/*- * Copyright (c) 2003, Jeffrey Roberson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_posix.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int max_threads_per_proc; static int create_thread(struct thread *td, mcontext_t *ctx, void (*start_func)(void *), void *arg, char *stack_base, size_t stack_size, char *tls_base, long *child_tid, long *parent_tid, int flags, struct thr_sched_param *sched); /* * System call interface. */ int thr_create(struct thread *td, struct thr_create_args *uap) /* ucontext_t *ctx, long *id, int flags */ { ucontext_t ctx; int error; if ((error = copyin(uap->ctx, &ctx, sizeof(ctx)))) return (error); error = create_thread(td, &ctx.uc_mcontext, NULL, NULL, NULL, 0, NULL, uap->id, NULL, uap->flags, NULL); return (error); } int thr_new(struct thread *td, struct thr_new_args *uap) /* struct thr_param * */ { struct thr_param param; struct thr_sched_param sched_param, *sched; int error; if (uap->param_size < sizeof(param)) return (EINVAL); if ((error = copyin(uap->param, ¶m, sizeof(param)))) return (error); sched = NULL; if (param.sched_param != NULL) { if (param.sched_param_size != sizeof(struct thr_sched_param)) return (EINVAL); error = copyin(param.sched_param, &sched_param, sizeof(sched_param)); if (error) return (error); sched = &sched_param; } error = create_thread(td, NULL, param.start_func, param.arg, param.stack_base, param.stack_size, param.tls_base, param.child_tid, param.parent_tid, param.flags, sched); return (error); } static int create_thread(struct thread *td, mcontext_t *ctx, void (*start_func)(void *), void *arg, char *stack_base, size_t stack_size, char *tls_base, long *child_tid, long *parent_tid, int flags, struct thr_sched_param *sched) { stack_t stack; struct thread *newtd; struct ksegrp *kg, *newkg; struct proc *p; long id; int error; error = 0; p = td->td_proc; kg = td->td_ksegrp; /* Have race condition but it is cheap. */ if (p->p_numthreads >= max_threads_per_proc) return (EPROCLIM); if (sched != NULL) { switch(sched->policy) { case SCHED_FIFO: case SCHED_RR: /* Only root can set scheduler policy */ if (suser(td) != 0) return (EPERM); if (sched->param.sched_priority < RTP_PRIO_MIN || sched->param.sched_priority > RTP_PRIO_MAX) return (EINVAL); break; case SCHED_OTHER: break; default: return (EINVAL); } } /* Initialize our td and new ksegrp.. */ newtd = thread_alloc(); /* * Try the copyout as soon as we allocate the td so we don't * have to tear things down in a failure case below. * Here we copy out tid to two places, one for child and one * for parent, because pthread can create a detached thread, * if parent wants to safely access child tid, it has to provide * its storage, because child thread may exit quickly and * memory is freed before parent thread can access it. */ id = newtd->td_tid; if ((child_tid != NULL && (error = copyout(&id, child_tid, sizeof(long)))) || (parent_tid != NULL && (error = copyout(&id, parent_tid, sizeof(long))))) { thread_free(newtd); return (error); } bzero(&newtd->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); bcopy(&td->td_startcopy, &newtd->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); newtd->td_proc = td->td_proc; newtd->td_ucred = crhold(td->td_ucred); cpu_set_upcall(newtd, td); if (ctx != NULL) { /* old way to set user context */ error = set_mcontext(newtd, ctx); if (error != 0) { thread_free(newtd); crfree(td->td_ucred); return (error); } } else { /* Set up our machine context. */ stack.ss_sp = stack_base; stack.ss_size = stack_size; /* Set upcall address to user thread entry function. */ cpu_set_upcall_kse(newtd, start_func, arg, &stack); /* Setup user TLS address and TLS pointer register. */ error = cpu_set_user_tls(newtd, tls_base); if (error != 