/* * Copyright (c) 1996, by Steve Passe * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. The name of the developer may NOT be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include "opt_smp.h" #include "opt_cpu.h" #include "opt_user_ldt.h" #ifdef SMP #include #else #error #endif #include #include #include #include #include #include #include #include #ifdef BETTER_CLOCK #include #endif #include /* cngetc() */ #include #include #include #include #include #ifdef BETTER_CLOCK #include #include #include #ifdef GPROF #include #endif #endif #include #include #include #include #include #include #include #include #include /** TEST_DEFAULT_CONFIG, TEST_TEST1 */ #include #include #include #if defined(APIC_IO) #include /* setidt() */ #include /* IPIs */ #include /* IPIs */ #endif /* APIC_IO */ #if defined(TEST_DEFAULT_CONFIG) #define MPFPS_MPFB1 TEST_DEFAULT_CONFIG #else #define MPFPS_MPFB1 mpfps->mpfb1 #endif /* TEST_DEFAULT_CONFIG */ #define WARMBOOT_TARGET 0 #define WARMBOOT_OFF (KERNBASE + 0x0467) #define WARMBOOT_SEG (KERNBASE + 0x0469) #ifdef PC98 #define BIOS_BASE (0xe8000) #define BIOS_SIZE (0x18000) #else #define BIOS_BASE (0xf0000) #define BIOS_SIZE (0x10000) #endif #define BIOS_COUNT (BIOS_SIZE/4) #define CMOS_REG (0x70) #define CMOS_DATA (0x71) #define BIOS_RESET (0x0f) #define BIOS_WARM (0x0a) #define PROCENTRY_FLAG_EN 0x01 #define PROCENTRY_FLAG_BP 0x02 #define IOAPICENTRY_FLAG_EN 0x01 /* MP Floating Pointer Structure */ typedef struct MPFPS { char signature[4]; void *pap; u_char length; u_char spec_rev; u_char checksum; u_char mpfb1; u_char mpfb2; u_char mpfb3; u_char mpfb4; u_char mpfb5; } *mpfps_t; /* MP Configuration Table Header */ typedef struct MPCTH { char signature[4]; u_short base_table_length; u_char spec_rev; u_char checksum; u_char oem_id[8]; u_char product_id[12]; void *oem_table_pointer; u_short oem_table_size; u_short entry_count; void *apic_address; u_short extended_table_length; u_char extended_table_checksum; u_char reserved; } *mpcth_t; typedef struct PROCENTRY { u_char type; u_char apic_id; u_char apic_version; u_char cpu_flags; u_long cpu_signature; u_long feature_flags; u_long reserved1; u_long reserved2; } *proc_entry_ptr; typedef struct BUSENTRY { u_char type; u_char bus_id; char bus_type[6]; } *bus_entry_ptr; typedef struct IOAPICENTRY { u_char type; u_char apic_id; u_char apic_version; u_char apic_flags; void *apic_address; } *io_apic_entry_ptr; typedef struct INTENTRY { u_char type; u_char int_type; u_short int_flags; u_char src_bus_id; u_char src_bus_irq; u_char dst_apic_id; u_char dst_apic_int; } *int_entry_ptr; /* descriptions of MP basetable entries */ typedef struct BASETABLE_ENTRY { u_char type; u_char length; char name[16]; } basetable_entry; /* * this code MUST be enabled here and in mpboot.s. * it follows the very early stages of AP boot by placing values in CMOS ram. * it NORMALLY will never be needed and thus the primitive method for enabling. * #define CHECK_POINTS */ #if defined(CHECK_POINTS) && !defined(PC98) #define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA)) #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D))) #define CHECK_INIT(D); \ CHECK_WRITE(0x34, (D)); \ CHECK_WRITE(0x35, (D)); \ CHECK_WRITE(0x36, (D)); \ CHECK_WRITE(0x37, (D)); \ CHECK_WRITE(0x38, (D)); \ CHECK_WRITE(0x39, (D)); #define CHECK_PRINT(S); \ printf("%s: %d, %d, %d, %d, %d, %d\n", \ (S), \ CHECK_READ(0x34), \ CHECK_READ(0x35), \ CHECK_READ(0x36), \ CHECK_READ(0x37), \ CHECK_READ(0x38), \ CHECK_READ(0x39)); #else /* CHECK_POINTS */ #define CHECK_INIT(D) #define CHECK_PRINT(S) #endif /* CHECK_POINTS */ /* * Values to send to the POST hardware. */ #define MP_BOOTADDRESS_POST 0x10 #define MP_PROBE_POST 0x11 #define MPTABLE_PASS1_POST 0x12 #define MP_START_POST 0x13 #define MP_ENABLE_POST 0x14 #define MPTABLE_PASS2_POST 0x15 #define START_ALL_APS_POST 0x16 #define INSTALL_AP_TRAMP_POST 0x17 #define START_AP_POST 0x18 #define MP_ANNOUNCE_POST 0x19 /* used to hold the AP's until we are ready to release them */ struct simplelock ap_boot_lock; /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */ int current_postcode; /** XXX FIXME: what system files declare these??? */ extern struct region_descriptor r_gdt, r_idt; int bsp_apic_ready = 0; /* flags useability of BSP apic */ int mp_ncpus; /* # of CPUs, including BSP */ int mp_naps; /* # of Applications processors */ int mp_nbusses; /* # of busses */ int mp_napics; /* # of IO APICs */ int boot_cpu_id; /* designated BSP */ vm_offset_t cpu_apic_address; vm_offset_t io_apic_address[NAPICID]; /* NAPICID is more than enough */ extern int nkpt; u_int32_t cpu_apic_versions[NCPU]; u_int32_t io_apic_versions[NAPIC]; #ifdef APIC_INTR_DIAGNOSTIC int apic_itrace_enter[32]; int apic_itrace_tryisrlock[32]; int apic_itrace_gotisrlock[32]; int apic_itrace_active[32]; int apic_itrace_masked[32]; int apic_itrace_noisrlock[32]; int apic_itrace_masked2[32]; int apic_itrace_unmask[32]; int apic_itrace_noforward[32]; int apic_itrace_leave[32]; int apic_itrace_enter2[32]; int apic_itrace_doreti[32]; int apic_itrace_splz[32]; int apic_itrace_eoi[32]; #ifdef APIC_INTR_DIAGNOSTIC_IRQ unsigned short apic_itrace_debugbuffer[32768]; int apic_itrace_debugbuffer_idx; struct simplelock apic_itrace_debuglock; #endif #endif #ifdef APIC_INTR_REORDER struct { volatile int *location; int bit; } apic_isrbit_location[32]; #endif struct apic_intmapinfo int_to_apicintpin[APIC_INTMAPSIZE]; /* * APIC ID logical/physical mapping structures. * We oversize these to simplify boot-time config. */ int cpu_num_to_apic_id[NAPICID]; int io_num_to_apic_id[NAPICID]; int apic_id_to_logical[NAPICID]; /* Bitmap of all available CPUs */ u_int all_cpus; /* AP uses this during bootstrap. Do not staticize. */ char *bootSTK; static int bootAP; /* Hotwire a 0->4MB V==P mapping */ extern pt_entry_t *KPTphys; /* SMP page table page */ extern pt_entry_t *SMPpt; struct pcb stoppcbs[NCPU]; int smp_started; /* has the system started? */ /* * Local data and functions. */ static int mp_capable; static u_int boot_address; static u_int base_memory; static int picmode; /* 0: virtual wire mode, 1: PIC mode */ static mpfps_t mpfps; static int search_for_sig(u_int32_t target, int count); static void mp_enable(u_int boot_addr); static int mptable_pass1(void); static int mptable_pass2(void); static void default_mp_table(int type); static void fix_mp_table(void); static void setup_apic_irq_mapping(void); static void init_locks(void); static int start_all_aps(u_int boot_addr); static void install_ap_tramp(u_int boot_addr); static int start_ap(int logicalCpu, u_int boot_addr); static int apic_int_is_bus_type(int intr, int bus_type); static void release_aps(void *dummy); /* * Calculate usable address in base memory for AP trampoline code. */ u_int mp_bootaddress(u_int basemem) { POSTCODE(MP_BOOTADDRESS_POST); base_memory = basemem * 1024; /* convert to bytes */ boot_address = base_memory & ~0xfff; /* round down to 4k boundary */ if ((base_memory - boot_address) < bootMP_size) boot_address -= 4096; /* not enough, lower by 4k */ return boot_address; } /* * Look for an Intel MP spec table (ie, SMP capable hardware). */ int mp_probe(void) { int x; u_long segment; u_int32_t target; POSTCODE(MP_PROBE_POST); /* see if EBDA exists */ if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) { /* search first 1K of EBDA */ target = (u_int32_t) (segment << 4); if ((x = search_for_sig(target, 1024 / 4)) >= 0) goto found; } else { /* last 1K of base memory, effective 'top of base' passed in */ target = (u_int32_t) (base_memory - 0x400); if ((x = search_for_sig(target, 1024 / 4)) >= 0) goto found; } /* search the BIOS */ target = (u_int32_t) BIOS_BASE; if ((x = search_for_sig(target, BIOS_COUNT)) >= 0) goto found; /* nothing found */ mpfps = (mpfps_t)0; mp_capable = 0; return 0; found: /* calculate needed resources */ mpfps = (mpfps_t)x; if (mptable_pass1()) panic("you must reconfigure