/* * Copyright (C) 2001 Julian Elischer . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * KSEGRP related storage. */ static uma_zone_t ksegrp_zone; static uma_zone_t kse_zone; static uma_zone_t thread_zone; static uma_zone_t upcall_zone; /* DEBUG ONLY */ SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); static int thread_debug = 0; SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW, &thread_debug, 0, "thread debug"); static int max_threads_per_proc = 150; SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, &max_threads_per_proc, 0, "Limit on threads per proc"); static int max_groups_per_proc = 50; SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW, &max_groups_per_proc, 0, "Limit on thread groups per proc"); static int max_threads_hits; SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, &max_threads_hits, 0, ""); static int virtual_cpu; #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses); TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps); TAILQ_HEAD(, kse_upcall) zombie_upcalls = TAILQ_HEAD_INITIALIZER(zombie_upcalls); struct mtx kse_zombie_lock; MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN); static void kse_purge(struct proc *p, struct thread *td); static void kse_purge_group(struct thread *td); static int thread_update_usr_ticks(struct thread *td, int user); static void thread_alloc_spare(struct thread *td, struct thread *spare); static int sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) { int error, new_val; int def_val; #ifdef SMP def_val = mp_ncpus; #else def_val = 1; #endif if (virtual_cpu == 0) new_val = def_val; else new_val = virtual_cpu; error = sysctl_handle_int(oidp, &new_val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (new_val < 0) return (EINVAL); virtual_cpu = new_val; return (0); } /* DEBUG ONLY */ SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", "debug virtual cpus"); /* * Prepare a thread for use. */ static void thread_ctor(void *mem, int size, void *arg) { struct thread *td; td = (struct thread *)mem; td->td_state = TDS_INACTIVE; td->td_oncpu = NOCPU; td->td_critnest = 1; } /* * Reclaim a thread after use. */ static void thread_dtor(void *mem, int size, void *arg) { struct thread *td; td = (struct thread *)mem; #ifdef INVARIANTS /* Verify that this thread is in a safe state to free. */ switch (td->td_state) { case TDS_INHIBITED: case TDS_RUNNING: case TDS_CAN_RUN: case TDS_RUNQ: /* * We must never unlink a thread that is in one of * these states, because it is currently active. */ panic("bad state for thread unlinking"); /* NOTREACHED */ case TDS_INACTIVE: break; default: panic("bad thread state"); /* NOTREACHED */ } #endif } /* * Initialize type-stable parts of a thread (when newly created). */ static void thread_init(void *mem, int size) { struct thread *td; td = (struct thread *)mem; vm_thread_new(td, 0); cpu_thread_setup(td); td->td_turnstile = turnstile_alloc(); td->td_sched = (struct td_sched *)&td[1]; } /* * Tear down type-stable parts of a thread (just before being discarded). */ static void thread_fini(void *mem, int size) { struct thread *td; td = (struct thread *)mem; turnstile_free(td->td_turnstile); vm_thread_dispose(td); } /* * Initialize type-stable parts of a kse (when newly created). */ static void kse_init(void *mem, int size) { struct kse *ke; ke = (struct kse *)mem; ke->ke_sched = (struct ke_sched *)&ke[1]; } /* * Initialize type-stable parts of a ksegrp (when newly created). */ static void ksegrp_init(void *mem, int size) { struct ksegrp *kg; kg = (struct ksegrp *)mem; kg->kg_sched = (struct kg_sched *)&kg[1]; } /* * KSE is linked into kse group. */ void kse_link(struct kse *ke, struct ksegrp *kg) { struct proc *p = kg->kg_proc; TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist); kg->kg_kses++; ke->ke_state = KES_UNQUEUED; ke->ke_proc = p; ke->ke_ksegrp = kg; ke->ke_thread = NULL; ke->ke_oncpu = NOCPU; ke->ke_flags = 0; } void kse_unlink(struct kse *ke) { struct ksegrp *kg; mtx_assert(&sched_lock, MA_OWNED); kg = ke->ke_ksegrp; TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); if (ke->ke_state == KES_IDLE) { TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); kg->kg_idle_kses--; } --kg->kg_kses; /* * Aggregate stats from the KSE */ kse_stash(ke); } void ksegrp_link(struct ksegrp *kg, struct proc *p) { TAILQ_INIT(&kg->kg_threads); TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */ TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */ TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */ TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */ kg->kg_proc = p; /* * the following counters are in the -zero- section * and may not need clearing */ kg->kg_numthreads = 0; kg->kg_runnable = 0; kg->kg_kses = 0; kg->kg_runq_kses = 0; /* XXXKSE change name */ kg->kg_idle_kses = 0; kg->kg_numupcalls = 0; /* link it in now that it's consistent */ p->p_numksegrps++; TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); } void ksegrp_unlink(struct ksegrp *kg) { struct proc *p; mtx_assert(&sched_lock, MA_OWNED); KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads")); KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses")); KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls")); p = kg->kg_proc; TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); p->p_numksegrps--; /* * Aggregate stats from the KSE */ ksegrp_stash(kg); } struct kse_upcall * upcall_alloc(void) { struct kse_upcall *ku; ku = uma_zalloc(upcall_zone, M_WAITOK); bzero(ku, sizeof(*ku)); return (ku); } void upcall_free(struct kse_upcall *ku) { uma_zfree(upcall_zone, ku); } void upcall_link(struct kse_upcall *ku, struct ksegrp *kg) { mtx_assert(&sched_lock, MA_OWNED); TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link); ku->ku_ksegrp = kg; kg->kg_numupcalls++; } void upcall_unlink(struct kse_upcall *ku) { struct ksegrp *kg = ku->ku_ksegrp; mtx_assert(&sched_lock, MA_OWNED); KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__)); TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link); kg->kg_numupcalls--; upcall_stash(ku); } void upcall_remove(struct thread *td) { if (td->td_upcall) { td->td_upcall->ku_owner = NULL; upcall_unlink(td->td_upcall); td->td_upcall = 0; } } /* * For a newly created process, * link up all the structures and its initial threads etc. */ void proc_linkup(struct proc *p, struct ksegrp *kg, struct kse *ke, struct thread *td) { TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ TAILQ_INIT(&p->p_threads); /* all threads in proc */ TAILQ_INIT(&p->p_suspended); /* Threads suspended */ p->p_numksegrps = 0; p->p_numthreads = 0; ksegrp_link(kg, p); kse_link(ke, kg); thread_link(td, kg); } #ifndef _SYS_SYSPROTO_H_ struct kse_switchin_args { const struct __mcontext *mcp; long val; long *loc; }; #endif int kse_switchin(struct thread *td, struct kse_switchin_args *uap) { mcontext_t mc; int error; error = (uap->mcp == NULL) ? EINVAL : 0; if (!error) error = copyin(uap->mcp, &mc, sizeof(mc)); if (!error) error = set_mcontext(td, &mc); if (!error && uap->loc != NULL) suword(uap->loc, uap->val); return ((error == 0) ? EJUSTRETURN : error); } /* struct kse_thr_interrupt_args { struct kse_thr_mailbox * tmbx; int cmd; long data; }; */ int kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap) { struct proc *p; struct thread *td2; p = td->td_proc; if (!(p->p_flag & P_SA)) return (EINVAL); switch (uap->cmd) { case KSE_INTR_SENDSIG: if (uap->data < 0 || uap->data > _SIG_MAXSIG) return (EINVAL); case KSE_INTR_INTERRUPT: case KSE_INTR_RESTART: PROC_LOCK(p); mtx_lock_spin(&sched_lock); FOREACH_THREAD_IN_PROC(p, td2) { if (td2->td_mailbox == uap->tmbx) break; } if (td2 == NULL) { mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (ESRCH); } if (uap->cmd == KSE_INTR_SENDSIG) { if (uap->data > 0) { td2->td_flags &= ~TDF_INTERRUPT; mtx_unlock_spin(&sched_lock); tdsignal(td2, (int)uap->data, SIGTARGET_TD); } else { mtx_unlock_spin(&sched_lock); } } else { td2->td_flags |= TDF_INTERRUPT | TDF_ASTPENDING; if (TD_CAN_UNBIND(td2)) td2->td_upcall->ku_flags |= KUF_DOUPCALL; if (uap->cmd == KSE_INTR_INTERRUPT) td2->td_intrval = EINTR; else td2->td_intrval = ERESTART; if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) { if (td2->td_flags & TDF_CVWAITQ) cv_abort(td2); else abortsleep(td2); } mtx_unlock_spin(&sched_lock); } PROC_UNLOCK(p); break; case KSE_INTR_SIGEXIT: if (uap->data < 1 || uap->data > _SIG_MAXSIG) return (EINVAL); PROC_LOCK(p); sigexit(td, (int)uap->data); break; default: return (EINVAL); } return (0); } /* struct kse_exit_args { register_t dummy; }; */ int kse_exit(struct thread *td, struct kse_exit_args *uap) { struct proc *p; struct ksegrp *kg; struct kse *ke; struct kse_upcall *ku, *ku2; int error, count; p = td->td_proc; if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td)) return (EINVAL); kg = td->td_ksegrp; count = 0; PROC_LOCK(p); mtx_lock_spin(&sched_lock); FOREACH_UPCALL_IN_GROUP(kg, ku2) { if (ku2->ku_flags & KUF_EXITING) count++; } if ((kg->kg_numupcalls - count) == 1 && (kg->kg_numthreads > 1)) { mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (EDEADLK); } ku->ku_flags |= KUF_EXITING; mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); error = suword(&ku->ku_mailbox->km_flags, ku->ku_mflags|KMF_DONE); PROC_LOCK(p); if (error) psignal(p, SIGSEGV); mtx_lock_spin(&sched_lock); upcall_remove(td); ke = td->td_kse; if (p->p_numthreads == 1) { kse_purge(p, td); p->p_flag &= ~P_SA; mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); } else { if (kg->kg_numthreads == 1) { /* Shutdown a group */ kse_purge_group(td); ke->ke_flags |= KEF_EXIT; } thread_stopped(p); thread_exit(); /* NOTREACHED */ } return (0); } /* * Either becomes an upcall or waits for an awakening event and * then becomes an upcall. Only error cases return. */ /* struct kse_release_args { struct timespec *timeout; }; */ int kse_release(struct thread *td, struct kse_release_args *uap) { struct proc *p; struct ksegrp *kg; struct kse_upcall *ku; struct timespec timeout; struct timeval tv; sigset_t sigset; int error; p = td->td_proc; kg = td->td_ksegrp; if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td)) return (EINVAL); if (uap->timeout != NULL) { if ((error = copyin(uap->timeout, &timeout, sizeof(timeout)))) return (error); TIMESPEC_TO_TIMEVAL(&tv, &timeout); } if (td->td_flags & TDF_SA) td->td_pflags |= TDP_UPCALLING; else { ku->ku_mflags = fuword(&ku->ku_mailbox->km_flags); if (ku->ku_mflags == -1) { PROC_LOCK(p); sigexit(td, SIGSEGV); } } PROC_LOCK(p); if (ku->ku_mflags & KMF_WAITSIGEVENT) { /* UTS wants to wait for signal event */ if (!(p->p_flag & P_SIGEVENT) && !(ku->ku_flags & KUF_DOUPCALL)) error = msleep(&p->p_siglist, &p->p_mtx, PPAUSE|PCATCH, "ksesigwait", (uap->timeout ? tvtohz(&tv) : 0)); p->p_flag &= ~P_SIGEVENT; sigset = p->p_siglist; PROC_UNLOCK(p); error = copyout(&sigset, &ku->ku_mailbox->km_sigscaught, sizeof(sigset)); } else { if (! kg->kg_completed && !(ku->ku_flags & KUF_DOUPCALL)) { kg->kg_upsleeps++; error = msleep(&kg->kg_completed, &p->p_mtx, PPAUSE|PCATCH, "kserel", (uap->timeout ? tvtohz(&tv) : 0)); kg->kg_upsleeps--; } PROC_UNLOCK(p); } if (ku->ku_flags & KUF_DOUPCALL) { mtx_lock_spin(&sched_lock); ku->ku_flags &= ~KUF_DOUPCALL; mtx_unlock_spin(&sched_lock); } return (0); } /* struct kse_wakeup_args { struct kse_mailbox *mbx; }; */ int kse_wakeup(struct thread *td, struct kse_wakeup_args *uap) { struct proc *p; struct ksegrp *kg; struct kse_upcall *ku; struct thread *td2; p = td->td_proc; td2 = NULL; ku = NULL; /* KSE-enabled processes only, please. */ if (!