0) { thread_free(newtd); crfree(td->td_ucred); return (error); } } newkg = ksegrp_alloc(); bzero(&newkg->kg_startzero, __rangeof(struct ksegrp, kg_startzero, kg_endzero)); bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, __rangeof(struct ksegrp, kg_startcopy, kg_endcopy)); sched_init_concurrency(newkg); PROC_LOCK(td->td_proc); td->td_proc->p_flag |= P_HADTHREADS; newtd->td_sigmask = td->td_sigmask; mtx_lock_spin(&sched_lock); ksegrp_link(newkg, p); thread_link(newtd, newkg); PROC_UNLOCK(p); /* let the scheduler know about these things. */ sched_fork_ksegrp(td, newkg); sched_fork_thread(td, newtd); if (sched != NULL) { struct rtprio rtp; switch (sched->policy) { case SCHED_FIFO: rtp.type = PRI_FIFO; rtp.prio = sched->param.sched_priority; rtp_to_pri(&rtp, newkg); sched_prio(newtd, newkg->kg_user_pri); break; case SCHED_RR: rtp.type = PRI_REALTIME; rtp.prio = sched->param.sched_priority; rtp_to_pri(&rtp, newkg); sched_prio(newtd, newkg->kg_user_pri); break; case SCHED_OTHER: if (newkg->kg_pri_class != PRI_TIMESHARE) { rtp.type = PRI_TIMESHARE; rtp.prio = 0; rtp_to_pri(&rtp, newkg); sched_prio(newtd, newkg->kg_user_pri); } break; default: panic("sched policy"); } } TD_SET_CAN_RUN(newtd); /* if ((flags & THR_SUSPENDED) == 0) */ setrunqueue(newtd, SRQ_BORING); mtx_unlock_spin(&sched_lock); return (error); } int thr_self(struct thread *td, struct thr_self_args *uap) /* long *id */ { long id; int error; id = td->td_tid; if ((error = copyout(&id, uap->id, sizeof(long)))) return (error); return (0); } int thr_exit(struct thread *td, struct thr_exit_args *uap) /* long *state */ { struct proc *p; p = td->td_proc; /* Signal userland that it can free the stack. */ if ((void *)uap->state != NULL) { suword((void *)uap->state, 1); kern_umtx_wake(td, uap->state, INT_MAX); } PROC_LOCK(p); sigqueue_flush(&td->td_sigqueue); mtx_lock_spin(&sched_lock); /* * Shutting down last thread in the proc. This will actually * call exit() in the trampoline when it returns. */ if (p->p_numthreads != 1) { thread_stopped(p); thread_exit(); /* NOTREACHED */ } mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (0); } int thr_kill(struct thread *td, struct thr_kill_args *uap) /* long id, int sig */ { struct thread *ttd; struct proc *p; int error; p = td->td_proc; error = 0; PROC_LOCK(p); if (uap->id == -1) { if (uap->sig != 0 && !_SIG_VALID(uap->sig)) { error = EINVAL; } else { error = ESRCH; FOREACH_THREAD_IN_PROC(p, ttd) { if (ttd != td) { error = 0; if (uap->sig == 0) break; tdsignal(p, ttd, uap->sig, NULL); } } } } else { if (uap->id != td->td_tid) ttd = thread_find(p, uap->id); else ttd = td; if (ttd == NULL) error = ESRCH; else if (uap->sig == 0) ; else if (!_SIG_VALID(uap->sig)) error = EINVAL; else tdsignal(p, ttd, uap->sig, NULL); } PROC_UNLOCK(p); return (error); } int thr_suspend(struct thread *td, struct thr_suspend_args *uap) /* const struct timespec *timeout */ { struct timespec ts; struct timeval tv; int error; int hz; hz = 0; error = 0; if (uap->timeout != NULL) { error = copyin((const void *)uap->timeout, (void *)&ts, sizeof(struct timespec)); if (error != 0) return (error); if (ts.tv_nsec < 0 || ts.tv_nsec > 1000000000) return (EINVAL); if (ts.tv_sec == 0 && ts.tv_nsec == 0) return (ETIMEDOUT); TIMESPEC_TO_TIMEVAL(&tv, &ts); hz = tvtohz(&tv); } PROC_LOCK(td->td_proc); if ((td->td_flags & TDF_THRWAKEUP) == 0) error = msleep((void *)td, &td->td_proc->p_mtx, PCATCH, "lthr", hz); if (td->td_flags & TDF_THRWAKEUP) { mtx_lock_spin(&sched_lock); td->td_flags &= ~TDF_THRWAKEUP; mtx_unlock_spin(&sched_lock); PROC_UNLOCK(td->td_proc); return (0); } PROC_UNLOCK(td->td_proc); if (error == EWOULDBLOCK) error = ETIMEDOUT; else if (error == ERESTART) { if (hz != 0) error = EINTR; } return (error); } int thr_wake(struct thread *td, struct thr_wake_args *uap) /* long id */ { struct proc *p; struct thread *ttd; p = td->td_proc; PROC_LOCK(p); ttd = thread_find(p, uap->id); if (ttd == NULL) { PROC_UNLOCK(p); return (ESRCH); } mtx_lock_spin(&sched_lock); ttd->td_flags |= TDF_THRWAKEUP; mtx_unlock_spin(&sched_lock); wakeup((void *)ttd); PROC_UNLOCK(p); return (0); } int thr_set_name(struct thread *td, struct thr_set_name_args *uap) { struct proc *p = td->td_proc; char name[MAXCOMLEN + 1]; struct thread *ttd; int error; error = 0; name[0] = '\0'; if (uap->name != NULL) { error = copyinstr(uap->name, name, sizeof(name), NULL); if (error) return (error); } PROC_LOCK(p); if (uap->id == td->td_tid) ttd = td; else ttd = thread_find(p, uap->id); if (ttd != NULL) strcpy(ttd->td_name, name); else error = ESRCH; PROC_UNLOCK(p); return (error); } int thr_setscheduler(struct thread *td, struct thr_setscheduler_args *uap) { struct proc *p; struct thread *ttd; struct rtprio rtp; struct sched_param param; int ret; if (uap->param_size != sizeof(struct sched_param)) return (EINVAL); ret = copyin(uap->param, ¶m, sizeof(struct sched_param)); if (ret) return (ret); switch(uap->policy) { case SCHED_FIFO: if (suser(td) != 0) return (EPERM); rtp.type = PRI_FIFO; break; case SCHED_RR: if (suser(td) != 0) return (EPERM); rtp.type = PRI_REALTIME; break; case SCHED_OTHER: rtp.type = PRI_TIMESHARE; break; default: return (EINVAL); } rtp.prio = param.sched_priority; p = td->td_proc; PROC_LOCK(p); ret = p_cansched(td, p); if (ret != 0) { PROC_UNLOCK(p); return (ret); } ttd = thread_find(p, uap->id); if (ttd == NULL) { PROC_UNLOCK(p); return (ESRCH); } mtx_lock_spin(&sched_lock); ret = rtp_to_pri(&rtp, ttd->td_ksegrp); if (ret == 0) { if (TD_IS_RUNNING(ttd)) ttd->td_flags |= TDF_NEEDRESCHED; else if (ttd->td_priority > ttd->td_ksegrp->kg_user_pri) sched_prio(ttd, ttd->td_ksegrp->kg_user_pri); } mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (ret); } int thr_getscheduler(struct thread *td, struct thr_getscheduler_args *uap) { struct proc *p; struct thread *ttd; struct rtprio rtp; struct sched_param param; int policy; int ret; if (uap->param_size != sizeof(struct sched_param)) return (EINVAL); p = td->td_proc; PROC_LOCK(p); ttd = thread_find(p, uap->id); if (ttd == NULL) { PROC_UNLOCK(p); return (ESRCH); } mtx_lock_spin(&sched_lock); switch(ttd->td_ksegrp->kg_pri_class) { case PRI_TIMESHARE: policy = SCHED_OTHER; break; case PRI_FIFO: policy = SCHED_FIFO; break; case PRI_REALTIME: policy = SCHED_RR; break; default: policy = SCHED_OTHER; /* XXX SCHED_IDLE */ } pri_to_rtp(ttd->td_ksegrp, &rtp); mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); param.sched_priority = rtp.prio; ret = copyout(&policy, uap->policy, sizeof(policy)); if (ret == 0) ret = copyout(¶m, uap->param, sizeof(param)); return (ret); } int thr_setschedparam(struct thread *td, struct thr_setschedparam_args *uap) { struct proc *p; struct thread *ttd; struct rtprio rtp; struct sched_param param; int ret; if (uap->param_size != sizeof(struct sched_param)) return (EINVAL); ret = copyin(uap->param, ¶m, sizeof(struct sched_param)); if (ret) return (ret); p = td->td_proc; PROC_LOCK(p); ret = p_cansched(td, p); if (ret != 0) { PROC_UNLOCK(p); return (ret); } ttd = thread_find(p, uap->id); if (ttd == NULL) { PROC_UNLOCK(p); return (ESRCH); } mtx_lock_spin(&sched_lock); pri_to_rtp(ttd->td_ksegrp, &rtp); rtp.prio = param.sched_priority; ret = rtp_to_pri(&rtp, ttd->td_ksegrp); if (ret == 0) { if (TD_IS_RUNNING(ttd)) ttd->td_flags |= TDF_NEEDRESCHED; else if (ttd->td_priority > ttd->td_ksegrp->kg_user_pri) sched_prio(ttd, ttd->td_ksegrp->kg_user_pri); } mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return (ret); }