/*- * Copyright 1998 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The kernel resource manager. This code is responsible for keeping track * of hardware resources which are apportioned out to various drivers. * It does not actually assign those resources, and it is not expected * that end-device drivers will call into this code directly. Rather, * the code which implements the buses that those devices are attached to, * and the code which manages CPU resources, will call this code, and the * end-device drivers will make upcalls to that code to actually perform * the allocation. * * There are two sorts of resources managed by this code. The first is * the more familiar array (RMAN_ARRAY) type; resources in this class * consist of a sequence of individually-allocatable objects which have * been numbered in some well-defined order. Most of the resources * are of this type, as it is the most familiar. The second type is * called a gauge (RMAN_GAUGE), and models fungible resources (i.e., * resources in which each instance is indistinguishable from every * other instance). The principal anticipated application of gauges * is in the context of power consumption, where a bus may have a specific * power budget which all attached devices share. RMAN_GAUGE is not * implemented yet. * * For array resources, we make one simplifying assumption: two clients * sharing the same resource must use the same range of indices. That * is to say, sharing of overlapping-but-not-identical regions is not * permitted. */ #include "opt_ddb.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include /* XXX debugging */ #include #include #include #ifdef DDB #include #endif /* * We use a linked list rather than a bitmap because we need to be able to * represent potentially huge objects (like all of a processor's physical * address space). That is also why the indices are defined to have type * `unsigned long' -- that being the largest integral type in ISO C (1990). * The 1999 version of C allows `long long'; we may need to switch to that * at some point in the future, particularly if we want to support 36-bit * addresses on IA32 hardware. */ struct resource_i { struct resource r_r; TAILQ_ENTRY(resource_i) r_link; LIST_ENTRY(resource_i) r_sharelink; LIST_HEAD(, resource_i) *r_sharehead; u_long r_start; /* index of the first entry in this resource */ u_long r_end; /* index of the last entry (inclusive) */ u_int r_flags; void *r_virtual; /* virtual address of this resource */ struct device *r_dev; /* device which has allocated this resource */ struct rman *r_rm; /* resource manager from whence this came */ int r_rid; /* optional rid for this resource. */ }; static int rman_debug = 0; TUNABLE_INT("debug.rman_debug", &rman_debug); SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RW, &rman_debug, 0, "rman debug"); #define DPRINTF(params) if (rman_debug) printf params static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager"); struct rman_head rman_head; static struct mtx rman_mtx; /* mutex to protect rman_head */ static int int_rman_release_resource(struct rman *rm, struct resource_i *r); static __inline struct resource_i * int_alloc_resource(int malloc_flag) { struct resource_i *r; r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO); if (r != NULL) { r->r_r.__r_i = r; } return (r); } int rman_init(struct rman *rm) { static int once = 0; if (once == 0) { once = 1; TAILQ_INIT(&rman_head); mtx_init(&rman_mtx, "rman head", NULL, MTX_DEF); } if (rm->rm_start == 0 && rm->rm_end == 0) rm->rm_end = ~0ul; if (rm->rm_type == RMAN_UNINIT) panic("rman_init"); if (rm->rm_type == RMAN_GAUGE) panic("implement RMAN_GAUGE"); TAILQ_INIT(&rm->rm_list); rm->rm_mtx = malloc(sizeof *rm->rm_mtx, M_RMAN, M_NOWAIT | M_ZERO); if (rm->rm_mtx == NULL) return ENOMEM; mtx_init(rm->rm_mtx, "rman", NULL, MTX_DEF); mtx_lock(&rman_mtx); TAILQ_INSERT_TAIL(&rman_head, rm, rm_link); mtx_unlock(&rman_mtx); return 0; } int