(p->p_flag & P_SA)) return (EINVAL); PROC_LOCK(p); mtx_lock_spin(&sched_lock); if (uap->mbx) { FOREACH_KSEGRP_IN_PROC(p, kg) { FOREACH_UPCALL_IN_GROUP(kg, ku) { if (ku->ku_mailbox == uap->mbx) break; } if (ku) break; } } else { kg = td->td_ksegrp; if (kg->kg_upsleeps) { wakeup_one(&kg->kg_completed); mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (0); } ku = TAILQ_FIRST(&kg->kg_upcalls); } if (ku) { if ((td2 = ku->ku_owner) == NULL) { panic("%s: no owner", __func__); } else if (TD_ON_SLEEPQ(td2) && ((td2->td_wchan == &kg->kg_completed) || (td2->td_wchan == &p->p_siglist && (ku->ku_mflags & KMF_WAITSIGEVENT)))) { abortsleep(td2); } else { ku->ku_flags |= KUF_DOUPCALL; } mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (0); } mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (ESRCH); } /* * No new KSEG: first call: use current KSE, don't schedule an upcall * All other situations, do allocate max new KSEs and schedule an upcall. */ /* struct kse_create_args { struct kse_mailbox *mbx; int newgroup; }; */ int kse_create(struct thread *td, struct kse_create_args *uap) { struct kse *newke; struct ksegrp *newkg; struct ksegrp *kg; struct proc *p; struct kse_mailbox mbx; struct kse_upcall *newku; int err, ncpus, sa = 0, first = 0; struct thread *newtd; p = td->td_proc; if ((err = copyin(uap->mbx, &mbx, sizeof(mbx)))) return (err); /* Too bad, why hasn't kernel always a cpu counter !? */ #ifdef SMP ncpus = mp_ncpus; #else ncpus = 1; #endif if (virtual_cpu != 0) ncpus = virtual_cpu; if (!(mbx.km_flags & KMF_BOUND)) sa = TDF_SA; else ncpus = 1; PROC_LOCK(p); if (!(p->p_flag & P_SA)) { first = 1; p->p_flag |= P_SA; } PROC_UNLOCK(p); if (!sa && !uap->newgroup && !first) return (EINVAL); kg = td->td_ksegrp; if (uap->newgroup) { /* Have race condition but it is cheap */ if (p->p_numksegrps >= max_groups_per_proc) return (EPROCLIM); /* * If we want a new KSEGRP it doesn't matter whether * we have already fired up KSE mode before or not. * We put the process in KSE mode and create a new KSEGRP. */ newkg = ksegrp_alloc(); bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp, kg_startzero, kg_endzero)); bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy)); PROC_LOCK(p); mtx_lock_spin(&sched_lock); if (p->p_numksegrps >= max_groups_per_proc) { mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); ksegrp_free(newkg); return (EPROCLIM); } ksegrp_link(newkg, p); sched_fork_ksegrp(kg, newkg); mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); } else { if (!first && ((td->td_flags & TDF_SA) ^ sa) != 0) return (EINVAL); newkg = kg; } /* * Creating upcalls more than number of physical cpu does * not help performance. */ if (newkg->kg_numupcalls >= ncpus) return (EPROCLIM); if (newkg->kg_numupcalls == 0) { /* * Initialize KSE group * * For multiplxed group, create KSEs as many as physical * cpus. This increases concurrent even if userland * is not MP safe and can only run on single CPU. * In ideal world, every physical cpu should execute a thread. * If there is enough KSEs, threads in kernel can be * executed parallel on different cpus with full speed, * Concurrent in kernel shouldn't be restricted by number of * upcalls userland provides. Adding more upcall structures * only increases concurrent in userland. * * For bound thread group, because there is only thread in the * group, we only create one KSE for the group. Thread in this * kind of group will never schedule an upcall when blocked, * this intends to simulate pthread system scope thread. */ while (newkg->kg_kses < ncpus) { newke = kse_alloc(); bzero(&newke->ke_startzero, RANGEOF(struct kse, ke_startzero, ke_endzero)); #if 0 mtx_lock_spin(&sched_lock); bcopy(&ke->ke_startcopy, &newke->ke_startcopy, RANGEOF(struct kse, ke_startcopy, ke_endcopy)); mtx_unlock_spin(&sched_lock); #endif mtx_lock_spin(&sched_lock); kse_link(newke, newkg); sched_fork_kse(td->td_kse, newke); /* Add engine */ kse_reassign(newke); mtx_unlock_spin(&sched_lock); } } newku = upcall_alloc(); newku->ku_mailbox = uap->mbx; newku->ku_func = mbx.km_func; bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t)); /* For the first call this may not have been set */ if (td->td_standin == NULL) thread_alloc_spare(td, NULL); PROC_LOCK(p); if (newkg->kg_numupcalls >= ncpus) { PROC_UNLOCK(p); upcall_free(newku); return (EPROCLIM); } if (first && sa) { SIGSETOR(p->p_siglist, td->td_siglist); SIGEMPTYSET(td->td_siglist); SIGFILLSET(td->td_sigmask); SIG_CANTMASK(td->td_sigmask); } mtx_lock_spin(&sched_lock); PROC_UNLOCK(p); upcall_link(newku, newkg); if (mbx.km_quantum) newkg->kg_upquantum = max(1, mbx.km_quantum/tick); /* * Each upcall structure has an owner thread, find which * one owns it. */ if (uap->newgroup) { /* * Because new ksegrp hasn't thread, * create an initial upcall thread to own it. */ newtd = thread_schedule_upcall(td, newku); } else { /* * If current thread hasn't an upcall structure, * just assign the upcall to it. */ if (td->td_upcall == NULL) { newku->ku_owner = td; td->td_upcall = newku; newtd = td; } else { /* * Create a new upcall thread to own it. */ newtd = thread_schedule_upcall(td, newku); } } if (!sa) { newtd->td_mailbox = mbx.km_curthread; newtd->td_flags &= ~TDF_SA; if (newtd != td) { mtx_unlock_spin(&sched_lock); cpu_set_upcall_kse(newtd, newku); mtx_lock_spin(&sched_lock); } } else { newtd->td_flags |= TDF_SA; } if (newtd != td) setrunqueue(newtd); mtx_unlock_spin(&sched_lock); return (0); } /* * Initialize global thread allocation resources. */ void threadinit(void) { thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), thread_ctor, thread_dtor, thread_init, thread_fini, UMA_ALIGN_CACHE, 0); ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(), NULL, NULL, ksegrp_init, NULL, UMA_ALIGN_CACHE, 0); kse_zone = uma_zcreate("KSE", sched_sizeof_kse(), NULL, NULL, kse_init, NULL, UMA_ALIGN_CACHE, 0); upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); } /* * Stash an embarasingly extra thread into the zombie thread queue. */ void thread_stash(struct thread *td) { mtx_lock_spin(&kse_zombie_lock); TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq); mtx_unlock_spin(&kse_zombie_lock); } /* * Stash an embarasingly extra kse into the zombie kse queue. */ void kse_stash(struct kse *ke) { mtx_lock_spin(&kse_zombie_lock); TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq); mtx_unlock_spin(&kse_zombie_lock); } /* * Stash an embarasingly extra upcall into the zombie upcall queue. */ void upcall_stash(struct kse_upcall *ku) { mtx_lock_spin(&kse_zombie_lock); TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link); mtx_unlock_spin(&kse_zombie_lock); } /* * Stash an embarasingly extra ksegrp into the zombie ksegrp queue. */ void ksegrp_stash(struct ksegrp *kg) { mtx_lock_spin(&kse_zombie_lock); TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp); mtx_unlock_spin(&kse_zombie_lock); } /* * Reap zombie kse resource. */ void thread_reap(void) { struct thread *td_first, *td_next; struct kse *ke_first, *ke_next; struct ksegrp *kg_first, * kg_next; struct kse_upcall *ku_first, *ku_next; /* * Don't even bother to lock if none at this instant, * we really don't care about the next instant.. */ if ((!TAILQ_EMPTY(&zombie_threads)) || (!TAILQ_EMPTY(&zombie_kses)) || (!TAILQ_EMPTY(&zombie_ksegrps)) || (!TAILQ_EMPTY(&zombie_upcalls))) { mtx_lock_spin(&kse_zombie_lock); td_first = TAILQ_FIRST(&zombie_threads); ke_first = TAILQ_FIRST(&zombie_kses); kg_first = TAILQ_FIRST(&zombie_ksegrps); ku_first = TAILQ_FIRST(&zombie_upcalls); if (td_first) TAILQ_INIT(&zombie_threads); if (ke_first) TAILQ_INIT(&zombie_kses); if (kg_first) TAILQ_INIT(&zombie_ksegrps); if (ku_first) TAILQ_INIT(&zombie_upcalls); mtx_unlock_spin(&kse_zombie_lock); while (td_first) { td_next = TAILQ_NEXT(td_first, td_runq); if (td_first->td_ucred) crfree(td_first->td_ucred); thread_free(td_first); td_first = td_next; } while (ke_first) { ke_next = TAILQ_NEXT(ke_first, ke_procq); kse_free(ke_first); ke_first = ke_next; } while (kg_first) { kg_next = TAILQ_NEXT(kg_first, kg_ksegrp); ksegrp_free(kg_first); kg_first = kg_next; } while (ku_first) { ku_next = TAILQ_NEXT(ku_first, ku_link); upcall_free(ku_first); ku_first = ku_next; } } } /* * Allocate a ksegrp. */ struct ksegrp * ksegrp_alloc(void) { return (uma_zalloc(ksegrp_zone, M_WAITOK)); } /* * Allocate a kse. */ struct kse * kse_alloc(void) { return (uma_zalloc(kse_zone, M_WAITOK)); } /* * Allocate a thread. */ struct thread * thread_alloc(void) { thread_reap(); /* check if any zombies to get */ return (uma_zalloc(thread_zone, M_WAITOK)); } /* * Deallocate a ksegrp. */ void ksegrp_free(struct ksegrp *td) { uma_zfree(ksegrp_zone, td); } /* * Deallocate a kse. */ void kse_free(struct kse *td) { uma_zfree(kse_zone, td); } /* * Deallocate a thread. */ void thread_free(struct thread *td) { cpu_thread_clean(td); uma_zfree(thread_zone, td); } /* * Store the thread context in the UTS's mailbox. * then add the mailbox at the head of a list we are building in user space. * The list is anchored in the ksegrp structure. */ int thread_export_context(struct thread *td, int willexit) { struct proc *p; struct ksegrp *kg; uintptr_t mbx; void *addr; int error = 0, temp, sig; mcontext_t mc; p = td->td_proc; kg = td->td_ksegrp; /* Export the user/machine context. */ get_mcontext(td, &mc, 0); addr = (void *)(&td->td_mailbox->tm_context.uc_mcontext); error = copyout(&mc, addr, sizeof(mcontext_t)); if (error) goto bad; /* Exports clock ticks in kernel mode */ addr = (caddr_t)(&td->td_mailbox->tm_sticks); temp = fuword32(addr) + td->td_usticks; if (suword32(addr, temp)) { error = EFAULT; goto bad; } /* * Post sync signal, or process SIGKILL and SIGSTOP. * For sync signal, it is only possible when the signal is not * caught by userland or process is being debugged. */ PROC_LOCK(p); if (td->td_flags & TDF_NEEDSIGCHK) { mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_NEEDSIGCHK; mtx_unlock_spin(&sched_lock); mtx_lock(&p->p_sigacts->ps_mtx); while ((sig = cursig(td)) != 0) postsig(sig); mtx_unlock(&p->p_sigacts->ps_mtx); } if (willexit) SIGFILLSET(td->td_sigmask); PROC_UNLOCK(p); /* Get address in latest mbox of list pointer */ addr = (void *)(&td->td_mailbox->tm_next); /* * Put the saved address of the previous first * entry into this one */ for (;;) { mbx = (uintptr_t)kg->kg_completed; if (suword(addr, mbx)) { error = EFAULT; goto bad; } PROC_LOCK(p); if (mbx == (uintptr_t)kg->kg_completed) { kg->kg_completed = td->td_mailbox; /* * The thread context may be taken away by * other upcall threads when we unlock * process lock. it's no longer valid to * use it again in any other places. */ td->td_mailbox = NULL; PROC_UNLOCK(p); break; } PROC_UNLOCK(p); } td->td_usticks = 0; return (0); bad: PROC_LOCK(p); sigexit(td, SIGILL); return (error); } /* * Take the list of completed mailboxes for this KSEGRP and put them on this * upcall's mailbox as it's the next one going up. */ static int thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku) { struct proc *p = kg->kg_proc; void *addr; uintptr_t mbx; addr = (void *)(&ku->ku_mailbox->km_completed); for (;;) { mbx = (uintptr_t)kg->kg_completed; if (suword(addr, mbx)) { PROC_LOCK(p); psignal(p, SIGSEGV); PROC_UNLOCK(p); return (EFAULT); } PROC_LOCK(p); if (mbx == (uintptr_t)kg->kg_completed) { kg->kg_completed = NULL; PROC_UNLOCK(p); break; } PROC_UNLOCK(p); } return (0); } /* * This function should be called at statclock interrupt time */ int thread_statclock(int user) { struct thread *td = curthread; struct ksegrp *kg = td->td_ksegrp; if (kg->kg_numupcalls == 0 || !