return (0); } static void axe_tx_list_free(struct axe_softc *sc) { int i; /* Free TX resources. */ for (i = 0; i < AXE_TX_LIST_CNT; i++) { if (sc->axe_cdata.axe_tx_chain[i].axe_mbuf != NULL) { m_freem(sc->axe_cdata.axe_tx_chain[i].axe_mbuf); sc->axe_cdata.axe_tx_chain[i].axe_mbuf = NULL; } if (sc->axe_cdata.axe_tx_chain[i].axe_xfer != NULL) { usbd_free_xfer(sc->axe_cdata.axe_tx_chain[i].axe_xfer); sc->axe_cdata.axe_tx_chain[i].axe_xfer = NULL; } } } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void axe_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct axe_softc *sc; struct axe_chain *c = (struct axe_chain *) priv; struct mbuf *m; u_char *buf; struct ifnet *ifp; struct axe_sframe_hdr *hdr; int total_len = 0; int pktlen = 0; sc = c->axe_sc; AXE_LOCK(sc); ifp = sc->axe_ifp; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { AXE_UNLOCK(sc); return; } if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { AXE_UNLOCK(sc); return; } if (usbd_ratecheck(&sc->axe_rx_notice)) device_printf(sc->axe_dev, "usb error on rx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->axe_ep[AXE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); buf = c->axe_buf; do { if (sc->axe_flags & (AX178|AX772)) { if (total_len < sizeof(struct axe_sframe_hdr)) { ifp->if_ierrors++; goto done; } if ((pktlen % 2) != 0) pktlen++; buf += pktlen; hdr = (struct axe_sframe_hdr *) buf; total_len -= sizeof(struct axe_sframe_hdr); if ((hdr->len ^ hdr->ilen) != 0xffff) { ifp->if_ierrors++; goto done; } pktlen = le16toh(hdr->len); if (pktlen > total_len) { ifp->if_ierrors++; goto done; } buf += sizeof(struct axe_sframe_hdr); total_len -= pktlen + (pktlen % 2); } else { pktlen = total_len; total_len = 0; } if (pktlen < sizeof(struct ether_header)) { ifp->if_ierrors++; goto done; } m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { ifp->if_ierrors++; goto done; } m->m_data += ETHER_ALIGN; memcpy(mtod(m, void *), buf, pktlen); m->m_pkthdr.len = m->m_len = pktlen; m->m_pkthdr.rcvif = ifp; ifp->if_input(ifp, m); ifp->if_ipackets++; } while (total_len > 0); /* fall thru... */ done: /* Setup new transfer. */ usbd_setup_xfer(xfer, sc->axe_ep[AXE_ENDPT_RX], c, c->axe_buf, sc->axe_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, axe_rxeof); usbd_transfer(xfer); AXE_UNLOCK(sc); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void axe_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct axe_softc *sc; struct axe_chain *c; struct ifnet *ifp; usbd_status err; c = priv; sc = c->axe_sc; AXE_LOCK(sc); ifp = sc->axe_ifp; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { AXE_UNLOCK(sc); return; } device_printf(sc->axe_dev, "usb error on tx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->axe_ep[AXE_ENDPT_TX]); AXE_UNLOCK(sc); return; } ifp->if_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; usbd_get_xfer_status(c->axe_xfer, NULL, NULL, NULL, &err); if (c->axe_mbuf != NULL) { m_freem(c->axe_mbuf); c->axe_mbuf = NULL; } if (err) ifp->if_oerrors++; else ifp->if_opackets++; AXE_UNLOCK(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) axe_start(ifp); return; } static void axe_tick(void *xsc) { struct axe_softc *sc = xsc; if (sc == NULL) return; if (sc->axe_dying) return; /* Perform periodic stuff in process context */ usb_add_task(sc->axe_udev, &sc->axe_tick_task, USB_TASKQ_DRIVER); } static void axe_tick_task(void *xsc) { struct axe_softc *sc; struct ifnet *ifp; struct mii_data *mii; sc = xsc; if (sc == NULL) return; AXE_SLEEPLOCK(sc); AXE_LOCK(sc); ifp = sc->axe_ifp; mii = GET_MII(sc); if (mii == NULL) { AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); return; } mii_tick(mii); if (!sc->axe_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->axe_link++; if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) axe_start(ifp); } sc->axe_stat_ch = timeout(axe_tick, sc, hz); AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); return; } static int axe_encap(struct axe_softc *sc, struct mbuf *m, int idx) { struct axe_chain *c; usbd_status err; struct axe_sframe_hdr hdr; int length; c = &sc->axe_cdata.axe_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ if (sc->axe_flags & (AX178|AX772)) { hdr.len = htole16(m->m_pkthdr.len); hdr.ilen = ~hdr.len; memcpy(c->axe_buf, &hdr, sizeof(hdr)); length = sizeof(hdr); m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf + length); length += m->m_pkthdr.len; if ((length % sc->axe_boundary) == 0) { hdr.len = 0; hdr.ilen = 0xffff; memcpy(c->axe_buf + length, &hdr, sizeof(hdr)); length += sizeof(hdr); } } else { m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf); length = m->m_pkthdr.len; } c->axe_mbuf = m; usbd_setup_xfer(c->axe_xfer, sc->axe_ep[AXE_ENDPT_TX], c, c->axe_buf, length, USBD_FORCE_SHORT_XFER, 10000, axe_txeof); /* Transmit */ err = usbd_transfer(c->axe_xfer); if (err != USBD_IN_PROGRESS) { /* XXX probably don't want to sleep here */ AXE_SLEEPLOCK(sc); axe_stop(sc); AXE_SLEEPUNLOCK(sc); return(EIO); } sc->axe_cdata.axe_tx_cnt++; return(0); } static void axe_start(struct ifnet *ifp) { struct axe_softc *sc; struct mbuf *m_head = NULL; sc = ifp->if_softc; AXE_LOCK(sc); if (!sc->axe_link) { AXE_UNLOCK(sc); return; } if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { AXE_UNLOCK(sc); return; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) { AXE_UNLOCK(sc); return; } if (axe_encap(sc, m_head, 0)) { IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; AXE_UNLOCK(sc); return; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; AXE_UNLOCK(sc); return; } static void axe_init(void *xsc) { struct axe_softc *sc = xsc; struct ifnet *ifp = sc->axe_ifp; struct axe_chain *c; usbd_status err; int i; int rxmode; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; AXE_SLEEPLOCK(sc); AXE_LOCK(sc); /* * Cancel pending I/O and free all RX/TX buffers. */ axe_reset(sc); #ifdef notdef /* Set MAC address */ axe_mac(sc, IF_LLADDR(sc->axe_ifp), 1); #endif /* Enable RX logic. */ /* Init TX ring. */ if (axe_tx_list_init(sc) == ENOBUFS) { device_printf(sc->axe_dev, "tx list init failed\n"); AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); return; } /* Init RX ring. */ if (axe_rx_list_init(sc) == ENOBUFS) { device_printf(sc->axe_dev, "rx list init failed\n"); AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); return; } /* Set transmitter IPG values */ if (sc->axe_flags & (AX178|AX772)) { axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2], (sc->axe_ipgs[1]<<8) | sc->axe_ipgs[0], NULL); } else { axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL); } /* Enable receiver, set RX mode */ rxmode = AXE_RXCMD_MULTICAST|AXE_RXCMD_ENABLE; if (sc->axe_flags & (AX178|AX772)) { if (sc->axe_bufsz == AXE_178_MAX_BUFSZ) rxmode |= AXE_178_RXCMD_MFB; } else rxmode |= AXE_172_RXCMD_UNICAST; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) rxmode |= AXE_RXCMD_PROMISC; if (ifp->if_flags & IFF_BROADCAST) rxmode |= AXE_RXCMD_BROADCAST; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); /* Load the multicast filter. */ axe_setmulti(sc); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->axe_ep[AXE_ENDPT_RX]); if (err) { device_printf(sc->axe_dev, "open rx pipe failed: %s\n", usbd_errstr(err)); AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); return; } err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->axe_ep[AXE_ENDPT_TX]); if (err) { device_printf(sc->axe_dev, "open tx pipe failed: %s\n", usbd_errstr(err)); AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); return; } /* Start up the receive pipe. */ for (i = 0; i < AXE_RX_LIST_CNT; i++) { c = &sc->axe_cdata.axe_rx_chain[i]; usbd_setup_xfer(c->axe_xfer, sc->axe_ep[AXE_ENDPT_RX], c, c->axe_buf, sc->axe_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, axe_rxeof); usbd_transfer(c->axe_xfer); } ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; AXE_UNLOCK(sc); AXE_SLEEPUNLOCK(sc); sc->axe_stat_ch = timeout(axe_tick, sc, hz); return; } static int axe_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct axe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; u_int16_t rxmode; int error = 0; switch(command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->axe_if_flags & IFF_PROMISC)) { AXE_SLEEPLOCK(sc); AXE_LOCK(sc); axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, (void *)&rxmode); rxmode = le16toh(rxmode); rxmode |= AXE_RXCMD_PROMISC; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); AXE_UNLOCK(sc); axe_setmulti(sc); AXE_SLEEPUNLOCK(sc); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->axe_if_flags & IFF_PROMISC) { AXE_SLEEPLOCK(sc); AXE_LOCK(sc); axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, (void *)&rxmode); rxmode = le16toh(rxmode); rxmode &= ~AXE_RXCMD_PROMISC; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); AXE_UNLOCK(sc); axe_setmulti(sc); AXE_SLEEPUNLOCK(sc); } else if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) axe_init(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { AXE_SLEEPLOCK(sc); axe_stop(sc); AXE_SLEEPUNLOCK(sc); } } sc->axe_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: AXE_SLEEPLOCK(sc); axe_setmulti(sc); AXE_SLEEPUNLOCK(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: AXE_SLEEPLOCK(sc); mii = GET_MII(sc); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); AXE_SLEEPUNLOCK(sc); break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } static void axe_watchdog(struct ifnet *ifp) { struct axe_softc *sc; struct axe_chain *c; usbd_status stat; sc = ifp->if_softc; AXE_LOCK(sc); ifp->if_oerrors++; device_printf(sc->axe_dev, "watchdog timeout\n"); c = &sc->axe_cdata.axe_tx_chain[0]; usbd_get_xfer_status(c->axe_xfer, NULL, NULL, NULL, &stat); axe_txeof(c->axe_xfer, c, stat); AXE_UNLOCK(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) axe_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void axe_stop(struct axe_softc *sc) { usbd_status err; struct ifnet *ifp; AXE_SLEEPLOCKASSERT(sc); AXE_LOCK(sc); ifp = sc->axe_ifp; ifp->if_timer = 0; untimeout(axe_tick, sc, sc->axe_stat_ch); /* Stop transfers. */ if (sc->axe_ep[AXE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_RX]); if (err) { device_printf(sc->axe_dev, "abort rx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_RX]); if (err) { device_printf(sc->axe_dev, "close rx pipe failed: %s\n", usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_RX] = NULL; } if (sc->axe_ep[AXE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_TX]); if (err) { device_printf(sc->axe_dev, "abort tx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_TX]); if (err) { device_printf(sc->axe_dev, "close tx pipe failed: %s\n", usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_TX] = NULL; } if (sc->axe_ep[AXE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_INTR]); if (err) { device_printf(sc->axe_dev, "abort intr pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_INTR]); if (err) { device_printf(sc->axe_dev, "close intr pipe failed: %s\n", usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_INTR] = NULL; } axe_reset(sc); /* Free RX resources. */ axe_rx_list_free(sc); /* Free TX resources. */ axe_tx_list_free(sc); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->axe_link = 0; AXE_UNLOCK(sc); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int axe_shutdown(device_t dev) { struct axe_softc *sc; sc = device_get_softc(dev); AXE_SLEEPLOCK(sc); axe_stop(sc); AXE_SLEEPUNLOCK(sc); return (0); }