/*- * Copyright (c) 1987, 1991, 1993 * The Regents of the University of California. * Copyright (c) 2005-2006 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 */ /* * Kernel malloc(9) implementation -- general purpose kernel memory allocator * based on memory types. Back end is implemented using the UMA(9) zone * allocator. A set of fixed-size buckets are used for smaller allocations, * and a special UMA allocation interface is used for larger allocations. * Callers declare memory types, and statistics are maintained independently * for each memory type. Statistics are maintained per-CPU for performance * reasons. See malloc(9) and comments in malloc.h for a detailed * description. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kdtrace.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG_MEMGUARD #include #endif #ifdef DEBUG_REDZONE #include #endif #if defined(INVARIANTS) && defined(__i386__) #include #endif #include #ifdef KDTRACE_HOOKS #include dtrace_malloc_probe_func_t dtrace_malloc_probe; #endif /* * When realloc() is called, if the new size is sufficiently smaller than * the old size, realloc() will allocate a new, smaller block to avoid * wasting memory. 'Sufficiently smaller' is defined as: newsize <= * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. */ #ifndef REALLOC_FRACTION #define REALLOC_FRACTION 1 /* new block if <= half the size */ #endif /* * Centrally define some common malloc types. */ MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); static void kmeminit(void *); SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL); static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); static struct malloc_type *kmemstatistics; static vm_offset_t kmembase; static vm_offset_t kmemlimit; static int kmemcount; #define KMEM_ZSHIFT 4 #define KMEM_ZBASE 16 #define KMEM_ZMASK (KMEM_ZBASE - 1) #define KMEM_ZMAX PAGE_SIZE #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) static u_int8_t kmemsize[KMEM_ZSIZE + 1]; /* * Small malloc(9) memory allocations are allocated from a set of UMA buckets * of various sizes. * * XXX: The comment here used to read "These won't be powers of two for * long." It's possible that a significant amount of wasted memory could be * recovered by tuning the sizes of these buckets. */ struct { int kz_size; char *kz_name; uma_zone_t kz_zone; } kmemzones[] = { {16, "16", NULL}, {32, "32", NULL}, {64, "64", NULL}, {128, "128", NULL}, {256, "256", NULL}, {512, "512", NULL}, {1024, "1024", NULL}, {2048, "2048", NULL}, {4096, "4096", NULL}, #if PAGE_SIZE > 4096 {8192, "8192", NULL}, #if PAGE_SIZE > 8192 {16384, "16384", NULL}, #if PAGE_SIZE > 16384 {32768, "32768", NULL}, #if PAGE_SIZE > 32768 {65536, "65536", NULL}, #if PAGE_SIZE > 65536 #error "Unsupported PAGE_SIZE" #endif /* 65536 */ #endif /* 32768 */ #endif /* 16384 */ #endif /* 8192 */ #endif /* 4096 */ {0, NULL}, }; /* * Zone to allocate malloc type descriptions from. For ABI reasons, memory * types are described by a data structure passed by the declaring code, but * the malloc(9) implementation has its own data structure describing the * type and statistics. This permits the malloc(9)-internal data structures * to be modified without breaking binary-compiled kernel modules that * declare malloc types. */ static uma_zone_t mt_zone; u_long vm_kmem_size; SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0, "Size of kernel memory"); static u_long vm_kmem_size_min; SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RD, &vm_kmem_size_min, 0, "Minimum size of kernel memory"); static u_long vm_kmem_size_max; SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0, "Maximum size of kernel memory"); static u_int vm_kmem_size_scale; SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0, "Scale factor for kernel memory size"); /* * The malloc_mtx protects the kmemstatistics linked list. */ struct mtx malloc_mtx; #ifdef MALLOC_PROFILE uint64_t krequests[KMEM_ZSIZE + 1]; static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS); #endif static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); /* * time_uptime of the last malloc(9) failure (induced or real). */ static time_t t_malloc_fail; /* * malloc(9) fault