rman_manage_region(struct rman *rm, u_long start, u_long end) { struct resource_i *r, *s, *t; int rv = 0; DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n", rm->rm_descr, start, end)); if (start < rm->rm_start || end > rm->rm_end) return EINVAL; r = int_alloc_resource(M_NOWAIT); if (r == NULL) return ENOMEM; r->r_start = start; r->r_end = end; r->r_rm = rm; mtx_lock(rm->rm_mtx); /* Skip entries before us. */ TAILQ_FOREACH(s, &rm->rm_list, r_link) { if (s->r_end == ULONG_MAX) break; if (s->r_end + 1 >= r->r_start) break; } /* If we ran off the end of the list, insert at the tail. */ if (s == NULL) { TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link); } else { /* Check for any overlap with the current region. */ if (r->r_start <= s->r_end && r->r_end >= s->r_start) { rv = EBUSY; goto out; } /* Check for any overlap with the next region. */ t = TAILQ_NEXT(s, r_link); if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) { rv = EBUSY; goto out; } /* * See if this region can be merged with the next region. If * not, clear the pointer. */ if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0)) t = NULL; /* See if we can merge with the current region. */ if (s->r_end + 1 == r->r_start && s->r_flags == 0) { /* Can we merge all 3 regions? */ if (t != NULL) { s->r_end = t->r_end; TAILQ_REMOVE(&rm->rm_list, t, r_link); free(r, M_RMAN); free(t, M_RMAN); } else { s->r_end = r->r_end; free(r, M_RMAN); } } else if (t != NULL) { /* Can we merge with just the next region? */ t->r_start = r->r_start; free(r, M_RMAN); } else if (s->r_end < r->r_start) { TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link); } else { TAILQ_INSERT_BEFORE(s, r, r_link); } } out: mtx_unlock(rm->rm_mtx); return rv; } int rman_init_from_resource(struct rman *rm, struct resource *r) { int rv; if ((rv = rman_init(rm)) != 0) return (rv); return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end)); } int rman_fini(struct rman *rm) { struct resource_i *r; mtx_lock(rm->rm_mtx); TAILQ_FOREACH(r, &rm->rm_list, r_link) { if (r->r_flags & RF_ALLOCATED) { mtx_unlock(rm->rm_mtx); return EBUSY; } } /* * There really should only be one of these if we are in this * state and the code is working properly, but it can't hurt. */ while (!TAILQ_EMPTY(&rm->rm_list)) { r = TAILQ_FIRST(&rm->rm_list); TAILQ_REMOVE(&rm->rm_list, r, r_link); free(r, M_RMAN); } mtx_unlock(rm->rm_mtx); mtx_lock(&rman_mtx); TAILQ_REMOVE(&rman_head, rm, rm_link); mtx_unlock(&rman_mtx); mtx_destroy(rm->rm_mtx); free(rm->rm_mtx, M_RMAN); return 0; } int rman_first_free_region(struct rman *rm, u_long *start, u_long *end) { struct resource_i *r; mtx_lock(rm->rm_mtx); TAILQ_FOREACH(r, &rm->rm_list, r_link) { if (!(r->r_flags & RF_ALLOCATED)) { *start = r->r_start; *end = r->r_end; mtx_unlock(rm->rm_mtx); return (0); } } mtx_unlock(rm->rm_mtx); return (ENOENT); } int rman_last_free_region(struct rman *rm, u_long *start, u_long *end) { struct resource_i *r; mtx_lock(rm->rm_mtx); TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) { if (!(r->r_flags & RF_ALLOCATED)) { *start = r->r_start; *end = r->r_end; mtx_unlock(rm->rm_mtx); return (0); } } mtx_unlock(rm->rm_mtx); return (ENOENT); } /* Shrink or extend one or both ends of an allocated resource. */ int rman_adjust_resource(struct resource *rr, u_long start, u_long end) { struct resource_i *r, *s, *t, *new; struct rman *rm; /* Not supported for shared resources. */ r = rr->__r_i; if (r->r_flags & RF_SHAREABLE) return (EINVAL); /* * This does not support wholesale moving of a resource. At * least part of the desired new range must overlap with the * existing resource. */ if (end < r->r_start || r->r_end < start) return (EINVAL); /* * Find the two resource regions immediately adjacent to the * allocated resource. */ rm = r->r_rm; mtx_lock(rm->rm_mtx); #ifdef INVARIANTS TAILQ_FOREACH(s, &rm->rm_list, r_link) { if (s == r) break; } if (s == NULL) panic("resource not in list"); #endif