/*- * Copyright (c) 1986, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_shutdown.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kdb.h" #include "opt_panic.h" #include "opt_sched.h" #include "opt_watchdog.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef PANIC_REBOOT_WAIT_TIME #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */ #endif static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME; SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RW | CTLFLAG_TUN, &panic_reboot_wait_time, 0, "Seconds to wait before rebooting after a panic"); TUNABLE_INT("kern.panic_reboot_wait_time", &panic_reboot_wait_time); /* * Note that stdarg.h and the ANSI style va_start macro is used for both * ANSI and traditional C compilers. */ #include #ifdef KDB #ifdef KDB_UNATTENDED int debugger_on_panic = 0; #else int debugger_on_panic = 1; #endif SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic, CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_TUN, &debugger_on_panic, 0, "Run debugger on kernel panic"); TUNABLE_INT("debug.debugger_on_panic", &debugger_on_panic); #ifdef KDB_TRACE static int trace_on_panic = 1; #else static int trace_on_panic = 0; #endif SYSCTL_INT(_debug, OID_AUTO, trace_on_panic, CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_TUN, &trace_on_panic, 0, "Print stack trace on kernel panic"); TUNABLE_INT("debug.trace_on_panic", &trace_on_panic); #endif /* KDB */ static int sync_on_panic = 0; SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RW | CTLFLAG_TUN, &sync_on_panic, 0, "Do a sync before rebooting from a panic"); TUNABLE_INT("kern.sync_on_panic", &sync_on_panic); static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW, 0, "Shutdown environment"); #ifndef DIAGNOSTIC static int show_busybufs; #else static int show_busybufs = 1; #endif SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW, &show_busybufs, 0, ""); /* * Variable panicstr contains argument to first call to panic; used as flag * to indicate that the kernel has already called panic. */ const char *panicstr; int dumping; /* system is dumping */ int rebooting; /* system is rebooting */ static struct dumperinfo dumper; /* our selected dumper */ /* Context information for dump-debuggers. */ static struct pcb dumppcb; /* Registers. */ lwpid_t dumptid; /* Thread ID. */ static void poweroff_wait(void *, int); static void shutdown_halt(void *junk, int howto); static void shutdown_panic(void *junk, int howto); static void shutdown_reset(void *junk, int howto); static void vpanic(const char *fmt, va_list ap) __dead2; /* register various local shutdown events */ static void shutdown_conf(void *unused) { EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL, SHUTDOWN_PRI_FIRST); EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL, SHUTDOWN_PRI_LAST + 100); EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL, SHUTDOWN_PRI_LAST + 100); EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL, SHUTDOWN_PRI_LAST + 200); } SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL); /* * The system call that results in a reboot. */ /* ARGSUSED */ int sys_reboot(struct thread *td, struct reboot_args *uap) { int error; error = 0; #ifdef MAC error = mac_system_check_reboot(td->td_ucred, uap->opt); #endif if (error == 0) error = priv_check(td, PRIV_REBOOT); if (error == 0) { mtx_lock(&Giant); kern_reboot(uap->opt); mtx_unlock(&Giant); } return (error); } /* * Called by events that want to shut down.. e.g on a PC */ static int shutdown_howto = 0; void shutdown_nice(int howto) { shutdown_howto = howto; /* Send a signal to init(8) and have it shutdown the world */ if (initproc != NULL) { PROC_LOCK(initproc); kern_psignal(initproc, SIGINT); PROC_UNLOCK(initproc); } else { /* No init(8) running, so simply reboot */ kern_reboot(RB_NOSYNC); } return; } static