(td->td_flags & TDF_SA)) return (0); if (user) { /* Current always do via ast() */ mtx_lock_spin(&sched_lock); td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING); mtx_unlock_spin(&sched_lock); td->td_uuticks++; } else { if (td->td_mailbox != NULL) td->td_usticks++; else { /* XXXKSE * We will call thread_user_enter() for every * kernel entry in future, so if the thread mailbox * is NULL, it must be a UTS kernel, don't account * clock ticks for it. */ } } return (0); } /* * Export state clock ticks for userland */ static int thread_update_usr_ticks(struct thread *td, int user) { struct proc *p = td->td_proc; struct kse_thr_mailbox *tmbx; struct kse_upcall *ku; struct ksegrp *kg; caddr_t addr; u_int uticks; if ((ku = td->td_upcall) == NULL) return (-1); tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread); if ((tmbx == NULL) || (tmbx == (void *)-1)) return (-1); if (user) { uticks = td->td_uuticks; td->td_uuticks = 0; addr = (caddr_t)&tmbx->tm_uticks; } else { uticks = td->td_usticks; td->td_usticks = 0; addr = (caddr_t)&tmbx->tm_sticks; } if (uticks) { if (suword32(addr, uticks+fuword32(addr))) { PROC_LOCK(p); psignal(p, SIGSEGV); PROC_UNLOCK(p); return (-2); } } kg = td->td_ksegrp; if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) { mtx_lock_spin(&sched_lock); td->td_upcall->ku_flags |= KUF_DOUPCALL; mtx_unlock_spin(&sched_lock); } return (0); } /* * Discard the current thread and exit from its context. * * Because we can't free a thread while we're operating under its context, * push the current thread into our CPU's deadthread holder. This means * we needn't worry about someone else grabbing our context before we * do a cpu_throw(). */ void thread_exit(void) { struct thread *td; struct kse *ke; struct proc *p; struct ksegrp *kg; td = curthread; kg = td->td_ksegrp; p = td->td_proc; ke = td->td_kse; mtx_assert(&sched_lock, MA_OWNED); KASSERT(p != NULL, ("thread exiting without a process")); KASSERT(ke != NULL, ("thread exiting without a kse")); KASSERT(kg != NULL, ("thread exiting without a kse group")); PROC_LOCK_ASSERT(p, MA_OWNED); CTR1(KTR_PROC, "thread_exit: thread %p", td); KASSERT(!mtx_owned(&Giant), ("dying thread owns giant")); if (td->td_standin != NULL) { thread_stash(td->td_standin); td->td_standin = NULL; } cpu_thread_exit(td); /* XXXSMP */ /* * The last thread is left attached to the process * So that the whole bundle gets recycled. Skip * all this stuff. */ if (p->p_numthreads > 1) { thread_unlink(td); if (p->p_maxthrwaits) wakeup(&p->p_numthreads); /* * The test below is NOT true if we are the * sole exiting thread. P_STOPPED_SNGL is unset * in exit1() after it is the only survivor. */ if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount) { thread_unsuspend_one(p->p_singlethread); } } /* * Because each upcall structure has an owner thread, * owner thread exits only when process is in exiting * state, so upcall to userland is no longer needed, * deleting upcall structure is safe here. * So when all threads in a group is exited, all upcalls * in the group should be automatically freed. */ if (td->td_upcall) upcall_remove(td); sched_exit_thread(FIRST_THREAD_IN_PROC(p), td); sched_exit_kse(FIRST_KSE_IN_PROC(p), ke); ke->ke_state = KES_UNQUEUED; ke->ke_thread = NULL; /* * Decide what to do with the KSE attached to this thread. */ if (ke->ke_flags & KEF_EXIT) { kse_unlink(ke); if (kg->kg_kses == 0) { sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), kg); ksegrp_unlink(kg); } } else kse_reassign(ke); PROC_UNLOCK(p); td->td_kse = NULL; td->td_state = TDS_INACTIVE; #if 0 td->td_proc = NULL; #endif td->td_ksegrp = NULL; td->td_last_kse = NULL; PCPU_SET(deadthread, td); } else { PROC_UNLOCK(p); } /* XXX Shouldn't cpu_throw() here. */ mtx_assert(&sched_lock, MA_OWNED); cpu_throw(td, choosethread()); panic("I'm a teapot!"); /* NOTREACHED */ } /* * Do any thread specific cleanups that may be needed in wait() * called with Giant held, proc and schedlock not held. */ void thread_wait(struct proc *p) { struct thread *td; KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()")); KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()")); FOREACH_THREAD_IN_PROC(p, td) { if (td->td_standin != NULL) { thread_free(td->td_standin); td->td_standin = NULL; } cpu_thread_clean(td); } thread_reap(); /* check for zombie threads etc. */ } /* * Link a thread to a process. * set up anything that needs to be initialized for it to * be used by the process. * * Note that we do not link to the proc's ucred here. * The thread is linked as if running but no KSE assigned. */ void thread_link(struct thread *td, struct ksegrp *kg) { struct proc *p; p = kg->kg_proc; td->td_state = TDS_INACTIVE; td->td_proc = p; td->td_ksegrp = kg; td->td_last_kse = NULL; td->td_flags = 0; td->td_kse = NULL; LIST_INIT(&td->td_contested); callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist); p->p_numthreads++; kg->kg_numthreads++; } void thread_unlink(struct thread *td) { struct proc *p = td->td_proc; struct ksegrp *kg = td->td_ksegrp; mtx_assert(&sched_lock, MA_OWNED); TAILQ_REMOVE(&p->p_threads, td, td_plist); p->p_numthreads--; TAILQ_REMOVE(&kg->kg_threads, td, td_kglist); kg->kg_numthreads--; /* could clear a few other things here */ } /* * Purge a ksegrp resource. When a ksegrp is preparing to * exit, it calls this function. */ static void kse_purge_group(struct thread *td) { struct ksegrp *kg; struct kse *ke; kg = td->td_ksegrp; KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__)); while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { KASSERT(ke->ke_state == KES_IDLE, ("%s: wrong idle KSE state", __func__)); kse_unlink(ke); } KASSERT((kg->kg_kses == 1), ("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses)); KASSERT((kg->kg_numupcalls == 0), ("%s: ksegrp still has %d upcall datas", __func__, kg->kg_numupcalls)); } /* * Purge a process's KSE resource. When a process is preparing to * exit, it calls kse_purge to release any extra KSE resources in * the process. */ static void kse_purge(struct proc *p, struct thread *td) { struct ksegrp *kg; struct kse *ke; KASSERT(p->p_numthreads == 1, ("bad thread number")); while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) { TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); p->p_numksegrps--; /* * There