s = TAILQ_PREV(r, resource_head, r_link); t = TAILQ_NEXT(r, r_link); KASSERT(s == NULL || s->r_end + 1 == r->r_start, ("prev resource mismatch")); KASSERT(t == NULL || r->r_end + 1 == t->r_start, ("next resource mismatch")); /* * See if the changes are permitted. Shrinking is always allowed, * but growing requires sufficient room in the adjacent region. */ if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) || s->r_start > start)) { mtx_unlock(rm->rm_mtx); return (EBUSY); } if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) || t->r_end < end)) { mtx_unlock(rm->rm_mtx); return (EBUSY); } /* * While holding the lock, grow either end of the resource as * needed and shrink either end if the shrinking does not require * allocating a new resource. We can safely drop the lock and then * insert a new range to handle the shrinking case afterwards. */ if (start < r->r_start || (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) { KASSERT(s->r_flags == 0, ("prev is busy")); r->r_start = start; if (s->r_start == start) { TAILQ_REMOVE(&rm->rm_list, s, r_link); free(s, M_RMAN); } else s->r_end = start - 1; } if (end > r->r_end || (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) { KASSERT(t->r_flags == 0, ("next is busy")); r->r_end = end; if (t->r_end == end) { TAILQ_REMOVE(&rm->rm_list, t, r_link); free(t, M_RMAN); } else t->r_start = end + 1; } mtx_unlock(rm->rm_mtx); /* * Handle the shrinking cases that require allocating a new * resource to hold the newly-free region. We have to recheck * if we still need this new region after acquiring the lock. */ if (start > r->r_start) { new = int_alloc_resource(M_WAITOK); new->r_start = r->r_start; new->r_end = start - 1; new->r_rm = rm; mtx_lock(rm->rm_mtx); r->r_start = start; s = TAILQ_PREV(r, resource_head, r_link); if (s != NULL && !(s->r_flags & RF_ALLOCATED)) { s->r_end = start - 1; free(new, M_RMAN); } else TAILQ_INSERT_BEFORE(r, new, r_link); mtx_unlock(rm->rm_mtx); } if (end < r->r_end) { new = int_alloc_resource(M_WAITOK); new->r_start = end + 1; new->r_end = r->r_end; new->r_rm = rm; mtx_lock(rm->rm_mtx); r->r_end = end; t = TAILQ_NEXT(r, r_link); if (t != NULL && !(t->r_flags & RF_ALLOCATED)) { t->r_start = end + 1; free(new, M_RMAN); } else TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link); mtx_unlock(rm->rm_mtx); } return (0); } #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE)) struct resource * rman_reserve_resource_bound(struct rman *rm, u_long start, u_long end, u_long count, u_long bound, u_int flags, struct device *dev) { u_int new_rflags; struct resource_i *r, *s, *rv; u_long rstart, rend, amask, bmask; rv = NULL; DPRINTF(("rman_reserve_resource_bound: <%s> request: [%#lx, %#lx], " "length %#lx, flags %u, device %s\n", rm->rm_descr, start, end, count, flags, dev == NULL ? "" : device_get_nameunit(dev))); KASSERT((flags & RF_FIRSTSHARE) == 0, ("invalid flags %#x", flags)); new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED; mtx_lock(rm->rm_mtx); for (r = TAILQ_FIRST(&rm->rm_list); r && r->r_end < start + count - 1; r = TAILQ_NEXT(r, r_link)) ; if (r == NULL) { DPRINTF(("could not find a region\n")); goto out; } amask = (1ul << RF_ALIGNMENT(flags)) - 1; KASSERT(start <= ULONG_MAX - amask, ("start (%#lx) + amask (%#lx) would wrap around", start, amask)); /* If bound is 0, bmask will also be 0 */ bmask = ~(bound - 1); /* * First try to find an acceptable totally-unshared region. */ for (s = r; s; s = TAILQ_NEXT(s, r_link)) { DPRINTF(("considering [%#lx, %#lx]\n", s->r_start, s->r_end)); /* * The resource list is sorted, so there is no point in * searching further once r_start is too large. */ if (s->r_start > end - (count - 1)) { DPRINTF(("s->r_start (%#lx) + count - 1> end (%#lx)\n", s->r_start, end)); break; } if (s->r_start > ULONG_MAX - amask) { DPRINTF(("s->r_start (%#lx) + amask (%#lx) too large\n", s->r_start, amask)); break; } if (s->r_flags & RF_ALLOCATED) { DPRINTF(("region