/* * Copyright (c) 1994, Sean Eric Fagan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Sean Eric Fagan. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int proc_rwmem(struct proc *p, struct uio *uio) { struct vmspace *vm; vm_map_t map; vm_object_t object = NULL; vm_offset_t pageno = 0; /* page number */ vm_prot_t reqprot; vm_offset_t kva; int error; int writing; GIANT_REQUIRED; /* * if the vmspace is in the midst of being deallocated or the * process is exiting, don't try to grab anything. The page table * usage in that process can be messed up. */ vm = p->p_vmspace; if ((p->p_flag & P_WEXIT)) return (EFAULT); if (vm->vm_refcnt < 1) return (EFAULT); ++vm->vm_refcnt; /* * The map we want... */ map = &vm->vm_map; writing = uio->uio_rw == UIO_WRITE; reqprot = writing ? (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE) : VM_PROT_READ; kva = kmem_alloc_pageable(kernel_map, PAGE_SIZE); /* * Only map in one page at a time. We don't have to, but it * makes things easier. This way is trivial - right? */ do { vm_map_t tmap; vm_offset_t uva; int page_offset; /* offset into page */ vm_map_entry_t out_entry; vm_prot_t out_prot; boolean_t wired; vm_pindex_t pindex; u_int len; vm_page_t m; object = NULL; uva = (vm_offset_t)uio->uio_offset; /* * Get the page number of this segment. */ pageno = trunc_page(uva); page_offset = uva - pageno; /* * How many bytes to copy */ len = min(PAGE_SIZE - page_offset, uio->uio_resid); /* * Fault the page on behalf of the process */ error = vm_fault(map, pageno, reqprot, VM_FAULT_NORMAL); if (error) { error = EFAULT; break; } /* * Now we need to get the page. out_entry, out_prot, wired, * and single_use aren't used. One would think the vm code * would be a *bit* nicer... We use tmap because * vm_map_lookup() can change the map argument. */ tmap = map; error = vm_map_lookup(&tmap, pageno, reqprot, &out_entry, &object, &pindex, &out_prot, &wired); if (error) { error = EFAULT; /* * Make sure that there is no residue in 'object' from * an error return on vm_map_lookup. */ object = NULL; break; } m = vm_page_lookup(object, pindex); /* Allow fallback to backing objects if we are reading */ while (m == NULL && !writing && object->backing_object) { pindex += OFF_TO_IDX(object->backing_object_offset); object = object->backing_object; m = vm_page_lookup(object, pindex); } if (m == NULL) { error = EFAULT; /* * Make sure that there is no residue in 'object' from * an error return on vm_map_lookup. */ object = NULL; vm_map_lookup_done(tmap, out_entry); break; } /* * Wire the page into memory */ vm_page_wire(m); /* * We're done with tmap now. * But reference the object first, so that we won't loose * it. */ vm_object_reference(object); vm_map_lookup_done(tmap, out_entry); pmap_kenter(kva, VM_PAGE_TO_PHYS(m)); /* * Now do the i/o move. */ error = uiomove((caddr_t)(kva + page_offset), len, uio); pmap_kremove(kva); /* * release the page and the object */ vm_page_unwire(m, 1); vm_object_deallocate(object); object = NULL; } while (error == 0 && uio->uio_resid > 0); if (object) vm_object_deallocate(object); kmem_free(kernel_map, kva, PAGE_SIZE); vmspace_free(vm); return (error); } /* * Process debugging system call. */ #ifndef _SYS_SYSPROTO_H_ struct ptrace_args { int req; pid_t pid; caddr_t addr; int data; }; #endif int