int waittime = -1; static void print_uptime(void) { int f; struct timespec ts; getnanouptime(&ts); printf("Uptime: "); f = 0; if (ts.tv_sec >= 86400) { printf("%ldd", (long)ts.tv_sec / 86400); ts.tv_sec %= 86400; f = 1; } if (f || ts.tv_sec >= 3600) { printf("%ldh", (long)ts.tv_sec / 3600); ts.tv_sec %= 3600; f = 1; } if (f || ts.tv_sec >= 60) { printf("%ldm", (long)ts.tv_sec / 60); ts.tv_sec %= 60; f = 1; } printf("%lds\n", (long)ts.tv_sec); } int doadump(boolean_t textdump) { boolean_t coredump; if (dumping) return (EBUSY); if (dumper.dumper == NULL) return (ENXIO); savectx(&dumppcb); dumptid = curthread->td_tid; dumping++; coredump = TRUE; #ifdef DDB if (textdump && textdump_pending) { coredump = FALSE; textdump_dumpsys(&dumper); } #endif if (coredump) dumpsys(&dumper); dumping--; return (0); } static int isbufbusy(struct buf *bp) { if (((bp->b_flags & (B_INVAL | B_PERSISTENT)) == 0 && BUF_ISLOCKED(bp)) || ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI)) return (1); return (0); } /* * Shutdown the system cleanly to prepare for reboot, halt, or power off. */ void kern_reboot(int howto) { static int first_buf_printf = 1; #if defined(SMP) /* * Bind us to CPU 0 so that all shutdown code runs there. Some * systems don't shutdown properly (i.e., ACPI power off) if we * run on another processor. */ if (!SCHEDULER_STOPPED()) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); KASSERT(PCPU_GET(cpuid) == 0, ("boot: not running on cpu 0")); } #endif /* We're in the process of rebooting. */ rebooting = 1; /* collect extra flags that shutdown_nice might have set */ howto |= shutdown_howto; /* We are out of the debugger now. */ kdb_active = 0; /* * Do any callouts that should be done BEFORE syncing the filesystems. */ EVENTHANDLER_INVOKE(shutdown_pre_sync, howto); /* * Now sync filesystems */ if (!cold && (howto & RB_NOSYNC) == 0 && waittime < 0) { register struct buf *bp; int iter, nbusy, pbusy; #ifndef PREEMPTION int subiter; #endif waittime = 0; wdog_kern_pat(WD_LASTVAL); sys_sync(curthread, NULL); /* * With soft updates, some buffers that are * written will be remarked as dirty until other * buffers are written. */ for (iter = pbusy = 0; iter < 20; iter++) { nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) if (isbufbusy(bp)) nbusy++; if (nbusy == 0) { if (first_buf_printf) printf("All buffers synced."); break; } if (first_buf_printf) { printf("Syncing disks, buffers remaining... "); first_buf_printf = 0; } printf("%d ", nbusy); if (nbusy < pbusy) iter = 0; pbusy = nbusy; wdog_kern_pat(WD_LASTVAL); sys_sync(curthread, NULL); #ifdef PREEMPTION /* * Drop Giant and spin for a while to allow * interrupt threads to run. */ DROP_GIANT(); DELAY(50000 * iter); PICKUP_GIANT(); #else /* * Drop Giant and context switch several times to * allow interrupt threads to run. */ DROP_GIANT(); for (subiter = 0; subiter < 50 * iter; subiter++) { thread_lock(curthread); mi_switch(SW_VOL, NULL); thread_unlock(curthread); DELAY(1000); } PICKUP_GIANT(); #endif } printf("\n"); /* * Count only busy local buffers to prevent forcing * a fsck if we're just a client of a wedged NFS server */ nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) { if (isbufbusy(bp)) { #if 0 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ if (bp->b_dev == NULL) { TAILQ_REMOVE(&mountlist, bp->b_vp->v_mount, mnt_list); continue; } #endif nbusy++; if (show_busybufs > 0) { printf( "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", nbusy, bp, bp->b_vp, bp->b_flags, (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno); BUF_LOCKPRINTINFO(bp); if (show_busybufs > 1) vn_printf(bp->b_vp, "vnode content: "); } } } if (nbusy) { /* * Failed to sync all blocks. Indicate this and don't * unmount filesystems (thus forcing an fsck on reboot). */ printf("Giving up on %d buffers\n", nbusy); DELAY(5000000); /* 