injection -- cause malloc failures every (n) mallocs when * the caller specifies M_NOWAIT. If set to 0, no failures are caused. */ #ifdef MALLOC_MAKE_FAILURES SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0, "Kernel malloc debugging options"); static int malloc_failure_rate; static int malloc_nowait_count; static int malloc_failure_count; SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW, &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate); SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); #endif int malloc_last_fail(void) { return (time_uptime - t_malloc_fail); } /* * An allocation has succeeded -- update malloc type statistics for the * amount of bucket size. Occurs within a critical section so that the * thread isn't preempted and doesn't migrate while updating per-PCU * statistics. */ static void malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, int zindx) { struct malloc_type_internal *mtip; struct malloc_type_stats *mtsp; critical_enter(); mtip = mtp->ks_handle; mtsp = &mtip->mti_stats[curcpu]; if (size > 0) { mtsp->mts_memalloced += size; mtsp->mts_numallocs++; } if (zindx != -1) mtsp->mts_size |= 1 << zindx; #ifdef KDTRACE_HOOKS if (dtrace_malloc_probe != NULL) { uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; if (probe_id != 0) (dtrace_malloc_probe)(probe_id, (uintptr_t) mtp, (uintptr_t) mtip, (uintptr_t) mtsp, size, zindx); } #endif critical_exit(); } void malloc_type_allocated(struct malloc_type *mtp, unsigned long size) { if (size > 0) malloc_type_zone_allocated(mtp, size, -1); } /* * A free operation has occurred -- update malloc type statistics for the * amount of the bucket size. Occurs within a critical section so that the * thread isn't preempted and doesn't migrate while updating per-CPU * statistics. */ void malloc_type_freed(struct malloc_type *mtp, unsigned long size) { struct malloc_type_internal *mtip; struct malloc_type_stats *mtsp; critical_enter(); mtip = mtp->ks_handle; mtsp = &mtip->mti_stats[curcpu]; mtsp->mts_memfreed += size; mtsp->mts_numfrees++; #ifdef KDTRACE_HOOKS if (dtrace_malloc_probe != NULL) { uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; if (probe_id != 0) (dtrace_malloc_probe)(probe_id, (uintptr_t) mtp, (uintptr_t) mtip, (uintptr_t) mtsp, size, 0); } #endif critical_exit(); } /* * malloc: * * Allocate a block of memory. * * If M_NOWAIT is set, this routine will not block and return NULL if * the allocation fails. */ void * malloc(unsigned long size, struct malloc_type *mtp, int flags) { int indx; caddr_t va; uma_zone_t zone; #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE) unsigned long osize = size; #endif #ifdef INVARIANTS /* * Check that exactly one of M_WAITOK or M_NOWAIT is specified. */ indx = flags & (M_WAITOK | M_NOWAIT); if (indx != M_NOWAIT && indx != M_WAITOK) { static struct timeval lasterr; static int curerr, once; if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { printf("Bad malloc flags: %x\n", indx); kdb_backtrace(); flags |= M_WAITOK; once++; } } #endif #ifdef MALLOC_MAKE_FAILURES if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { atomic_add_int(&malloc_nowait_count, 1); if ((malloc_nowait_count % malloc_failure_rate) == 0) { atomic_add_int(&malloc_failure_count, 1); t_malloc_fail = time_uptime; return (NULL); } } #endif if (flags & M_WAITOK) KASSERT(curthread->td_intr_nesting_level == 0, ("malloc(M_WAITOK) in interrupt context")); #ifdef DEBUG_MEMGUARD if (memguard_cmp(mtp)) return memguard_alloc(size, flags); #endif #ifdef DEBUG_REDZONE size = redzone_size_ntor(size); #endif if (size <= KMEM_ZMAX) { if (size & KMEM_ZMASK) size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; indx = kmemsize[size >> KMEM_ZSHIFT]; zone = kmemzones[indx].kz_zone; #ifdef MALLOC_PROFILE krequests[size >> KMEM_ZSHIFT]++; #endif va = uma_zalloc(zone, flags); if (va != NULL) size = zone->uz_size; malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); } else { size = roundup(size, PAGE_SIZE); zone = NULL; va = uma_large_malloc(size, flags); malloc_type_allocated(mtp, va == NULL ? 0 : size); } if (flags & M_WAITOK) KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL")); else if (va == NULL) t_malloc_fail = time_uptime; #ifdef DIAGNOSTIC if (va != NULL && !