your kernel"); /* flag fact that we are running multiple processors */ mp_capable = 1; return 1; } /* * Initialize the SMP hardware and the APIC and start up the AP's. */ void mp_start(void) { POSTCODE(MP_START_POST); /* look for MP capable motherboard */ if (mp_capable) mp_enable(boot_address); else panic("MP hardware not found!"); } /* * Print various information about the SMP system hardware and setup. */ void mp_announce(void) { int x; POSTCODE(MP_ANNOUNCE_POST); printf("FreeBSD/SMP: Multiprocessor motherboard\n"); printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0)); printf(", version: 0x%08x", cpu_apic_versions[0]); printf(", at 0x%08x\n", cpu_apic_address); for (x = 1; x <= mp_naps; ++x) { printf(" cpu%d (AP): apic id: %2d", x, CPU_TO_ID(x)); printf(", version: 0x%08x", cpu_apic_versions[x]); printf(", at 0x%08x\n", cpu_apic_address); } #if defined(APIC_IO) for (x = 0; x < mp_napics; ++x) { printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x)); printf(", version: 0x%08x", io_apic_versions[x]); printf(", at 0x%08x\n", io_apic_address[x]); } #else printf(" Warning: APIC I/O disabled\n"); #endif /* APIC_IO */ } /* * AP cpu's call this to sync up protected mode. */ void init_secondary(void) { int gsel_tss; int x, myid = bootAP; gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid]; gdt_segs[GPROC0_SEL].ssd_base = (int) &SMP_prvspace[myid].globaldata.gd_common_tss; SMP_prvspace[myid].globaldata.gd_prvspace = &SMP_prvspace[myid]; for (x = 0; x < NGDT; x++) { ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd); } r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; r_gdt.rd_base = (int) &gdt[myid * NGDT]; lgdt(&r_gdt); /* does magic intra-segment return */ lidt(&r_idt); lldt(_default_ldt); #ifdef USER_LDT PCPU_SET(currentldt, _default_ldt); #endif gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS; common_tss.tss_esp0 = 0; /* not used until after switch */ common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL); common_tss.tss_ioopt = (sizeof common_tss) << 16; tss_gdt = &gdt[myid * NGDT + GPROC0_SEL].sd; common_tssd = *tss_gdt; ltr(gsel_tss); pmap_set_opt(); } #if defined(APIC_IO) /* * Final configuration of the BSP's local APIC: * - disable 'pic mode'. * - disable 'virtual wire mode'. * - enable NMI. */ void bsp_apic_configure(void) { u_char byte; u_int32_t temp; /* leave 'pic mode' if necessary */ if (picmode) { outb(0x22, 0x70); /* select IMCR */ byte = inb(0x23); /* current contents */ byte |= 0x01; /* mask external INTR */ outb(0x23, byte); /* disconnect 8259s/NMI */ } /* mask lint0 (the 8259 'virtual wire' connection) */ temp = lapic.lvt_lint0; temp |= APIC_LVT_M; /* set the mask */ lapic.lvt_lint0 = temp; /* setup lint1 to handle NMI */ temp = lapic.lvt_lint1; temp &= ~APIC_LVT_M; /* clear the mask */ lapic.lvt_lint1 = temp; if (bootverbose) apic_dump("bsp_apic_configure()"); } #endif /* APIC_IO */ /******************************************************************* * local functions and data */ /* * start the SMP system */ static void mp_enable(u_int boot_addr) { int x; #if defined(APIC_IO) int apic; u_int ux; #endif /* APIC_IO */ POSTCODE(MP_ENABLE_POST); /* turn on 4MB of V == P addressing so we can get to MP table */ *(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME); invltlb(); /* examine the MP table for needed info, uses physical addresses */ x = mptable_pass2(); *(int *)PTD = 0; invltlb(); /* can't process default configs till the CPU APIC is pmapped */ if (x) default_mp_table(x); /* post scan cleanup */ fix_mp_table(); setup_apic_irq_mapping(); #if defined(APIC_IO) /* fill the LOGICAL io_apic_versions table */ for (apic = 0; apic < mp_napics; ++apic) { ux = io_apic_read(apic, IOAPIC_VER); io_apic_versions[apic] = ux; io_apic_set_id(apic, IO_TO_ID(apic)); } /* program each IO APIC in the system */ for (apic = 0; apic < mp_napics; ++apic) if (io_apic_setup(apic) < 0) panic("IO APIC setup failure"); /* install a 'Spurious INTerrupt' vector */ setidt(XSPURIOUSINT_OFFSET, Xspuriousint, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); /* install an inter-CPU IPI for TLB invalidation */ setidt(XINVLTLB_OFFSET, Xinvltlb, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #ifdef BETTER_CLOCK /* install an inter-CPU IPI for reading processor state */ setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #endif /* install an inter-CPU IPI for all-CPU rendezvous */ setidt(XRENDEZVOUS_OFFSET, Xrendezvous, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); /* install an inter-CPU IPI for forcing an additional software trap */ setidt(XCPUAST_OFFSET, Xcpuast, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); /* install an inter-CPU IPI for interrupt forwarding */ setidt(XFORWARD_IRQ_OFFSET, Xforward_irq, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); /* install an inter-CPU IPI for CPU stop/restart */ setidt(XCPUSTOP_OFFSET, Xcpustop, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #if defined(TEST_TEST1) /* install a "fake hardware INTerrupt" vector */ setidt(XTEST1_OFFSET, Xtest1, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #endif /** TEST_TEST1 */ #endif /* APIC_IO */ /* initialize all SMP locks */ init_locks(); /* obtain the ap_boot_lock */ s_lock(&ap_boot_lock); /* start each Application Processor */ start_all_aps(boot_addr); } /* * look for the MP spec signature */ /* string defined by the Intel MP Spec as identifying the MP table */ #define MP_SIG 0x5f504d5f /* _MP_ */ #define NEXT(X) ((X) += 4) static int search_for_sig(u_int32_t target, int count) { int x; u_int32_t *addr = (u_int32_t *) (KERNBASE + target); for (x = 0; x < count; NEXT(x)) if (addr[x] == MP_SIG) /* make array index a byte index */ return (target + (x * sizeof(u_int32_t))); return -1; } static basetable_entry basetable_entry_types[] = { {0, 20, "Processor"}, {1, 8, "Bus"}, {2, 8, "I/O APIC"}, {3, 8, "I/O INT"}, {4, 8, "Local INT"} }; typedef struct BUSDATA { u_char bus_id; enum busTypes bus_type; } bus_datum; typedef struct INTDATA { u_char int_type; u_short int_flags; u_char src_bus_id; u_char src_bus_irq; u_char dst_apic_id; u_char dst_apic_int; u_char int_vector; } io_int, local_int; typedef struct BUSTYPENAME { u_char type; char name[7]; } bus_type_name; static bus_type_name bus_type_table[] = { {CBUS, "CBUS"}, {CBUSII, "CBUSII"}, {EISA, "EISA"}, {MCA, "MCA"}, {UNKNOWN_BUSTYPE, "---"}, {ISA, "ISA"}, {MCA, "MCA"}, {UNKNOWN_BUSTYPE, "---"}, {UNKNOWN_BUSTYPE, "---"}, {UNKNOWN_BUSTYPE, "---"}, {UNKNOWN_BUSTYPE, "---"}, {UNKNOWN_BUSTYPE, "---"}, {PCI, "PCI"}, {UNKNOWN_BUSTYPE, "---"}, {UNKNOWN_BUSTYPE, "---"}, {UNKNOWN_BUSTYPE, "---"}, {UNKNOWN_BUSTYPE, "---"}, {XPRESS, "XPRESS"}, {UNKNOWN_BUSTYPE, "---"} }; /* from MP spec v1.4, table 5-1 */ static int default_data[7][5] = { /* nbus, id0, type0, id1, type1 */ {1, 0, ISA, 255, 255}, {1, 0, EISA, 255, 255}, {1, 0, EISA, 255, 255}, {1, 0, MCA, 255, 255}, {2, 0, ISA, 1, PCI}, {2, 0, EISA, 1, PCI}, {2, 0, MCA, 1, PCI} }; /* the bus data */ static bus_datum bus_data[NBUS]; /* the IO INT data, one entry per possible APIC INTerrupt */ static io_int io_apic_ints[NINTR]; static int nintrs; static int processor_entry __P((proc_entry_ptr entry, int cpu)); static int bus_entry __P((bus_entry_ptr entry, int bus)); static int io_apic_entry __P((io_apic_entry_ptr entry, int apic)); static int int_entry __P((int_entry_ptr entry, int intr)); static int lookup_bus_type __P((char *name)); /* * 1st pass on motherboard's Intel MP specification table. * * initializes: * mp_ncpus = 1 * * determines: * cpu_apic_address (common to all CPUs) * io_apic_address[N] * mp_naps * mp_nbusses * mp_napics * nintrs */ static int mptable_pass1(void) { int x; mpcth_t cth; int totalSize; void* position; int count; int type; int mustpanic; POSTCODE(MPTABLE_PASS1_POST); mustpanic = 0; /* clear various tables */ for (x = 0; x < NAPICID; ++x) { io_apic_address[x] = ~0; /* IO APIC address table */ } /* init