ptrace(struct thread *td, struct ptrace_args *uap) { struct proc *curp = td->td_proc; struct proc *p; struct iovec iov; struct uio uio; union { struct reg reg; struct dbreg dbreg; struct fpreg fpreg; } r; int error = 0; int write; write = 0; if (uap->req == PT_TRACE_ME) { p = curp; PROC_LOCK(p); } else { if ((p = pfind(uap->pid)) == NULL) return (ESRCH); } if (p_cansee(curp, p)) { PROC_UNLOCK(p); return (ESRCH); } if ((error = p_candebug(curp, p)) != 0) { PROC_UNLOCK(p); return (error); } /* * Don't debug system processes! */ if ((p->p_flag & P_SYSTEM) != 0) { PROC_UNLOCK(p); return (EINVAL); } /* * Permissions check */ switch (uap->req) { case PT_TRACE_ME: /* Always legal. */ break; case PT_ATTACH: /* Self */ if (p->p_pid == curp->p_pid) { PROC_UNLOCK(p); return (EINVAL); } /* Already traced */ if (p->p_flag & P_TRACED) { PROC_UNLOCK(p); return (EBUSY); } /* OK */ break; case PT_READ_I: case PT_READ_D: case PT_WRITE_I: case PT_WRITE_D: case PT_CONTINUE: case PT_KILL: case PT_STEP: case PT_DETACH: #ifdef PT_GETREGS case PT_GETREGS: #endif #ifdef PT_SETREGS case PT_SETREGS: #endif #ifdef PT_GETFPREGS case PT_GETFPREGS: #endif #ifdef PT_SETFPREGS case PT_SETFPREGS: #endif #ifdef PT_GETDBREGS case PT_GETDBREGS: #endif #ifdef PT_SETDBREGS case PT_SETDBREGS: #endif /* not being traced... */ if ((p->p_flag & P_TRACED) == 0) { PROC_UNLOCK(p); return (EPERM); } /* not being traced by YOU */ if (p->p_pptr != curp) { PROC_UNLOCK(p); return (EBUSY); } /* not currently stopped */ mtx_lock_spin(&sched_lock); if (p->p_stat != SSTOP || (p->p_flag & P_WAITED) == 0) { mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (EBUSY); } mtx_unlock_spin(&sched_lock); /* OK */ break; default: PROC_UNLOCK(p); return (EINVAL); } PROC_UNLOCK(p); #ifdef FIX_SSTEP /* * Single step fixup ala procfs */ FIX_SSTEP(&p->p_thread); /* XXXKSE */ #endif /* * Actually do the requests */ td->td_retval[0] = 0; switch (uap->req) { case PT_TRACE_ME: /* set my trace flag and "owner" so it can read/write me */ sx_xlock(&proctree_lock); PROC_LOCK(p); p->p_flag |= P_TRACED; p->p_oppid = p->p_pptr->p_pid; PROC_UNLOCK(p); sx_xunlock(&proctree_lock); return (0); case PT_ATTACH: /* security check done above */ sx_xlock(&proctree_lock); PROC_LOCK(p); p->p_flag |= P_TRACED; p->p_oppid = p->p_pptr->p_pid; if (p->p_pptr != curp) proc_reparent(p, curp); PROC_UNLOCK(p); sx_xunlock(&proctree_lock); uap->data = SIGSTOP; goto sendsig; /* in PT_CONTINUE below */ case PT_STEP: case PT_CONTINUE: case PT_DETACH: if ((uap->req != PT_STEP) && ((unsigned)uap->data >= NSIG)) return (EINVAL); PHOLD(p); if (uap->req == PT_STEP) { if ((error = ptrace_single_step(&p->p_thread))) { PRELE(p); return (error); } } if (uap->addr != (caddr_t)1) { fill_kinfo_proc(p, &p->p_uarea->u_kproc); if ((error = ptrace_set_pc(&p->p_thread, (u_long)(uintfptr_t)uap->addr))) { PRELE(p); return (error); } } PRELE(p); if (uap->req == PT_DETACH) { /* reset process parent */ sx_xlock(&proctree_lock); if (p->p_oppid != p->p_pptr->p_pid) { struct proc *pp; pp = pfind(p->p_oppid); if (pp != NULL) PROC_UNLOCK(pp); else pp = initproc; PROC_LOCK(p); proc_reparent(p, pp); } else PROC_LOCK(p); p->p_flag &= ~(P_TRACED | P_WAITED); p->p_oppid = 0; PROC_UNLOCK(p); sx_xunlock(&proctree_lock); /* should we send SIGCHLD? */ } sendsig: /* deliver or