is allocated\n")); continue; } rstart = ulmax(s->r_start, start); /* * Try to find a region by adjusting to boundary and alignment * until both conditions are satisfied. This is not an optimal * algorithm, but in most cases it isn't really bad, either. */ do { rstart = (rstart + amask) & ~amask; if (((rstart ^ (rstart + count - 1)) & bmask) != 0) rstart += bound - (rstart & ~bmask); } while ((rstart & amask) != 0 && rstart < end && rstart < s->r_end); rend = ulmin(s->r_end, ulmax(rstart + count - 1, end)); if (rstart > rend) { DPRINTF(("adjusted start exceeds end\n")); continue; } DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n", rstart, rend, (rend - rstart + 1), count)); if ((rend - rstart + 1) >= count) { DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n", rstart, rend, (rend - rstart + 1))); if ((s->r_end - s->r_start + 1) == count) { DPRINTF(("candidate region is entire chunk\n")); rv = s; rv->r_flags = new_rflags; rv->r_dev = dev; goto out; } /* * If s->r_start < rstart and * s->r_end > rstart + count - 1, then * we need to split the region into three pieces * (the middle one will get returned to the user). * Otherwise, we are allocating at either the * beginning or the end of s, so we only need to * split it in two. The first case requires * two new allocations; the second requires but one. */ rv = int_alloc_resource(M_NOWAIT); if (rv == NULL) goto out; rv->r_start = rstart; rv->r_end = rstart + count - 1; rv->r_flags = new_rflags; rv->r_dev = dev; rv->r_rm = rm; if (s->r_start < rv->r_start && s->r_end > rv->r_end) { DPRINTF(("splitting region in three parts: " "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n", s->r_start, rv->r_start - 1, rv->r_start, rv->r_end, rv->r_end + 1, s->r_end)); /* * We are allocating in the middle. */ r = int_alloc_resource(M_NOWAIT); if (r == NULL) { free(rv, M_RMAN); rv = NULL; goto out; } r->r_start = rv->r_end + 1; r->r_end = s->r_end; r->r_flags = s->r_flags; r->r_rm = rm; s->r_end = rv->r_start - 1; TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, r_link); TAILQ_INSERT_AFTER(&rm->rm_list, rv, r, r_link); } else if (s->r_start == rv->r_start) { DPRINTF(("allocating from the beginning\n")); /* * We are allocating at the beginning. */ s->r_start = rv->r_end + 1; TAILQ_INSERT_BEFORE(s, rv, r_link); } else { DPRINTF(("allocating at the end\n")); /* * We are allocating at the end. */ s->r_end = rv->r_start - 1; TAILQ_INSERT_AFTER(&rm->rm_list, s, rv, r_link); } goto out; } } /* * Now find an acceptable shared region, if the client's requirements * allow sharing. By our implementation restriction, a candidate * region must match exactly by both size and sharing type in order * to be considered compatible with the client's request. (The * former restriction could probably be lifted without too much * additional work, but this does not seem warranted.) */ DPRINTF(("no unshared regions found\n")); if ((flags & RF_SHAREABLE) == 0) goto out; for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) { if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) && s->r_start >= start && (s->r_end - s->r_start + 1) == count && (s->r_start & amask) == 0 && ((s->r_start ^ s->r_end) & bmask) == 0) { rv = int_alloc_resource(M_NOWAIT); if (rv == NULL) goto out; rv->r_start = s->r_start; rv->r_end = s->r_end; rv->r_flags = new_rflags; rv->r_dev = dev; rv->r_rm = rm; if (s->r_sharehead == NULL) { s->r_sharehead = malloc(sizeof *s->r_sharehead, M_RMAN, M_NOWAIT | M_ZERO); if (s->r_sharehead == NULL) { free(rv, M_RMAN); rv = NULL; goto out; } LIST_INIT(s->r_sharehead); LIST_INSERT_HEAD(s->r_sharehead, s, r_sharelink); s->r_flags |= RF_FIRSTSHARE; } rv->r_sharehead = s->r_sharehead; LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink); goto out; } } /* * We couldn't find anything. */ out: mtx_unlock(rm->rm_mtx); return (rv == NULL ? NULL : &rv->r_r); } struct resource * rman_reserve_resource(struct rman *rm, u_long