everything to empty */ mp_naps = 0; mp_nbusses = 0; mp_napics = 0; nintrs = 0; /* check for use of 'default' configuration */ if (MPFPS_MPFB1 != 0) { /* use default addresses */ cpu_apic_address = DEFAULT_APIC_BASE; io_apic_address[0] = DEFAULT_IO_APIC_BASE; /* fill in with defaults */ mp_naps = 2; /* includes BSP */ mp_nbusses = default_data[MPFPS_MPFB1 - 1][0]; #if defined(APIC_IO) mp_napics = 1; nintrs = 16; #endif /* APIC_IO */ } else { if ((cth = mpfps->pap) == 0) panic("MP Configuration Table Header MISSING!"); cpu_apic_address = (vm_offset_t) cth->apic_address; /* walk the table, recording info of interest */ totalSize = cth->base_table_length - sizeof(struct MPCTH); position = (u_char *) cth + sizeof(struct MPCTH); count = cth->entry_count; while (count--) { switch (type = *(u_char *) position) { case 0: /* processor_entry */ if (((proc_entry_ptr)position)->cpu_flags & PROCENTRY_FLAG_EN) ++mp_naps; break; case 1: /* bus_entry */ ++mp_nbusses; break; case 2: /* io_apic_entry */ if (((io_apic_entry_ptr)position)->apic_flags & IOAPICENTRY_FLAG_EN) io_apic_address[mp_napics++] = (vm_offset_t)((io_apic_entry_ptr) position)->apic_address; break; case 3: /* int_entry */ ++nintrs; break; case 4: /* int_entry */ break; default: panic("mpfps Base Table HOSED!"); /* NOTREACHED */ } totalSize -= basetable_entry_types[type].length; (u_char*)position += basetable_entry_types[type].length; } } /* qualify the numbers */ if (mp_naps > NCPU) { printf("Warning: only using %d of %d available CPUs!\n", NCPU, mp_naps); mp_naps = NCPU; } if (mp_nbusses > NBUS) { printf("found %d busses, increase NBUS\n", mp_nbusses); mustpanic = 1; } if (mp_napics > NAPIC) { printf("found %d apics, increase NAPIC\n", mp_napics); mustpanic = 1; } if (nintrs > NINTR) { printf("found %d intrs, increase NINTR\n", nintrs); mustpanic = 1; } /* * Count the BSP. * This is also used as a counter while starting the APs. */ mp_ncpus = 1; --mp_naps; /* subtract the BSP */ return mustpanic; } /* * 2nd pass on motherboard's Intel MP specification table. * * sets: * boot_cpu_id * ID_TO_IO(N), phy APIC ID to log CPU/IO table * CPU_TO_ID(N), logical CPU to APIC ID table * IO_TO_ID(N), logical IO to APIC ID table * bus_data[N] * io_apic_ints[N] */ static int mptable_pass2(void) { int x; mpcth_t cth; int totalSize; void* position; int count; int type; int apic, bus, cpu, intr; POSTCODE(MPTABLE_PASS2_POST); /* clear various tables */ for (x = 0; x < NAPICID; ++x) { ID_TO_IO(x) = -1; /* phy APIC ID to log CPU/IO table */ CPU_TO_ID(x) = -1; /* logical CPU to APIC ID table */ IO_TO_ID(x) = -1; /* logical IO to APIC ID table */ } /* clear bus data table */ for (x = 0; x < NBUS; ++x) bus_data[x].bus_id = 0xff; /* clear IO APIC INT table */ for (x = 0; x < NINTR; ++x) { io_apic_ints[x].int_type = 0xff; io_apic_ints[x].int_vector = 0xff; } /* setup the cpu/apic mapping arrays */ boot_cpu_id = -1; /* record whether PIC or virtual-wire mode */ picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0; /* check for use of 'default' configuration */ if (MPFPS_MPFB1 != 0) return MPFPS_MPFB1; /* return default configuration type */ if ((cth = mpfps->pap) == 0) panic("MP Configuration Table Header MISSING!"); /* walk the table, recording info of interest */ totalSize = cth->base_table_length - sizeof(struct MPCTH); position = (u_char *) cth + sizeof(struct MPCTH); count = cth->entry_count; apic = bus = intr = 0; cpu = 1; /* pre-count the BSP */ while (count--) { switch (type = *(u_char *) position) { case 0: if (processor_entry(position, cpu)) ++cpu; break; case 1: if (bus_entry(position, bus)) ++bus; break; case 2: if (io_apic_entry(position, apic)) ++apic; break; case 3: if (int_entry(position, intr)) ++intr; break; case 4: /* int_entry(position); */ break; default: panic("mpfps Base Table HOSED!"); /* NOTREACHED */ } totalSize -= basetable_entry_types[type].length; (u_char *) position += basetable_entry_types[type].length; } if (boot_cpu_id == -1) panic("NO BSP found!"); /* report fact that its NOT a default configuration */ return 0; } void assign_apic_irq(int apic, int intpin, int irq) { int x; if (int_to_apicintpin[irq].ioapic != -1) panic("assign_apic_irq: inconsistent table"); int_to_apicintpin[irq].ioapic = apic; int_to_apicintpin[irq].int_pin = intpin; int_to_apicintpin[irq].apic_address = ioapic[apic]; int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin; for (x = 0; x < nintrs; x++) { if ((io_apic_ints[x].int_type == 0 || io_apic_ints[x].int_type == 3) && io_apic_ints[x].int_vector == 0xff && io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) && io_apic_ints[x].dst_apic_int == intpin) io_apic_ints[x].int_vector = irq; } } void revoke_apic_irq(int irq) { int x; int oldapic; int oldintpin; if (int_to_apicintpin[irq].ioapic == -1) panic("assign_apic_irq: inconsistent table"); oldapic = int_to_apicintpin[irq].ioapic; oldintpin = int_to_apicintpin[irq].int_pin; int_to_apicintpin[irq].ioapic = -1; int_to_apicintpin[irq].int_pin = 0; int_to_apicintpin[irq].apic_address = NULL; int_to_apicintpin[irq].redirindex = 0; for (x = 0; x < nintrs; x++) { if ((io_apic_ints[x].int_type == 0 || io_apic_ints[x].int_type == 3) && io_apic_ints[x].int_vector == 0xff && io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) && io_apic_ints[x].dst_apic_int == oldintpin) io_apic_ints[x].int_vector = 0xff; } } static void swap_apic_id(int apic, int oldid, int newid) { int x; int oapic; if (oldid == newid) return; /* Nothing to do */ printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n", apic, oldid, newid); /* Swap physical APIC IDs in interrupt entries */ for (x = 0; x < nintrs; x++) { if (io_apic_ints[x].dst_apic_id == oldid) io_apic_ints[x].dst_apic_id = newid; else if (io_apic_ints[x].dst_apic_id == newid) io_apic_ints[x].dst_apic_id = oldid; } /* Swap physical APIC IDs in IO_TO_ID mappings */ for (oapic = 0; oapic < mp_napics; oapic++) if (IO_TO_ID(oapic) == newid) break; if (oapic < mp_napics) { printf("Changing APIC ID for IO APIC #%d from " "%d to %d in MP table\n", oapic, newid, oldid); IO_TO_ID(oapic) = oldid; } IO_TO_ID(apic) = newid; } static void fix_id_to_io_mapping(void) { int x; for (x = 0; x < NAPICID; x++) ID_TO_IO(x) = -1; for (x = 0; x <= mp_naps; x++) if (CPU_TO_ID(x) < NAPICID) ID_TO_IO(CPU_TO_ID(x)) = x; for (x = 0; x < mp_napics; x++) if (IO_TO_ID(x) < NAPICID) ID_TO_IO(IO_TO_ID(x)) = x; } static int first_free_apic_id(void) { int freeid, x; for (freeid = 0; freeid < NAPICID; freeid++) { for (x = 0; x <= mp_naps; x++) if (CPU_TO_ID(x) == freeid) break; if (x <= mp_naps) continue; for (x = 0; x < mp_napics; x++) if (IO_TO_ID(x) == freeid) break; if (x < mp_napics) continue; return freeid; } return freeid; } static int io_apic_id_acceptable(int apic, int id) { int cpu; /* Logical CPU number */ int oapic; /* Logical IO APIC number for other IO APIC */ if (id >= NAPICID) return 0; /* Out of range */ for (cpu = 0; cpu <= mp_naps; cpu++) if (CPU_TO_ID(cpu) == id) return 0; /* Conflict with CPU */ for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++) if (IO_TO_ID(oapic) == id) return 0; /* Conflict with other APIC */ return 1; /* ID is acceptable for IO APIC */ } /* * parse an Intel MP specification table */ static void fix_mp_table(void) { int x; int id; int bus_0 = 0; /* Stop GCC warning */ int bus_pci = 0; /* Stop GCC warning */ int num_pci_bus; int apic; /* IO APIC unit number */ int freeid; /* Free physical APIC ID */ int physid; /* Current physical IO APIC ID */ /* * Fix mis-numbering of the PCI bus and its INT entries if the BIOS * did it wrong. The MP spec says that when more than 1 PCI bus * exists the BIOS must begin with bus entries for the PCI bus and use * actual PCI bus numbering. This implies that when only 1 PCI bus * exists the BIOS can choose to ignore this ordering, and indeed many * MP motherboards do ignore it. This causes a problem when the PCI * sub-system makes requests of the MP