is no ownership for KSE, after all threads * in the group exited, it is possible that some KSEs * were left in idle queue, gc them now. */ while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { KASSERT(ke->ke_state == KES_IDLE, ("%s: wrong idle KSE state", __func__)); TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); kg->kg_idle_kses--; TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); kg->kg_kses--; kse_stash(ke); } KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) || ((kg->kg_kses == 1) && (kg == td->td_ksegrp)), ("ksegrp has wrong kg_kses: %d", kg->kg_kses)); KASSERT((kg->kg_numupcalls == 0), ("%s: ksegrp still has %d upcall datas", __func__, kg->kg_numupcalls)); if (kg != td->td_ksegrp) ksegrp_stash(kg); } TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp); p->p_numksegrps++; } /* * This function is intended to be used to initialize a spare thread * for upcall. Initialize thread's large data area outside sched_lock * for thread_schedule_upcall(). */ void thread_alloc_spare(struct thread *td, struct thread *spare) { if (td->td_standin) return; if (spare == NULL) spare = thread_alloc(); td->td_standin = spare; bzero(&spare->td_startzero, (unsigned)RANGEOF(struct thread, td_startzero, td_endzero)); spare->td_proc = td->td_proc; spare->td_ucred = crhold(td->td_ucred); } /* * Create a thread and schedule it for upcall on the KSE given. * Use our thread's standin so that we don't have to allocate one. */ struct thread * thread_schedule_upcall(struct thread *td, struct kse_upcall *ku) { struct thread *td2; mtx_assert(&sched_lock, MA_OWNED); /* * Schedule an upcall thread on specified kse_upcall, * the kse_upcall must be free. * td must have a spare thread. */ KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__)); if ((td2 = td->td_standin) != NULL) { td->td_standin = NULL; } else { panic("no reserve thread when scheduling an upcall"); return (NULL); } CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)", td2, td->td_proc->p_pid, td->td_proc->p_comm); bcopy(&td->td_startcopy, &td2->td_startcopy, (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy)); thread_link(td2, ku->ku_ksegrp); /* inherit blocked thread's context */ cpu_set_upcall(td2, td); /* Let the new thread become owner of the upcall */ ku->ku_owner = td2; td2->td_upcall = ku; td2->td_flags = TDF_SA; td2->td_pflags = TDP_UPCALLING; td2->td_kse = NULL; td2->td_state = TDS_CAN_RUN; td2->td_inhibitors = 0; SIGFILLSET(td2->td_sigmask); SIG_CANTMASK(td2->td_sigmask); sched_fork_thread(td, td2); return (td2); /* bogus.. should be a void function */ } /* * It is only used when thread generated a trap and process is being * debugged. */ void thread_signal_add(struct thread *td, int sig) { struct proc *p; siginfo_t siginfo; struct sigacts *ps; int error; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); ps = p->p_sigacts; mtx_assert(&ps->ps_mtx, MA_OWNED); cpu_thread_siginfo(sig, 0, &siginfo); mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); error = copyout(&siginfo, &td->td_mailbox->tm_syncsig, sizeof(siginfo)); if (error) { PROC_LOCK(p); sigexit(td, SIGILL); } PROC_LOCK(p); SIGADDSET(td->td_sigmask, sig); mtx_lock(&ps->ps_mtx); } void thread_switchout(struct thread *td) { struct kse_upcall *ku; struct thread *td2; mtx_assert(&sched_lock, MA_OWNED); /* * If the outgoing thread is in threaded group and has never * scheduled an upcall, decide whether this is a short * or long term event and thus whether or not to schedule * an upcall. * If it is a short term event, just suspend it in * a way that takes its KSE with it. * Select the events for which we want to schedule upcalls. * For now it's just sleep. * XXXKSE eventually almost any inhibition could do. */ if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) { /* * Release ownership of upcall, and schedule an upcall * thread, this new upcall thread becomes the owner of * the upcall structure. */ ku = td->td_upcall; ku->ku_owner = NULL; td->td_upcall = NULL; td->td_flags &= ~TDF_CAN_UNBIND; td2 = thread_schedule_upcall(td, ku); setrunqueue(td2); } } /* * Setup done on the thread when it enters the kernel. * XXXKSE Presently only for syscalls but eventually all kernel entries. */ void thread_user_enter(struct proc *p, struct thread *td) { struct ksegrp *kg; struct kse_upcall *ku; struct kse_thr_mailbox *tmbx; uint32_t tflags; kg = td->td_ksegrp; /* * First check that we shouldn't just abort. * But check if we are the single thread first! */ if (p->p_flag & P_SINGLE_EXIT) { PROC_LOCK(p); mtx_lock_spin(&sched_lock); thread_stopped(p); thread_exit(); /* NOTREACHED */ } /* * If we are doing a syscall in a KSE environment, * note where our mailbox is. There is always the * possibility that we could do this lazily (in kse_reassign()), * but for now do it every time. */ kg = td->td_ksegrp; if (td->td_flags & TDF_SA) { ku = td->td_upcall; KASSERT(ku, ("%s: no upcall owned", __func__)); KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__)); KASSERT(!TD_CAN_UNBIND(td), ("%s: can unbind", __func__)); ku->ku_mflags = fuword32((void *)&ku->ku_mailbox->km_flags); tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread); if ((tmbx == NULL) || (tmbx == (void *)-1L) || (ku->ku_mflags & KMF_NOUPCALL)) { td->td_mailbox = NULL; } else { if (td->td_standin == NULL) thread_alloc_spare(td, NULL); tflags = fuword32(&tmbx->tm_flags); /* * On some architectures, TP register points to thread * mailbox but not points to kse mailbox, and userland * can not atomically clear km_curthread, but can * use TP register, and set TMF_NOUPCALL in thread * flag to indicate a critical region. */ if (tflags & TMF_NOUPCALL) { td->td_mailbox = NULL; } else { td->td_mailbox = tmbx; mtx_lock_spin(&sched_lock); td->td_flags |= TDF_CAN_UNBIND; mtx_unlock_spin(&sched_lock); } } } } /* * The extra work we go through if we are a threaded process when we * return to userland. * * If we are a KSE process and returning to user mode, check for * extra work to do before we return (e.g. for more syscalls * to complete first). If we were in a critical section, we should * just return to let it finish. Same if we were in the UTS (in * which case the mailbox's context's busy indicator will be set). * The only traps we suport will have set the mailbox. * We will clear it here. */ int thread_userret(struct thread *td, struct trapframe *frame) { int error = 0, upcalls, uts_crit; struct kse_upcall *ku; struct ksegrp *kg, *kg2; struct proc *p; struct timespec ts; p = td->td_proc; kg = td->td_ksegrp; ku = td->td_upcall; /* Nothing to do with bound thread */ if (!