5 seconds */ } else { if (!first_buf_printf) printf("Final sync complete\n"); /* * Unmount filesystems */ if (panicstr == 0) vfs_unmountall(); } swapoff_all(); DELAY(100000); /* wait for console output to finish */ } print_uptime(); cngrab(); /* * Ok, now do things that assume all filesystem activity has * been completed. */ EVENTHANDLER_INVOKE(shutdown_post_sync, howto); if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping) doadump(TRUE); /* Now that we're going to really halt the system... */ EVENTHANDLER_INVOKE(shutdown_final, howto); for(;;) ; /* safety against shutdown_reset not working */ /* NOTREACHED */ } /* * If the shutdown was a clean halt, behave accordingly. */ static void shutdown_halt(void *junk, int howto) { if (howto & RB_HALT) { printf("\n"); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); switch (cngetc()) { case -1: /* No console, just die */ cpu_halt(); /* NOTREACHED */ default: howto &= ~RB_HALT; break; } } } /* * Check to see if the system paniced, pause and then reboot * according to the specified delay. */ static void shutdown_panic(void *junk, int howto) { int loop; if (howto & RB_DUMP) { if (panic_reboot_wait_time != 0) { if (panic_reboot_wait_time != -1) { printf("Automatic reboot in %d seconds - " "press a key on the console to abort\n", panic_reboot_wait_time); for (loop = panic_reboot_wait_time * 10; loop > 0; --loop) { DELAY(1000 * 100); /* 1/10th second */ /* Did user type a key? */ if (cncheckc() != -1) break; } if (!loop) return; } } else { /* zero time specified - reboot NOW */ return; } printf("--> Press a key on the console to reboot,\n"); printf("--> or switch off the system now.\n"); cngetc(); } } /* * Everything done, now reset */ static void shutdown_reset(void *junk, int howto) { printf("Rebooting...\n"); DELAY(1000000); /* wait 1 sec for printf's to complete and be read */ /* * Acquiring smp_ipi_mtx here has a double effect: * - it disables interrupts avoiding CPU0 preemption * by fast handlers (thus deadlocking against other CPUs) * - it avoids deadlocks against smp_rendezvous() or, more * generally, threads busy-waiting, with this spinlock held, * and waiting for responses by threads on other CPUs * (ie. smp_tlb_shootdown()). * * For the !SMP case it just needs to handle the former problem. */ #ifdef SMP mtx_lock_spin(&smp_ipi_mtx); #else spinlock_enter(); #endif /* cpu_boot(howto); */ /* doesn't do anything at the moment */ cpu_reset(); /* NOTREACHED */ /* assuming reset worked */ } #if defined(WITNESS) || defined(INVARIANTS) static int kassert_warn_only = 0; #ifdef KDB static int kassert_do_kdb = 0; #endif #ifdef KTR static int kassert_do_ktr = 0; #endif static int kassert_do_log = 1; static int kassert_log_pps_limit = 4; static int kassert_log_mute_at = 0; static int kassert_log_panic_at = 0; static int kassert_warnings = 0; SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW, NULL, "kassert options"); SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, CTLFLAG_RW | CTLFLAG_TUN, &kassert_warn_only, 0, "KASSERT triggers a panic (1) or just a warning (0)"); TUNABLE_INT("debug.kassert.warn_only", &kassert_warn_only); #ifdef KDB SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, CTLFLAG_RW | CTLFLAG_TUN, &kassert_do_kdb, 0, "KASSERT will enter the debugger"); TUNABLE_INT("debug.kassert.do_kdb", &kassert_do_kdb); #endif #ifdef KTR SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, CTLFLAG_RW | CTLFLAG_TUN, &kassert_do_ktr, 0, "KASSERT does a KTR, set this to the KTRMASK you want"); TUNABLE_INT("debug.kassert.do_ktr", &kassert_do_ktr); #endif SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, CTLFLAG_RW | CTLFLAG_TUN, &kassert_do_log, 0, "KASSERT triggers a panic (1) or just a warning (0)"); TUNABLE_INT("debug.kassert.do_log", &kassert_do_log); SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RW | CTLFLAG_TUN, &kassert_warnings, 0, "number of KASSERTs that have been triggered"); TUNABLE_INT("debug.kassert.warnings", &kassert_warnings); SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, CTLFLAG_RW | CTLFLAG_TUN, &kassert_log_panic_at, 0, "max number of KASSERTS before we will panic"); TUNABLE_INT("debug.kassert.log_panic_at", &kassert_log_panic_at); SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, CTLFLAG_RW | CTLFLAG_TUN, &kassert_log_pps_limit, 0, "limit number of log messages per second"); TUNABLE_INT("debug.kassert.log_pps_limit", &kassert_log_pps_limit); SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, CTLFLAG_RW | CTLFLAG_TUN, &kassert_log_mute_at, 0, "max number of KASSERTS to log"); TUNABLE_INT("debug.kassert.log_mute_at", &kassert_log_mute_at); static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE, NULL, 0, kassert_sysctl_kassert, "I", "set to trigger a test kassert"); static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS) { int error, i; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error == 0) { i = 0; error = sysctl_handle_int(oidp, &i, 0, req); } if (error != 0 || req->newptr == NULL) return (error); KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i)); return (0); } /* * Called by KASSERT, this decides if we will panic * or if we will log via printf and/or ktr. */ void kassert_panic(const char *fmt, ...) { static char buf[256]; va_list ap; va_start(ap, fmt); (void)vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); /* * panic if we're not just warning, or if we've exceeded * kassert_log_panic_at warnings. */ if (!kassert_warn_only || (kassert_log_panic_at > 0 && kassert_warnings >= kassert_log_panic_at)) { va_start(ap, fmt); vpanic(fmt, ap); /* NORETURN */ } #ifdef KTR if (kassert_do_ktr) CTR0(ktr_mask, buf); #endif /* KTR */ /* * log if we've not yet met the mute limit. */ if (kassert_do_log && (kassert_log_mute_at == 0 || kassert_warnings < kassert_log_mute_at)) { static struct timeval lasterr; static int curerr; if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) { printf("KASSERT failed: %s\n", buf); kdb_backtrace(); } } #ifdef KDB if (kassert_do_kdb) { kdb_enter(KDB_WHY_KASSERT, buf); } #endif atomic_add_int(&kassert_warnings, 1); } #endif /* * Panic is called on unresolvable fatal errors. It prints "panic: mesg", * and then reboots. If we are called twice, then we avoid trying to sync * the disks as this often leads to recursive panics. */ void panic(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vpanic(fmt, ap); } static void vpanic(const char *fmt, va_list ap) { #ifdef SMP cpuset_t other_cpus; #endif struct thread *td = curthread; int bootopt, newpanic; static char buf[256]; spinlock_enter(); #ifdef SMP /* * stop_cpus_hard(other_cpus) should prevent multiple CPUs from * concurrently entering panic. Only the winner will proceed * further. */ if (panicstr == NULL && !kdb_active) { other_cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &other_cpus); stop_cpus_hard(other_cpus); } /* * We set stop_scheduler here and not in the block above, * because we want to ensure that if panic has been called and * stop_scheduler_on_panic is true, then stop_scheduler will * always be set. Even if panic has been entered from kdb. */ td->td_stopsched = 1; #endif bootopt = RB_AUTOBOOT; newpanic = 0; if (panicstr) bootopt |= RB_NOSYNC; else { bootopt |= RB_DUMP; panicstr = fmt; newpanic = 1; } if (newpanic) { (void)vsnprintf(buf, sizeof(buf), fmt, ap); panicstr = buf; cngrab(); printf("panic: %s\n", buf); } else { printf("panic: "); vprintf(fmt, ap); printf("\n"); } #ifdef SMP printf("cpuid = %d\n", PCPU_GET(cpuid)); #endif #ifdef KDB if (newpanic && trace_on_panic) kdb_backtrace(); if (debugger_on_panic) kdb_enter(KDB_WHY_PANIC, "panic"); #endif /*thread_lock(td); */ td->td_flags |= TDF_INPANIC; /* thread_unlock(td); */ if (!sync_on_panic) bootopt |= RB_NOSYNC; kern_reboot(bootopt); } /* * Support for poweroff delay. * * Please note that setting this delay too short might power off your machine * before the write cache on your hard disk has been flushed, leading to * soft-updates inconsistencies. */ #ifndef POWEROFF_DELAY # define POWEROFF_DELAY 5000 #endif static int poweroff_delay = POWEROFF_DELAY; SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW, &poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)"); static void poweroff_wait(void *junk, int howto) { if (!(howto & RB_POWEROFF) || poweroff_delay <= 0) return; DELAY(poweroff_delay * 1000); } /* * Some system processes (e.g. syncer) need to be stopped at appropriate * points in their main loops prior to a system shutdown, so that they * won't interfere with the shutdown process (e.g. by holding a disk buf * to cause sync to fail). For each of these system processes, register * shutdown_kproc() as a handler for one of shutdown events. */ static int kproc_shutdown_wait = 60; SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW, &kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process"); void kproc_shutdown(void *arg, int howto) { struct proc *p; int error; if (panicstr) return; p = (struct proc *)arg; printf("Waiting (max %d seconds) for system process `%s' to stop...", kproc_shutdown_wait, p->p_comm); error = kproc_suspend(p, kproc_shutdown_wait * hz); if (error == EWOULDBLOCK) printf("timed out\n"); else printf("done\n"); } void kthread_shutdown(void *arg, int howto) { struct thread *td; int error; if (panicstr) return; td = (struct thread *)arg; printf("Waiting (max %d seconds) for system thread `%s' to stop...", kproc_shutdown_wait, td->td_name); error = kthread_suspend(td, kproc_shutdown_wait * hz); if (error == EWOULDBLOCK) printf("timed out\n"); else printf("done\n"); } static char dumpdevname[sizeof(((struct cdev*)NULL)->si_name)]; SYSCTL_STRING(_kern_shutdown, OID_AUTO, dumpdevname, CTLFLAG_RD, dumpdevname, 0, "Device for kernel dumps"); /* Registration of dumpers */ int set_dumper(struct dumperinfo *di, const char *devname) { size_t wantcopy; if (di == NULL) { bzero(&dumper, sizeof dumper); dumpdevname[0] = '\0'; return (0); } if (dumper.dumper != NULL) return (EBUSY); dumper = *di; wantcopy = strlcpy(dumpdevname, devname, sizeof(dumpdevname)); if (wantcopy >= sizeof(dumpdevname)) { printf("set_dumper: device name truncated from '%s' -> '%s'\n", devname, dumpdevname); } return (0); } /* Call dumper with bounds checking. */ int dump_write(struct dumperinfo *di, void *virtual, vm_offset_t physical, off_t offset, size_t length) { if (length != 0 && (offset < di->mediaoffset || offset - di->mediaoffset + length > di->mediasize)) { printf("Attempt to write outside dump device boundaries.\n" "offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n", (intmax_t)offset, (intmax_t)di->mediaoffset, (uintmax_t)length, (intmax_t)di->mediasize); return (ENOSPC); } return (di->dumper(di->priv, virtual, physical, offset, length)); } void mkdumpheader(struct kerneldumpheader *kdh, char *magic, uint32_t archver, uint64_t dumplen, uint32_t blksz) { bzero(kdh, sizeof(*kdh)); strncpy(kdh->magic, magic, sizeof(kdh->magic)); strncpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture)); kdh->version = htod32(KERNELDUMPVERSION); kdh->architectureversion = htod32(archver); kdh->dumplength = htod64(dumplen); kdh->dumptime = htod64(time_second); kdh->blocksize = htod32(blksz); strncpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname)); strncpy(kdh->versionstring, version, sizeof(kdh->versionstring)); if (panicstr != NULL) strncpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring)); kdh->parity = kerneldump_parity(kdh); }