sub-system based on PCI bus * numbers. So here we look for the situation and renumber the * busses and associated INTs in an effort to "make it right". */ /* find bus 0, PCI bus, count the number of PCI busses */ for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) { if (bus_data[x].bus_id == 0) { bus_0 = x; } if (bus_data[x].bus_type == PCI) { ++num_pci_bus; bus_pci = x; } } /* * bus_0 == slot of bus with ID of 0 * bus_pci == slot of last PCI bus encountered */ /* check the 1 PCI bus case for sanity */ /* if it is number 0 all is well */ if (num_pci_bus == 1 && bus_data[bus_pci].bus_id != 0) { /* mis-numbered, swap with whichever bus uses slot 0 */ /* swap the bus entry types */ bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type; bus_data[bus_0].bus_type = PCI; /* swap each relavant INTerrupt entry */ id = bus_data[bus_pci].bus_id; for (x = 0; x < nintrs; ++x) { if (io_apic_ints[x].src_bus_id == id) { io_apic_ints[x].src_bus_id = 0; } else if (io_apic_ints[x].src_bus_id == 0) { io_apic_ints[x].src_bus_id = id; } } } /* Assign IO APIC IDs. * * First try the existing ID. If a conflict is detected, try * the ID in the MP table. If a conflict is still detected, find * a free id. * * We cannot use the ID_TO_IO table before all conflicts has been * resolved and the table has been corrected. */ for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */ /* First try to use the value set by the BIOS */ physid = io_apic_get_id(apic); if (io_apic_id_acceptable(apic, physid)) { if (IO_TO_ID(apic) != physid) swap_apic_id(apic, IO_TO_ID(apic), physid); continue; } /* Then check if the value in the MP table is acceptable */ if (io_apic_id_acceptable(apic, IO_TO_ID(apic))) continue; /* Last resort, find a free APIC ID and use it */ freeid = first_free_apic_id(); if (freeid >= NAPICID) panic("No free physical APIC IDs found"); if (io_apic_id_acceptable(apic, freeid)) { swap_apic_id(apic, IO_TO_ID(apic), freeid); continue; } panic("Free physical APIC ID not usable"); } fix_id_to_io_mapping(); } /* Assign low level interrupt handlers */ static void setup_apic_irq_mapping(void) { int x; int int_vector; /* Clear array */ for (x = 0; x < APIC_INTMAPSIZE; x++) { int_to_apicintpin[x].ioapic = -1; int_to_apicintpin[x].int_pin = 0; int_to_apicintpin[x].apic_address = NULL; int_to_apicintpin[x].redirindex = 0; } /* First assign ISA/EISA interrupts */ for (x = 0; x < nintrs; x++) { int_vector = io_apic_ints[x].src_bus_irq; if (int_vector < APIC_INTMAPSIZE && io_apic_ints[x].int_vector == 0xff && int_to_apicintpin[int_vector].ioapic == -1 && (apic_int_is_bus_type(x, ISA) || apic_int_is_bus_type(x, EISA)) && io_apic_ints[x].int_type == 0) { assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id), io_apic_ints[x].dst_apic_int, int_vector); } } /* Assign interrupts on first 24 intpins on IOAPIC #0 */ for (x = 0; x < nintrs; x++) { int_vector = io_apic_ints[x].dst_apic_int; if (int_vector < APIC_INTMAPSIZE && io_apic_ints[x].dst_apic_id == IO_TO_ID(0) && io_apic_ints[x].int_vector == 0xff && int_to_apicintpin[int_vector].ioapic == -1 && (io_apic_ints[x].int_type == 0 || io_apic_ints[x].int_type == 3)) { assign_apic_irq(0, io_apic_ints[x].dst_apic_int, int_vector); } } /* * Assign interrupts for remaining intpins. * Skip IOAPIC #0 intpin 0 if the type is ExtInt, since this indicates * that an entry for ISA/EISA irq 0 exist, and a fallback to mixed mode * due to 8254 interrupts not being delivered can reuse that low level * interrupt handler. */ int_vector = 0; while (int_vector < APIC_INTMAPSIZE && int_to_apicintpin[int_vector].ioapic != -1) int_vector++; for (x = 0; x < nintrs && int_vector < APIC_INTMAPSIZE; x++) { if ((io_apic_ints[x].int_type == 0 || (io_apic_ints[x].int_type == 3 && (io_apic_ints[x].dst_apic_id != IO_TO_ID(0) || io_apic_ints[x].dst_apic_int != 0))) && io_apic_ints[x].int_vector == 0xff) { assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id), io_apic_ints[x].dst_apic_int, int_vector); int_vector++; while (int_vector < APIC_INTMAPSIZE && int_to_apicintpin[int_vector].ioapic != -1) int_vector++; } } } static int processor_entry(proc_entry_ptr entry, int cpu) { /* check for usability */ if (!(entry->cpu_flags & PROCENTRY_FLAG_EN)) return 0; if(entry->apic_id >= NAPICID) panic("CPU APIC ID out of range (0..%d)", NAPICID - 1); /* check for BSP flag */ if (entry->cpu_flags & PROCENTRY_FLAG_BP) { boot_cpu_id = entry->apic_id; CPU_TO_ID(0) = entry->apic_id; ID_TO_CPU(entry->apic_id) = 0; return 0; /* its already been counted */ } /* add another AP to list, if less than max number of CPUs */ else if (cpu < NCPU) { CPU_TO_ID(cpu) = entry->apic_id; ID_TO_CPU(entry->apic_id) = cpu; return 1; } return 0; } static int bus_entry(bus_entry_ptr entry, int bus) { int x; char c, name[8]; /* encode the name into an index */ for (x = 0; x < 6; ++x) { if ((c = entry->bus_type[x]) == ' ') break; name[x] = c; } name[x] = '\0'; if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE) panic("unknown bus type: '%s'", name); bus_data[bus].bus_id = entry->bus_id; bus_data[bus].bus_type = x; return 1; } static int io_apic_entry(io_apic_entry_ptr entry, int apic) { if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN)) return 0; IO_TO_ID(apic) = entry->apic_id; if (entry->apic_id < NAPICID) ID_TO_IO(entry->apic_id) = apic; return 1; } static int lookup_bus_type(char *name) { int x; for (x = 0; x < MAX_BUSTYPE; ++x) if (strcmp(bus_type_table[x].name, name) == 0) return bus_type_table[x].type; return UNKNOWN_BUSTYPE; } static int int_entry(int_entry_ptr entry, int intr) { int apic; io_apic_ints[intr].int_type = entry->int_type; io_apic_ints[intr].int_flags = entry->int_flags; io_apic_ints[intr].src_bus_id = entry->src_bus_id; io_apic_ints[intr].src_bus_irq = entry->src_bus_irq; if (entry->dst_apic_id == 255) { /* This signal goes to all IO APICS. Select an IO APIC with sufficient number of interrupt pins */ for (apic = 0; apic < mp_napics; apic++) if (((io_apic_read(apic, IOAPIC_VER) & IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >= entry->dst_apic_int) break; if (apic < mp_napics) io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic); else io_apic_ints[intr].dst_apic_id = entry->dst_apic_id; } else io_apic_ints[intr].dst_apic_id = entry->dst_apic_id; io_apic_ints[intr].dst_apic_int = entry->dst_apic_int; return 1; } static int apic_int_is_bus_type(int intr, int bus_type) { int bus; for (bus = 0; bus < mp_nbusses; ++bus) if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id) && ((int) bus_data[bus].bus_type == bus_type)) return 1; return 0; } /* * Given a traditional ISA INT mask, return an APIC mask. */ u_int isa_apic_mask(u_int isa_mask) { int isa_irq; int apic_pin; #if defined(SKIP_IRQ15_REDIRECT) if (isa_mask == (1 << 15)) { printf("skipping ISA IRQ15 redirect\n"); return isa_mask; } #endif /* SKIP_IRQ15_REDIRECT */ isa_irq = ffs(isa_mask); /* find its bit position */ if (isa_irq == 0) /* doesn't exist */ return 0; --isa_irq; /* make it zero based */ apic_pin = isa_apic_irq(isa_irq); /* look for APIC connection */ if (apic_pin == -1) return 0; return (1 << apic_pin); /* convert pin# to a mask */ } /* * Determine which APIC pin an ISA/EISA INT is attached to. */ #define INTTYPE(I) (io_apic_ints[(I)].int_type) #define INTPIN(I) (io_apic_ints[(I)].dst_apic_int) #define INTIRQ(I) (io_apic_ints[(I)].int_vector) #define INTAPIC(I) (ID_TO_IO(io_apic_ints[(I)].dst_apic_id)) #define SRCBUSIRQ(I) (io_apic_ints[(I)].src_bus_irq) int isa_apic_irq(int isa_irq) { int intr; for (intr = 0; intr < nintrs; ++intr) { /* check each record */ if (INTTYPE(intr) == 0) { /* standard INT */ if (SRCBUSIRQ(intr) == isa_irq) { if (apic_int_is_bus_type(intr, ISA) || apic_int_is_bus_type(intr, EISA)) return INTIRQ(intr); /* found */ } } } return -1; /* NOT found */ } /* * Determine which APIC pin a PCI INT is attached to. */ #define SRCBUSID(I) (io_apic_ints[(I)].src_bus_id) #define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f) #define