(td->td_flags & TDF_SA)) return (0); /* * Stat clock interrupt hit in userland, it * is returning from interrupt, charge thread's * userland time for UTS. */ if (td->td_flags & TDF_USTATCLOCK) { thread_update_usr_ticks(td, 1); mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_USTATCLOCK; mtx_unlock_spin(&sched_lock); if (kg->kg_completed || (td->td_upcall->ku_flags & KUF_DOUPCALL)) thread_user_enter(p, td); } uts_crit = (td->td_mailbox == NULL); /* * Optimisation: * This thread has not started any upcall. * If there is no work to report other than ourself, * then it can return direct to userland. */ if (TD_CAN_UNBIND(td)) { mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_CAN_UNBIND; if ((td->td_flags & TDF_NEEDSIGCHK) == 0 && (kg->kg_completed == NULL) && (ku->ku_flags & KUF_DOUPCALL) == 0 && (kg->kg_upquantum && ticks < kg->kg_nextupcall)) { mtx_unlock_spin(&sched_lock); thread_update_usr_ticks(td, 0); nanotime(&ts); error = copyout(&ts, (caddr_t)&ku->ku_mailbox->km_timeofday, sizeof(ts)); td->td_mailbox = 0; ku->ku_mflags = 0; if (error) goto out; return (0); } mtx_unlock_spin(&sched_lock); thread_export_context(td, 0); /* * There is something to report, and we own an upcall * strucuture, we can go to userland. * Turn ourself into an upcall thread. */ td->td_pflags |= TDP_UPCALLING; } else if (td->td_mailbox && (ku == NULL)) { thread_export_context(td, 1); PROC_LOCK(p); /* * There are upcall threads waiting for * work to do, wake one of them up. * XXXKSE Maybe wake all of them up. */ if (kg->kg_upsleeps) wakeup_one(&kg->kg_completed); mtx_lock_spin(&sched_lock); thread_stopped(p); thread_exit(); /* NOTREACHED */ } KASSERT(ku != NULL, ("upcall is NULL\n")); KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind")); if (p->p_numthreads > max_threads_per_proc) { max_threads_hits++; PROC_LOCK(p); mtx_lock_spin(&sched_lock); p->p_maxthrwaits++; while (p->p_numthreads > max_threads_per_proc) { upcalls = 0; FOREACH_KSEGRP_IN_PROC(p, kg2) { if (kg2->kg_numupcalls == 0) upcalls++; else upcalls += kg2->kg_numupcalls; } if (upcalls >= max_threads_per_proc) break; mtx_unlock_spin(&sched_lock); if (msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH, "maxthreads", NULL)) { mtx_lock_spin(&sched_lock); break; } else { mtx_lock_spin(&sched_lock); } } p->p_maxthrwaits--; mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); } if (td->td_pflags & TDP_UPCALLING) { uts_crit = 0; kg->kg_nextupcall = ticks+kg->kg_upquantum; /* * There is no more work to do and we are going to ride * this thread up to userland as an upcall. * Do the last parts of the setup needed for the upcall. */ CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)", td, td->td_proc->p_pid, td->td_proc->p_comm); td->td_pflags &= ~TDP_UPCALLING; if (ku->ku_flags & KUF_DOUPCALL) { mtx_lock_spin(&sched_lock); ku->ku_flags &= ~KUF_DOUPCALL; mtx_unlock_spin(&sched_lock); } /* * Set user context to the UTS */ if (!(ku->ku_mflags & KMF_NOUPCALL)) { cpu_set_upcall_kse(td, ku); error = suword(&ku->ku_mailbox->km_curthread, 0); if (error) goto out; } /* * Unhook the list of completed threads. * anything that completes after this gets to * come in next time. * Put the list of completed thread mailboxes on * this KSE's mailbox. */ if (!(ku->ku_mflags & KMF_NOCOMPLETED) && (error = thread_link_mboxes(kg, ku)) != 0) goto out; } if (!uts_crit) { nanotime(&ts); error = copyout(&ts, &ku->ku_mailbox->km_timeofday, sizeof(ts)); } out: if (error) { /* * Things are going to be so screwed we should just kill * the process. * how do we do that? */ PROC_LOCK(td->td_proc); psignal(td->td_proc, SIGSEGV); PROC_UNLOCK(td->td_proc); } else { /* * Optimisation: * Ensure that we have a spare thread available, * for when we re-enter the kernel. */ if (td->td_standin == NULL) thread_alloc_spare(td, NULL); } ku->ku_mflags = 0; /* * Clear thread mailbox first, then clear system tick count. * The order is important because thread_statclock() use * mailbox pointer to see if it is an userland thread or * an UTS kernel thread. */ td->td_mailbox = NULL; td->td_usticks = 0; return (error); /* go sync */ } /* * Enforce single-threading. * * Returns 1 if the caller must abort (another thread is waiting to * exit the process or similar). Process is locked! * Returns 0 when you are successfully the only thread running. * A process has successfully single threaded in the suspend mode when * There are no threads in user mode. Threads in the kernel must be * allowed to continue until they get to the user boundary. They may even * copy out their return values and data before suspending. They may however be * accellerated in reaching the user boundary as we will wake up * any sleeping threads that are interruptable. (PCATCH). */ int thread_single(int force_exit) { struct thread *td; struct thread *td2; struct proc *p; td = curthread; p = td->td_proc; mtx_assert(&Giant, MA_OWNED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT((td != NULL), ("curthread is NULL")); if ((p->p_flag & P_SA) == 0 && p->p_numthreads == 1) return (0); /* Is someone already single threading? */ if (p->p_singlethread) return (1); if (force_exit == SINGLE_EXIT) { p->p_flag |= P_SINGLE_EXIT; } else p->p_flag &= ~P_SINGLE_EXIT; p->p_flag |= P_STOPPED_SINGLE; mtx_lock_spin(&sched_lock); p->p_singlethread = td; while ((p->p_numthreads - p->p_suspcount) != 1) { FOREACH_THREAD_IN_PROC(p, td2) { if (td2 == td) continue; td2->td_flags |= TDF_ASTPENDING; if (TD_IS_INHIBITED(td2)) { if (force_exit == SINGLE_EXIT) { if (TD_IS_SUSPENDED(td2)) { thread_unsuspend_one(td2); } if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) { if (td2->td_flags & TDF_CVWAITQ) cv_abort(td2); else abortsleep(td2); } } else { if (TD_IS_SUSPENDED(td2)) continue; /* * maybe other inhibitted states too? * XXXKSE Is it totally safe to * suspend a non-interruptable thread? */ if (td2->td_inhibitors & (TDI_SLEEPING | TDI_SWAPPED)) thread_suspend_one(td2); } } } /* * Maybe we suspended some threads.. was it enough? */ if ((p->p_numthreads - p->p_suspcount) == 1) break; /* * Wake us up when everyone else has suspended. * In the mean time we suspend as well. */ thread_suspend_one(td); DROP_GIANT(); PROC_UNLOCK(p); p->p_stats->p_ru.ru_nvcsw++; mi_switch(); mtx_unlock_spin(&sched_lock); PICKUP_GIANT(); PROC_LOCK(p); mtx_lock_spin(&sched_lock); } if (force_exit == SINGLE_EXIT) { if (td->td_upcall) upcall_remove(td); kse_purge(p, td); } mtx_unlock_spin(&sched_lock); return (0); } /* * Called in from locations that can safely check to see * whether we have to suspend or at least throttle for a * single-thread event (e.g. fork). * * Such locations include userret(). * If the "return_instead" argument is non zero, the thread must be able to * accept 0 (caller may continue), or 1 (caller must abort) as a result. * * The 'return_instead' argument tells the function if it may do a * thread_exit() or suspend, or whether the caller must abort and back * out instead. * * If the thread that set the single_threading request has set the * P_SINGLE_EXIT bit in the process flags then this call will never return * if 'return_instead' is false, but will exit. * * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 *---------------+--------------------+--------------------- * 0 | returns 0 | returns 0 or 1 * | when ST ends | immediatly *---------------+--------------------+--------------------- * 1 | thread exits | returns 1 * | | immediatly * 0 = thread_exit() or suspension ok, * other = return error instead of stopping the thread. * * While a full suspension is under effect, even a single threading * thread would be suspended if it made this call (but it shouldn't). * This call should only be made from places where * thread_exit() would be safe as that may be the outcome unless * return_instead is set. */ int thread_suspend_check(int return_instead) { struct thread *td; struct proc *p; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); while (P_SHOULDSTOP(p)) { if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { KASSERT(p->p_singlethread != NULL, ("singlethread not set")); /* * The only suspension in action is a * single-threading. Single threader need not stop. * XXX Should be safe to access unlocked * as it can only be set to be true by us. */ if (p->p_singlethread == td) return (0); /* Exempt from stopping. */ } if (return_instead) return (1); mtx_lock_spin(&sched_lock); thread_stopped(p); /* * If the process is waiting for us to exit, * this thread should just suicide. * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. */ if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { while (mtx_owned(&Giant)) mtx_unlock(&Giant); if (p->p_flag & P_SA) thread_exit(); else thr_exit1(); } /* * When a thread suspends, it just * moves to the processes's suspend queue * and stays there. */ thread_suspend_one(td); if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { if (p->p_numthreads == p->p_suspcount) { thread_unsuspend_one(p->p_singlethread); } } DROP_GIANT(); PROC_UNLOCK(p); p->p_stats->p_ru.ru_nivcsw++; mi_switch(); mtx_unlock_spin(&sched_lock); PICKUP_GIANT(); PROC_LOCK(p); } return (0); } void thread_suspend_one(struct thread *td) { struct proc *p = td->td_proc; mtx_assert(&sched_lock, MA_OWNED); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); p->p_suspcount++; TD_SET_SUSPENDED(td); TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq); /* * Hack: If we are suspending but are on the sleep queue * then we are in msleep or the cv equivalent. We * want to look like we have two Inhibitors. * May already be set.. doesn't matter. */ if (TD_ON_SLEEPQ(td)) TD_SET_SLEEPING(td); } void thread_unsuspend_one(struct thread *td) { struct proc *p = td->td_proc; mtx_assert(&sched_lock, MA_OWNED); PROC_LOCK_ASSERT(p, MA_OWNED); TAILQ_REMOVE(&p->p_suspended, td, td_runq); TD_CLR_SUSPENDED(td); p->p_suspcount--; setrunnable(td); } /* * Allow all threads blocked by single threading to continue running. */ void thread_unsuspend(struct proc *p) { struct thread *td; mtx_assert(&sched_lock, MA_OWNED); PROC_LOCK_ASSERT(p, MA_OWNED); if (!P_SHOULDSTOP(p)) { while (( td = TAILQ_FIRST(&p->p_suspended))) { thread_unsuspend_one(td); } } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && (p->p_numthreads == p->p_suspcount)) { /* * Stopping everything also did the job for the single * threading request. Now we've downgraded to single-threaded, * let it continue. */ thread_unsuspend_one(p->p_singlethread); } } void thread_single_end(void) { struct thread *td; struct proc *p; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); p->p_flag &= ~P_STOPPED_SINGLE; mtx_lock_spin(&sched_lock); p->p_singlethread = NULL; /* * If there are other threads they mey now run, * unless of course there is a blanket 'stop order' * on the process. The single threader must be allowed * to continue however as this is a bad place to stop. */ if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { while (( td = TAILQ_FIRST(&p->p_suspended))) { thread_unsuspend_one(td); } } mtx_unlock_spin(&sched_lock); }