(flags & M_ZERO)) { memset(va, 0x70, osize); } #endif #ifdef DEBUG_REDZONE if (va != NULL) va = redzone_setup(va, osize); #endif return ((void *) va); } /* * free: * * Free a block of memory allocated by malloc. * * This routine may not block. */ void free(void *addr, struct malloc_type *mtp) { uma_slab_t slab; u_long size; /* free(NULL, ...) does nothing */ if (addr == NULL) return; #ifdef DEBUG_MEMGUARD if (memguard_cmp(mtp)) { memguard_free(addr); return; } #endif #ifdef DEBUG_REDZONE redzone_check(addr); addr = redzone_addr_ntor(addr); #endif slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK)); if (slab == NULL) panic("free: address %p(%p) has not been allocated.\n", addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); if (!(slab->us_flags & UMA_SLAB_MALLOC)) { #ifdef INVARIANTS struct malloc_type **mtpp = addr; #endif size = slab->us_keg->uk_size; #ifdef INVARIANTS /* * Cache a pointer to the malloc_type that most recently freed * this memory here. This way we know who is most likely to * have stepped on it later. * * This code assumes that size is a multiple of 8 bytes for * 64 bit machines */ mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); mtpp += (size - sizeof(struct malloc_type *)) / sizeof(struct malloc_type *); *mtpp = mtp; #endif uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab); } else { size = slab->us_size; uma_large_free(slab); } malloc_type_freed(mtp, size); } /* * realloc: change the size of a memory block */ void * realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags) { uma_slab_t slab; unsigned long alloc; void *newaddr; /* realloc(NULL, ...) is equivalent to malloc(...) */ if (addr == NULL) return (malloc(size, mtp, flags)); /* * XXX: Should report free of old memory and alloc of new memory to * per-CPU stats. */ #ifdef DEBUG_MEMGUARD if (memguard_cmp(mtp)) { slab = NULL; alloc = size; } else { #endif #ifdef DEBUG_REDZONE slab = NULL; alloc = redzone_get_size(addr); #else slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK)); /* Sanity check */ KASSERT(slab != NULL, ("realloc: address %p out of range", (void *)addr)); /* Get the size of the original block */ if (!(slab->us_flags & UMA_SLAB_MALLOC)) alloc = slab->us_keg->uk_size; else alloc = slab->us_size; /* Reuse the original block if appropriate */ if (size <= alloc && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) return (addr); #endif /* !DEBUG_REDZONE */ #ifdef DEBUG_MEMGUARD } #endif /* Allocate a new, bigger (or smaller) block */ if ((newaddr = malloc(size, mtp, flags)) == NULL) return (NULL); /* Copy over original contents */ bcopy(addr, newaddr, min(size, alloc)); free(addr, mtp); return (newaddr); } /* * reallocf: same as realloc() but free memory on failure. */ void * reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags) { void *mem; if ((mem = realloc(addr, size, mtp, flags)) == NULL) free(addr, mtp); return (mem); } /* * Initialize the kernel memory allocator */ /* ARGSUSED*/ static void kmeminit(void *dummy) { u_int8_t indx; u_long mem_size; int i; mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); /* * Try to auto-tune the kernel memory size, so that it is * more applicable for a wider range of machine sizes. * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while * a VM_KMEM_SIZE of 12MB is a fair compromise. The * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space * available, and on an X86 with a total KVA space of 256MB, * try to keep VM_KMEM_SIZE_MAX at 80MB or below. * * Note that the kmem_map is also used by the zone allocator, * so make sure that there is enough space. */ vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE; mem_size = cnt.v_page_count; #if defined(VM_KMEM_SIZE_SCALE) vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; #endif TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale); if (vm_kmem_size_scale > 0 && (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE)) vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE; #if defined(VM_KMEM_SIZE_MIN) vm_kmem_size_min = VM_KMEM_SIZE_MIN; #endif TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min); if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) { vm_kmem_size = vm_kmem_size_min; } #if defined(VM_KMEM_SIZE_MAX) vm_kmem_size_max = VM_KMEM_SIZE_MAX; #endif TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max); if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) vm_kmem_size = vm_kmem_size_max; /* Allow final override from the kernel environment */ #ifndef BURN_BRIDGES if (TUNABLE_ULONG_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0) printf("kern.vm.kmem.size is now called vm.kmem_size!