queue signal */ PROC_LOCK(p); mtx_lock_spin(&sched_lock); if (p->p_stat == SSTOP) { p->p_xstat = uap->data; setrunnable(&p->p_thread); /* XXXKSE */ mtx_unlock_spin(&sched_lock); } else { mtx_unlock_spin(&sched_lock); if (uap->data) psignal(p, uap->data); } PROC_UNLOCK(p); return (0); case PT_WRITE_I: case PT_WRITE_D: write = 1; /* fallthrough */ case PT_READ_I: case PT_READ_D: /* write = 0 set above */ iov.iov_base = write ? (caddr_t)&uap->data : (caddr_t)td->td_retval; iov.iov_len = sizeof(int); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)(uintptr_t)uap->addr; uio.uio_resid = sizeof(int); uio.uio_segflg = UIO_SYSSPACE; /* ie: the uap */ uio.uio_rw = write ? UIO_WRITE : UIO_READ; uio.uio_td = td; error = proc_rwmem(p, &uio); if (uio.uio_resid != 0) { /* * XXX proc_rwmem() doesn't currently return ENOSPC, * so I think write() can bogusly return 0. * XXX what happens for short writes? We don't want * to write partial data. * XXX proc_rwmem() returns EPERM for other invalid * addresses. Convert this to EINVAL. Does this * clobber returns of EPERM for other reasons? */ if (error == 0 || error == ENOSPC || error == EPERM) error = EINVAL; /* EOF */ } return (error); case PT_KILL: uap->data = SIGKILL; goto sendsig; /* in PT_CONTINUE above */ #ifdef PT_SETREGS case PT_SETREGS: error = copyin(uap->addr, &r.reg, sizeof r.reg); if (error == 0) { PHOLD(p); error = procfs_write_regs(&p->p_thread, &r.reg); PRELE(p); } return (error); #endif /* PT_SETREGS */ #ifdef PT_GETREGS case PT_GETREGS: PHOLD(p); error = procfs_read_regs(&p->p_thread, &r.reg); PRELE(p); if (error == 0) error = copyout(&r.reg, uap->addr, sizeof r.reg); return (error); #endif /* PT_SETREGS */ #ifdef PT_SETFPREGS case PT_SETFPREGS: error = copyin(uap->addr, &r.fpreg, sizeof r.fpreg); if (error == 0) { PHOLD(p); error = procfs_write_fpregs(&p->p_thread, &r.fpreg); PRELE(p); } return (error); #endif /* PT_SETFPREGS */ #ifdef PT_GETFPREGS case PT_GETFPREGS: PHOLD(p); error = procfs_read_fpregs(&p->p_thread, &r.fpreg); PRELE(p); if (error == 0) error = copyout(&r.fpreg, uap->addr, sizeof r.fpreg); return (error); #endif /* PT_SETFPREGS */ #ifdef PT_SETDBREGS case PT_SETDBREGS: error = copyin(uap->addr, &r.dbreg, sizeof r.dbreg); if (error == 0) { PHOLD(p); error = procfs_write_dbregs(&p->p_thread, &r.dbreg); PRELE(p); } return (error); #endif /* PT_SETDBREGS */ #ifdef PT_GETDBREGS case PT_GETDBREGS: PHOLD(p); error = procfs_read_dbregs(&p->p_thread, &r.dbreg); PRELE(p); if (error == 0) error = copyout(&r.dbreg, uap->addr, sizeof r.dbreg); return (error); #endif /* PT_SETDBREGS */ default: KASSERT(0, ("unreachable code\n")); break; } KASSERT(0, ("unreachable code\n")); return (0); } int trace_req(struct proc *p) { return (1); } /* * stopevent() * Stop a process because of a debugging event; * stay stopped until p->p_step is cleared * (cleared by PIOCCONT in procfs). * * Must be called with the proc struct mutex held. */ void stopevent(struct proc *p, unsigned int event, unsigned int val) { PROC_LOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED); p->p_step = 1; do { p->p_xstat = val; p->p_stype = event; /* Which event caused the stop? */ wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */ msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0); } while (p->p_step); }