start, u_long end, u_long count, u_int flags, struct device *dev) { return (rman_reserve_resource_bound(rm, start, end, count, 0, flags, dev)); } int rman_activate_resource(struct resource *re) { struct resource_i *r; struct rman *rm; r = re->__r_i; rm = r->r_rm; mtx_lock(rm->rm_mtx); r->r_flags |= RF_ACTIVE; mtx_unlock(rm->rm_mtx); return 0; } int rman_deactivate_resource(struct resource *r) { struct rman *rm; rm = r->__r_i->r_rm; mtx_lock(rm->rm_mtx); r->__r_i->r_flags &= ~RF_ACTIVE; mtx_unlock(rm->rm_mtx); return 0; } static int int_rman_release_resource(struct rman *rm, struct resource_i *r) { struct resource_i *s, *t; if (r->r_flags & RF_ACTIVE) r->r_flags &= ~RF_ACTIVE; /* * Check for a sharing list first. If there is one, then we don't * have to think as hard. */ if (r->r_sharehead) { /* * If a sharing list exists, then we know there are at * least two sharers. * * If we are in the main circleq, appoint someone else. */ LIST_REMOVE(r, r_sharelink); s = LIST_FIRST(r->r_sharehead); if (r->r_flags & RF_FIRSTSHARE) { s->r_flags |= RF_FIRSTSHARE; TAILQ_INSERT_BEFORE(r, s, r_link); TAILQ_REMOVE(&rm->rm_list, r, r_link); } /* * Make sure that the sharing list goes away completely * if the resource is no longer being shared at all. */ if (LIST_NEXT(s, r_sharelink) == NULL) { free(s->r_sharehead, M_RMAN); s->r_sharehead = NULL; s->r_flags &= ~RF_FIRSTSHARE; } goto out; } /* * Look at the adjacent resources in the list and see if our * segment can be merged with any of them. If either of the * resources is allocated or is not exactly adjacent then they * cannot be merged with our segment. */ s = TAILQ_PREV(r, resource_head, r_link); if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 || s->r_end + 1 != r->r_start)) s = NULL; t = TAILQ_NEXT(r, r_link); if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 || r->r_end + 1 != t->r_start)) t = NULL; if (s != NULL && t != NULL) { /* * Merge all three segments. */ s->r_end = t->r_end; TAILQ_REMOVE(&rm->rm_list, r, r_link); TAILQ_REMOVE(&rm->rm_list, t, r_link); free(t, M_RMAN); } else if (s != NULL) { /* * Merge previous segment with ours. */ s->r_end = r->r_end; TAILQ_REMOVE(&rm->rm_list, r, r_link); } else if (t != NULL) { /* * Merge next segment with ours. */ t->r_start = r->r_start; TAILQ_REMOVE(&rm->rm_list, r, r_link); } else { /* * At this point, we know there is nothing we * can potentially merge with, because on each * side, there is either nothing there or what is * there is still allocated. In that case, we don't * want to remove r from the list; we simply want to * change it to an unallocated region and return * without freeing anything. */ r->r_flags &= ~RF_ALLOCATED; r->r_dev = NULL; return 0; } out: free(r, M_RMAN); return 0; } int rman_release_resource(struct resource *re) { int rv; struct resource_i *r; struct rman *rm; r = re->__r_i; rm = r->r_rm; mtx_lock(rm->rm_mtx); rv = int_rman_release_resource(rm, r); mtx_unlock(rm->rm_mtx); return (rv); } uint32_t rman_make_alignment_flags(uint32_t size) { int i; /* * Find the hightest bit set, and add one if more than one bit * set. We're effectively computing the ceil(log2(size)) here. */ for (i = 31; i > 0; i--) if ((1 << i) & size) break; if (~(1 << i) & size) i++; return(RF_ALIGNMENT_LOG2(i)); } void rman_set_start(struct resource *r, u_long start) { r->__r_i->r_start = start; } u_long rman_get_start(struct resource *r) { return (r->__r_i->r_start); } void rman_set_end(struct resource *r, u_long end) { r->__r_i->r_end = end; } u_long rman_get_end(struct resource *r) { return (r->__r_i->r_end); } u_long rman_get_size(struct resource *r) { return (r->__r_i->r_end - r->__r_i->r_start + 1); } u_int rman_get_flags(struct resource *r) { return (r->__r_i->r_flags); } void rman_set_virtual(struct resource *r, void *v) { r->__r_i->r_virtual = v; } void * rman_get_virtual(struct resource *r) { return (r->__r_i->r_virtual); } void rman_set_bustag(struct resource *r, bus_space_tag_t t) { r->r_bustag = t; } bus_space_tag_t rman_get_bustag(struct resource *r) { return (r->r_bustag); } void rman_set_bushandle(struct resource *r, bus_space_handle_t h) { r->r_bushandle = h; } bus_space_handle_t rman_get_bushandle(struct resource *r) { return (r->r_bushandle); } void rman_set_rid(struct resource *r, int rid) { r->__r_i->r_rid = rid; } int rman_get_rid(struct resource *r) { return (r->__r_i->r_rid); } void rman_set_device(struct resource *r, struct device *dev) { r->__r_i->r_dev = dev; } struct device * rman_get_device(struct resource *r) { return (r->__r_i->r_dev); } int rman_is_region_manager(struct resource *r, struct rman *rm) { return (r->__r_i->r_rm == rm); } /* * Sysctl interface for scanning the resource lists. * * We take two input parameters; the index into the list of resource * managers, and the resource offset into the list. */ static int sysctl_rman(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; int rman_idx, res_idx; struct rman *rm; struct resource_i *res; struct resource_i *sres; struct u_rman urm; struct u_resource ures; int error; if (namelen != 3) return (EINVAL); if (bus_data_generation_check(name[0])) return (EINVAL); rman_idx = name[1]; res_idx = name[2]; /* * Find the indexed resource manager */ mtx_lock(&rman_mtx); TAILQ_FOREACH(rm, &rman_head, rm_link) { if (rman_idx-- == 0) break; } mtx_unlock(&rman_mtx); if (rm == NULL) return (ENOENT); /* * If the resource index is -1, we want details on the * resource manager. */ if (res_idx == -1) { bzero(&urm, sizeof(urm)); urm.rm_handle = (uintptr_t)rm; if (rm->rm_descr != NULL) strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN); urm.rm_start = rm->rm_start; urm.rm_size = rm->rm_end - rm->rm_start + 1; urm.rm_type = rm->rm_type; error = SYSCTL_OUT(req, &urm, sizeof(urm)); return (error); } /* * Find the indexed resource and return it. */ mtx_lock(rm->rm_mtx); TAILQ_FOREACH(res, &rm->rm_list, r_link) { if (res->r_sharehead != NULL) { LIST_FOREACH(sres, res->r_sharehead, r_sharelink) if (res_idx-- == 0) { res = sres; goto found; } } else if (res_idx-- == 0) goto found; } mtx_unlock(rm->rm_mtx); return (ENOENT); found: bzero(&ures, sizeof(ures)); ures.r_handle = (uintptr_t)res; ures.r_parent = (uintptr_t)res->r_rm; ures.r_device = (uintptr_t)res->r_dev; if (res->r_dev != NULL) { if (device_get_name(res->r_dev) != NULL) { snprintf(ures.r_devname, RM_TEXTLEN, "%s%d", device_get_name(res->r_dev), device_get_unit(res->r_dev)); } else { strlcpy(ures.r_devname, "nomatch", RM_TEXTLEN); } } else { ures.r_devname[0] = '\0'; } ures.r_start = res->r_start; ures.r_size = res->r_end - res->r_start + 1; ures.r_flags = res->r_flags; mtx_unlock(rm->rm_mtx); error = SYSCTL_OUT(req, &ures, sizeof(ures)); return (error); } static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman, "kernel resource manager"); #ifdef DDB static void dump_rman_header(struct rman *rm) { if (db_pager_quit) return; db_printf("rman %p: %s (0x%lx-0x%lx full range)\n", rm, rm->rm_descr, rm->rm_start, rm->rm_end); } static void dump_rman(struct rman *rm) { struct resource_i *r; const char *devname; if (db_pager_quit) return; TAILQ_FOREACH(r, &rm->rm_list, r_link) { if (r->r_dev != NULL) { devname = device_get_nameunit(r->r_dev); if (devname == NULL) devname = "nomatch"; } else devname = NULL; db_printf(" 0x%lx-0x%lx (RID=%d) ", r->r_start, r->r_end, r->r_rid); if (devname != NULL) db_printf("(%s)\n", devname); else db_printf("----\n"); if (db_pager_quit) return; } } DB_SHOW_COMMAND(rman, db_show_rman) { if (have_addr) { dump_rman_header((struct rman *)addr); dump_rman((struct rman *)addr); } } DB_SHOW_COMMAND(rmans, db_show_rmans) { struct rman *rm; TAILQ_FOREACH(rm, &rman_head, rm_link) { dump_rman_header(rm); } } DB_SHOW_ALL_COMMAND(rman, db_show_all_rman) { struct rman *rm; TAILQ_FOREACH(rm, &rman_head, rm_link) { dump_rman_header(rm); dump_rman(rm); } } DB_SHOW_ALIAS(allrman, db_show_all_rman); #endif