\n"); #endif TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size); /* * Limit kmem virtual size to twice the physical memory. * This allows for kmem map sparseness, but limits the size * to something sane. Be careful to not overflow the 32bit * ints while doing the check. */ if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count) vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; /* * Tune settings based on the kmem map's size at this time. */ init_param3(vm_kmem_size / PAGE_SIZE); kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit, vm_kmem_size, TRUE); kmem_map->system_map = 1; #ifdef DEBUG_MEMGUARD /* * Initialize MemGuard if support compiled in. MemGuard is a * replacement allocator used for detecting tamper-after-free * scenarios as they occur. It is only used for debugging. */ vm_memguard_divisor = 10; TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor); /* Pick a conservative value if provided value sucks. */ if ((vm_memguard_divisor <= 0) || ((vm_kmem_size / vm_memguard_divisor) == 0)) vm_memguard_divisor = 10; memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor); #endif uma_startup2(); mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal), #ifdef INVARIANTS mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, #else NULL, NULL, NULL, NULL, #endif UMA_ALIGN_PTR, UMA_ZONE_MALLOC); for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { int size = kmemzones[indx].kz_size; char *name = kmemzones[indx].kz_name; kmemzones[indx].kz_zone = uma_zcreate(name, size, #ifdef INVARIANTS mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, #else NULL, NULL, NULL, NULL, #endif UMA_ALIGN_PTR, UMA_ZONE_MALLOC); for (;i <= size; i+= KMEM_ZBASE) kmemsize[i >> KMEM_ZSHIFT] = indx; } } void malloc_init(void *data) { struct malloc_type_internal *mtip; struct malloc_type *mtp; KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init")); mtp = data; mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO); mtp->ks_handle = mtip; mtx_lock(&malloc_mtx); mtp->ks_next = kmemstatistics; kmemstatistics = mtp; kmemcount++; mtx_unlock(&malloc_mtx); } void malloc_uninit(void *data) { struct malloc_type_internal *mtip; struct malloc_type_stats *mtsp; struct malloc_type *mtp, *temp; uma_slab_t slab; long temp_allocs, temp_bytes; int i; mtp = data; KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL")); mtx_lock(&malloc_mtx); mtip = mtp->ks_handle; mtp->ks_handle = NULL; if (mtp != kmemstatistics) { for (temp = kmemstatistics; temp != NULL; temp = temp->ks_next) { if (temp->ks_next == mtp) temp->ks_next = mtp->ks_next; } } else kmemstatistics = mtp->ks_next; kmemcount--; mtx_unlock(&malloc_mtx); /* * Look for memory leaks. */ temp_allocs = temp_bytes = 0; for (i = 0; i < MAXCPU; i++) { mtsp = &mtip->mti_stats[i]; temp_allocs += mtsp->mts_numallocs; temp_allocs -= mtsp->mts_numfrees; temp_bytes += mtsp->mts_memalloced; temp_bytes -= mtsp->mts_memfreed; } if (temp_allocs > 0 || temp_bytes > 0) { printf("Warning: memory type %s leaked memory on destroy " "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, temp_allocs, temp_bytes); } slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK)); uma_zfree_arg(mt_zone, mtip, slab); } struct malloc_type * malloc_desc2type(const char *desc) { struct malloc_type *mtp; mtx_assert(&malloc_mtx, MA_OWNED); for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { if (strcmp(mtp->ks_shortdesc, desc) == 0) return (mtp); } return (NULL); } static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) { struct malloc_type_stream_header mtsh; struct malloc_type_internal *mtip; struct malloc_type_header mth; struct malloc_type *mtp; int buflen, count, error, i; struct sbuf sbuf; char *buffer; mtx_lock(&malloc_mtx); restart: mtx_assert(&malloc_mtx, MA_OWNED); count = kmemcount; mtx_unlock(&malloc_mtx); buflen = sizeof(mtsh) + count * (sizeof(mth) + sizeof(struct malloc_type_stats) * MAXCPU) + 1; buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); mtx_lock(&malloc_mtx); if (count < kmemcount) { free(buffer, M_TEMP); goto restart; } sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN); /* * Insert stream header. */ bzero(&mtsh, sizeof(mtsh)); mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; mtsh.mtsh_maxcpus = MAXCPU; mtsh.mtsh_count = kmemcount; if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) { mtx_unlock(&malloc_mtx); error = ENOMEM; goto out; } /* * Insert alternating sequence of type headers and type statistics. */ for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { mtip = (struct malloc_type_internal *)mtp->ks_handle; /* * Insert type header. */ bzero(&mth, sizeof(mth)); strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) { mtx_unlock(&malloc_mtx); error = ENOMEM; goto out; } /* * Insert type statistics for each CPU. */ for (i = 0; i < MAXCPU; i++) { if (sbuf_bcat(&sbuf, &mtip->mti_stats[i], sizeof(mtip->mti_stats[i])) < 0) { mtx_unlock(&malloc_mtx); error = ENOMEM; goto out; } } } mtx_unlock(&malloc_mtx); sbuf_finish(&sbuf); error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); out: sbuf_delete(&sbuf); free(buffer, M_TEMP); return (error); } SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", "Return malloc types"); SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, "Count of kernel malloc types"); void malloc_type_list(malloc_type_list_func_t *func, void *arg) { struct malloc_type *mtp, **bufmtp; int count, i; size_t buflen; mtx_lock(&malloc_mtx); restart: mtx_assert(&malloc_mtx, MA_OWNED); count = kmemcount; mtx_unlock(&malloc_mtx); buflen = sizeof(struct malloc_type *) * count; bufmtp = malloc(buflen, M_TEMP, M_WAITOK); mtx_lock(&malloc_mtx); if (count < kmemcount) { free(bufmtp, M_TEMP); goto restart; } for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) bufmtp[i] = mtp; mtx_unlock(&malloc_mtx); for (i = 0; i < count; i++) (func)(bufmtp[i], arg); free(bufmtp, M_TEMP); } #ifdef DDB DB_SHOW_COMMAND(malloc, db_show_malloc) { struct malloc_type_internal *mtip; struct malloc_type *mtp; u_int64_t allocs, frees; u_int64_t alloced, freed; int i; db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse", "Requests"); for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { mtip = (struct malloc_type_internal *)mtp->ks_handle; allocs = 0; frees = 0; alloced = 0; freed = 0; for (i = 0; i < MAXCPU; i++) { allocs += mtip->mti_stats[i].mts_numallocs; frees += mtip->mti_stats[i].mts_numfrees; alloced += mtip->mti_stats[i].mts_memalloced; freed += mtip->mti_stats[i].mts_memfreed; } db_printf("%18s %12ju %12juK %12ju\n", mtp->ks_shortdesc, allocs - frees, (alloced - freed + 1023) / 1024, allocs); } } #endif #ifdef MALLOC_PROFILE static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS) { int linesize = 64; struct sbuf sbuf; uint64_t count; uint64_t waste; uint64_t mem; int bufsize; int error; char *buf; int rsize; int size; int i; bufsize = linesize * (KMEM_ZSIZE + 1); bufsize += 128; /* For the stats line */ bufsize += 128; /* For the banner line */ waste = 0; mem = 0; buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO); sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN); sbuf_printf(&sbuf, "\n Size Requests Real Size\n"); for (i = 0; i < KMEM_ZSIZE; i++) { size = i << KMEM_ZSHIFT; rsize = kmemzones[kmemsize[i]].kz_size; count = (long long unsigned)krequests[i]; sbuf_printf(&sbuf, "%6d%28llu%11d\n", size, (unsigned long long)count, rsize); if ((rsize * count) > (size * count)) waste += (rsize * count) - (size * count); mem += (rsize * count); } sbuf_printf(&sbuf, "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n", (unsigned long long)mem, (unsigned long long)waste); sbuf_finish(&sbuf); error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf)); sbuf_delete(&sbuf); free(buf, M_TEMP); return (error); } SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD, NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling"); #endif /* MALLOC_PROFILE */