SRCBUSLINE(I) (io_apic_ints[(I)].src_bus_irq & 0x03) int pci_apic_irq(int pciBus, int pciDevice, int pciInt) { int intr; --pciInt; /* zero based */ for (intr = 0; intr < nintrs; ++intr) /* check each record */ if ((INTTYPE(intr) == 0) /* standard INT */ && (SRCBUSID(intr) == pciBus) && (SRCBUSDEVICE(intr) == pciDevice) && (SRCBUSLINE(intr) == pciInt)) /* a candidate IRQ */ if (apic_int_is_bus_type(intr, PCI)) return INTIRQ(intr); /* exact match */ return -1; /* NOT found */ } int next_apic_irq(int irq) { int intr, ointr; int bus, bustype; bus = 0; bustype = 0; for (intr = 0; intr < nintrs; intr++) { if (INTIRQ(intr) != irq || INTTYPE(intr) != 0) continue; bus = SRCBUSID(intr); bustype = apic_bus_type(bus); if (bustype != ISA && bustype != EISA && bustype != PCI) continue; break; } if (intr >= nintrs) { return -1; } for (ointr = intr + 1; ointr < nintrs; ointr++) { if (INTTYPE(ointr) != 0) continue; if (bus != SRCBUSID(ointr)) continue; if (bustype == PCI) { if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr)) continue; if (SRCBUSLINE(intr) != SRCBUSLINE(ointr)) continue; } if (bustype == ISA || bustype == EISA) { if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr)) continue; } if (INTPIN(intr) == INTPIN(ointr)) continue; break; } if (ointr >= nintrs) { return -1; } return INTIRQ(ointr); } #undef SRCBUSLINE #undef SRCBUSDEVICE #undef SRCBUSID #undef SRCBUSIRQ #undef INTPIN #undef INTIRQ #undef INTAPIC #undef INTTYPE /* * Reprogram the MB chipset to NOT redirect an ISA INTerrupt. * * XXX FIXME: * Exactly what this means is unclear at this point. It is a solution * for motherboards that redirect the MBIRQ0 pin. Generically a motherboard * could route any of the ISA INTs to upper (>15) IRQ values. But most would * NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an * option. */ int undirect_isa_irq(int rirq) { #if defined(READY) if (bootverbose) printf("Freeing redirected ISA irq %d.\n", rirq); /** FIXME: tickle the MB redirector chip */ return ???; #else if (bootverbose) printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq); return 0; #endif /* READY */ } /* * Reprogram the MB chipset to NOT redirect a PCI INTerrupt */ int undirect_pci_irq(int rirq) { #if defined(READY) if (bootverbose) printf("Freeing redirected PCI irq %d.\n", rirq); /** FIXME: tickle the MB redirector chip */ return ???; #else if (bootverbose) printf("Freeing (NOT implemented) redirected PCI irq %d.\n", rirq); return 0; #endif /* READY */ } /* * given a bus ID, return: * the bus type if found * -1 if NOT found */ int apic_bus_type(int id) { int x; for (x = 0; x < mp_nbusses; ++x) if (bus_data[x].bus_id == id) return bus_data[x].bus_type; return -1; } /* * given a LOGICAL APIC# and pin#, return: * the associated src bus ID if found * -1 if NOT found */ int apic_src_bus_id(int apic, int pin) { int x; /* search each of the possible INTerrupt sources */ for (x = 0; x < nintrs; ++x) if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && (pin == io_apic_ints[x].dst_apic_int)) return (io_apic_ints[x].src_bus_id); return -1; /* NOT found */ } /* * given a LOGICAL APIC# and pin#, return: * the associated src bus IRQ if found * -1 if NOT found */ int apic_src_bus_irq(int apic, int pin) { int x; for (x = 0; x < nintrs; x++) if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && (pin == io_apic_ints[x].dst_apic_int)) return (io_apic_ints[x].src_bus_irq); return -1; /* NOT found */ } /* * given a LOGICAL APIC# and pin#, return: * the associated INTerrupt type if found * -1 if NOT found */ int apic_int_type(int apic, int pin) { int x; /* search each of the possible INTerrupt sources */ for (x = 0; x < nintrs; ++x) if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && (pin == io_apic_ints[x].dst_apic_int)) return (io_apic_ints[x].int_type); return -1; /* NOT found */ } int apic_irq(int apic, int pin) { int x; int res; for (x = 0; x < nintrs; ++x) if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && (pin == io_apic_ints[x].dst_apic_int)) { res = io_apic_ints[x].int_vector; if (res == 0xff) return -1; if (apic != int_to_apicintpin[res].ioapic) panic("apic_irq: inconsistent table"); if (pin != int_to_apicintpin[res].int_pin) panic("apic_irq inconsistent table (2)"); return res; } return -1; } /* * given a LOGICAL APIC# and pin#, return: * the associated trigger mode if found * -1 if NOT found */ int apic_trigger(int apic, int pin) { int x; /* search each of the possible INTerrupt sources */ for (x = 0; x < nintrs; ++x) if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && (pin == io_apic_ints[x].dst_apic_int)) return ((io_apic_ints[x].int_flags >> 2) & 0x03); return -1; /* NOT found */ } /* * given a LOGICAL APIC# and pin#, return: * the associated 'active' level if found * -1 if NOT found */ int apic_polarity(int apic, int pin) { int x; /* search each of the possible INTerrupt sources */ for (x = 0; x < nintrs; ++x) if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) && (pin == io_apic_ints[x].dst_apic_int)) return (io_apic_ints[x].int_flags & 0x03); return -1; /* NOT found */ } /* * set data according to MP defaults * FIXME: probably not complete yet... */ static void default_mp_table(int type) { int ap_cpu_id; #if defined(APIC_IO) int io_apic_id; int pin; #endif /* APIC_IO */ #if 0 printf(" MP default config type: %d\n", type); switch (type) { case 1: printf(" bus: ISA, APIC: 82489DX\n"); break; case 2: printf(" bus: EISA, APIC: 82489DX\n"); break; case 3: printf(" bus: EISA, APIC: 82489DX\n"); break; case 4: printf(" bus: MCA, APIC: 82489DX\n"); break; case 5: printf(" bus: ISA+PCI, APIC: Integrated\n"); break; case 6: printf(" bus: EISA+PCI, APIC: Integrated\n"); break; case 7: printf(" bus: MCA+PCI, APIC: Integrated\n"); break; default: printf(" future type\n"); break; /* NOTREACHED */ } #endif /* 0 */ boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24; ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0; /* BSP */ CPU_TO_ID(0) = boot_cpu_id; ID_TO_CPU(boot_cpu_id) = 0; /* one and only AP */ CPU_TO_ID(1) = ap_cpu_id; ID_TO_CPU(ap_cpu_id) = 1; #if defined(APIC_IO) /* one and only IO APIC */ io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24; /* * sanity check, refer to MP spec section 3.6.6, last paragraph * necessary as some hardware isn't properly setting up the IO APIC */ #if defined(REALLY_ANAL_IOAPICID_VALUE) if (io_apic_id != 2) { #else if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) { #endif /* REALLY_ANAL_IOAPICID_VALUE */ io_apic_set_id(0, 2); io_apic_id = 2; } IO_TO_ID(0) = io_apic_id; ID_TO_IO(io_apic_id) = 0; #endif /* APIC_IO */ /* fill out bus entries */ switch (type) { case 1: case 2: case 3: case 4: case 5: case 6: case 7: bus_data[0].bus_id = default_data[type - 1][1]; bus_data[0].bus_type = default_data[type - 1][2]; bus_data[1].bus_id = default_data[type - 1][3]; bus_data[1].bus_type = default_data[type - 1][4]; break; /* case 4: case 7: MCA NOT supported */ default: /* illegal/reserved */ panic("BAD default MP config: %d", type); /* NOTREACHED */ } #if defined(APIC_IO) /* general cases from MP v1.4, table 5-2 */ for (pin = 0; pin < 16; ++pin) { io_apic_ints[pin].int_type = 0; io_apic_ints[pin].int_flags = 0x05; /* edge/active-hi */ io_apic_ints[pin].src_bus_id = 0; io_apic_ints[pin].src_bus_irq = pin; /* IRQ2 caught below */ io_apic_ints[pin].dst_apic_id = io_apic_id; io_apic_ints[pin].dst_apic_int = pin; /* 1-to-1 */ } /* special cases from MP v1.4, table 5-2 */ if (type == 2) { io_apic_ints[2].int_type = 0xff; /* N/C */ io_apic_ints[13].int_type = 0xff; /* N/C */ #if !defined(APIC_MIXED_MODE) /** FIXME: ??? */ panic("sorry, can't support type 2 default yet"); #endif /* APIC_MIXED_MODE */ } else io_apic_ints[2].src_bus_irq = 0; /* ISA IRQ0 is on APIC INT 2 */ if (type == 7) io_apic_ints[0].int_type = 0xff; /* N/C */ else io_apic_ints[0].int_type = 3; /* vectored 8259 */ #endif /* APIC_IO */ } /* * initialize all the SMP locks */ /* critical region around IO APIC, apic_imen */ struct simplelock imen_lock; /* critical region around splxx(), cpl, cml, cil, ipending */ struct simplelock cpl_lock; /* Make FAST_INTR() routines sequential */ struct simplelock fast_intr_lock; /* critical region around INTR() routines */ struct simplelock intr_lock; /* lock region used by kernel profiling */ struct simplelock mcount_lock; #ifdef USE_COMLOCK /* locks com (tty) data/hardware accesses: a FASTINTR() */ struct simplelock com_lock; #endif /* USE_COMLOCK */ #ifdef USE_CLOCKLOCK /* lock regions around the clock hardware */ struct simplelock clock_lock; #endif /* USE_CLOCKLOCK */ /* lock around the MP rendezvous */ static struct simplelock smp_rv_lock; /* only 1 CPU can panic at a time :) */ struct simplelock panic_lock; static void init_locks(void) { #if defined(APIC_INTR_DIAGNOSTIC) && defined(APIC_INTR_DIAGNOSTIC_IRQ) s_lock_init((struct simplelock*)&apic_itrace_debuglock); #endif s_lock_init((struct simplelock*)&mcount_lock); s_lock_init((struct simplelock*)&fast_intr_lock); s_lock_init((struct simplelock*)&intr_lock); s_lock_init((struct simplelock*)&imen_lock); s_lock_init((struct simplelock*)&cpl_lock); s_lock_init(&smp_rv_lock); s_lock_init(&panic_lock); #ifdef USE_COMLOCK s_lock_init((struct simplelock*)&com_lock); #endif /* USE_COMLOCK */ #ifdef USE_CLOCKLOCK s_lock_init((struct simplelock*)&clock_lock); #endif /* USE_CLOCKLOCK */ s_lock_init(&ap_boot_lock); } /* * start each AP in our list */ static int start_all_aps(u_int boot_addr) { int x, i, pg; u_char mpbiosreason; u_long mpbioswarmvec; struct globaldata *gd; char *stack; POSTCODE(START_ALL_APS_POST); /* initialize BSP's local APIC */ apic_initialize(); bsp_apic_ready = 1; /* install the AP 1st level boot code */ install_ap_tramp(boot_addr); /* save the current value of the warm-start vector */ mpbioswarmvec = *((u_long *) WARMBOOT_OFF); #ifndef PC98 outb(CMOS_REG, BIOS_RESET); mpbiosreason = inb(CMOS_DATA); #endif /* record BSP in CPU map */ all_cpus = 1; /* set up 0 -> 4MB P==V mapping for AP boot */ *(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME); invltlb(); /* start each AP */ for (x = 1; x <= mp_naps; ++x) { /* This is a bit verbose, it will go away soon. */ /* first page of AP's private space */ pg = x * i386_btop(sizeof(struct privatespace)); /* allocate a new private data page */ gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE); /* wire it into the private page table page */ SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd)); /* allocate and set up an idle stack data page */ stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE); for (i = 0; i < UPAGES; i++) SMPpt[pg + 5 + i] = (pt_entry_t) (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack)); SMPpt[pg + 1] = 0; /* *prv_CMAP1 */ SMPpt[pg + 2] = 0; /* *prv_CMAP2 */ SMPpt[pg + 3] = 0; /* *prv_CMAP3 */ SMPpt[pg + 4] = 0; /* *prv_PMAP1 */ /* prime data page for it to use */ SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu); gd->gd_cpuid = x; gd->gd_cpu_lockid = x << 24; gd->gd_prv_CMAP1 = &SMPpt[pg + 1]; gd->gd_prv_CMAP2 = &SMPpt[pg + 2]; gd->gd_prv_CMAP3 = &SMPpt[pg + 3]; gd->gd_prv_PMAP1 = &SMPpt[pg + 4]; gd->gd_prv_CADDR1 = SMP_prvspace[x].CPAGE1; gd->gd_prv_CADDR2 = SMP_prvspace[x].CPAGE2; gd->gd_prv_CADDR3 = SMP_prvspace[x].CPAGE3; gd->gd_prv_PADDR1 = (unsigned *)SMP_prvspace[x].PPAGE1; /* setup a vector to our boot code */ *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET; *((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4); #ifndef PC98 outb(CMOS_REG, BIOS_RESET); outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */ #endif bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE]; bootAP = x; /* attempt to start the Application Processor */ CHECK_INIT(99); /* setup checkpoints */ if (!start_ap(x, boot_addr)) { printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x)); CHECK_PRINT("trace"); /* show checkpoints */ /* better panic as the AP may be running loose */ printf("panic y/n? [y] "); if (cngetc() != 'n') panic("bye-bye"); } CHECK_PRINT("trace"); /* show checkpoints */ /* record its version info */ cpu_apic_versions[x] = cpu_apic_versions[0]; all_cpus |= (1 << x); /* record AP in CPU map */ } /* build our map of 'other' CPUs */ other_cpus = all_cpus & ~(1 << cpuid); /* fill in our (BSP) APIC version */ cpu_apic_versions[0] = lapic.version; /* restore the warmstart vector */ *(u_long *) WARMBOOT_OFF = mpbioswarmvec; #ifndef PC98 outb(CMOS_REG, BIOS_RESET); outb(CMOS_DATA, mpbiosreason); #endif /* * Set up the idle context for the BSP. Similar to above except * that some was done by locore, some by pmap.c and some is implicit * because the BSP is cpu#0 and the page is initially zero, and also * because we can refer to variables by name on the BSP.. */ /* Allocate and setup BSP idle stack */ stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE); for (i = 0; i < UPAGES; i++) SMPpt[5 + i] = (pt_entry_t) (PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack)); *(int *)PTD = 0; pmap_set_opt(); /* number of APs actually started */ return mp_ncpus - 1; } /* * load the 1st level AP boot code into base memory. */ /* targets for relocation */ extern void bigJump(void); extern void bootCodeSeg(void); extern void bootDataSeg(void); extern void MPentry(void); extern u_int MP_GDT; extern u_int mp_gdtbase; static void install_ap_tramp(u_int boot_addr) { int x; int size = *(int *) ((u_long) & bootMP_size); u_char *src = (u_char *) ((u_long) bootMP); u_char *dst = (u_char *) boot_addr + KERNBASE; u_int boot_base = (u_int) bootMP; u_int8_t *dst8; u_int16_t *dst16; u_int32_t *dst32; POSTCODE(INSTALL_AP_TRAMP_POST); for (x = 0; x < size; ++x) *dst++ = *src++; /* * modify addresses in code we just moved to basemem. unfortunately we * need fairly detailed info about mpboot.s for this to work. changes * to mpboot.s might require changes here. */ /* boot code is located in KERNEL space */ dst = (u_char *) boot_addr + KERNBASE; /* modify the lgdt arg */ dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base)); *dst32 = boot_addr + ((u_int) & MP_GDT - boot_base); /* modify the ljmp target for MPentry() */ dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1); *dst32 = ((u_int) MPentry - KERNBASE); /* modify the target for boot code segment */ dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base)); dst8 = (u_int8_t *) (dst16 + 1); *dst16 = (u_int) boot_addr & 0xffff; *dst8 = ((u_int) boot_addr >> 16) & 0xff; /* modify the target for boot data segment */ dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base)); dst8 = (u_int8_t *) (dst16 + 1); *dst16 = (u_int) boot_addr & 0xffff; *dst8 = ((u_int) boot_addr >> 16) & 0xff; } /* * this function starts the AP (application processor) identified * by the APIC ID 'physicalCpu'. It does quite a "song and dance" * to accomplish this. This is necessary because of the nuances * of the different hardware we might encounter. It ain't pretty, * but it seems to work. */ static int start_ap(int logical_cpu, u_int boot_addr) { int physical_cpu; int vector; int cpus; u_long icr_lo, icr_hi; POSTCODE(START_AP_POST); /* get the PHYSICAL APIC ID# */ physical_cpu = CPU_TO_ID(logical_cpu); /* calculate the vector */ vector = (boot_addr >> 12) & 0xff; /* used as a watchpoint to signal AP startup */ cpus = mp_ncpus; /* * first we do an INIT/RESET IPI this INIT IPI might be run, reseting * and running the target CPU. OR this INIT IPI might be latched (P5 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be * ignored. */ /* setup the address for the target AP */ icr_hi = lapic.icr_hi & ~APIC_ID_MASK; icr_hi |= (physical_cpu << 24); lapic.icr_hi = icr_hi; /* do an INIT IPI: assert RESET */ icr_lo = lapic.icr_lo & 0xfff00000; lapic.icr_lo = icr_lo | 0x0000c500; /* wait for pending status end */ while (lapic.icr_lo & APIC_DELSTAT_MASK) /* spin */ ; /* do an INIT IPI: deassert RESET */ lapic.icr_lo = icr_lo | 0x00008500; /* wait for pending status end */ u_sleep(10000); /* wait ~10mS */ while (lapic.icr_lo & APIC_DELSTAT_MASK) /* spin */ ; /* * next we do a STARTUP IPI: the previous INIT IPI might still be * latched, (P5 bug) this 1st STARTUP would then terminate * immediately, and the previously started INIT IPI would continue. OR * the previous INIT IPI has already run. and this STARTUP IPI will * run. OR the previous INIT IPI was ignored. and this STARTUP IPI * will run. */ /* do a STARTUP IPI */ lapic.icr_lo = icr_lo | 0x00000600 | vector; while (lapic.icr_lo & APIC_DELSTAT_MASK) /* spin */ ; u_sleep(200); /* wait ~200uS */ /* * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is * recognized after hardware RESET or INIT IPI. */ lapic.icr_lo = icr_lo | 0x00000600 | vector; while (lapic.icr_lo & APIC_DELSTAT_MASK) /* spin */ ; u_sleep(200); /* wait ~200uS */ /* wait for it to start */ set_apic_timer(5000000);/* == 5 seconds */ while (read_apic_timer()) if (mp_ncpus > cpus) return 1; /* return SUCCESS */ return 0; /* return FAILURE */ } /* * Flush the TLB on all other CPU's * * XXX: Needs to handshake and wait for completion before proceding. */ void smp_invltlb(void) { #if defined(APIC_IO) if (smp_started && invltlb_ok) all_but_self_ipi(XINVLTLB_OFFSET); #endif /* APIC_IO */ } void invlpg(u_int addr) { __asm __volatile("invlpg (%0)"::"r"(addr):"memory"); /* send a message to the other CPUs */ smp_invltlb(); } void invltlb(void) { u_long temp; /* * This should be implemented as load_cr3(rcr3()) when load_cr3() is * inlined. */ __asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory"); /* send a message to the other CPUs */ smp_invltlb(); } /* * When called the executing CPU will send an IPI to all other CPUs * requesting that they halt execution. * * Usually (but not necessarily) called with 'other_cpus' as its arg. * * - Signals all CPUs in map to stop. * - Waits for each to stop. * * Returns: * -1: error * 0: NA * 1: ok * * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs * from executing at same time. */ int stop_cpus(u_int map) { if (!smp_started) return 0; /* send the Xcpustop IPI to all CPUs in map */ selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED); while ((stopped_cpus & map) != map) /* spin */ ; return 1; } /* * Called by a CPU to restart stopped CPUs. * * Usually (but not necessarily) called with 'stopped_cpus' as its arg. * * - Signals all CPUs in map to restart. * - Waits for each to restart. * * Returns: * -1: error * 0: NA * 1: ok */ int restart_cpus(u_int map) { if (!smp_started) return 0; started_cpus = map; /* signal other cpus to restart */ while ((stopped_cpus & map) != 0) /* wait for each to clear its bit */ /* spin */ ; return 1; } int smp_active = 0; /* are the APs allowed to run? */ SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, ""); /* XXX maybe should be hw.ncpu */ static int smp_cpus = 1; /* how many cpu's running */ SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, ""); int invltlb_ok = 0; /* throttle smp_invltlb() till safe */ SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, ""); /* Warning: Do not staticize. Used from swtch.s */ int do_page_zero_idle = 1; /* bzero pages for fun and profit in idleloop */ SYSCTL_INT(_machdep, OID_AUTO, do_page_zero_idle, CTLFLAG_RW, &do_page_zero_idle, 0, ""); /* Is forwarding of a interrupt to the CPU holding the ISR lock enabled ? */ int forward_irq_enabled = 1; SYSCTL_INT(_machdep, OID_AUTO, forward_irq_enabled, CTLFLAG_RW, &forward_irq_enabled, 0, ""); /* Enable forwarding of a signal to a process running on a different CPU */ static int forward_signal_enabled = 1; SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW, &forward_signal_enabled, 0, ""); /* Enable forwarding of roundrobin to all other cpus */ static int forward_roundrobin_enabled = 1; SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW, &forward_roundrobin_enabled, 0, ""); /* * This is called once the rest of the system is up and running and we're * ready to let the AP's out of the pen. */ void ap_init(void); void ap_init(void) { u_int apic_id; /* lock against other AP's that are waking up */ s_lock(&ap_boot_lock); /* BSP may have changed PTD while we're waiting for the lock */ cpu_invltlb(); smp_cpus++; #if defined(I586_CPU) && !defined(NO_F00F_HACK) lidt(&r_idt); #endif /* Build our map of 'other' CPUs. */ other_cpus = all_cpus & ~(1 << cpuid); printf("SMP: AP CPU #%d Launched!\n", cpuid); /* set up CPU registers and state */ cpu_setregs(); /* set up FPU state on the AP */ npxinit(__INITIAL_NPXCW__); /* A quick check from sanity claus */ apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]); if (cpuid != apic_id) { printf("SMP: cpuid = %d\n", cpuid); printf("SMP: apic_id = %d\n", apic_id); printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]); panic("cpuid mismatch! boom!!"); } /* Init local apic for irq's */ apic_initialize(); /* Set memory range attributes for this CPU to match the BSP */ mem_range_AP_init(); /* * Activate smp_invltlb, although strictly speaking, this isn't * quite correct yet. We should have a bitfield for cpus willing * to accept TLB flush IPI's or something and sync them. */ if (smp_cpus == mp_ncpus) { invltlb_ok = 1; smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */ smp_active = 1; /* historic */ } /* let other AP's wake up now */ s_unlock(&ap_boot_lock); /* wait until all the AP's are up */ while (smp_started == 0) ; /* nothing */ /* * Set curproc to our per-cpu idleproc so that mutexes have * something unique to lock with. */ PCPU_SET(curproc,idleproc); PCPU_SET(prevproc,idleproc); microuptime(&switchtime); switchticks = ticks; /* ok, now grab sched_lock and enter the scheduler */ enable_intr(); mtx_enter(&sched_lock, MTX_SPIN); cpu_throw(); /* doesn't return */ panic("scheduler returned us to ap_init"); } #ifdef BETTER_CLOCK #define CHECKSTATE_USER 0 #define CHECKSTATE_SYS 1 #define CHECKSTATE_INTR 2 /* Do not staticize. Used from apic_vector.s */ struct proc* checkstate_curproc[NCPU]; int checkstate_cpustate[NCPU]; u_long checkstate_pc[NCPU]; #define PC_TO_INDEX(pc, prof) \ ((int)(((u_quad_t)((pc) - (prof)->pr_off) * \ (u_quad_t)((prof)->pr_scale)) >> 16) & ~1) static void addupc_intr_forwarded(struct proc *p, int id, int *astmap) { int i; struct uprof *prof; u_long pc; pc = checkstate_pc[id]; prof = &p->p_stats->p_prof; if (pc >= prof->pr_off && (i = PC_TO_INDEX(pc, prof)) < prof->pr_size) { if ((p->p_flag & P_OWEUPC) == 0) { prof->pr_addr = pc; prof->pr_ticks = 1; p->p_flag |= P_OWEUPC; } *astmap |= (1 << id); } } static void forwarded_statclock(int id, int pscnt, int *astmap) { struct pstats *pstats; long rss; struct rusage *ru; struct vmspace *vm; int cpustate; struct proc *p; #ifdef GPROF register struct gmonparam *g; int i; #endif p = checkstate_curproc[id]; cpustate = checkstate_cpustate[id]; /* XXX */ if (p->p_ithd) cpustate = CHECKSTATE_INTR; else if (p == SMP_prvspace[id].globaldata.gd_idleproc) cpustate = CHECKSTATE_SYS; switch (cpustate) { case CHECKSTATE_USER: if (p->p_flag & P_PROFIL) addupc_intr_forwarded(p, id, astmap); if (pscnt > 1) return; p->p_uticks++; if (p->p_nice > NZERO) cp_time[CP_NICE]++; else cp_time[CP_USER]++; break; case CHECKSTATE_SYS: #ifdef GPROF /* * Kernel statistics are just like addupc_intr, only easier. */ g = &_gmonparam; if (g->state == GMON_PROF_ON) { i = checkstate_pc[id] - g->lowpc; if (i < g->textsize) { i /= HISTFRACTION * sizeof(*g->kcount); g->kcount[i]++; } } #endif if (pscnt > 1) return; p->p_sticks++; if (p == SMP_prvspace[id].globaldata.gd_idleproc) cp_time[CP_IDLE]++; else cp_time[CP_SYS]++; break; case CHECKSTATE_INTR: default: #ifdef GPROF /* * Kernel statistics are just like addupc_intr, only easier. */ g = &_gmonparam; if (g->state == GMON_PROF_ON) { i = checkstate_pc[id] - g->lowpc; if (i < g->textsize) { i /= HISTFRACTION * sizeof(*g->kcount); g->kcount[i]++; } } #endif if (pscnt > 1) return; if (p) p->p_iticks++; cp_time[CP_INTR]++; } schedclock(p); /* Update resource usage integrals and maximums. */ if ((pstats = p->p_stats) != NULL && (ru = &pstats->p_ru) != NULL && (vm = p->p_vmspace) != NULL) { ru->ru_ixrss += pgtok(vm->vm_tsize); ru->ru_idrss += pgtok(vm->vm_dsize); ru->ru_isrss += pgtok(vm->vm_ssize); rss = pgtok(vmspace_resident_count(vm)); if (ru->ru_maxrss < rss) ru->ru_maxrss = rss; } } void forward_statclock(int pscnt) { int map; int id; int i; /* Kludge. We don't yet have separate locks for the interrupts * and the kernel. This means that we cannot let the other processors * handle complex interrupts while inhibiting them from entering * the kernel in a non-interrupt context. * * What we can do, without changing the locking mechanisms yet, * is letting the other processors handle a very simple interrupt * (wich determines the processor states), and do the main * work ourself. */ if (!smp_started || !invltlb_ok || cold || panicstr) return; /* Step 1: Probe state (user, cpu, interrupt, spinlock, idle ) */ map = other_cpus & ~stopped_cpus ; checkstate_probed_cpus = 0; if (map != 0) selected_apic_ipi(map, XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED); i = 0; while (checkstate_probed_cpus != map) { /* spin */ i++; if (i == 100000) { #ifdef BETTER_CLOCK_DIAGNOSTIC printf("forward_statclock: checkstate %x\n", checkstate_probed_cpus); #endif break; } } /* * Step 2: walk through other processors processes, update ticks and * profiling info. */ map = 0; for (id = 0; id < mp_ncpus; id++) { if (id == cpuid) continue; if (((1 << id) & checkstate_probed_cpus) == 0) continue; forwarded_statclock(id, pscnt, &map); } if (map != 0) { checkstate_need_ast |= map; selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED); i = 0; while ((checkstate_need_ast & map) != 0) { /* spin */ i++; if (i > 100000) { #ifdef BETTER_CLOCK_DIAGNOSTIC printf("forward_statclock: dropped ast 0x%x\n", checkstate_need_ast & map); #endif break; } } } } void forward_hardclock(int pscnt) { int map; int id; struct proc *p; struct pstats *pstats; int i; /* Kludge. We don't yet have separate locks for the interrupts * and the kernel. This means that we cannot let the other processors * handle complex interrupts while inhibiting them from entering * the kernel in a non-interrupt context. * * What we can do, without changing the locking mechanisms yet, * is letting the other processors handle a very simple interrupt * (wich determines the processor states), and do the main * work ourself. */ if (!smp_started || !invltlb_ok || cold || panicstr) return; /* Step 1: Probe state (user, cpu, interrupt, spinlock, idle) */ map = other_cpus & ~stopped_cpus ; checkstate_probed_cpus = 0; if (map != 0) selected_apic_ipi(map, XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED); i = 0; while (checkstate_probed_cpus != map) { /* spin */ i++; if (i == 100000) { #ifdef BETTER_CLOCK_DIAGNOSTIC printf("forward_hardclock: checkstate %x\n", checkstate_probed_cpus); #endif break; } } /* * Step 2: walk through other processors processes, update virtual * timer and profiling timer. If stathz == 0, also update ticks and * profiling info. */ map = 0; for (id = 0; id < mp_ncpus; id++) { if (id == cpuid) continue; if (((1 << id) & checkstate_probed_cpus) == 0) continue; p = checkstate_curproc[id]; if (p) { pstats = p->p_stats; if (checkstate_cpustate[id] == CHECKSTATE_USER && timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) { psignal(p, SIGVTALRM); map |= (1 << id); } if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) { psignal(p, SIGPROF); map |= (1 << id); } } if (stathz == 0) { forwarded_statclock( id, pscnt, &map); } } if (map != 0) { checkstate_need_ast |= map; selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED); i = 0; while ((checkstate_need_ast & map) != 0) { /* spin */ i++; if (i > 100000) { #ifdef BETTER_CLOCK_DIAGNOSTIC printf("forward_hardclock: dropped ast 0x%x\n", checkstate_need_ast & map); #endif break; } } } } #endif /* BETTER_CLOCK */ void forward_signal(struct proc *p) { int map; int id; int i; /* Kludge. We don't yet have separate locks for the interrupts * and the kernel. This means that we cannot let the other processors * handle complex interrupts while inhibiting them from entering * the kernel in a non-interrupt context. * * What we can do, without changing the locking mechanisms yet, * is letting the other processors handle a very simple interrupt * (wich determines the processor states), and do the main * work ourself. */ if (!smp_started || !invltlb_ok || cold || panicstr) return; if (!forward_signal_enabled) return; while (1) { if (p->p_stat != SRUN) return; id = p->p_oncpu; if (id == 0xff) return; map = (1< 100000) { #if 0 printf("forward_signal: dropped ast 0x%x\n", checkstate_need_ast & map); #endif break; } } if (id == p->p_oncpu) return; } } void forward_roundrobin(void) { u_int map; int i; if (!smp_started || !invltlb_ok || cold || panicstr) return; if (!forward_roundrobin_enabled) return; resched_cpus |= other_cpus; map = other_cpus & ~stopped_cpus ; #if 1 selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED); #else (void) all_but_self_ipi(XCPUAST_OFFSET); #endif i = 0; while ((checkstate_need_ast & map) != 0) { /* spin */ i++; if (i > 100000) { #if 0 printf("forward_roundrobin: dropped ast 0x%x\n", checkstate_need_ast & map); #endif break; } } } #ifdef APIC_INTR_REORDER /* * Maintain mapping from softintr vector to isr bit in local apic. */ void set_lapic_isrloc(int intr, int vector) { if (intr < 0 || intr > 32) panic("set_apic_isrloc: bad intr argument: %d",intr); if (vector < ICU_OFFSET || vector > 255) panic("set_apic_isrloc: bad vector argument: %d",vector); apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2); apic_isrbit_location[intr].bit = (1<<(vector & 31)); } #endif /* * All-CPU rendezvous. CPUs are signalled, all execute the setup function * (if specified), rendezvous, execute the action function (if specified), * rendezvous again, execute the teardown function (if specified), and then * resume. * * Note that the supplied external functions _must_ be reentrant and aware * that they are running in parallel and in an unknown lock context. */ static void (*smp_rv_setup_func)(void *arg); static void (*smp_rv_action_func)(void *arg); static void (*smp_rv_teardown_func)(void *arg); static void *smp_rv_func_arg; static volatile int smp_rv_waiters[2]; void smp_rendezvous_action(void) { /* setup function */ if (smp_rv_setup_func != NULL) smp_rv_setup_func(smp_rv_func_arg); /* spin on entry rendezvous */ atomic_add_int(&smp_rv_waiters[0], 1); while (smp_rv_waiters[0] < mp_ncpus) ; /* action function */ if (smp_rv_action_func != NULL) smp_rv_action_func(smp_rv_func_arg); /* spin on exit rendezvous */ atomic_add_int(&smp_rv_waiters[1], 1); while (smp_rv_waiters[1] < mp_ncpus) ; /* teardown function */ if (smp_rv_teardown_func != NULL) smp_rv_teardown_func(smp_rv_func_arg); } void smp_rendezvous(void (* setup_func)(void *), void (* action_func)(void *), void (* teardown_func)(void *), void *arg) { u_int efl; /* obtain rendezvous lock */ s_lock(&smp_rv_lock); /* XXX sleep here? NOWAIT flag? */ /* set static function pointers */ smp_rv_setup_func = setup_func; smp_rv_action_func = action_func; smp_rv_teardown_func = teardown_func; smp_rv_func_arg = arg; smp_rv_waiters[0] = 0; smp_rv_waiters[1] = 0; /* disable interrupts on this CPU, save interrupt status */ efl = read_eflags(); write_eflags(efl & ~PSL_I); /* signal other processors, which will enter the IPI with interrupts off */ all_but_self_ipi(XRENDEZVOUS_OFFSET); /* call executor function */ smp_rendezvous_action(); /* restore interrupt flag */ write_eflags(efl); /* release lock */ s_unlock(&smp_rv_lock); } void release_aps(void *dummy __unused) { s_unlock(&ap_boot_lock); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);